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Abstract

We present a code for the simulation of laser—plasma interaction processes relevant for applications in inertial confinement
fusion. The code consists of a fully nonlinear hydrodynamics in two spatial dimensions using a Lagrangian, discontinuous
Galerkin-type approach, a paraxial treatment of the laser field and a spectral treatment of the dominant non-local transport
terms. The code is fully parallelized using MPI in order to be able to simulate macroscopic plasmas.

One example of a fully nonlinear evolution of a laser beam in an underdense plasma is presented for the conditions previewed
for the future MegaJoule laser project.
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1. Large-scalelaser—plasmainteraction (LPI) in ICF context

The forthcoming large-scale projects devoted to inertial confinement fusion (ICF) in France (CEA-LMJ) and
the US (LLNL-NIF) require a predictive modeling of the relevant physical processes. There are three levels of
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modeling currently implemented in laser fusion studies. The macroscopic modeling describes the target acceler-
ation, the fuel compression, the ignition of fusion reactions and the energy yield. However these codes are too
coarse-grained to account for electromagnetic effects and the laser energy deposition is often treated as a bound
ary condition. The microscopic codes account for particle kinetics and full electromagnetic effects but they are
restricted to local descriptions at the level of a few hundred cubic microns in space and a few picoseconds in
time.

The present code belongs to the third category of codes, operating on the mesoscopic level, which constitute
a bridge between the microscopic “elementary” physics and the practical needs of target design. The purpose of
these codes is to provide a realistic description of laser—plasma interaction (LPI) and to optimize the laser energy
deposition for fusion studies. The term “realistic” in this case implies macroscopic plasma volumes of the order of
one mn? and laser exposure times of the order of several nanosefbh@d]

There are three basic ingredients for such a simulation tool: a reduced paraxial treatment of the incident laser
beam, a nonlinear hydrodynamics for the plasma response and a valid approach accounting for the kinetic effects
(wave and particle interactions).

The assumption of quasi-neutrality for the plasma implies that the equations of the plasma as a fluid are given by
the standard equations of ideal gas dynamics. For present considerations of interest the presence of self-consister
electric and magnetic fields plays no role. However, due to the specific conditions encountered in many LPI appli-
cations, one has to take into account certain kinetic effects within the hydrodynamic models. These kinetic effects
present themselves as modifications of the usual transport coefficients induced by a large mean free path of the
particles and by coupling of the plasma to the laser field.

The most advanced mesoscopic LPI code is plFDdeveloped over the last 10 years in the Lawrence Liv-
ermore National Laboratory. It accounts for many physical effects such as laser propagation, auto-focalization,
stimulated forward and backward Raman and Brillouin scattering, etc. The hydrodynamical part of this code is
fully 3-dimensional and accounts for several models of non-local heat transport and some other effects. Our code
is more limited. It is intended above all for describing effects due to laser propagation. It does not account for
backscattering and the hydrodynamical plasma response is 2-dimensional in the plane transverse to the laser bear
axis. However, this code has several attractive features at the level of the plasma response description which offers
a more efficient treatment of the laser—plasma interactions. In particular, the numerical scheme allows for a much
smaller number of mesh-points while maintaining the precision compared to standard schemes. Also no numerical
oscillations appear at the fronts of shocks and at strong gradients. These features are very favorable for treating
strongly inhomogeneous laser fields and large plasma volumes. Since the main coupling terms between the plasm:e
and the laser are acting in the plane transverse to the propagation direction of the laser beam, the hydrodynamic
module is 2-dimensional in our code. The disadvantage being that plasma flow along the laser axis cannot be ac-
counted for. The numerical scheme allows without problem its extension to the third direction and can also be
generalized to multi-species plasmas. However, these features would undermine the performance of the code.

We consider the present version of the code as a basic one which contains sufficient physics for analysis of
current experiments and predictive modeling of LPI for fusion research.

The outline of the remaining paper is as follows. SecRaxplains the novel numerical method used for the
hydrodynamics. Sectiof presents the global formulation of the model: the parabolic electromagnetic equation
and the non-local Navier—Stokes equations, followed in Seetioy the issue of the non-local transport. Finally,
Section5 presents some results of a recent application of the code in the strongly nonlinear regime.

2. Discontinuous Galerkin approach for plasma hydrodynamics
Laser beams for the present ICF studies have a complicated spatio-temporal structure on the time scale of a few

ps and a spatial scale of a few pum with intensity variations more than one order of magnitude. Such inhomogeneities
of the laser electromagnetic field can be considered as local hot spots or speckles which have a random statistica
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distribution. The modeling of speckles in the context of laser—plasma interaction gives rise to strong gradients in
the density. The induced flow is characterized by local non-stationary compression and rarefaction. Therefore a
numerical method is required which allows to resolve these gradients with a high precision and with a minimal
number of mesh points.

For this purpose a Lagrangian method is used to solve the nonlinear hydrodynamic edadtibsisvhich de-
scribe the plasma response. In contrast to most Lagrangian approaches, the method used here represents all spat
derivatives entirely in Lagrangian variables. This implies that one has to follow the time evolution of the Jaco-
bian relating the Eulerian and Lagrangian spaces. The space discretization is based upon an original discontinuou:s
Galerkin method which uses as a basis the Bernstein polynomials. Instead of solving for the variables themselves,
one uses the moments of the variables with respect to the Bernstein polynomials. The moments method induces
some weak intrinsic numerical diffusion which allows us to avoid the use of the classical slope limiter and sup-
presses spurious numerical oscillations. At the interfaces between two adjacent computational cells the Riemann
problem is solved by using the classical Godunov solver. This approach allows a straightforward generalization to
higher orders of precision. At present our code works at third order.

The coupling to the laser field gives rise to several sources (ponderomotive force, heating and transport terms)
which are calculated in the Eulerian framework and which have to be projected onto the Lagrangian mesh. These
terms are constructed as continuous sources over the whole computational domain using the corresponding mo-
ments on the Bernstein basis.

In the following we present in some detail the numerical scheme in one spatial dimension (1D), followed by a
general outline of the method in two dimensions.

2.1. The 1D numerical scheme

2.1.1. Gas dynamic equations in Lagrangian coordinates

We consider a 1D flow in planar geometry, characterized by the demsitglocity u, pressureP and the total
energye = u?/2 + ¢, wheres denotes the internal energy. A perfect gas law for the equation of state (without loss
of generality) is assumed® = (y — 1)pe, wherey is the polytropic constant for a perfect gas. One can express
the conservation of mass, momentum and total energy in the Lagrangian framework as follows:

0;(J) — dyu =0,

3 (pJ) =0,

d(pJu) +8,P =0,

d(pJe)+d(Pu)=0, with P =(y —Dp(e— 3u?),

1)

wherex denotes the Lagrangian coordinate which is the initial position of the Eulerian coordinateindx are
connected by the ordinary differential equation:

X =u(X(),1), with X(0) =x, 2

which describes the particle paths. Hefe, ) is the Jacobian of the map— X (x, 1), i.e.J = 9, X. We solve the

above system far € w =[xy, x;] andt € [0, T']. The boundary conditions are of two types: either the pressure or
the velocity is imposed far = x; andx = x . A set of initial conditions for the flow variables is given and for the
Jacobian we imposg(x, 0) = 1. In order to discretize the systdf) we define a subdivision @f: xf =x3 < --- <

Xj <o <xpp1=x; With Ax;y1/2 = x;41 — x; and a subdivision of0, T]: O0=1t1 < - <ty <--- <tyy1=T

with At = 1,41 —t,. The spatial discretization is based upon the Galerkin discontinuous method which uses a basis
of Bernstein polynomials.
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2.1.2. Bernstein polynomials

Letwiy1/2 = [xi, x;+1] be a given cell of the mesh anda point inw; 1/2. We define the barycentric coordinates
of x:

A (x) = M7 and As(x) = l’ (3)
Xi+1l — Xi Xi+1 — Xi

wherei; andX; are positive functions of andi;(x) + A2(x) = 1. The sef{)y, 12} is a basis ofP (w;11/2)—the
set of polynomials of the order lower or equal to one. The definition of the Berstein polynomials oftorder
straightforward using the binomial developmeni{df + 12)X. Fork =0... K one considers the polynomial

o (x) = Ch Ak (oaK (), 4)
whereC’;< = ,{,(KLLIC), The set{ak(K)}k:omK is a basis ofPg (w;4+1/2)—the set of polynomials of order lower or

equal toK . These polynomials verify the following fundamental propertieskfer0... K andx € w;y1/2
o (x) >0,
Yoo =1,

xit1 _(K) _ Axip12
Ji o () de = =,

®)

K K
o) =80, o (xir1) = Sk,

wheredy; is the Kroenecker symbobf = 1 andd;; = 0 for k #1). For K = 2 we have the following basis of
Pa(i1+1/2): 00(x) = 21(x)%, 01.(x) = 221(x)A2(x) andoz(x) = A2(x)?.

This Bernstein basis enables us to construct a polynomial approximation of a functign op for any order
K inthe following way. Letp (x) be a function onw; 1,2, then we define itéth moment as:

Xi+1

My 4= / o (x)¢p (x) dlx. (6)

Xi

One notices thazfzo Mg = fx’;"“qb(x) dx. There are several ways to construct a polynomial approximation of
order K. The most obvious one uses a projectiorpadnto the spacex (w;+1/2) with the Bernstein basis: each
moment of the functiow is equal to the moment of its polynomial approximation. Then we need to solve a linear
system in order to compute ti&+ 1 components op on the Bernstein basis.

This method however has a major drawback: the lack of positivity, i¢gisfpositive onw; 1,2, its polynomial
approximation might be somewhere negative. For our purposes positivity is a crucial need (the density, pressure,
energy are positively defined functions). Thus one has to design a polynomial approximation which preserves
positivity in a natural way. We construgtas:

. K. . M
00 =Y o ()., with g = £, (7)

k=0 k,1

whereM; 1 = f;f'” aék)(x) dx. In this way the positivity is guaranteed and one has as well a conservation of the
mean value ob:
Xit1 K Xi+1
/ o) dy = My = / o) () (x) dx. ®)
k=0

Xi

Moreover, this approximation adds a small amount of numerical diffusion which enhances the stability of the
scheme.

Xi
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2.1.3. Spatial discretization
The systen{l) can be put in a more concise form:

% (J¢) +0:F(¢) =0, )

where the vectop = {1, p, pu, pe} and the vector of fluxes is defined &:= {—u, 0, — P, Pu}. In the context

of the discontinuous Galerkin method, the vectas approximated by a polynomial in each cell, /> and this
approximation is discontinuous at the cell boundaries. Thus, the spatial deri(@tjvlas to be considered in

the sense of distributions, i.e. it is equal to the classical derivative almost everywhere, except at the discontinuity
points, where it is equal to the Dirac function times the jump of the function at these points. Thus for the gell

we have:

{0« F(@)} = 0 F(¢) + [F (@) — F(¢])]8x, + [F(¢}11) — F(¢,-_+1)]5x,-+1, (10)
Where¢>ijt = Iimx_)xl_i ¢(x) andg? is the value which depends on the left- and right-hand side vatp;_esqb;’)
of ¢, i.e.¢] is the solution of the classical Riemann problem. After multiplying &Q) by ok(K) and integrating it
over the celk; 1,2 one obtains:

Xi+1
d My s+ / O F(@)oy ) (x)dx + [F) — F(D]og (xi)

Xi

+[F@l ) — F@r,p]o (xi1) =0, (11)
The integration by parts for the second term of the left-hand side leads to:
Xi+1
(K) * * .
My, g9 — / F(p)dyoy (x)dx + F (¢ 1)8kk — F(#])8k0 =0. (12)

Xi

In order to compute the integral term, one repla&ég) by its polynomial approximation:

K
F(¢)=Y F@no (x). (13)

1=0
Introducing a matrixD with coefficients:

Xi+1
Dkl = / axO'k(K) (X)O’[(K)(x) dx, (14)
one obtains:
K
&My o — Y DuF () + F($1)8kx — F(#])8r0=0. (15)

=0

The computation of the matri® has to be performed just once and is independent of the meslk Eo? we
have the following values:

-1 _1
2 3

D=

Wl ol

(16)

ol Wik
wr O

1
2
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2.1.4. Time discretization
We use the classical two step Runge—Kutta method for the time discretization (f%q.
o first step:

K
1 In * *
M"Y =M}, + A{} Dy F(¢}) — {F(¢ )8k — F<¢,-”)6ko}},
=0

e second step:
K
2 1 ~(n,1 1 1
M5 = M5 + At [Z DuF @)~ {F@{1™ok — Fo]" >>6ko}]~
1=0

One obtains order 2 precision with:

1
+1 _ n,2)
M= Q(Mllg,w + M%)

In the above equations the superscrigtenotes the value of the function at the time

2.1.5. Computation afy
Knowing the moments/; ;4 for ¢ =1, p, pu, pe, one computes the so-called hat components in the following

way:

My, jp ~ M jpu

Pk = Mk,/ 5 - Mk,J/) ’ (17)
N My g A - 1.n
€k=ﬁ, €k=€k—§('4k)2-

For the pressur@; and the sound speed componehtsne uses the equation of state and its derivatives:

where (9, P)s denotes the isentropic derivative Bf These results enable us to obtain the flux ve@t()fik). It
remains the evaluation of the so-called star valuesanid P. This procedure is described in the following section.

2.1.6. Riemann solver

At the beginning of each time step and for each nedeve know the left and right state(sﬁi_,¢;“). One
computes the intermediate state by solving the Riemann problem which describes the evolution of initial dis-
continuities in the time intervahz. In our code we use an approximate Riemann solver due to Godunov:

_ 4 _
«_ b _Pi++'0i+‘i ui++pi Ci U
u;, = o, - >

P € TP ¢ (19)
*_ p;rc;rpfc;(u;fu;r)+,0i+ci+P,.7+pfcl.7P.+

P’ L L L
! o e +p; ¢

)

where the left (right) state is determined by the hat components:

A~

o7 =dk, INwi_1y2, o7 =do. inwit1. (20)
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2.1.7. Time step controls
We have two limitations on the time step, the first one is the classical CFL condition and the second one ensures

the positivity of the Jacobiaif.

e CFL condition: we propose a heuristic CFL condition which seems to be convenient for almost all cases we
have tested:

A .
AICFL < ,mlin1< Yit1/2 ) (21)
1=1...

éo(i+1/2) CA'AK (i+1/2)
Joli+1/2) ' Jx(i+1/2)
It expresses the condition that in a given cell, two waves emanating from the boundaaigsy; 1 do not

interact.
e Positivity of the Jacobian: the map between the Eulerian and the Lagrangian space remains valid as long as the

Jacobian is strictly positive. In the case of compressiois,decreasing, so we have to ensure its positivity by
a time step constraint. If moments of the Jacobian are positive at the beginning of each time step, they must
remain so at the end of the time step, hence:

M
Aty < min [ min (— I - kJ )} (22)
=1 TLk=0 K\ > _o Drat] — uf 18k + ujdko

Finally one takes the more restrictive condition by imposing:

At =min(AtcpL, Aty). (23)

2.1.8. Eulerian grid computation
In order to represent the results in the physical space (namely the Eulerian space), one has to compute the time

evolution of the Eulerian positioX;. For this purpose one solves the differential equation (Ef.following the
two-step Runge—Kutta scheme:

x"? = x"Y 4 Aruy" Y, @4
2
X =1x P 4 xm.

We represent the variabdeby its mean valug in each cell:

/3 _ Z]fzo Mk,],o I/_l _ Z]f:OMk../pu
= K s = K s
> k=0 Mk > k=0 Mk 1p
i (25)
= Y oMipe P = oM. P
€=k ., — K . -
Yk=0Mr.sp 2 k=0 M,

Remark 1. The method presented here allows to reach the spatial precision which is almost of the éfdedof

and the temporal precision of the order of 2. Notice thatifos O it reduces to the classical Godunov Lagrangian
scheme. FoK = 1, 2 and for moderate compressive flows (no shocks), it works quite well, without any spurious
oscillations, hence there is no need for the slope limitation procedure. Nonetheless, for strong compressive flows,
one has to take account of the limitation procedure, in order to ensure monotonicity of the variables.

2.1.9. Numerical results
Fig. 1 shows the solution for the double expansion problem obtained with various numerical schemes. One

clearly sees that none of the classical schemes reproduces the known analytical seigti@rshows the re-
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Fig. 1. Solution of the double expansion problem with various numerical schemes (takefL8pwhere also a detailed explanation of the
various numerical schemes is given), to be compared Righ2 The grey curve gives the correct analytical solution and the dark ones the
corresponding solutions of the various numerical schemes. No solution was obtained for the methods WAFC and CLAW. The abbreviations
stand for: CFLF: a first-order Courant—Friedrichs—Lax—Friedrichs, CFLFh: CFLF hybrid, WAFT and WAFC: weighted average flux schemes,
CLAW: clawpack wave propagation scheme, PPM: piecewise parabolic method, WENO5 and CWENO3: weighted essentially non-oscillatory
schemes, LL: Liu—Lax positive scheme, JT: centered scheme with limiter.

sults from the Lagrangian discontinuous Galerkin method. Note that no numerical oscillations appear and that a
moderate number of mesh points reproduces exactly the analytical result.

This particular test is related to the effect of a ponderomotive force acting on a plasma where a similar density
depletion occurs and where very similar numerical problems play a role.

2.2. General outline of the method in 2D

The generalization of the Lagrangian discontinuous Galerkin method to the 2D geometry is rather straight-
forward but algebraically cumbersome. We present here only the main features. For a more detailed exposition
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Fig. 2. The double expansion problem for the present numerical scheme (taked #ipnasing 100 left) and 250 (ight) computational cells.
The continuous line gives the analytical solution and the dots represent the computational cell values.

the reader may refer to R€fL5]. One of the particularities of the 2D numerical scheme relies on the expression
of the gas dynamic equations in a conservation form in the Lagrangian framework as it was first pointed out in
Ref.[12].

2.2.1. Gas dynamic equations in Lagrangian coordinates

Let £2 be an open set @2, X = (X, Y)' € £2 denotes the Eulerian coordinates in the flow file: («, v)’, and
X = (x, y)! denotes the Lagrangian coordinates which are the initial positions of the Eulerian coordinaites
The coordinategX, Y) and(x, y) are connected by the system of ordinary differential equations:

{8,X=u(X(t),Y(t),t), with X (0) = x,
Y =v(X (@), Y(@),1), withY(0)=y.
The solutions of Eq(26) define a map between the Lagrangian and the Eulerian spaces for each Tinie

map is bijective if and only if the associated Jacobian matrix is invertible. Hence its deternhimargt be strictly
positive (since it is positive at= 0):

(26)

0y X  0,Y

X BV | 27)

J(x,y,t)=

The derivation of the gas dynamic equations in the Lagrangian space in the conservative form is based upon the
following formula:

JVx -F=Vy-[f(VxV)1L —g(ViX)1]. (28)

Here V- denotes the divergence operator in Eulerian coordin&esandV, are the divergence and gradient
operators in Lagrangian coordinatés= (f, g)', (V,Y) | = (—3,Y,9,Y)" and (V,X) | = (—3,X, 3, X)". With
these notations we obtain:
0 (J) — Vx - [u(ViY) L —v(V,X)11=0,
& (pJ) =0,
d(pJu) + Vi - [P(VyY)1]1=0,
3 (pJv) = Vi - [P(VyX) 1 ]=0,
d(pJe) + Vi - [Pu(VyY)L — Pv(VyX)1]=0,
P=(y —Dple — 3(u? +v?)].

(29)
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2.2.2. The 2D numerical scheme

Asin 1D, the 2D scheme is built with the discontinuous Galerkin method. We compute the moments of variables
in the Bernstein polynomial basis. The mesh is nonstructured, using a triangulation of fheTdet construction
of Bernstein polynomials on a triangle is straightforward, using the barycentric coordinates. We use the parabolic
representation which enables us to obtain the spatial precision of the order of 3. Intermediate values on the triangle
edges are evaluated with a monodimensional Riemann solver in the direction of the Eulerian outward unit normal
vector. For the time discretization we have implemented a two-step Runge—Kutta method in order to obtain the
temporal precision of the order of 2. A more complete description can be found ifilREf.

3. Formulation of the global model
3.1. Parabolic electromagnetic equation

The electromagnetic part of the code is based on the reduced, paraxial equation for the electromagnetic field
amplitude. This is an envelope equation which accounts for a quasi-monochromatic laser field and its small diver-

gence.
The time evolution of the electromagnetic field propagating dtirection is given by the paraxial equati¢id):

2
(21 “’—ga, + 21kyd, + 19k, + D% — a)_gne fleo |, Ve’;"” ”ﬂ)E —0. (30)
c c ne c ne

The operatorD? = 2v2/(1 + /14 V2/k2), whereV? is the Laplacian operator in the plane perpendicular
to the z-direction, takes into account the Feit and Fleck corred@rwhich allows to consider larger scattering
angles. Herex,, andn, are the original and the actual electron density, respectively. The critical densjty-s
me€,02/e?, w is the laser frequency and the wave vectar,is= (w,/c)v/I— ngo/ne. v.; denotes the electron—ion
collision frequency and this term accounts for depletion of the laser energy due to inverse bremsstrahlung.

This equation is common to all mesoscopic plasma models. It is solved by using the Fourier transform tech-
nigue in the perpendicular plane as it was already described iB3f.The electromagnetic part of the code is
supplemented by a package which allows for the use of the various schemes of optical smoothing as envisaged in
the LMJ and NIF projects.

3.2. The non-local Navier—Stokes equations

Following the standard procedures to derive the moment equations from the Fokker—Planck equation for a
plasma one arrives at the following set of hydrodynamic equations which has been derived#}:Ref.

on;
8—; =—V .- (nju), (31)
au 1 Z
—=—U-Vu) - V pot — — VI + V. (n;Vu)
ot n;m; m; 2cn. n;m;
z zZ 1 Z 1
+ —V(BT,) — ——V (&) — — V(BD), (32)
mi m; cne m; 3cng
T _ 2TVu u-vrT, + 2 I+ ! aI+2TV(/3u)
a 3¢ ¢ 3nccvel 3necdr 3°
2 2 . 2 T,
b SV V) — oV (=) - Sy (2 evr), (33)
3n, 3 3nencc 3 MeVeiNeC
aT; 2 2
—=—IT;V-u—u-VT; + —V .- VT)), (34)

Jt 3 3n;
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Ptot = Pe + Pi, (35)

Pe = (Ve — Dnecee, (36)
1

pi=Wi—1 (nifi - Emi”iuz> (37)

with €., ¢; the total energy for electrons and ions, respectively.

Outwardly the structure of the equations is the same as in standard hydrodynamics. The difference being that
the transport coefficients for viscosity and heat fluxgs £, andx;) have a non-local form as will be explained
for the heat flux equation in the next section. In addition there are terms (containing the infeasity | E|2/2)
which couple the plasma dynamics to the laser field.

This set of equations can be considered as non-local Navier—Stokes equations which take into account kinetic
effects whenever the mean-free path for electron—ion collisions is of the order of the typical gradient scale lengths.
The coupling terms due to inverse bremsstrahl@y@n.c)v.; I + (1/3n.c)d;1 and the ponderomotive force term
(Z/m;2cn)VI remain purely local in character. The non-local transport coefficients will be explained in the
following section.

4. Thenon-local transport

Under plasma conditions where the mean-free path for electron—ion collisions is of the order of the characteristic
scale length of the macroscopic variables (density, temperature, etc.), the standard classical theory of transport
breaks down. The classical transport is valid in the strongly collisional regime. It describes, for example, the
heat flux by the well-known Spitzer—Harm formula. The weakly-collisional regime, characteristic for many laser—
plasma interaction problems, requires a delocalized treatment of the transport coefficients, i.e. taking into account
the variation of the plasma parameters on the scale of a few mean-free paths.

The model presented here is based on a mathematical exact linearization of the Fokker—Planck[@¢i&tion
7] and on an integral representation of the plasma fluxes and laser—plasma coupling. They are valid for an arbitrary
collisionality and give a smooth transition from the collisional to the collisionless regime. Comparisons with kinetic
calculations have shown that the so obtained formulae remain valid even under quasi-nonlinear conditions and can
therefore be considered to be well adapted to the problems of infdlestonlinear models of the non-local
transport have been developed only for the case without laser radiation and for a sufficiently strong collisionality
[20]. Also they suffer from numerical problems when implemented in hydrodynamic codes. They can produce
negative temperatures and negative entropy whenever the plasma density profile is non{@mifdkm

In the following we briefly present the procedure of implementation of the non-local heat flux in the code. All
other transport coefficients are treated in exactly the same way from the mathematical point of view.

4.1. The electron heat conductivity

The simplified heat equation is (the temperature being in energy units [eV]):

2

e

The electron heat flug has a non-local integral relation to the temperature gradient. Its Fourier component
is gr = —kx(VT)r The electron heat conductivity, is known ink-space but it is also a function of the local
plasma parameters. As one is interested in conditions where the gradient scale length is of the order of the electron
mean-free path, the Fourier component of the conductivity does not vary much over the gradient. One can therefore
approximate the source - ¢ in Fourier space a’«; T
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In the case of laser—plasma interaction, the laser intensity gradients are strongly anisotropic and are directed
predominantly in the plane perpendicular to the laser propagation direction. This allows to consider the plasma
response independently for each coordinate in the direction of laser beam propagation and therefore to limit the
hydrodynamic equations to the 2D case. Correspondingly, the Fourier transformation of the heat flux is in 2D as
well and one hag? = k2 + k}z,. The change in temperature at one time step is then given as:

2At
8T, = 5 —FT Y furGerer) ok T ] (39)
e
HereFT ! denotes the inverse Fourier transform. Note that the coefficieat:, v, and the electron mean-
free pathi,; are given in real space and do not depend ofihe non-local transport coefficien; is a nonlinear
function ofkA,; which can be decomposed as:

Jut(khei) = g(Z)kAcih(khei), (40)

with g(Z) = (3.26+13.6Z)/(4.2+ Z) giving the ion charge dependence. If the functias equal to 1, one would
recover the standard expression for the collisional Spitzer—Harm conduckivity sy = g(Z)nevrehe;- In the
general case the functiondepends strongly on the collisionality parametgy;. It is possible to represent the
functionz as a harmonic mean between the strongly collisignaind the collisionless,,. states which gives a
good approximation over the whole range of the collisionality paraméter

1_1 1 1)
h he  hpe
he = . (42)
c= 50+10Z v09’
14+ (Cpzz X009
0.11vZ
nc — 7\/_, (43)
X
with X = v/ ZkXei.

Fig. 3shows the strong variation of the electron heat flux coefficient as a function of the collisionality parameter
kA.; for various charge states and the relative importance of the collisional and collisionless contributions. Note that

1 1

10 - ‘ : 10

2

10° 10
K K
el el

10° 10 10

10”

Fig. 3.Left the non-local electron heat flux coefficiatnormalized to the Spitzer—-Harm conductivity as a functiokigf ; solid line (Z = 1),
dashed lineZ = 20) and dotted lineZ = 50). Right the conductivity forZ = 3.5; solid line ), dashed line/.) and dotted linek;,).
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the transition from the collisional to the collisionless regime spans a wide range of parameteks fren0.01 to
kXei ~ 100.

Other transport coefficients are defined by the same interpolation formul@ Baqwvith the following functions

4.2. The ion heat conductivity

The change in the ion temperature at one time step is given as:
T; = (At /3n)FT [ fuu (ki ok T ]
with @ = n;v; and the functionf,; (kA;;) = kA;;h(k);;) is defined according to E¢41) with

—(£43)/2
e vy
he =278, hy.= ﬁ—
8 Y3X
with X = kA;; andY = T;/ZT, and the Braginskii viscosity being;; = 2.781;vr; A;;

4.3. The ion viscosity

The change in the ion velocity due to viscosity can be written as:
At
Su = —FT 7 furtknsi)akuy ]
n
with o = n;vy; and fi;(kA;;) = kA;ih(kA;;), where

e 1.48+0.8y?

T;
. 0 Y =kA;
2.31+4.04y2 + Y4 ii/

ZT,’

to which is added the ion Landau damping:

T, -15 ZT, _15+2%[ 14(kk;;)?
Rlandau= /7 /8 3+——e T | —— |-
landau 7/ (ZTe) + T; 1+ 7(kAii)?

4.4, The coefficients, & andg,

The collisional (c) and collisionless (nc) limits of these coefficients are given by the following equations

150x%/Z coll
B =1 1+2.8(1+12X/V/Z) (=52 x)09 -

04 non-coll,
34. 51+37X134 coll.,
E=1__ s ]
135 non-coll,
X2
£y = 18 1+42(1+12X /V/Z) X 13 coll.,
0.34-%5 non-coll.

As before the interpolation formulae for the above coefficients use the harmonic mean. For example, one has:
1_1 1

z=3+

B~ Bc " Bnc’
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For all transport terms one has that in the limitiof,; — 0 the standard collisional transport is recovered
automatically. However, the non-local Navier—Stokes equations are valid for arbitrary collisionality of the plasma,
from the free-streaming limit via the semi-collisional regime to the usual strongly collisional regime.

4.5. Implicit treatment of the heat flux term

The heat fluxg = —«, VT, poses numerical stability problems. There is a general disparity for the characteristic
propagation velocity of a density perturbation which is of the order of the ion sound velgeity/7, /m; and the
characteristic speed for a thermal wave whichijs< +/T./m. (depending on the model). These two velocities
differ by two orders of magnitude due to the large difference between the ionimas®d the electron mass, .

This introduces a two-scale problem for the time step for integration.

In these conditions it is necessary to use an implicit treatment of the non-local transport term.

In the explicit version the heat conduction term in E28) was evaluated at the time stegollowing Eqg. (39)
with T taken at the same time stepln a generalized implicit spectral treatment the starting point is:

Tkn+l B Tkn n+1 n
ne(x)A—tzA{GTk + @1 -1} (44)
with A = —k2kg (khe; (x))%ne(x)vre(x)/At andé is a positive parameter which lies between 0 and 1. The new
temperature is then calculated as:
ne(x)+ A1 —-06)
Tk”“ _ple . (45)
ne(x) — A6
For 6 = 0 the scheme is explicit, far = 1 it is purely implicit. For6 = % we recover the semi-implicit Crank—
Nicholson scheme.
Subsequently the new temperature is obtainef’as (x) = FT‘l[Tk"“] or with the correction term\ 7 (x) =
FT=Yrtt — 1.
As the non-local transport theory is linearized in Fourier space, no matrix inversion is required for the implicit
approach as each Fourier component is evaluated separately.

5. Nonlinear evolution stage of mono-specklesin LPI

The spatial and temporal smoothing of laser beams in plasmas plays an important role in inertial confinement
fusion. The aim is to reduce the intrinsic intensity fluctuations in a laser beam which affect the compression uni-
formity of the pellet. Of particular interest is the plasma-induced temporal incoherence. One of the mechanisms
playing a role is an intensity-dependent instability of a mono-speckle. This instability was successfully analyzed
and validated in the linear regime by comparing it to analytical considerations and to experimenfhab{iaia
the plasma response at high intensities becomes nonlinear, the full nonlinear hydrodynamics is needed in order to
correctly model the interaction process.

As was shown already in the linear response redit®g, the intrinsically non-local character of the transport
terms may not be neglected. In the following nonlinear calculation they were taken into account.

Fig. 4 shows the time evolution of the density of a mono-speckle in the strongly nonlinear regime. As the
intensity of the laser beam is above a certain threshold a hose-like instability develops which eventually de-
stroys the speckle in the plasma. This so-called filament instability is an important mechanism of plasma-induced
smoothing for laser beams in the inertial confinement fusion applications. The onset of the instability is de-
termined by the self-focusing of a laser beam in a plasma and the density fluctuations always prgsént.



S. Weber et al. / Computer Physics Communications 168 (2005) 141-158 155

t=35ps t=40ps
100 100 0.5
80 80
0.45
T 60 T 60
S S 04
N 40 N 40
20 20 0.35
5 10 15 20 25 5 10 15 20 25
X (pm) X (um)
t=45ps t=50ps
100 100 g
80 f 03 80
T 60 ‘ ' .45 E 60
2 i 3
N 40 ‘ 04 N 40
20 ; 20
0.35
5 10 15 20 25 5 10 15 20 25
X (1 m) X (um)

Fig. 4. Density plots of the nonlinear evolution of a mono-speckle around the time of destruction (plasma densi®y5 n. and the laser
intensity: 8 1013 W/cmz); z-direction is parallel to the laser beam axis andirection is one of two transverse directions.

shows some snapshots of the corresponding evolution of the laser beam intensity up to the destruction of the
speckle.

Fig. 6 shows the time evolution of a characteristic parameter linked to the behavior of the electromagnetic
energy for the speckle instability. This is the relative part of the computational volume where the laser intensity
exceeds three times the maximum laser intensity in the entrance plane. It characterizes the local concentration
of the laser energy in the plasma due to self-focusing. The linear regime of this instability had been analyzed
in [16] where it was found that this parameter exhibits an oscillatory behavior. This corresponds to a periodic
reconstruction of the speckle and the instability mechanism repeats itself. For the higher laser intensity, the plasma
response is nonlinear and we found that the instability changes its character completely. One no longer observes ¢
periodic reconstruction of the speckle. This is an important result for the plasma smoothing which can be verified
in experiments.

The modeling of large-scale plasmas requires the use of parallel machines. The code has been entirely paral-
lelized using MPI[11] and the FFTW packadé0] for the fast Fourier transforms which admits the use of MPI.

The nonlinear calculation was performed for a plasma volume of 25 x 100 pnt and for a duration of 150 ps.

Using a transverse spatial resolution of 0.4 um, a longitudinal spatial resolution of 1 um (k&454 100 mesh

points) and a time step for integration 052 1072 ps (the small time step is mainly imposed by the explicit
scheme and the coupling with the non-local transport terms) the entire calculation took of the order of 20 h on the
equivalent of one processor on a Compagq hp alpha server machine.



156 S. Weber et al. / Computer Physics Communications 168 (2005) 141-158

80

- &
g g
N N
40
20
0
0 5 10 15 20 25 0 5 10 15 20 25
Zoaw = 10.0000 x (pym] Zas = 10.0000 x (pm])
Zoun = 0.0000 Eclairement Zuin = 0.0000 Eclairement
t (ps)-2.88 10' t (ps)=5.12 107
80|
&
g
N
40
20
0
0 5 10 15 20 25
Zopy = 10.0000 x (pm}
Zain = 0.0000

Eclairement
t (psi=3.68 10

Fig. 5. Intensity plots of the nonlinear evolution of a mono-spediieper left initial stage of instability { = 28 ps), lower left: hose-like
instability ( = 36.8 ps) andupper right destruction of the speckle £ 51.2 ps).

6. Conclusion

We have presented a new mesoscopic code for modeling the laser—plasma interactions in the ICF context.
The special feature of the code is a new numerical approach to describe the nonlinear plasma response. Al-
though the discontinuous Galerkin method in the Lagrangian framework is more time-consuming than standard
numerical approaches for hydrodynamics, this is more than compensated through the reduction of mesh points
required, the absence of numerical oscillations and of limiting procedures (except for strong shocks), and a high

precision. This approach seems to be very well adapted for rendering the nonlinear plasma response in LPI calcu-
lations.
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Fig. 6. Temporal evolution of the electromagnetic energy in the computational volume with the local intensity exceeding three times the maxi-
mum intensity in the plane of incidendeeft a typical nonlinear case with the plasma density= 0.5x. and the laser intensity-ao13 W/cmz.
Right a representative linear case with the density= 0.2n. and the intensity 3 - 1013 W/cm2 (taken from Ref[16]).
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