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Abstract

We present a code for the simulation of laser–plasma interaction processes relevant for applications in inertial con
fusion. The code consists of a fully nonlinear hydrodynamics in two spatial dimensions using a Lagrangian, disco
Galerkin-type approach, a paraxial treatment of the laser field and a spectral treatment of the dominant non-local
terms. The code is fully parallelized using MPI in order to be able to simulate macroscopic plasmas.

One example of a fully nonlinear evolution of a laser beam in an underdense plasma is presented for the conditions p
for the future MegaJoule laser project.
 2005 Elsevier B.V. All rights reserved.

PACS:02.70.Dh; 47.11.+j; 52.35.Tc; 52.38.-r; 52.65.Kj; 52.57.-z

Keywords:Laser–plasma interaction; Lagrangian hydrodynamics; Discontinuous Galerkin method; Non-local transport; Inertial confin
fusion

1. Large-scale laser–plasma interaction (LPI) in ICF context

The forthcoming large-scale projects devoted to inertial confinement fusion (ICF) in France (CEA-LM
the US (LLNL-NIF) require a predictive modeling of the relevant physical processes. There are three le
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modeling currently implemented in laser fusion studies. The macroscopic modeling describes the target
ation, the fuel compression, the ignition of fusion reactions and the energy yield. However these codes
coarse-grained to account for electromagnetic effects and the laser energy deposition is often treated as
ary condition. The microscopic codes account for particle kinetics and full electromagnetic effects but t
restricted to local descriptions at the level of a few hundred cubic microns in space and a few picosec
time.

The present code belongs to the third category of codes, operating on the mesoscopic level, which c
a bridge between the microscopic “elementary” physics and the practical needs of target design. The pu
these codes is to provide a realistic description of laser–plasma interaction (LPI) and to optimize the lase
deposition for fusion studies. The term “realistic” in this case implies macroscopic plasma volumes of the o
one mm3 and laser exposure times of the order of several nanoseconds[17,21].

There are three basic ingredients for such a simulation tool: a reduced paraxial treatment of the incid
beam, a nonlinear hydrodynamics for the plasma response and a valid approach accounting for the kinet
(wave and particle interactions).

The assumption of quasi-neutrality for the plasma implies that the equations of the plasma as a fluid are
the standard equations of ideal gas dynamics. For present considerations of interest the presence of self-
electric and magnetic fields plays no role. However, due to the specific conditions encountered in many LP
cations, one has to take into account certain kinetic effects within the hydrodynamic models. These kineti
present themselves as modifications of the usual transport coefficients induced by a large mean free pa
particles and by coupling of the plasma to the laser field.

The most advanced mesoscopic LPI code is pF3D[1] developed over the last 10 years in the Lawrence
ermore National Laboratory. It accounts for many physical effects such as laser propagation, auto-foca
stimulated forward and backward Raman and Brillouin scattering, etc. The hydrodynamical part of this
fully 3-dimensional and accounts for several models of non-local heat transport and some other effects. O
is more limited. It is intended above all for describing effects due to laser propagation. It does not acco
backscattering and the hydrodynamical plasma response is 2-dimensional in the plane transverse to the l
axis. However, this code has several attractive features at the level of the plasma response description wh
a more efficient treatment of the laser–plasma interactions. In particular, the numerical scheme allows for
smaller number of mesh-points while maintaining the precision compared to standard schemes. Also no n
oscillations appear at the fronts of shocks and at strong gradients. These features are very favorable fo
strongly inhomogeneous laser fields and large plasma volumes. Since the main coupling terms between th
and the laser are acting in the plane transverse to the propagation direction of the laser beam, the hydro
module is 2-dimensional in our code. The disadvantage being that plasma flow along the laser axis cann
counted for. The numerical scheme allows without problem its extension to the third direction and can
generalized to multi-species plasmas. However, these features would undermine the performance of the c

We consider the present version of the code as a basic one which contains sufficient physics for an
current experiments and predictive modeling of LPI for fusion research.

The outline of the remaining paper is as follows. Section2 explains the novel numerical method used for
hydrodynamics. Section3 presents the global formulation of the model: the parabolic electromagnetic eq
and the non-local Navier–Stokes equations, followed in Section4 by the issue of the non-local transport. Fina
Section5 presents some results of a recent application of the code in the strongly nonlinear regime.

2. Discontinuous Galerkin approach for plasma hydrodynamics

Laser beams for the present ICF studies have a complicated spatio-temporal structure on the time scal
ps and a spatial scale of a few µm with intensity variations more than one order of magnitude. Such inhomog
of the laser electromagnetic field can be considered as local hot spots or speckles which have a random
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distribution. The modeling of speckles in the context of laser–plasma interaction gives rise to strong grad
the density. The induced flow is characterized by local non-stationary compression and rarefaction. The
numerical method is required which allows to resolve these gradients with a high precision and with a m
number of mesh points.

For this purpose a Lagrangian method is used to solve the nonlinear hydrodynamic equations[14,15]which de-
scribe the plasma response. In contrast to most Lagrangian approaches, the method used here represent
derivatives entirely in Lagrangian variables. This implies that one has to follow the time evolution of the
bian relating the Eulerian and Lagrangian spaces. The space discretization is based upon an original disc
Galerkin method which uses as a basis the Bernstein polynomials. Instead of solving for the variables the
one uses the moments of the variables with respect to the Bernstein polynomials. The moments method
some weak intrinsic numerical diffusion which allows us to avoid the use of the classical slope limiter an
presses spurious numerical oscillations. At the interfaces between two adjacent computational cells the
problem is solved by using the classical Godunov solver. This approach allows a straightforward generaliz
higher orders of precision. At present our code works at third order.

The coupling to the laser field gives rise to several sources (ponderomotive force, heating and transpo
which are calculated in the Eulerian framework and which have to be projected onto the Lagrangian mes
terms are constructed as continuous sources over the whole computational domain using the correspon
ments on the Bernstein basis.

In the following we present in some detail the numerical scheme in one spatial dimension (1D), followe
general outline of the method in two dimensions.

2.1. The 1D numerical scheme

2.1.1. Gas dynamic equations in Lagrangian coordinates
We consider a 1D flow in planar geometry, characterized by the densityρ, velocityu, pressureP and the total

energye = u2/2+ ε, whereε denotes the internal energy. A perfect gas law for the equation of state (withou
of generality) is assumed:P = (γ − 1)ρε, whereγ is the polytropic constant for a perfect gas. One can exp
the conservation of mass, momentum and total energy in the Lagrangian framework as follows:

(1)




∂t (J ) − ∂xu = 0,

∂t (ρJ ) = 0,

∂t (ρJu) + ∂xP = 0,

∂t (ρJ e) + ∂x(Pu) = 0, with P = (γ − 1)ρ(e − 1
2u2),

wherex denotes the Lagrangian coordinate which is the initial position of the Eulerian coordinateX; X andx are
connected by the ordinary differential equation:

(2)∂tX = u
(
X(t), t

)
, with X(0) = x,

which describes the particle paths. HereJ (x, t) is the Jacobian of the mapx → X(x, t), i.e.J = ∂xX. We solve the
above system forx ∈ ω = [xf , xl] andt ∈ [0, T ]. The boundary conditions are of two types: either the pressu
the velocity is imposed forx = xl andx = xf . A set of initial conditions for the flow variables is given and for t
Jacobian we imposeJ (x,0) = 1. In order to discretize the system(1) we define a subdivision ofω: xf = x1 < · · · <
xi < · · · < xI+1 = xl with �xi+1/2 = xi+1 − xi and a subdivision of[0, T ]: 0 = t1 < · · · < tn < · · · < tN+1 = T

with �t = tn+1 − tn. The spatial discretization is based upon the Galerkin discontinuous method which uses
of Bernstein polynomials.
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2.1.2. Bernstein polynomials
Let ωi+1/2 = [xi, xi+1] be a given cell of the mesh andx a point inωi+1/2. We define the barycentric coordinat

of x:

(3)λ1(x) = xi+1 − x

xi+1 − xi

, and λ2(x) = x − xi

xi+1 − xi

,

whereλ1 andλ2 are positive functions ofx andλ1(x) + λ2(x) = 1. The set{λ1, λ2} is a basis ofP1(ωi+1/2)—the
set of polynomials of the order lower or equal to one. The definition of the Berstein polynomials of ordeK is
straightforward using the binomial development of(λ1 + λ2)

K . Fork = 0 . . .K one considers the polynomial

(4)σ
(K)
k (x) = Ck

Kλk
1(x)λK−k

2 (x),

whereCk
K = K!

k!(K−k)! . The set{σ (K)
k }k=0...K is a basis ofPK(ωi+1/2)—the set of polynomials of order lower o

equal toK . These polynomials verify the following fundamental properties: fork = 0 . . .K andx ∈ ωi+1/2

(5)




σ
(K)
k (x) � 0,∑K

k=0 σ
(K)
k (x) = 1,∫ xi+1

xi
σ

(K)
k (x)dx = �xi+1/2

K+1 ,

σ
(K)
k (xi) = δk0, σ

(K)
k (xi+1) = δkK,

whereδkl is the Kroenecker symbol (δll = 1 andδkl = 0 for k �= l). For K = 2 we have the following basis o
P2(ωi+1/2): σ0(x) = λ1(x)2, σ1(x) = 2λ1(x)λ2(x) andσ2(x) = λ2(x)2.

This Bernstein basis enables us to construct a polynomial approximation of a function onωi+1/2 for any order
K in the following way. Letφ(x) be a function onωi+1/2, then we define itskth moment as:

(6)Mk,φ =
xi+1∫
xi

σ
(K)
k (x)φ(x)dx.

One notices that
∑K

k=0 Mk,φ = ∫ xi+1
xi

φ(x)dx. There are several ways to construct a polynomial approximatio
orderK . The most obvious one uses a projection ofφ onto the spacePK(ωi+1/2) with the Bernstein basis: eac
moment of the functionφ is equal to the moment of its polynomial approximation. Then we need to solve a
system in order to compute theK + 1 components ofφ on the Bernstein basis.

This method however has a major drawback: the lack of positivity, i.e. ifφ is positive onωi+1/2, its polynomial
approximation might be somewhere negative. For our purposes positivity is a crucial need (the density, p
energy are positively defined functions). Thus one has to design a polynomial approximation which pr
positivity in a natural way. We constructφ̂ as:

(7)φ̂(x) =
K∑

k=0

φ̂kσ
K
k (x), with φ̂k = Mk,φ

Mk,1
,

whereMk,1 = ∫ xi+1
xi

σ
(K)
k (x)dx. In this way the positivity is guaranteed and one has as well a conservation

mean value ofφ:

(8)

xi+1∫
xi

σ
(K)
k (x)φ̂(x)dx =

K∑
k=0

Mk,φ =
xi+1∫
xi

σ
(K)
k (x)φ(x)dx.

Moreover, this approximation adds a small amount of numerical diffusion which enhances the stability
scheme.
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2.1.3. Spatial discretization
The system(1) can be put in a more concise form:

(9)∂t (Jφ) + ∂xF (φ) = 0,

where the vectorφ = {1, ρ,ρu,ρe} and the vector of fluxes is defined as:F = {−u,0,−P,Pu}. In the context
of the discontinuous Galerkin method, the vectorφ is approximated by a polynomial in each cellωi+1/2 and this
approximation is discontinuous at the cell boundaries. Thus, the spatial derivative{∂x} has to be considered i
the sense of distributions, i.e. it is equal to the classical derivative almost everywhere, except at the disco
points, where it is equal to the Dirac function times the jump of the function at these points. Thus for the cellωi+1/2
we have:

(10)
{
∂xF (φ)

}= ∂xF (φ) + [F(φ+
i ) − F(φ�

i )
]
δxi

+ [F(φ�
i+1) − F(φ−

i+1)
]
δxi+1,

whereφ±
i = limx→x±

i
φ(x) andφ�

i is the value which depends on the left- and right-hand side values(φ−
i , φ+

i )

of φ, i.e.φ�
i is the solution of the classical Riemann problem. After multiplying Eq.(10)by σ

(K)
k and integrating it

over the cellωi+1/2 one obtains:

dtMk,Jφ +
xi+1∫
xi

∂xF (φ)σ
(K)
k (x)dx + [F(φ+

i ) − F(φ�
i )
]
σ

(K)
k (xi)

(11)+ [F(φ�
i+1) − F(φ−

i+1)
]
σ

(K)
k (xi+1) = 0.

The integration by parts for the second term of the left-hand side leads to:

(12)dtMk,Jφ −
xi+1∫
xi

F (φ)∂xσ
(K)
k (x)dx + F

(
φ�

i+1

)
δkK − F

(
φ�

i

)
δk0 = 0.

In order to compute the integral term, one replacesF(φ) by its polynomial approximation:

(13)F(φ) =
K∑

l=0

F(φ̂l)σ
(K)
l (x).

Introducing a matrixD with coefficients:

(14)Dkl =
xi+1∫
xi

∂xσ
(K)
k (x)σ

(K)
l (x)dx,

one obtains:

(15)dtMk,Jφ −
K∑

l=0

DklF (φ̂l) + F
(
φ�

i+1

)
δkK − F

(
φ�

i

)
δk0 = 0.

The computation of the matrixD has to be performed just once and is independent of the mesh. ForK = 2 we
have the following values:

(16)D =



−1
2 −1

3 −1
6

1
3 0 −1

3
1 1 1


 .
6 3 2
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2.1.4. Time discretization
We use the classical two step Runge–Kutta method for the time discretization of Eq.(15):

• first step:

M
(n,1)
k,Jφ = Mn

k,Jφ + �t

[
K∑

l=0

DklF (φ̂n
l ) − {F(φ�n

i+1)δkK − F(φ�n
i )δk0

}]
,

• second step:

M
(n,2)
k,Jφ = M

(n,1)
k,Jφ + �t

[
K∑

l=0

DklF (φ̂
(n,1)
l ) − {F(φ

�(n,1)
i+1 )δkK − F(φ

�(n,1)
i )δk0

}]
.

One obtains order 2 precision with:

Mn+1
k,Jφ = 1

2

(
Mn

k,Jφ + M
(n,2)
k,Jφ

)
.

In the above equations the superscriptn denotes the value of the function at the timetn.

2.1.5. Computation of̂φk

Knowing the momentsMk,Jφ for φ = 1, ρ,ρu,ρe, one computes the so-called hat components in the follow
way:

(17)




ρ̂k = Mk,Jρ

Mk,J
, ûk = Mk,Jρu

Mk,Jρ
,

êk = Mk,Jρe

Mk,Jρ
, ε̂k = êk − 1

2(ûk)
2.

For the pressurêPk and the sound speed componentsĉk one uses the equation of state and its derivatives:

(18)P̂k = P(ρ̂k, ε̂k), ĉk =
√

(∂ρP )S(ρ̂k, P̂k),

where(∂ρP )S denotes the isentropic derivative ofP . These results enable us to obtain the flux vectorF(φ̂k). It
remains the evaluation of the so-called star values ofu andP . This procedure is described in the following secti

2.1.6. Riemann solver
At the beginning of each time step and for each nodexi we know the left and right states(φ−

i , φ+
i ). One

computes the intermediate stateφ�
i by solving the Riemann problem which describes the evolution of initial

continuities in the time interval�t . In our code we use an approximate Riemann solver due to Godunov:

(19)




u�
i = P−

i −P+
i +ρ+

i c+
i u+

i +ρ−
i c−

i u−
i

ρ+
i c+

i +ρ−
i c−

i

,

P �
i = ρ+

i c+
i ρ−

i c−
i (u−

i −u+
i )+ρ+

i c+
i P−

i +ρ−
i c−

i P+
i

ρ+
i c+

i +ρ−
i c−

i

,

where the left (right) state is determined by the hat components:

(20)φ−
i = φ̂K, in ωi−1/2, φ+

i = φ̂0, in ωi+1/2.
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2.1.7. Time step controls
We have two limitations on the time step, the first one is the classical CFL condition and the second one

the positivity of the JacobianJ .

• CFL condition: we propose a heuristic CFL condition which seems to be convenient for almost all ca
have tested:

(21)�tCFL < min
i=1...I

(
�xi+1/2

ĉ0(i+1/2)

Ĵ0(i+1/2)
+ ĉK (i+1/2)

ĴK (i+1/2)

)
.

It expresses the condition that in a given cell, two waves emanating from the boundariesxi andxi+1 do not
interact.

• Positivity of the Jacobian: the map between the Eulerian and the Lagrangian space remains valid as lo
Jacobian is strictly positive. In the case of compression,J is decreasing, so we have to ensure its positivity
a time step constraint. If moments of the Jacobian are positive at the beginning of each time step, th
remain so at the end of the time step, hence:

(22)�tJ < min
i=1...I

[
min

k=0...K

(
− Mn

k,J∑K
l=0 Dklû

n
l − u�

i+1δkK + u�
i δk0

)]
.

Finally one takes the more restrictive condition by imposing:

(23)�t = min(�tCFL,�tJ ).

2.1.8. Eulerian grid computation
In order to represent the results in the physical space (namely the Eulerian space), one has to comput

evolution of the Eulerian positionXi . For this purpose one solves the differential equation (Eq.(2)) following the
two-step Runge–Kutta scheme:

(24)




X
(n,1)
i = Xn

i + �tu�
i ,

X
(n,2)
i = X

(n,1)
i + �tu

�(n,1)
i ,

Xn+1
i = 1

2(X
(n,2)
i + Xn

i ).

We represent the variableφ by its mean valuēφ in each cell:

(25)




ρ̄ =
∑K

k=0 Mk,Jρ∑K
k=0 Mk,J

, ū =
∑K

k=0 Mk,Jρu∑K
k=0 Mk,Jρ

,

ē =
∑K

k=0 Mk,Jρe∑K
k=0 Mk,Jρ

, P̄ =
∑K

k=0 Mk,J P̂k∑K
k=0 Mk,J

.

Remark 1. The method presented here allows to reach the spatial precision which is almost of the order ofK + 1,
and the temporal precision of the order of 2. Notice that forK = 0 it reduces to the classical Godunov Lagrang
scheme. ForK = 1,2 and for moderate compressive flows (no shocks), it works quite well, without any spu
oscillations, hence there is no need for the slope limitation procedure. Nonetheless, for strong compressi
one has to take account of the limitation procedure, in order to ensure monotonicity of the variables.

2.1.9. Numerical results
Fig. 1 shows the solution for the double expansion problem obtained with various numerical scheme

clearly sees that none of the classical schemes reproduces the known analytical solution.Fig. 2 shows the re-
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Fig. 1. Solution of the double expansion problem with various numerical schemes (taken from[13] where also a detailed explanation of t
various numerical schemes is given), to be compared withFig. 2. The grey curve gives the correct analytical solution and the dark one
corresponding solutions of the various numerical schemes. No solution was obtained for the methods WAFC and CLAW. The abb
stand for: CFLF: a first-order Courant–Friedrichs–Lax–Friedrichs, CFLFh: CFLF hybrid, WAFT and WAFC: weighted average flux s
CLAW: clawpack wave propagation scheme, PPM: piecewise parabolic method, WEN05 and CWEN03: weighted essentially non-o
schemes, LL: Liu–Lax positive scheme, JT: centered scheme with limiter.

sults from the Lagrangian discontinuous Galerkin method. Note that no numerical oscillations appear an
moderate number of mesh points reproduces exactly the analytical result.

This particular test is related to the effect of a ponderomotive force acting on a plasma where a similar
depletion occurs and where very similar numerical problems play a role.

2.2. General outline of the method in 2D

The generalization of the Lagrangian discontinuous Galerkin method to the 2D geometry is rather s
forward but algebraically cumbersome. We present here only the main features. For a more detailed ex
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Fig. 2. The double expansion problem for the present numerical scheme (taken from[14]), using 100 (left) and 250 (right) computational cells
The continuous line gives the analytical solution and the dots represent the computational cell values.

the reader may refer to Ref.[15]. One of the particularities of the 2D numerical scheme relies on the expre
of the gas dynamic equations in a conservation form in the Lagrangian framework as it was first pointed
Ref. [12].

2.2.1. Gas dynamic equations in Lagrangian coordinates
Let Ω be an open set ofR2, X = (X,Y )t ∈ Ω denotes the Eulerian coordinates in the flow fieldV = (u, v)t , and

x = (x, y)t denotes the Lagrangian coordinates which are the initial positions of the Eulerian coordinates(X,Y ).
The coordinates(X,Y ) and(x, y) are connected by the system of ordinary differential equations:

(26)

{
∂tX = u(X(t), Y (t), t), with X(0) = x,

∂tY = v(X(t), Y (t), t), with Y(0) = y.

The solutions of Eq.(26) define a map between the Lagrangian and the Eulerian spaces for each timet . This
map is bijective if and only if the associated Jacobian matrix is invertible. Hence its determinantJ must be strictly
positive (since it is positive att = 0):

(27)J (x, y, t) =
∣∣∣∣∣ ∂xX ∂xY

∂yX ∂yY

∣∣∣∣∣.
The derivation of the gas dynamic equations in the Lagrangian space in the conservative form is based

following formula:

(28)J∇X · F = ∇x · [f (∇xY )⊥ − g(∇xX)⊥
]
.

Here∇X· denotes the divergence operator in Eulerian coordinates,∇x · and∇x are the divergence and gradie
operators in Lagrangian coordinates,F = (f, g)t , (∇xY )⊥ = (−∂yY, ∂xY )t and (∇xX)⊥ = (−∂yX, ∂xX)t . With
these notations we obtain:

(29)




∂t (J ) − ∇x · [u(∇xY )⊥ − v(∇xX)⊥] = 0,

∂t (ρJ ) = 0,

∂t (ρJu) + ∇x · [P(∇xY )⊥] = 0,

∂t (ρJv) − ∇x · [P(∇xX)⊥] = 0,

∂t (ρJ e) + ∇x · [Pu(∇xY )⊥ − Pv(∇xX)⊥] = 0,

P = (γ − 1)ρ[e − 1
2(u2 + v2)].
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2.2.2. The 2D numerical scheme
As in 1D, the 2D scheme is built with the discontinuous Galerkin method. We compute the moments of va

in the Bernstein polynomial basis. The mesh is nonstructured, using a triangulation of the setΩ . The construction
of Bernstein polynomials on a triangle is straightforward, using the barycentric coordinates. We use the p
representation which enables us to obtain the spatial precision of the order of 3. Intermediate values on th
edges are evaluated with a monodimensional Riemann solver in the direction of the Eulerian outward uni
vector. For the time discretization we have implemented a two-step Runge–Kutta method in order to ob
temporal precision of the order of 2. A more complete description can be found in Ref.[14].

3. Formulation of the global model

3.1. Parabolic electromagnetic equation

The electromagnetic part of the code is based on the reduced, paraxial equation for the electromagn
amplitude. This is an envelope equation which accounts for a quasi-monochromatic laser field and its sma
gence.

The time evolution of the electromagnetic field propagating inz-direction is given by the paraxial equation(19):

(30)

(
2ı

ωo

c2
∂t + 2ıko∂z + ı∂zko + D2 − ω2

o

c2

ne − neo

nc

+ ı
νeiωo

c2

neo

nc

)
E = 0.

The operatorD2 = 2∇2/(1 +√1+ ∇2/k2
o ), where∇2 is the Laplacian operator in the plane perpendicu

to thez-direction, takes into account the Feit and Fleck correction[9] which allows to consider larger scatterin
angles. Hereneo andne are the original and the actual electron density, respectively. The critical density isnc =
meεoω

2
o/e

2, ω is the laser frequency and the wave vector isko = (ωo/c)
√

1− neo/nc. νei denotes the electron–io
collision frequency and this term accounts for depletion of the laser energy due to inverse bremsstrahlung

This equation is common to all mesoscopic plasma models. It is solved by using the Fourier transfor
nique in the perpendicular plane as it was already described in Ref.[19]. The electromagnetic part of the code
supplemented by a package which allows for the use of the various schemes of optical smoothing as env
the LMJ and NIF projects.

3.2. The non-local Navier–Stokes equations

Following the standard procedures to derive the moment equations from the Fokker–Planck equati
plasma one arrives at the following set of hydrodynamic equations which has been derived in Ref.[3]:

(31)
∂ni

∂t
= −∇ · (niu),

∂u
∂t

= −(u · ∇u) − 1

nimi

∇ptot − Z

mi

1

2cnc

∇I + 1

nimi

∇ · (ηi∇u)

(32)+ Z

mi

∇(βTe) − Z

mi

1

cnc

∇(ξuI ) − Z

mi

1

3cnc

∇(βI),

∂Te

∂t
= −2

3
Te∇ · u − u · ∇Te + 2

3ncc
νeiI + 1

3ncc

∂I

∂t
+ 2

3
Te∇ · (βu)

(33)+ 2

3ne

∇ · (κe∇Te) − 2

3
∇ ·
(

κe

3nencc
∇I

)
− 2

3
∇ ·
(

Te

meνeincc
ξ∇I

)
,

(34)
∂Ti = −2

Ti∇ · u − u · ∇Ti + 2 ∇ · (κi∇Ti),

∂t 3 3ni
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therefore
(35)ptot = pe + pi,

(36)pe = (γe − 1)neεe,

(37)pi = (γi − 1)

(
niεi − 1

2
miniu2

)

with εe, εi the total energy for electrons and ions, respectively.
Outwardly the structure of the equations is the same as in standard hydrodynamics. The difference b

the transport coefficients for viscosity and heat fluxes (ηi , κe andκi ) have a non-local form as will be explaine
for the heat flux equation in the next section. In addition there are terms (containing the intensityI = cεo|E|2/2)
which couple the plasma dynamics to the laser field.

This set of equations can be considered as non-local Navier–Stokes equations which take into accou
effects whenever the mean-free path for electron–ion collisions is of the order of the typical gradient scale
The coupling terms due to inverse bremsstrahlung(2/3ncc)νeiI + (1/3ncc)∂t I and the ponderomotive force ter
(Z/mi2cnc)∇I remain purely local in character. The non-local transport coefficients will be explained
following section.

4. The non-local transport

Under plasma conditions where the mean-free path for electron–ion collisions is of the order of the chara
scale length of the macroscopic variables (density, temperature, etc.), the standard classical theory of
breaks down. The classical transport is valid in the strongly collisional regime. It describes, for examp
heat flux by the well-known Spitzer–Härm formula. The weakly-collisional regime, characteristic for many
plasma interaction problems, requires a delocalized treatment of the transport coefficients, i.e. taking into
the variation of the plasma parameters on the scale of a few mean-free paths.

The model presented here is based on a mathematical exact linearization of the Fokker–Planck equatio[2,3,5–
7] and on an integral representation of the plasma fluxes and laser–plasma coupling. They are valid for an
collisionality and give a smooth transition from the collisional to the collisionless regime. Comparisons with
calculations have shown that the so obtained formulae remain valid even under quasi-nonlinear conditions
therefore be considered to be well adapted to the problems of interest[4]. Nonlinear models of the non-loca
transport have been developed only for the case without laser radiation and for a sufficiently strong collis
[20]. Also they suffer from numerical problems when implemented in hydrodynamic codes. They can p
negative temperatures and negative entropy whenever the plasma density profile is non-uniform[8,18].

In the following we briefly present the procedure of implementation of the non-local heat flux in the cod
other transport coefficients are treated in exactly the same way from the mathematical point of view.

4.1. The electron heat conductivity

The simplified heat equation is (the temperature being in energy units [eV]):

(38)∂tTe = − 2

3ne

∇ · q.

The electron heat fluxq has a non-local integral relation to the temperature gradient. Its Fourier comp
is qk = −κk(∇T )k The electron heat conductivityκe is known in k-space but it is also a function of the loc
plasma parameters. As one is interested in conditions where the gradient scale length is of the order of the
mean-free path, the Fourier component of the conductivity does not vary much over the gradient. One can
approximate the source∇ · q in Fourier space ask2κ T .
k k
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In the case of laser–plasma interaction, the laser intensity gradients are strongly anisotropic and are
predominantly in the plane perpendicular to the laser propagation direction. This allows to consider the
response independently for each coordinate in the direction of laser beam propagation and therefore to
hydrodynamic equations to the 2D case. Correspondingly, the Fourier transformation of the heat flux is i
well and one hask2 = k2

x + k2
y . The change in temperature at one time step is then given as:

(39)δTe = 2�t

3ne

FT−1[fnl(kλei)αkTk

]
.

HereFT−1 denotes the inverse Fourier transform. Note that the coefficientα = nevT e and the electron mean
free pathλei are given in real space and do not depend onk. The non-local transport coefficientfnl is a nonlinear
function ofkλei which can be decomposed as:

(40)fnl(kλei) = g(Z)kλeih(kλei),

with g(Z) = (3.26+13.6Z)/(4.2+Z) giving the ion charge dependence. If the functionh is equal to 1, one would
recover the standard expression for the collisional Spitzer–Härm conductivity:κ = κSH = g(Z)nevT eλei . In the
general case the functionh depends strongly on the collisionality parameterkλei . It is possible to represent th
functionh as a harmonic mean between the strongly collisionalhc and the collisionlesshnc states which gives
good approximation over the whole range of the collisionality parameterX:

(41)
1

h
= 1

hc

+ 1

hnc

,

(42)hc = 1

1+ (50+10Z
12+Z

X)0.9
,

(43)hnc = 0.11
√

Z

X
,

with X = √
Zkλei .

Fig. 3shows the strong variation of the electron heat flux coefficient as a function of the collisionality para
kλei for various charge states and the relative importance of the collisional and collisionless contributions. N

Fig. 3.Left: the non-local electron heat flux coefficientκe normalized to the Spitzer–Härm conductivity as a function ofkλei ; solid line (Z = 1),
dashed line (Z = 20) and dotted line (Z = 50).Right: the conductivity forZ = 3.5; solid line (h), dashed line (hc) and dotted line (hnc).
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ne has:
the transition from the collisional to the collisionless regime spans a wide range of parameters fromkλei ≈ 0.01 to
kλei ≈ 100.

Other transport coefficients are defined by the same interpolation formula, Eq.(41), with the following functions.

4.2. The ion heat conductivity

The change in the ion temperature at one time step is given as:

δTi = (2�t/3ni)FT−1[fnl(kλii)αkTk

]
with α = nivT i and the functionfnl(kλii) = kλiih(kλii) is defined according to Eq.(41)with

hc = 2.78; hnc =
√

π

8

e−( 1
Y

+3)/2

Y 3X

with X = kλii andY = Ti/ZTe and the Braginskii viscosity being:κoi = 2.78nivT iλii .

4.3. The ion viscosity

The change in the ion velocity due to viscosity can be written as:

δu = �t

ni

FT−1[fnl(kλii)αkuk

]
with α = nivT i andfnl(kλii) = kλiih(kλii), where

h = 2.0
1.48+ 0.8Y 2

2.31+ 4.04Y 2 + Y 4
; Y = kλii/

√
Ti

ZTe

,

to which is added the ion Landau damping:

hlandau=
√

π/8

(
Ti

ZTe

)−1.5
√

3+ ZTe

Ti

e
−1.5+ ZTe

2Ti

[
14(kλii)

2

1+ 7(kλii)2

]
.

4.4. The coefficientsβ, ξ andξu

The collisional (c) and collisionless (nc) limits of these coefficients are given by the following equations:

β =
{

150X2/Z

1+2.8(1+12X/
√

Z)( −5+10Z
7+Z

X)0.9 coll.,

0.4 non-coll.,

ξ =
{

34.5 Z

1+37X1.34 coll.,

1.3 Z1.5

X1.57 non-coll.,

ξu =



180 X2

1+42(1+12X/
√

Z)X1.3 coll.,

0.34 Z

X0.57 non-coll.

As before the interpolation formulae for the above coefficients use the harmonic mean. For example, o
1 = 1 + 1 .

β βc βnc
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For all transport terms one has that in the limit ofkλei → 0 the standard collisional transport is recove
automatically. However, the non-local Navier–Stokes equations are valid for arbitrary collisionality of the p
from the free-streaming limit via the semi-collisional regime to the usual strongly collisional regime.

4.5. Implicit treatment of the heat flux term

The heat fluxq = −κe∇Te poses numerical stability problems. There is a general disparity for the charact
propagation velocity of a density perturbation which is of the order of the ion sound velocitycs ∼ √

Te/mi and the
characteristic speed for a thermal wave which isvth �

√
Te/me (depending on the model). These two velocit

differ by two orders of magnitude due to the large difference between the ion massmi and the electron massme.
This introduces a two-scale problem for the time step for integration.

In these conditions it is necessary to use an implicit treatment of the non-local transport term.
In the explicit version the heat conduction term in Eq.(38) was evaluated at the time stepn following Eq. (39)

with Tk taken at the same time stepn. In a generalized implicit spectral treatment the starting point is:

(44)ne(x)
T n+1

k − T n
k

�t
= A

{
θT n+1

k + (1− θ)T n
k

}
,

with A = −k2κk(kλei(x))2
3ne(x)vT e(x)/�t andθ is a positive parameter which lies between 0 and 1. The

temperature is then calculated as:

(45)T n+1
k = T n

k

ne(x) + A(1− θ)

ne(x) − Aθ
.

For θ = 0 the scheme is explicit, forθ = 1 it is purely implicit. Forθ = 1
2 we recover the semi-implicit Crank

Nicholson scheme.
Subsequently the new temperature is obtained asT n+1(x) = FT−1[T n+1

k ] or with the correction term�T (x) =
FT−1[T n+1

k − T n
k ].

As the non-local transport theory is linearized in Fourier space, no matrix inversion is required for the i
approach as each Fourier component is evaluated separately.

5. Nonlinear evolution stage of mono-speckles in LPI

The spatial and temporal smoothing of laser beams in plasmas plays an important role in inertial confi
fusion. The aim is to reduce the intrinsic intensity fluctuations in a laser beam which affect the compress
formity of the pellet. Of particular interest is the plasma-induced temporal incoherence. One of the mech
playing a role is an intensity-dependent instability of a mono-speckle. This instability was successfully an
and validated in the linear regime by comparing it to analytical considerations and to experimental data[16]. As
the plasma response at high intensities becomes nonlinear, the full nonlinear hydrodynamics is needed in
correctly model the interaction process.

As was shown already in the linear response regime[16], the intrinsically non-local character of the transp
terms may not be neglected. In the following nonlinear calculation they were taken into account.

Fig. 4 shows the time evolution of the density of a mono-speckle in the strongly nonlinear regime.
intensity of the laser beam is above a certain threshold a hose-like instability develops which eventu
stroys the speckle in the plasma. This so-called filament instability is an important mechanism of plasma-
smoothing for laser beams in the inertial confinement fusion applications. The onset of the instability
termined by the self-focusing of a laser beam in a plasma and the density fluctuations always presenFig. 5
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Fig. 4. Density plots of the nonlinear evolution of a mono-speckle around the time of destruction (plasma density:ne = 0.5 nc and the laser
intensity: 8· 1013 W/cm2); z-direction is parallel to the laser beam axis andx-direction is one of two transverse directions.

shows some snapshots of the corresponding evolution of the laser beam intensity up to the destructio
speckle.

Fig. 6 shows the time evolution of a characteristic parameter linked to the behavior of the electrom
energy for the speckle instability. This is the relative part of the computational volume where the laser in
exceeds three times the maximum laser intensity in the entrance plane. It characterizes the local conc
of the laser energy in the plasma due to self-focusing. The linear regime of this instability had been a
in [16] where it was found that this parameter exhibits an oscillatory behavior. This corresponds to a p
reconstruction of the speckle and the instability mechanism repeats itself. For the higher laser intensity, th
response is nonlinear and we found that the instability changes its character completely. One no longer o
periodic reconstruction of the speckle. This is an important result for the plasma smoothing which can be
in experiments.

The modeling of large-scale plasmas requires the use of parallel machines. The code has been entir
lelized using MPI[11] and the FFTW package[10] for the fast Fourier transforms which admits the use of M
The nonlinear calculation was performed for a plasma volume of 25× 25× 100 µm3 and for a duration of 150 ps
Using a transverse spatial resolution of 0.4 µm, a longitudinal spatial resolution of 1 µm (i.e. 64× 64× 100 mesh
points) and a time step for integration of 2.5 · 10−2 ps (the small time step is mainly imposed by the expl
scheme and the coupling with the non-local transport terms) the entire calculation took of the order of 20
equivalent of one processor on a Compaq hp alpha server machine.
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Fig. 5. Intensity plots of the nonlinear evolution of a mono-speckle.Upper left: initial stage of instability (t = 28 ps), lower left: hose-like
instability (t = 36.8 ps) andupper right: destruction of the speckle (t = 51.2 ps).

6. Conclusion

We have presented a new mesoscopic code for modeling the laser–plasma interactions in the ICF
The special feature of the code is a new numerical approach to describe the nonlinear plasma resp
though the discontinuous Galerkin method in the Lagrangian framework is more time-consuming than s
numerical approaches for hydrodynamics, this is more than compensated through the reduction of me
required, the absence of numerical oscillations and of limiting procedures (except for strong shocks), an
precision. This approach seems to be very well adapted for rendering the nonlinear plasma response in L
lations.
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Fig. 6. Temporal evolution of the electromagnetic energy in the computational volume with the local intensity exceeding three times
mum intensity in the plane of incidence.Left: a typical nonlinear case with the plasma densityne = 0.5nc and the laser intensity 8·1013 W/cm2.
Right: a representative linear case with the densityne = 0.2nc and the intensity 3.6 · 1013 W/cm2 (taken from Ref.[16]).
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