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1 Introduction

This paper gathers several validation test cases for compressible hydrodynamics computation. This list has
been developed in order to test and validate ALE INC(ubator) the 2D Arbitrary-Lagrangian-Eulerian (ALE)
code on general polygons from T7 group in Los Alamos. This code deals with any type of meshes and is able
to run in pure Lagrangian, Eulerian (as Lagrange plus Remap) or ALE regimes with a numerous boundary
conditions available (wall, piston, pressure, periodic, etc.) allowing a wide variety in the choice of validation
test cases. The flexibility of the code to handle such scenarii implicitly generated the need for such a list of
hydrodynamics test case suite.
The rest of the paper stands as follows: first, we briefly presents the context of testing and the notation. In
a second section we describe the test cases and in a third section the numerical results obtained with ALE
INC. are presented.

The point of the paper is not to test the code per se but rather to give a list of classical test cases we
used to validate the implementation of this ALE code.

2 Context and Notation

In this paper we use several sigle to shorten the notation that we describe in this section. The context of
any 2D test case can be described by giving some information on:

Geometry: The geometry is the reference in which the equations are written and solved by the code. It
can be Cartesian or cylindrical r-z. The key words/sigles used are Cart. for Cartesian, AWD for cylindrical
with Area-Weighted Differences or CVD for cylindrical Control Volume Differences.

Scheme: The regime of the code is either L (Lagrangian), E (Lagrange+Remap), A (ALE). Moreover
the ALE regime needs two more integers: K to describe which number of Lagrangian steps are performed
before k Rezone and Remap step(s) is(are) done. Then any ALE regime has a key word that looks like:
ALE-K × k.
A Courant-Friedrichs-Lewy (CFL) condition to limit the time step during the simulation must be given, as
well as the ratio of specific heat γ for the Equation of State (EOS).

Meshes: As earlier pointed out, the mesh can be of any type; structured-unstructured, triangular, polyg-
onal, conform/unconform, etc. Therefore we introduced several sigles to describe any of these situations:
P (Polygonal), S (Square 1:1 ratio), Rx (Rectangle 1:x ratio), T (Triangle), A (Adapted to the geometry,
Tri+Quad), M (mass-matching square).

Initial state: The initial state is simply the exhaustive list the initial value of the thermodynamical
variables (density, velocity, energy, pressure, etc.) and the conditions at the boundaries of the domain Ω ,
namely the Boundary Conditions (BC). Moreover a final physical time must be given.

3 Test Suite

Each test case has been chosen to test a specific property of the code: preservation of 1D symmetry, robust-
ness, accuracy of the code, mesh adaptation, predictive capability, high deformation simulation, etc.

3.1 Sod shock tube

The Sod shock tube is a simple 1D Riemann problem.

• Domain: Ω = [0; 1] × [0; 0.1], interface at X = 0.5,
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• Geometry: C,

• BC: walls (left/right/top/bottom),

• Mesh: S 1:1 (square 1:1 ratio i.e 101 × 11 nodes),

• Scheme: L, E, ALE-10 × 1,

• EOS: γ = 1.4,

• CFL: 1/4,

• Final Time: t = 0.2,

• Testing Goals: Sanity check, 1D symmetry preservation, exact solution.

Regime Left Right
ρ 1.0 0.125
u 0.0 0.0
p 1.0 0.1

3.2 Le Blanc shock tube

The Le blanc shock tube is a simple 1D Riemann problem.

• Domain: Ω = [0; 9] × [0; ymax], interface at X = 2.0,

• Geometry: C,

• BC: walls (left/right/top/bottom),

• Mesh: S 1:1 (square 1:1 ratio i.e 361, 721, 1441 × 3 nodes), M (mass-matching),

• Scheme: L, E, ALE-10 × 1,

• EOS: γ = 5/3,

• Final Time: t = 6.0,

• CFL: 1/4,

• Testing Goals: Sanity check, 1D symmetry preservation, robustness, accuracy, mass-matching mesh,
exact solution.

Regime Left Right
ρ 1.0 0.001
u 0.0 0.0
ε 0.1 10−7

3.3 Collela-Woodward blastwave

The Collela-Woodward blastwave is the interaction of two Riemann problems.

• Domain: Ω = [0; 1] × [0; ymax], interfaces at X = 0.1, X = 0.9,

• Geometry: C,

• BC: walls (left/right/top/bottom),

• Mesh: S 1:1 (square 1:1 ratio i.e 361, 601, 1201 × 3 nodes),

• Scheme: L, E, ALE-10 × 1,
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• EOS: γ = 1.4,

• Final Time: t = 0.038,

• CFL: 1/4,

• Testing Goals: 1D symmetry preservation, robustness, accuracy, reference solution.

Regime Left middle Right
ρ 1.0 1.0 1.0
u 0.0 0.0 0.0
p 1000.0 0.01 100.0

3.4 Sedov problem

The Sedov blast wave problem, [?], describes the evolution of a blast wave in a point symmetric explosion;
it is an example of a diverging shock wave.

• Domain: Ω = [0; 1.2] × [0; 1.2] or Ω = [0; 1] × [0; 1] (for P, A meshes),

• Geometry: C, AWD,

• BC: walls,

• Mesh: S 1:1 (square 1:1 ratio i.e 31 × 31 nodes), P,

• Scheme: L, E, ALE-10 × 1,

• EOS: γ = 1.4,

• Final Time: t = 1.0,

• CFL: 1/4,

• Testing Goals: wall heating, cylindrical symmetry, spherical symmetry, accuracy, exact solution.

Regime Left Right
ρ 1.0 1.0
u 0.0 0.0
p 0.0 0.0

The total energy of the explosion is concentrated at the origin and has magnitude Etotal = 0.244816.
At time t = 1.0 the exact solution is a cylindrically symmetric diverging shock whose front is at radius,
r =

√

x2 + y2 = 1 and has a peak density of 6.0 (the solid line in Fig. 2). In our numerical experiments
Etotal is concentrated in one cell located at the origin (that is, containing the vertex (x, y) = (0, 0)). The
specific internal energy of this cell, c is defined as ε(c) = Etotal/V (c), where V (c) is the volume of the cell.
Therefore the initial pressure in this cell is p = (γ − 1)ρε = 0.4Etotal/V (c).

Polygonal Mesh constructor:
The computational domain is one quarter of a circular disk with radius of rmax = 1.2. A polygonal mesh
is constructed in the computational domain using a Voronoi diagrams (see, for example, [?]) for the set of
point defined as follows:

xi,j = rj sin(θi,j) yi,j = rj sin(θi,j) ; j = 1, . . . , J ; i = 1, . . . I(j) .

where

rj = rmax ·
j − 1

J
, I(j) = round((j − 1)

π

2
) , θi,j =

i − 1

I(j)
·
π

2
, J = 31 .

and function round(x) returns the closest integer to x. According to these formulas, on each circle of radius
rj points are distributed so that the distance between adjacent points along the circle is approximately equal
to ∆r = rmax/(J −1). The total number of points is 775. There is exactly one Voronoi cell corresponding to
each point. The mesh consists of a mixture of convex polygons: quadrilaterals, pentagons and hexagons, and
the total number of vertices is 1325; the mesh is shown in Fig. 3 (top-left panel). The resulting polygonal
mesh has approximately the same resolution as the quadrilateral mesh presented in Fig. 1.
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Figure 1: Sedov problem — Quadrilateral Mesh. Mesh (left), and density isolines (right) at t = 1.0 —
Eulerian regime (top), Lagrangian regime (middle), ALE regime (bottom).
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Figure 2: Sedov problem — Quadrilateral Mesh. Density at t = 1.0 as a function of the radius (solid line
exact solution) — Eulerian regime (top), Lagrangian regime (middle), ALE regime (bottom).
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Figure 3: Sedov problem — Polygonal Mesh. Mesh (left), and density isolines (right) at t = 1.0 — Eulerian
regime (top), Lagrangian regime (middle), ALE regime (bottom).
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Figure 4: Sedov problem — Polygonal Mesh. Density at t = 1.0 as a function of the radius (solid line exact
solution) — Eulerian regime (top), Lagrangian regime (middle), ALE regime (bottom).
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3.5 Kidder isentropic compression

Regime Mesh Purpose
L S sanity of L, ex sol
L T, X2, X4 sanity of L, ex sol
L P sanity of L, ex sol

ALE P sanity of ALE

3.6 Saltzman piston

Regime Mesh Purpose
L S robustness
L Rx robustness

ALE S,Rx mesh adapt. (rezone)

3.7 Noh problem

Regime Mesh Purpose
L (Cart) S,P wall heating, cylind. symmetry, accuracy
L (AWD) S,P wall heating, spher. symmetry, accuracy

ALE S,P mesh adapt.

3.8 Guderley on/off axes problem

Regime Mesh Purpose
L S (on/off) robustness

ALE S (on/off) mesh adapt. (especially off)

3.9 Dukowicz problem

Regime Mesh Purpose
L A, P interact. of waves, reflect., refract., predictive capab.

ALE A, P interact. of waves, reflect., refract., predictive capab.

3.10 Triple point problem

Regime Mesh Purpose
L??? S, A predictive capab., vorticity simulation, interf. preserv.
ALE S, A predictive capab., vorticity simulation, interf. preserv., mesh smoothing

3.11 Bubble/shock interaction

Regime Mesh Purpose
L A,P experimental data reproduction with accuracy

ALE A,P experimental data reproduction with accuracy

3.12 Rayleight-Taylor instability

Regime Mesh Purpose
ALE R quasi incompressible limit, vorticity, robustness, high deformation

3.13 2D Riemann problems

Regime Mesh Purpose
ALE S Comp. wt other codes, mesh smoothing

E S Comp. wt other codes
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3.14 Shaped charge

Regime Mesh Purpose
ALE A high deformation, mesh smoothing, iterface preserv.

3.15 Double blastwave

Regime Mesh Purpose
ALE A high deformation, mesh smoothing, wave interactions

4 Validation tests

The validation has been performed mostly by running as many test cases as possible. These test cases have
been run in 1D/2D, with one or several EOS, in Cartesian/cylindrical geometry, on quadrangular mesh/polar
mesh/polygonal mesh. . . Moreover these tests have been chosen such as they have either an exact solution or
a known reference solution (computed on a very refined mesh). For example the component has been tested
on this non exhaustive list:

• Riemann problems (Sod, Le Blanc. . .),

• Piston problems (straight piston, Saltzman. . .),

• Collela-Woodward blastwave,

• Noh/Guderley/Sedov problem,

• . . .

Several of the results given by the Lagrangian component can be found in [8], [10], [12]. We will present a
set of results given by the Lagrangian scheme. This section is not devoted to make a behavior study of the
Lagrangian scheme but rather to show the ability of the scheme on classical problems. Therefore we do not
extensively comment the results.
All the results have been produced using the tensor artificial viscosity.

1D Sod Riemann problem. The Sod problem is a Riemann shock tube with a relatively small discon-
tinuity, and so is a very mild test. Its solution consists of a left rarefaction, a contact discontinuity and a
right shock and the exact solution is illustrated in Fig. 5 by the solid line. In our numerical experiments, the
computational domain is 1 ≥ x ≥ 0. The discontinuity is initially at 0.5. The domain is filled with an ideal
gas with γ = 1.4. The density/pressure values on the left side of the discontinuity are 1.0/1.0, while those on
the right side are 0.125/0.1. In Figure 5, we present numerical results for the density, specific internal energy
and velocity at the final time t = 0.25 for a run with an initial 301 × 5 quadrangular mesh computational
cells.

1D LeBlanc Shock Tube Problem. In this extreme shock tube problem the initial discontinuity sep-
arates a region of very high energy and density from one of low energy and density. This is a much more
severe test than the Sod Problem. The computational domain is 9 ≥ x ≥ 0 and is filled with an ideal gas
with γ = 5/3. The gas is initially at rest. The initial discontinuity is at x = 0.3: (ρ, ε) = (1. , 0.1) for
x < 3. and (0.001, 10−7) for x > 3.. The solution consists of a rarefaction moving to the left, and a contact
discontinuity and a strong shock moving to the right — solid line in Fig 6. At the final time of t = 6.0,
the shock wave is located at x = 7.975 and the Lagrangian scheme gives the results in Fig.6 for the density,
specific internal energy and velocity.
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Figure 5: Sod Riemann problem at t = 0.25 — Lagrangian scheme results with an initial quadrangular
301× 5 grid — From top-left to bottom-right: density, specific internal energy, x-component of velocity and
y-component of velocity.
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Figure 7: Collela-Woodward blastwave at t = 0.038 — Lagrangian scheme results with an initial quadrangular
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of velocity.

1D Collela-Woodward blastwave. The computational domain for this problem has length one, with
reflecting walls at the both ends. The gas is an ideal gas with γ = 1.4. At t = 0., the gas is at rest with an
uniform density equal to 1.. The initial pressure is 1000.0 in the leftmost tenth of the domain, 100.0 in the
rightmost tenth, and 0.01 everywhere else. The final problem time is t = 0.038. Initially, two shocks and
two contacts develop at the initial discontinuities and propagate toward one another, while two rarefactions
develop, propagate toward the walls, and reflect off them. As time progresses, these six initial waves interact
and create additional contact discontinuities. There is no analytical solution for this problem and typically
a solution obtained by purely Lagrangian method with very high resolution (Nx = 3600 cells in our case)
is considered as the reference ”truth” (the solid line in Fig. 7). In Fog.7 are presented the density, pressure
and velocity for an initial 401 × 3 quadrangular grid.

2D Noh problem (Cartesian). In a quarter of the unit disk a gas (γ = 5/3) is initiated with ρ0 = 1,

ε0 = 0 and u(x, y) = (−x/
√

x2 + y2,−y/
√

x2 + y2). A shock wave is generated at the origin and diverges
as presented in Fig.8 at t = 0.6. The exact solution at position r and time t is given by the following
relations, in which d identifies the geometry of the problem (1 for 1D Cartesian, 2 for 1D cylindrical, 3 for
1D spherical), ρ0 is the uniform initial density, and u0 is the uniform velocity (u0 = ||u|| = 1):

{ρ, ε, u} =











{

ρ0

(

γ+1

γ−1

)d

, 1

2
u2

0, 0

}

if r < rs,
{

ρ0 (1 − (u0t/r))
d
, 0, u0

}

if r > rs,
(4.1)

where the position of the shock rs is given by

rs = Ust with the shock speed Us =
1

2
(γ − 1)|u0|. (4.2)
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Figure 8: Noh problem at t = 0.6 — Lagrangian scheme results with an initial polar 21 × 21 (top), 51 × 51
(middle) and 81 × 81 (bottom) grids— Left: density as a function of radius — Right: final mesh.
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The initial mesh is a polar mesh generated with nx = 21, 41, 81 points 0 ≤ θ ≤ π/4 on any of the ny =
21, 41, 81 circles 0 ≤ r ≤ 1. In this configuration the exact solution is simply given by (rs = 0.2, Us = 1

3
)

{ρ, ε, u} =

{ {

16, 1

2
, 0

}

if r < 0.2,
{

(1 + 3

5

1

r
), 0, 1

}

if r > 0.2,
(4.3)

In fig.9 is presented the density as a function of the radius for the three previous polar grids, showing the
convergence of the method.

2D Guderley problem. In a quarter of the unit disk a gas (γ = 5/3) is initiated with ρ = 1, ε = 0 and
u = (0, 0). The velocity boundary condition for the points on the external circle being for all time step tn:

un,BC
i =

(

−xn
i /

√

(xn
i )2 + (yn

i )2,−yn
i /

√

(xn
i )2 + (yn

i )2
)

. (4.4)

A shock wave is generated at boundary circle and converges toward the center as presented in Fig.10 at
t = 0.6 and t = 0.8 (after bouncing).
The initial mesh is a polar mesh generated with 21 points 0 ≤ θ ≤ π/4 on any of the 21 circles 0 ≤ r ≤ 1.
There exists no exact solution to this problem.

2D Sedov problem. We consider the cylindrically symmetric Sedov problem, in Cartesian coordinates
(x, y). The total energy of the explosion is concentrated at the origin and has magnitude Etotal = 0.244816
(similar to [9]). The material is an ideal gas with γ = 1.4 and initially is at rest. At time t = 1.0 the exact

solution is a cylindrically symmetric diverging shock whose front is at radius, r =
√

x2 + y2 = 1 and with
a peak density of 6.0 (the solid line in Fig. 11). In our numerical experiments Etotal is concentrated in one
cell located at the origin (that is, containing the vertex (x, y) = (0, 0)). The specific internal energy of this
cell, c is defined as ε(c) = Etotal/V (c). The initial meshes are either quadrilateral or polygonal.
For each simulation we show both the initial and the final mesh, with 11 density isolines equally distributed
in magnitude between 0.0 and 6.0. (Fig. 11). Each isoline has a label that refers to a density value in the
legend scale. Also we show a 1D plot of density as a function of the radius, r, and a corresponding plot of the
exact solution. The 1D plots demonstrate how well the numerical solution preserves cylindrical symmetry.
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Initial mesh Converged mesh

Rezone

Figure 12: Example of simple verification test for the rezoning component where the calculation can be done
“by hand”— Initial mesh and mesh after convergence of the rezoning process.

5 Rezone component

6 Validation tests

The tests ran to validate the rezone component are of three kinds. The first type is a simple geometrical
mesh improvement when the initial mesh is small enough for us to write down every step of the optimization
process and check that at the convergence point we end up with the optimal mesh (in the sense of condition
number). For example in Fig.12 is an example of initial and final (converged) meshes.
In Fig.13 a 21 × 21 mesh made of perfect quadrilateral cells is randomly perturbed for each point i by the

equation

X̃i = Xi +
2rx − 1

10
, (6.1)

Ỹi = Yi +
2ry − 1

10
, (6.2)

(6.3)

where rx, ry are two random numbers between 0 and 1. The initial tangled mesh is then given in Fig.13
(a). We untangle the mesh (see Fig.13 (b)) β being given by an absolute constant set to Lcaract/100, where
Lcaract = 1

Nc

(xmax − xmin) ∗ (ymax − ymin) and Nc is the number of cells. Remind that the β factor could
be set to 0. The next step is to improve the mesh quality with the rezone strategy as shown in (c) and (d).
The improvement converges to the perfect quadrangular mesh as expected (see Fig.13 (e)).
The second kind of validation tests is performed on bigger mesh with interfaces where we can still guess

the type of evolution the mesh has to have to reach the “perfect” mesh (in the condition number sense). On
this test cases we are still checking the increase of the geometrical quality during the process.
The third kind is to produce a tangled mesh with or without interfaces. Then we ask the component to
untangle it, and to improve the quality. For example in Fig.14 we start with an interface from a Rayleigh-
Taylor instability simulation (a), generate a mesh on the top of it (b). This interface is fixed (or frozen).
Then the code successively untangle the mesh (c) and improve its quality (d).
Obviously if the interface does not exist then the convergence process would have end up to a perfect
quadrilateral mesh. The validation has been performed mostly by running as many test cases as possible in
ALE or Euler regimes and simply check the quality and validity of the meshes generated by the component.
Some validation test results can be found in [18], [26], [27], [30].

The speed-up of this component has been drastically improved by the version of V.Dyadechko which
allows to use this rezoning process on big meshes with an acceptable computational time.
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Figure 13: Verification test for the rezoning component in on a 21 × 21 randomly perturbed quadrangular
mesh — (a) Initial tangled mesh, (b) Untangled mesh, (c,d) Mesh after two steps of improvement, (e) Mesh
after convergence of the rezoning process.
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7 Remap component

8 Validation tests

In order to validate the remapping component we check it within two contexts:
1- a pure remapping context; no real hydrodynamics involved and an artificial rezoning process is enforced,
2- a simplified hydrodynamics context; 1D flow with exact solutions but treated in 2D with a simplified
rezoning process — as instance a Lagrange+Remap regime of the code.

In an ALE context it is quite difficult to separate the effect of the hydrodynamics, the rezoning and the
remapping. However one can check several “simple” properties like the conservation of mass, momentum
and total energy, or the respect of the positivity, or the respect of a maximum principle before and after
remapping. These properties are in fact requirements of the method, we do not pretend that fulfilling
these requirements ensures the code to be fully validated: they are necessary conditions but not sufficient
conditions!

8.1 Pure remapping context

In order to test the remapping component (independently from ALE INC.), we need to define a fluid state
(profiles of density, velocity, specific internal energy) and an artificial rezoning process.
The rezone strategy used in this section is called the tensor product grid rezoning. This process starts from
an initial 2D quadrangular grids (Ω = [0, 1] × [0, 1], nx × ny nodes).Then non-uniform changes are applied
to the grid during nmax time steps to end up with the uniform grid, identical to the initial one. From a
mathematical point of view for all 1 ≤ i ≤ nx, 1 ≤ j ≤ ny and 0 ≤ n ≤ nmax by

xn
i,j = (1 − αn)ξi,j + αnξ3

i,j , (8.1)

yn
i,j = (1 − αn)ηi,j + αnη2

i,j , (8.2)

where

ξi,j =
i − 1

nx − 1
, ηi,j =

j − 1

ny − 1
, αn =

1

2
sin

(

4πn

nmax

)

. (8.3)

Note that if n = 0 or n = nmax then αn = 0 therefore x0
i,j = xnmax

i,j = ξi,j and y0
i,j = ynmax

i,j = ηi,j (see Fig.15
for examples of grids).

The profiles used are of three kinds: (i) a smooth profile (sinus), (ii) a shock profile, where a step
function defines the density, velocity and energy profiles, (iii) an exponential shock profile where the post
shock density/energy regions are defined with an exponential function.
Clearly if the remapping was an exact process then the profiles at t = 0 and t = tnmax

would be identical.
However some diffusion is added by the remapping during the successive nmax steps. Comparing the initial
and final profiles give a measure of how well/bad the remapping process performs, independently of the rest
of the code.
The computation is performed with several meshes: 15× 15, 33× 33, 65× 65, 128× 128, 257× 257 and the
errors in L1, L2, L∞ norms, namely ρ1, ρ2, ρ∞ are computed for these meshes as:

ρ1 =
∑

c

|ρ(c) − ρex(xc, yc)| V (c), (8.4)

ρ2 =
∑

c

|ρ(c) − ρex(xc, yc)|
2 V (c), (8.5)

ρ
∞

= max
c

|ρ(c) − ρex(xc, yc)|, (8.6)

moreover the maximum norm of density is computed as

||ρ||∞ = max
c

|ρ(c)|. (8.7)
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Figure 15: Tensor product grids — nx × ny = 33 × 33 — Grids at cycle 30 (left) and 200 (right).

Mesh ρ1 Ratio ρ2 Ratio ρ
∞

Ratio ||ρ||∞ Ratio
15 × 15 2.826E − 2 — 1.234E − 3 — 1.216E − 1 — 1.8948 —
33 × 33 4.951E − 3 5.71 6.398E − 5 19.28 3.132E − 2 3.88 1.9696 3.46
65 × 65 1.234E − 3 4.01 7.395E − 6 8.65 1.721E − 2 1.82 1.9897 2.95

128 × 128 3.126E − 4 3.95 9.408E − 7 7.86 9.162E − 3 1.88 1.9965 2.94
257 × 257 7.799E − 5 4.01 1.123E − 7 8.38 4.746E − 3 1.93 1.9988 2.92

Table 1: Pure remapping problem for the sinus profile (density) — Error in L1, L2, L∞ and the ratio between
two consecutive errors.

Smooth profile. On Ω = [0, 1] × [0, 1] a fluid is initiated with

ρex(x, y) = 1 + sin(2πx) sin(2πy), (8.8)

uex(x, y) = (0, 0), (8.9)

εex(x, y) = 0. (8.10)

In table 1 are gathered the errors for the variable density. In Fig.16 are presented the density after 320
(33 × 33 grid) and 1280 (128 × 128 grid) remapping steps.

Shock profile. On Ω = [0, 1] × [0, 1] a fluid is initiated with

ρex(x, y) =

{

1 if x ≤ 0.5
0.125 else

(8.11)

uex(x, y) =

{

(1, 0) if x ≤ 0.5
(0, 0) else

(8.12)

εex(x, y) =

{

2.5 if x ≤ 0.5
2.0 else

(8.13)

In table 2 are gathered the errors for the density, velocity and specific internal energy in The errors for the
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Figure 16: Sinus profile after 320 remapping steps on a 33×33 mesh and 1280 remapping steps on a 128×128
mesh.

Mesh ρ1 Ratio ρ2 Ratio ρ
∞

Ratio
15 × 15 4.170E − 2 — 9.638E − 3 — 2.711E − 1 —
33 × 33 2.245E − 2 1.86 5.482E − 3 1.76 2.976E − 1 0.91
65 × 65 1.333E − 2 1.68 3.360E − 3 1.63 3.177E − 1 0.94

128 × 128 7.999E − 3 1.67 2.074E − 3 1.62 3.555E − 1 0.89
257 × 257 4.714E − 3 1.70 1.233E − 3 1.68 3.250E − 1 1.01
Mesh u1 Ratio u2 Ratio u∞ Ratio
15 × 15 5.207E − 2 — 4.179E − 2 — 9.116E − 1 —
33 × 33 2.550E − 2 2.04 1.960E − 2 2.13 8.985E − 1 1.01
65 × 65 1.436E − 2 1.77 1.069E − 2 1.83 8.902E − 1 1.00

128 × 128 7.636E − 3 1.88 5.072E − 3 2.11 8.544E − 1 1.04
257 × 257 4.600E − 3 1.66 3.259E − 3 1.56 8.804E − 1 0.97
Mesh ε1 Ratio ε2 Ratio ε∞ Ratio
15 × 15 9.974E − 2 — 4.052E − 2 — 1.900 —
33 × 33 5.986E − 2 1.67 2.433E − 2 1.67 1.900 1.00
65 × 65 4.018E − 2 1.49 1.645E − 2 1.47 1.900 1.00

128 × 128 2.378E − 2 1.69 9.405E − 3 1.75 1.900 1.00
257 × 257 1.353E − 2 1.76 4.736E − 3 1.99 1.899 1.00

Table 2: Pure remapping problem for the shock profile — Error in L1, L2, L∞ and the ratio between two
consecutive errors.
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Figure 17: Convergence for Sod problem — Lagrange+Remap regime — Density and specific internal energy
at t = 0.25 for nx = 50, 100, 200.

velocity are computed as

u1 =
∑

n

|u(n) − uex(xn, yn)| m(n), (8.14)

u2 =
∑

n

|u(n) − uex(xn, yn)|2 m(n), (8.15)

u∞ = max
n

|u(n) − uex(xn, yn)|, (8.16)

and for the specific internal energy

ε1 =
∑

c

|ε(c) − εex(xc, yc)| V (c), (8.17)

ε2 =
∑

c

|ε(c) − εex(xc, yc)|
2 V (c), (8.18)

ε∞ = max
c

|ε(c) − εex(xc, yc)|. (8.19)

8.2 Simplified hydrodynamics context

Most of the validation test cases are gathered into [28] where the remapping component has been tested as
a stand-alone process and embedded into ALE INC.
The following tests are mostly the ones used to validate the Lagrangian scheme ( see section 4) but the code
has been ran in its Euler as Lagrange+Remap regime. By doing that we cancel the effect of the rezoning
process, only the scheme and the remapping component are tested. Most of the tests are 1D Riemann
problems (Sod, Le Blanc etc.) or known 1D flows (blastwave, rarefaction, expansion in vacuum etc) where
the grid is composed of squares aligned with the waves.
ALE INC. has been compared with classical Lagrange+Remap schemes (from R.Pember (LLNL, Livermore),
Benson (UCSD, San Diego)) with success on these classical test problems.

1D Sod Riemann problem. In Fig. 17 we present the exact solution and the density for resolutions
nx = 50, 100, 200, and ny = 3.

1D LeBlanc Riemann problem. In Fig. 18 we present the exact solution and the specific internal energy
for the LeBlanc shock tube problem for 360, 720, 1440 grid resolution in x direction.
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Figure 18: Convergence for Le Blanc problem — Lagrange+Remap regime — Specific internal energy at
t = 6.0, nx = 360, 720, 1440: entire computational domain (left), zoom (right).
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Figure 19: Convergence for Woodward-Colella Blast Wave Problem at t = 0.038, nx = 300 , 600 , 1200 —
Lagrange+Remap regime — Left: density (zoom) — Right: specific internal energy (zoom).

1D Colella-Woodward blastwave. In Fig. 19 we graphically demonstrate the convergence rate for the
Collela-Woodward blastwave Problem on the set of meshes with resolutions nx = 300, 600, 1200. We present
numerical results both for density and specific internal energy. Because there is no analytical solution for
this problem we do not present a table with convergence rates.

9 Cylindrical geometry

10 ALE INC(ubator)

In this section we simply present the behavior of ALE INC as a simulation code for well-known compressible
fluid flows in 2D situations. the point is not to describe all these test cases but rather to present how the
code behaves on these well-known problems.
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Figure 20: Sedov problem for a polygonal mesh — ALE-20 regime — Left: t = 0.1 mesh and density field
— Right: t = 1.0 mesh and density field.
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Figure 21: Dukowicz problem — ALE-20 regime — Left: Initial shock wave — Right: after multiple
refraction/reflection.

Sedov problem. In this paragraph the code simulates the Sedov problem in ALE-20 regime for the same
polygonal mesh as in section ??.

Dukowicz problem. The dukowicz problem describes the interaction of a shock wave sent by a piston
and an oblique contact discontinuity (see Fig.21). In Fig.22 is presented the density field at t = 1.3 for a
polygonal mesh with approximatively 60 point in x-direction and 40 in the y-direction. The ALE-20 regime
is used.

Triple point problem. This problem is briefly described in Fig.23 where a shock wave is sent from below
(middle density field). It lately impacts two contiguous regions, one with a high density (left), one with a
low density (right). At the triple point a vortex develops, away from the triple point a simple 1D Riemann
problem occurs in the y-direction. Fig.24 presents the density field and the mesh at t = 0.7 for an initial
perfect quadrangular mesh with 81 × 81 points. The ALE-20 regime is used.

Rayleight-Taylor instability. A gravity field is applied in the vertical (y) direction. Moreover the initial
interface between a heavy fluid (top) and a light fluid (bottom) is perturbed like a sinus wave then a
Rayleight-Taylor instability develops as described in Fig.25. In Fig.26 is presented the density field at
t = 8.5
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ALE.INC. - Dukowicz Pb - ALE20
Unst. mesh 60x40 - time = 1.3

Figure 22: Dukowicz problem on unstructured mesh — ALE-20 regime — Density at t = 1.3.

Piston

Triple pt
H l

Figure 23: Triple point problem — A shock wave (dashed line) is sent from below across a middle density
field (light gray). It impacts two contiguous regions, one with a high density (H to the left, dark gray), one
with a low density (l to the right, white). At the triple point a vortex develops, away from the triple point
a simple 1D Riemann problem occurs in the vertical direction.
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Figure 24: Triple point problem for an initial perfect quadrangular mesh with 81 × 81 points — Left: final
mesh — Right: final density field.

Heavy fluid

Light fluid

Gravity

Figure 25: Rayleight-Taylor instability — Left: Two fluids (heavy and light) are separated by a non planar
interface under gravity field — Right: a Rayleight-Taylor instability develops.
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Figure 26: Rayleight-Taylor instability at t = 8.5 — ALE-3× 3 regime — Density and mesh compared with
the solution given by a Front tracking method (white line) — Initial mesh is a quadrangular 62 × 62 mesh.
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