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a b s t r a c t

We present a new reconnection-based arbitrary-Lagrangian–Eulerian (ALE) method. The
main elements in a standard ALE simulation are an explicit Lagrangian phase in which
the solution and grid are updated, a rezoning phase in which a new grid is defined, and
a remapping phase in which the Lagrangian solution is transferred (conservatively interpo-
lated) onto the new grid. In standard ALE methods the new mesh from the rezone phase is
obtained by moving grid nodes without changing connectivity of the mesh. Such rezone
strategy has its limitation due to the fixed topology of the mesh. In our new method we
allow connectivity of the mesh to change in rezone phase, which leads to general polygonal
mesh and allows to follow Lagrangian features of the mesh much better than for standard
ALE methods. Rezone strategy with reconnection is based on using Voronoi tessellation.
We demonstrate performance of our new method on series of numerical examples and
show it superiority in comparison with standard ALE methods without reconnection.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In numerical simulations of multi-dimensional fluid flow, the relationship of the motion of the computational grid to the
motion of the fluid is an important issue. One of two choices is typically made: a Lagrangian framework or an Eulerian frame-
work. In the Lagrangian framework, the grid moves with the local fluid velocity, while in the Eulerian framework, the fluid
flows through a grid fixed in space. More generally, the motion of the grid can be chosen arbitrarily. The philosophy of the
arbitrary-Lagrangian–Eulerian methodology (ALE; cf. [64,19,20,70,71,81,100,93]) is to exploit this degree of freedom to im-
prove the accuracy and efficiency of the simulation. The main elements in an standard ALE simulation are an explicit
Lagrangian phase in which the solution and grid are updated, a rezoning phase in which a new grid is defined, and a remap-
ping phase in which the Lagrangian solution is transferred (conservatively interpolated) onto the new grid [93]. Clearly ALE
also includes Lagrangian approach when the mesh is not changing during rezone phase. It is important to note that Eulerian
simulation can be considered as a limiting case of ALE when the rezoned mesh coincides with the mesh at the beginning of
the Lagrangian step – such implementation of Eulerian methodology is usually called Eulerian-as-Lagrange-Plus-Remap
[123,101] as opposed to direct Eulerian approach [38] in which gas dynamics equations in Eulerian form are directly solved.
Therefore, ALE methodology is very flexible and successfully used to solve complicated problems.

The numerical methods related to Lagrangian phase of ALE are relatively well developed (for example [20,28,29,18,31,
83,30,32,40,33,109,108,110,34,91,16,104,88,89,87]), as well as the remapping phase (being considered as conservative inter-
polation or advection) [20,94,77,61,84,101,124,49,21,48,98].
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Our opinion is that the most difficult and least developed phase of ALE is the rezoning phase. A review of existing rezone
strategies for ALE methods is presented in [74] including analysis of alternative approaches [81,120,45,19,57,100,24,
129,9,47,128]. A review of a more general class of methods, namely moving mesh methods, is presented in [79].

Ideally the mesh has to adapt to the solution. Any adaptive scheme is composed of three main ingredients: an optimal-
mesh criterion, an error estimator or error indicator, and an algorithm of the strategy for the mesh improvement. These
ingredients answer to the following questions: How should the optimal mesh be defined? Where are mesh changes re-
quired? And how should the improved mesh be constructed? For standard ALE methods a strategy for mesh improvement
is based on moving the spatial grid. Generally speaking the goal of rezoning is to improve the efficiency of the ALE method,
that is, to achieve a given accuracy with the least amount of ‘‘work”. ‘‘Work” in this context should be understood not only as
the CPU time but also as memory and man-hour resources. However, to design an adaptive method one needs a quantitative
assessment of optimality. The problem is that, for non-linear equations of gas dynamics in 2D and 3D, at the moment, it is
not feasible to obtain such quantitative assessment. For this reason practitioners are usually using some qualitative ap-
proaches. In real complex ALE simulation the most basic goal of rezoning is simply to run calculation to completion without
user intervention and still achieve reasonable accuracy (recall that we always can run ALE in Eulerian = Lagrange-Plus-Re-
map mode, which will be robust but less accurate). Even this goal is usually not achieved in most production ALE codes.
For example, even for very popular methods based on Winslow smoothing, [128,129], practical simulations require the intro-
duction of numerous geometrical and physics-based triggers and lockers, that is, mesh constraints that typically keep a node
Lagrangian until some condition is reached e.g. element quality criterion (to detect cell distortion or collapse) or physical
condition is reached in surrounding elements (for example, did the cell fully detonate?) [100,14,15,65].

As it is mentioned in [14,15], the mesh movement philosophy applied to most applications, related to high-speed multi-
material flows, is to develop algorithms that will move the mesh in such a way as to maintain robustness while staying as
close as possible to the Lagrangian mesh motion. The Lagrangian mesh motion naturally follows most flow features of inter-
est such as shocks, material interfaces and steep gradients and allows users to focus zoning in materials of interest. Mesh
relaxation is then used in regions of high material deformation to improve mesh quality. In standard ALE methods, which
use fixed mesh topology, nodes are moved to refine mesh some areas of the problem at the expense of coarsening mesh
in other parts of the problem. Generally, the increase of mesh resolution is limited, and, most importantly it can degrade
the mesh quality leading to robustness problems. One of the most cited papers in mesh rezoning is [24], where authors
use variational approach to combine requirements related to maintaining geometric quality of the mesh and some mesh
adaptation based on equidistribution of some error indicator. Functional which is responsible for mesh smoothness essen-
tially can be considered as a variational form of Winslow approach for which the corresponding optimization problem is well
behaved. In contrast, the functional responsible for error equidistribution, if used by itself, has multiple local minima and its
minimization can lead to tangled mesh. A difficulty arises when one tries to combine these – how should one weight the
relative importance of these separate goals and still obtain a well behaved optimization process? In particular, the two global
functionals have distinct (physical) dimensions, and so, can only be combined with some dimensional constant. At present,
there is no theoretical basis for choosing this constant, thus delegating the decision to the user. In practice, bad choice of this
parameter can lead to loss of accuracy (if the mesh is over-smoothed) or robustness problem (if the mesh becomes tangled).

In our opinion, the main reason for this is that standard ALE codes utilize a fixed topology mesh, defined at the outset,
which in general will not be able to adapt to the dynamically evolving interface shape (or contact discontinuity) in spite
of efforts at regularization (see Section 2 for more details). The most general solution to this difficulty, while preserving a
Lagrangian nature of mesh motion is to relax the constraints on mesh topology and allow reconnection.1

The idea of using mesh reconnection to solve partial differential equations is not new. To the best of our knowledge, in
context of computational gas dynamics the ideas related to mesh reconnection were first used in [99].2 In this seminal paper
the authors suggest to use a set of point Lagrangian particles and surround them with domains (parcels) to describe the media.
The shape and size of these parcels are determined by the positions of the particles. The connectivity of the set of particles is not
fixed but can vary with time depending on relative positions of the particles. After connectivity is established the set of neigh-
boring particles defines the stencil on which Lagrangian equations are discretized.

In our opinion paper [99] has all basic ideas that lead to development of so-called free-Lagrange (or free-Lagrangian)
methods, [55,23,121], which were very popular in 80s and early 90s The name free-Lagrange was introduced in [39] and
the corresponding code was called FLAG. We need to analyze the main features of free-Lagrange approach in order to pre-
cisely position our new reconnection-based ALE method with respect to well established methods.

We start our analysis with methods, which we will call pure free-Lagrangian methods, [95,122,54,114,113,107,10]. In
these methods, the fluid is represented by point particles surrounded by parcels. Each particle and its corresponding parcel
represent a single material, that is, there is no mixed (containing several materials) parcel. Mass exchange between par-
ticles is forbidden. Flow variables are stored at the particle within each parcel, which moves in a ‘‘Lagrangian” fashion.
The shape of the parcel is determined by constructing Voronoi mesh [96], in which each particle (generator, site) is en-
1 Let us also mention interesting approach of combining standard ALE method with adaptive mesh refinement (AMR) [3]. In this, approach authors allows
subdivision of the cell into smaller cells similar to standard Eulerian AMR methods. Formally, it can be considered as connectivity change. Our opinion is that
objective of ALE AMR is to increase local resolution. This method has all drawbacks of standard ALE methods with fixed connectivity.

2 In this paper we are not considering meshless methods, like smoothed particle hydrodynamics – SPH – interested readers can refer for example to
[23,80,66].
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closed within convex polygonal cell. By definition, in a Voronoi mesh each cell encloses all points in the domain which are
closer to the corresponding particle than to any other particle. The mesh is fully reconstructed after some number of time
steps to allow grid connectivity to change naturally under influence of shear or vorticity. Connectivity of Voronoi mesh
uniquely defines the ‘‘neighbors” that is particles which parcels share edge with given particle. These neighbors define
the stencil on which gas dynamics equations are approximated. In ‘‘pure” free-Lagrange, one approximates some form
of Lagrangian equations. Several discretization approaches are possible, for example, mimetic finite difference [95], or
Godunov-type methods [10]. The energy equation can be approximated in conservative form [10], or in non-conservative
form as in [95]. In later case mimetic approach is used to guarantee conservation of total energy. There are also different
approximations used for continuity equation. Most standard approach is to define density as ratio of particle mass (which
is constant in time) and volume of the corresponding parcel. However, one also can define the volume from a special evo-
lution equation as it is usually done in Godunov based methods. Let us emphasize that there is no ‘‘remapping” phase in
‘‘pure” free-Lagrangian methods.

Now let us discuss how pure are ‘‘pure” free-Lagrangian methods. Such analysis requires the definition of what is a
Lagrangian method. One can define a Lagrangian method as a method where equations in Lagrangian coordinates are
approximated. That is to say, governing equations do not have advective terms; in other words no exchange of mass,
momentum and energy between these particles is allowed. In case of ‘‘pure” free-Lagrangian methods these two criteria
are satisfied. But this is not enough to call method Lagrangian. For a Lagrangian method the boundary of parcel has to move
in Lagrangian fashion too. Unfortunately, for ‘‘pure” free-Lagrange it is not the case because parcels are Voronoi cells and the
vertices of the Voronoi cell are not moved independently in a Lagrangian way but defined from positions of the particles in a
very non-linear way [95]. It is well known [55,23,121] that a Voronoi cell is not a Lagrangian object and it is rigorously pro-
ven in [118] that for ‘‘pure” free-Lagrangian methods discrete continuity equation is not consistent (order of approximation
is zero) with continuous continuity equation; it also means that the so-called Geometric Conservation Law (GCL), [53,87],
which can affect stability of the method, [53], is not fulfilled. It usually implies that small changes in the particle positions
(especially if two particles are very close to each other) can lead to very large change of the volume. Non-Lagrangian behav-
ior of Voronoi cell dramatically decreases accuracy near contact discontinuity. There are several approaches which intend to
mitigate non-Lagrangian behavior of Voronoi cells. For example, in [95,114] special type of artificial viscosity was introduced
which helps to regularize the particle positions and do not allow particles to be to close to each other. In [10] some correc-
tions to velocity of generators are introduced and in [67] special artificial forces are introduced to correct shape of parcels.
Another approach is to keep Voronoi mesh inducing connectivity, but define parcel shape using so-called median mesh
[107], where the coordinates of vertices are defined by simple interpolation of a particle position and its two consecutive
neighbors. It leads to non-convex shape of parcels and abrupt change in parcel volume when the connectivity of the mesh
is changing (in contrast volume and shape of Voronoi cells are continuous in time, but are not Lagrangian objects). This
clearly contradicts another important property of Lagrangian parcel: its shape is supposed to change continuously in time
including instances when connectivity changes. Because of abrupt change of volume of the parcel some remapping is needed.
The conclusion of this analysis is that even pure-Lagrangian method are neither ‘‘pure” nor ‘‘Lagrangian”. Still as demon-
strated, for example in [10,67,12,68,11,114] these types of methods can be very successful for particular problems, but each
problem requires some special strategy to mitigate non-Lagrangian nature of Voronoi cells.

There were several other ‘‘free-Lagrangian” methods, which differ in how connectivity of the mesh is established, spatial
centering of flow parameters (particle centered, parcel centered, staggered), what form of equations are used, what type of
discretization is used, implicit or explicit, some of the methods having explicit remap phase, and so on. Interested reader can
refer to the following papers [51,39,50,115,35,36,63,126,6,97,13,5,56]. Very educational are the roundtable discussions
published in [55,121]. The conclusion is that these ‘‘free-Lagrangian” methods are even less Lagrangian than ‘‘pure” free-
Lagrangian methods, which we have analyzed in previous paragraph. However, all of these methods allow change of connec-
tivity of the mesh with time.

Our belief is that because free-Lagrangian methods are not really Lagrangian then, explicitly or implicitly, they incorpo-
rate a rezone phase, and consequently, a corresponding remap phase. Some of them explicitly states this remap phase. Nev-
ertheless if the free-Lagrange method does not have a remap phase, errors related to it will manifest itself one way or
another.

It leads us to the conclusion that methods where connectivity of the mesh can change have to be developed in reconnec-
tion-based ALE (ReALE) framework, where rezone stage includes reconnection. Let us note that similar philosophy was used
in [45,1,37], even so authors of [45,1,37] do not call their method ALE or free-Lagrange.

Let us finally note that when we were writing this paper we became aware of the paper [119]. In this paper the author
proposed a new formulation of continuum hydrodynamics based on an unstructured grid. In this work the mesh is defined as
the Voronoi tessellation of a set of discrete mesh-generating points. The gas dynamics equations are solved using a Godunov-
type finite-volume scheme on a moving Voronoi mesh. This approach corresponds to a direct ALE strategy (no explicit
Lagrangian, rezone and remap phases-governing equations are written in moving coordinate system) in which the motion
of the grid is ruled by prescribing the velocities of the mesh generators. The numerical results obtained with this method
are quite impressive and display its robustness and accuracy. However, we note that this method may suffer from several
limitations. First, this is by construction a mono-material formulation since the author is using a direct ALE strategy. We be-
lieve that its multi-material extension is far from being obvious. We also note that this ALE scheme does not fulfill GCL
requirement. This flaw can lead to severe problems.
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As standard for ALE method, the main elements in ReALE simulation are an explicit Lagrangian phase in which the solu-
tion and grid are updated (without changing connectivity), a rezoning phase in which a new grid is defined (which includes
changing connectivity and also adding or deleting cells or vertices of the parcels), and a remapping phase in which the
Lagrangian solution is transferred (conservatively interpolated) onto the new grid. Flowchart of the entire ReALE algorithm
is presented in Section 5. For ReALE all three phases are supposed to satisfy specific requirements which are different from
standard ALE methods.

We assume, that at the beginning of the calculation (t = 0) as well at the beginning of each time step (after rezone phase)
the computational mesh consists of Voronoi cells corresponding to some set of particles (generators, sites), that is, distribu-
tion of generators defines the mesh. Initialization of the mesh as well as necessary definitions related to Voronoi diagrams
are given in Sections 3 and 4.

Because of reconnection in rezone phase, the Lagrangian phase of the ReALE method has to deal with discretization of the
Lagrangian equations on general polygonal meshes and corresponding update of this polygonal mesh is supposed to be
Lagrangian. There are several papers dealing with discretization of Lagrangian equation on general polygonal meshes
[25,27,26,45,116,117]. In this paper we will use compatible mimetic finite discretizations [28,29] on staggered mesh, which
historically close to [25,27,26] and newly developed cell-centered discretizations based on Godunov approach [91,89,87],
which satisfy GCL (contrarily to [45], which does not satisfy GCL). Necessary details about discretizations used in Lagrangian
phase of our ReALE methodology are presented in Section 6.

The rezone phase of ReALE has to include both mesh movement and reconnection procedure. In this paper we used a set
of particles (generators) and the machinery of Voronoi diagrams to do both mesh movement and mesh reconnection. That is
our rezone strategy consists of a special movement of generators. It is close to Lagrangian in some sense, but also include
some smoothing procedure based on notion of centroidal Voronoi diagrams [43]. The rezone phase of our new ReALE ap-
proach is described in Section 7.

In the remapping phase, the Lagrangian solution is transferred (conservatively interpolated) onto the rezoned mesh.
Lagrangian mesh is the result of one time step Lagrangian movement of the Voronoi mesh corresponding to the distribution
of the generators at the previous time step. The new rezoned mesh is the Voronoi mesh corresponding to the positions of
generators created by the rezone phase. During the rezone phase generators are moved in an ‘‘almost” Lagrangian way
and because Voronoi cells are changing their shape continuously with respect to positions of the generators; rezoned and
Lagrangian meshes are ‘‘close”. However, in general, the connectivity of the Lagrangian and rezoned mesh are different. Con-
sequently remapping methods have to be able to conservatively transfer flow parameters from one polygonal mesh to an-
other. In this paper intersection (overlay) based remap is used [61,45,94,77], however, one can take advantage of how
Lagrangian and rezoned meshes are constructed and design more efficient methods [76]. The remapping phase is described
in Section 8.

We demonstrate the performance of our method on a set of numerical tests presented in Section 9. Finally, conclusions
and future work are summarized in Section 10.
2. Motivation

To motivate our research let us consider the Rayleigh–Taylor instability problem. It consists of two ideal gases with initial
densities qtop = 2 and qbottom = 1; in both cases the adiabatic constant is c = 1.4. Initially, the heavier gas is above the lighter
gas in a rectangular vessel [0:1/6] � [0:1], with gravitational field directed vertically downward and with magnitude g = 0.1.
The interface has been deliberately perturbed as described by formula yi(x) = 1/2 + 0.01 cos(6px). Initially both gases are at
rest; the pressure distribution is approximately hydrostatic and is defined in the lighter gas
P ¼ 1þ qtopg0:5þ qbottomgð0:5� yÞ;
and in the heavier as
P ¼ 1þ qtopgð1� yÞ:
It is well known that such configuration is unstable and as time progresses, the heavier gas will sink and the lighter gas will
rise through the formation of bubbles and spikes. Further details of the general theory of Rayleigh–Taylor instabilities can be
found in [78]. The time evolution of this problem leads to a rollup of the interface and the generation of significant vorticity.
This problem is poorly suited for Lagrangian methods, and is usually tackled using Eulerian or ALE techniques. As discussed
in Section 1, for standard ALE methods the mesh does not change connectivity. Improvement of the mesh on the rezone stage
is achieved only by moving nodes. Here we consider a standard ALE approach based on cell-centered Lagrangian method
described in [90,87], which uses Winslow approach at rezone phase [128]. In Fig. 1(a) we present meshes for time moments
t = 7, 8, 9; in Fig. 1(b) we present vorticity color map at the same time moments. On Lagrangian stage of ALE the mesh is
trying to follow the flow, but because of development vorticity it eventually leads to a tangled mesh. On rezone stage the
mesh is slightly relaxed, however on the next time step of the Lagrangian phase, the mesh is trying to follow vorticity devel-
opment and, again, is approaching a tangling situation. The meshes in Fig. 1(a) are the result of these competing processes.

In standard ALE method the mesh cannot change connectivity, and mesh with fixed connectivity has some limitation in
how much it can deform. In Fig. 2 we present fragment of the mesh at t = 8 (panel a) as well as only ‘‘horizontal” (panel b)
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Fig. 1. Rayleigh–Taylor problem at time moments t = 7, 8, 9 – (a) Mesh fragments. (b) Vorticity color map. Color scale is from blue (minimal negative
vorticity) to red (maximal positive vorticity). White color corresponds to zero vorticity. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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and only ‘‘vertical” (panel c) logical lines of the mesh. From this figure it is clear that logically rectangular mesh cannot de-
form much further in regions where vorticity is developing. At some time moment the mesh eventually stagnates in subre-
gions where vorticity is still developing. Similar pictures can be found in [74] for ALE using staggered discretization and
reference Jacobian rezone strategy.

This stagnation means that in subregions where vorticity is developing ALE method with fixed connectivity actually be-
comes Eulerian in its Lagrange + Remap form. It leads to excessive smoothing of flow parameters at remapping stage, and
eventually to loss of accuracy in these regions. Moreover, because the mesh is logically rectangular, stagnation of the mesh
in some regions leads to locking of the mesh in other regions, resulting to loss of overall accuracy. Also stagnated mesh has a
low geometrical quality which additionally contributes to the loss of accuracy. One clearly sees that behavior of vorticity
presented in Fig. 1(b) is not physical because it oscillates from positive to negative at neighboring cells, which is especially
pronounced at t = 9. We believe that the resolution of this problem lies in allowing reconnection during the rezone stage of
ALE method. However, allowing reconnection at rezone phase has its implications on all phases of ALE. First of all, we need to
decide what is the mechanism of the reconnection. In this paper we use Voronoi tessellation machinery.
3. Voronoi tessellation

Let us consider a convex computational domain X in 2D. For a set of generators Gc = (xc,yc) 2X the Voronoi cell Xc is de-
fined as follows [96]:
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Xc ¼ fX ¼ ðx; yÞ 2 X : jX� Gcj 6 jX� Gc0 j; for all c – c0g ð1Þ
Voronoi cell Xc is a convex polygon, and the set of Voronoi cells defines the tessellation of X, that is, it covers X without
holes or overlaps. There are several generalizations of the definition of Voronoi cell for non-convex domains, like bounded
and constrained Voronoi diagrams [7,8,72], VPS (visibility shortest path) Voronoi diagrams [96, pp. 163–156]. In this paper
we will only consider convex computational domains and will not describe these generalizations. We use an incremental
algorithm for the construction of Voronoi tessellation which is described in [113]. In general any other available algorithm
can be used. In Fig. 3(a) we present Voronoi cells in the unit square which correspond to generators marked by�. For now on,
a cell Xc is referred to with its unique index c. By definition cell ~c is a neighbor of cell c if it shares a face with it. The set of
neighbors of cell c is denoted by CðcÞ. The set of vertices of cell c is denoted by PðcÞ. Any vertex of a Voronoi mesh is shared by
three cells only. The set of faces of cell c is denotes as FðcÞ, each face shares only by two cells. These relationships completely
define the connectivity of the mesh.

Depending on the position of generators, the Voronoi mesh can be genuinely non-uniform. One of the possible measures
of non-uniformity is how far is the centroid of a Voronoi cell from the generator corresponding to this cell. Let us introduce,
Xc, the centroid of the cell Xc as follows:
Xc ¼
1
jXcj

Z
Xc

X dV ;
where |Xc| denotes the volume of the cell Xc.
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In all panels of Fig. 3 positions of centroids are marked by circles � and position of generators are marked by crosses �.
Clearly, the closer the centroids and the generators are, the more uniform the mesh is. It brings us to an important new def-
inition: centroidal Voronoi tessellation (CVT) [43]. Voronoi tessellation is called centroidal Voronoi tessellation if the position
of the cell centroid coincides with the position of the corresponding generator. CVT type of meshes are asymptotically (as
number of generators goes to infinity) made of perfect hexagons inside the computational domain. Meshes of CVT type have
several attractive properties, in particular discretizations of partial differential equations are usually more accurate on such
meshes [69].

There is a very simple algorithm to create CVT depicted in Fig. 3. It starts with an arbitrary distribution of generators,
Fig. 3(a), and constructs its corresponding Voronoi tessellation. Then it computes centroids of the constructed Voronoi cells
and uses them as generators for a next iteration. The resulting mesh after one iteration is presented in Fig. 3(b). Let us note
that regularity of the mesh is visibly improved. The mesh after 10 iterations is presented in Fig. 3(c). Finally the converged
mesh is presented in Fig. 3(d). This algorithm is called Lloyd’s method, readers can refer to [43,42] for more details.

For the purposes of our paper one iteration of Lloyd’s algorithm can be considered as a mesh smoothing step, which, in
some sense, is analogous to a Winslow iteration for meshes with fixed connectivity. However, in Lloyd’s algorithm connec-
tivity of the mesh may change at each iteration.
4. Initialization

Modeling of any problem starts with the creation of an initial mesh. In our approach, an initial mesh is created by the
distribution of generators and the construction of the associated Voronoi mesh. As with any ALE method the initial mesh
reflects the knowledge about the underlying physical problem, for example, initial distribution of materials, direction and
shape of the main shocks and other important features of the flow. Let us repeat that the initial mesh has to be Voronoi mesh
and has to be consistent with rezone strategy. ‘‘Consistent” means that the initial mesh has to be constructed in such a way
that it will not change dramatically at rezone stage. This issue will be clarified in Sections 7 and 9. Another important issue is
that, as for any ALE method, we want to track material boundaries as close as possible. Therefore, initially, we are trying to
create a mesh, the cell faces of which coincide with material boundaries. Let us demonstrate some ideas on a simple example
of a bubble containing one material in a rectangular computational domain filled with another material, see Fig. 4 (this is a
fragment of the initial mesh for the shock–bubble interaction problem described in details in Section 9.3). For this problem it
is important to have an orthogonal mesh with mesh lines aligned with coordinate directions outside the bubble because a
vertical shock will approach the bubble from the right. As a consequence the shock direction will be aligned with the mesh. A
square mesh is the degenerate Voronoi mesh obtained with a regular distribution of generators; these are located at the cen-
ters of the squares. In order for the boundary of the bubble to be represented by faces of Voronoi cells, the generators have to
be located on the same distance from the boundary in orthogonal direction. In this case because the boundary is a circle of
some radius r, generators are located also on concentric circles of smaller, (r � Dr), an bigger, (r + Dr) radii. Inside the bubble,
generators are located on circles, which radii are equally distributed between 0 and r. On each circle we put a different num-
ber of generators such that the arc length between generators on each circle is approximately the same for all circles. It then
creates a pseudo polar mesh. This mesh is a little bit extended outside the bubble. Technically to combine a square mesh and
a pseudo polar mesh we first create generators which produce the square mesh, then generators which are located in disk of
radius r + 2Dr are removed and replaced by generators corresponding to the pseudo polar mesh. The resulting mesh is pre-
sented in Fig 4.

Similar techniques can be applied for fitting more complicated shapes, some ideas are presented in [102].
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In some cases the faces of a Voronoi cell can be very small. In degenerate cases like a rectangular Voronoi mesh, some
edges actually have zero length. This situation is schematically presented in Fig. 5(a). In this figure the edge PACD PABC has
an almost zero length. Time step control for Lagrangian phase of ReALE method is based on minimal edge length over the
cell, see Section 6. Therefore, the presence of small edges can dramatically reduce the time step. The solution lays in the
introduction of a ‘‘cleaning” step that removes edges of the cell, which are small in comparison with a local characteristic
length.

In situation presented in Fig. 5 cell A has neighbors . . .B,C,D. . .. Cells D and B are not a neighbors. Removing edge PACD PABC

is equivalent to collapsing the two points into one point PABCD (the midpoint of segment [PACD,PABC]) schematically presented
in Fig. 5(b). It means that point PABCD is now shared by four cells A,B,C,D. Cells A and C do not share any edge, and cells A and C
do not have zero length edge anymore. We call this process small-edge cleaning. Cleaning is applied not only to zero length
edges but to all edges which are small in comparison with the local characteristic length. More details on cleaning is given in
Section 7. It is important to note that after the cleaning step, the computational mesh is not a Voronoi tessellation anymore.
In particular each point can be shared by more than three cells.
5. Flowchart of ReALE method

In Fig. 6 we describe the flowchart of ReALE method. Initialization stage is described in previous section. The result of this
stage is the mesh In = 0, which, in general, is an unstructured polygonal mesh obtained by the cleaning of a Voronoi mesh. On
the initialization stage we also define the initial condition for the degrees of freedom Un = 0 related to each particular Lagrang-
ian scheme, for example, for cell-centered discretization, these are density, velocity and pressure of the cell (any other var-
iable being deduced from them). First, the Lagrangian step uses the mesh I0. At time step n the Lagrangian scheme starts with
the rezoned mesh obtained from the previous time step. On Lagrangian stage the mesh is moving with the flow. The result of
the Lagrangian step is the Lagrangian mesh Ln + 1 and all physical quantities on this mesh – Unþ1

L . Recall that Lagrangian algo-
rithm has to deal with general polygonal meshes. Let us note that in the Lagrangian stage the generators do not play any role.
During the Lagrangian step the mesh does not change connectivity. This stage is described in Section 6.

On the rezone stage we define positions of generators Gnþ1
c and construct the associated Voronoi tessellation. It is followed

by a cleaning step. The result of the rezone phase is a general polygonal mesh Rn + 1. In general, connectivity of mesh Rn + 1 is
different from connectivity of mesh Ln + 1. However, the number of cells is the same. Details of the rezone stage are provided
in Section 7. For the remap stage we perform a conservative interpolation of flow parameters from Lagrangian mesh Ln + 1

onto rezoned mesh Rn + 1. Because in general these two meshes are polygonal meshes with different connectivities, one needs
to use an intersection (overlay) based remap method. The remapping stage is described in details in Section 8. Finally to start
new time step we set In + 1 as being the rezoned mesh Rn + 1. In other words the new Lagrangian step starts with the polygonal
mesh obtained as result of rezoning from the previous time step and the physical variables Un + 1 from the remap phase.
6. Lagrangian phase

In this section we present the discretization of the Lagrangian hydrodynamics over a general two-dimensional polygonal
grid that will be the first phase of our ReALE algorithm. We present two discretizations, the first one is based on a staggered
placement of the variables, whereas the second one is cell-centered. In Lagrangian hydrodynamics methods, a computational
cell moves with the flow velocity. In practice, this means that the cell vertices move with a computed velocity, the cell faces
being uniquely specified by the vertex positions. Thus, Lagrangian methods can capture contact discontinuity sharply in mul-
ti-material fluid flows. However, in the Lagrangian framework, one has to discretize not only the gas dynamics equations but
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also the vertex motion in order to move the mesh. Moreover, the numerical fluxes of the physical conservation laws must be
determined in a compatible way with the vertex velocity so that the geometric conservation law (GCL) is satisfied, namely
the rate of change of a Lagrangian volume has to be computed coherently with the node motion. This critical requirement is
the cornerstone of any Lagrangian multi-dimensional scheme.

The most natural way to solve this problem employs a staggered discretization in which position, velocity and kinetic
energy are centered at points, while density, pressure and internal energy are within cells. The dissipation of kinetic energy
into internal energy through shock waves is ensured by an artificial viscosity term. Since the seminal works of von Neumann
and Richtmyer [125], and Wilkins [127], many developments have been made in order to improve the accuracy and the
robustness of staggered hydrodynamics [32,33,28]. More specifically, the construction of a compatible staggered discretiza-
tion leads to a scheme that conserves total energy in a rigorous manner [30,29].

An alternative to the previous discretizations is to derive a Lagrangian scheme based on the Godunov method [60]. In the
Godunov-type method approach, all conserved quantities, including momentum, and hence cell velocity are cell-centered.
The cell-face quantities, including a face-normal component of the velocity, are available from the solution of an approxi-
mate Riemann problem at each cell face. However, it remains to determine the vertex velocity in order to move the mesh.
In one of the first papers related to application of Godunov methods on general polygonal mesh in 2D [1], the flux compu-
tation was not compatible with the node displacement, and hence the GCL was not satisfied. This incompatibility generated
additional spurious components in the vertex velocity field whose correction required a very expensive treatment [46]. An



R. Loubère et al. / Journal of Computational Physics 229 (2010) 4724–4761 4733
important breakthrough concerning the compatibility between flux discretization and vertex velocity computation has been
introduced in [40,88]. In these papers, authors present schemes in which the interface fluxes and the node velocity are com-
puted coherently thanks to an approximate Riemann solver located at the nodes. This original approach leads to first-order
conservative schemes which satisfy a local semi-discrete entropy inequality. The multi-dimensional high-order extension of
these schemes are developed in [34,91,87,86].

In what follows, we recall briefly the main features of the two Lagrangian schemes, staggered and cell-centered, that will
be used to construct our ReALE algorithm. The necessary details concerning the discretization can be found in previously
published papers.
6.1. Governing equations

The gas dynamics equations, in Lagrangian form, write as follows:
q
d
dt

1
q

� �
�r � U ¼ 0; ð2aÞ

q
d
dt

U þrP ¼ 0; ð2bÞ

q
d
dt

Eþr � PUð Þ ¼ 0; ð2cÞ
where d
dt is the material time derivative. Here, q,P,U and E denote the density, pressure, velocity and specific total energy of

the fluid. The previous equations express the conservation of volume, momentum and total energy in a frame which moves
with the fluid. The thermodynamic closure of this set of equations is obtained by the addition of an equation of state which is
taken to be of the form
P ¼ P q; eð Þ;
where the specific internal energy, e, is related to the specific total energy by e ¼ E� 1
2 kUk

2. We note that for smooth flows,
by subtracting kinetic energy equation from total energy equation, we get the time rate of change of specific internal energy
q
d
dt

eþ Pr � U ¼ 0; ð3Þ
using (2a), this equation rewrites
q
d
dt

eþ Pq
d
dt

1
q

� �
¼ 0: ð4Þ
Recalling the Gibbs relation, T dS ¼ deþ Pdð1qÞ, where T denotes the temperature and S the specific entropy, it turns out that
the previous internal energy Eq. (4) is equivalent to the conservation of entropy. We emphasize that this conclusion is valid
only for smooth flows. The case of non-smooth flows, such as shock waves, is taken into account requiring that the second
law of thermodynamics must be satisfied. To this end, we write the internal energy equation in the following non-conser-
vative form:
q
d
dt

eþ Pq
d
dt

1
q

� �
¼ qT

d
dt

S P 0: ð5Þ
This thermodynamic framework will be used in what follows to derive the staggered discretization.
Let us remark that Eq. (2a) is also named the Geometric Conservation Law (GCL) and is strongly linked to the motion of

the fluid which is ruled by the trajectory equation
dX
dt
¼ U XðtÞ; tð Þ; Xð0Þ ¼ x: ð6Þ
Here, X(t), denotes the position vector of a fluid particle at time t > 0, whose initial location was x.
Here, we are deriving a discretization that is compatible with the GCL. By GCL compatibility, we mean that we are deriv-

ing a discrete divergence operator for the volume Eq. (2a) by requiring consistency of the divergence of the velocity field with
the time rate of change of volume of the cell (cf. [92]). To highlight this particularly important point, it is instructive to re-
write Eq. (2a) in finite-volume form. To this end, let us consider a finite Lagrangian volume, Vc(t), characterized by a constant
mass, mc, and a mass density defined as qcðtÞ ¼ mc

VcðtÞ. With this notation, one might substitute the following for Eq. (2a):
d
dt

Vc � Vc

Z
@Vc ðtÞ

U � N dS ¼ 0; ð7aÞ

d
dt

mc ¼ 0; ð7bÞ

qcðtÞ ¼
mc

VcðtÞ
; ð7cÞ
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Eq. (7a) states that the time rate of change of the cell volume must be equal to the volume swept by the element boundary
during its displacement with the flow velocity. One has to discretize it with great care so that the discrete GCL over a cell
remains compatible with the discrete motion of the cell vertices. Namely, the time rate of change of a Lagrangian volume
has to be computed coherently with the node motion. It means that change of volume computed from Eq. (7a) has to be
the same as one corresponding to computing volume at new time step from geometry of the cell, that is, in discrete case
from positions of vertices of the cell, which are advance in time according to trajectory Eq. (6).

Another way of expressing CGL is to require that discrete divergence operator DIV is defined consistently with the follow-
ing formula
divU ¼ 1
V

dV
dt

ð8Þ
where V is volume of fluid parcel. In discrete case fluid parcel is represented by cell Vc and its volume depend on time not
directly but by means of coordinates of vertices dependence on time. That is,
DIV Uð Þc ¼
1
Vc

dVc

dt
¼ 1

Vc

X
p

dVc

dxp

dxp

dt
þ dVc

dyp

dyp

dt

 !
¼ 1

Vc

X
p

dVc

dxp
up þ

dVc

dyp
vp

 !
; ð9Þ
where sum is taken over all vertices p of cell c, and xp, yp, up, vp, coordinates and velocities of vertices correspondingly. One
can find details in (cf. [92]). The essence of GCL is do discretize Eq. (7a) consistently with Eq. (9). In application to cell-cen-
tered discretization process of deriving GCL compatible discretization is described in detail in [88]. This is the cornerstone of
any Lagrangian discretization.

6.2. Compatible staggered scheme

The staggered discretization used in this paper is based on a staggered placement of the variables. Namely, the kine-
matic variables, including the velocity, are located at the nodes while the thermodynamic variables (density, pressure and
specific internal energy) are defined at the cell center. We note that this placement of the variables allows the staggered
scheme to fulfill naturally the GCL compatibility requirement and at the same time to construct a discrete divergence
operator.

The discretizations of momentum and specific internal energy are derived from each other by use of important concept of
compatible discretization [28], which is based on detailed balance between kinetic and internal energy and uses subzonal
masses and subzonal forces. This compatible hydrodynamics algorithm is thus designed to conserve momentum and total
energy exactly in discrete form. The dissipation of kinetic energy into internal energy through shock waves is ensured by
means of an artificial viscosity which can be edge based [33] or tensorial [28]. This mechanism leads to a dissipation that
is coherent with the second law of thermodynamics. The subzonal pressure method is also used for the control of hour-
glass-type motion [32]. Finally, the time integration method is a predictor–corrector technique which is detailed in [30].
The extension of this compatible Lagrangian hydrodynamics algorithm to unstructured grids, where each zone is a polygon
with an arbitrary number of sides, has been presented in [29].

6.3. Cell-centered scheme

This discretization employs a centered placement of the variables. That is density, pressure, momentum and total energy
are piecewise constant over each cell. The interface fluxes and the nodal velocity are computed by means of a node-centered
approximate Riemann solver. The resulting nodal velocity allows to calculate zone volumes in a consistent manner with their
geometric definition. In this way, the GCL compatibility requirement is ensured [40,88]. The main new feature of the algo-
rithm used here, is the introduction of four pressures on each edge, two for each node on each side of the edge [88]. This
extra degree of freedom allows to construct a nodal solver which fulfills two properties. First, momentum and total energy
are rigorously conserved at the discrete level. Second, a semi-discrete entropy inequality is provided, which shows that ki-
netic energy is correctly dissipated into internal energy through shock wave. The node based feature of this scheme makes it
naturally unstructured and thus able to deal with polygonal meshes. The high-order extension is derived using a one-step
time integrator, based on the Generalized Riemann Problem (GRP) methodology [87]. It consists in solving the high-order
Riemann problem with piecewise linear polynomial, whereby the approximate solution is given as a time power series
expansion right at the interface. The acoustic version of the GRP method has been implemented and extended to the frame-
work of the two-dimensional node-centered Riemann solver. In this way, we get an acoustic node-centered Generalized Rie-
mann solver which provides the time derivatives of the nodal velocity and pressures, needed for the high-order flux
computation.

6.4. Time step control

The Lagrangian discretizations require a time step control to ensure the stability of the schemes. Let Dtn denotes the cur-
rent time step, the next time step, Dtn + 1, for both discretizations is evaluated using several criteria. The first one is a standard
CFL criterion based on the characteristic time
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Dtcfl ¼ Ccfl min
c

lnc
aH;n

c

;

where Ccfl is a strictly positive coefficient, ln
c a characteristic zone length defined as the minimum of edge lengths in the cell.

The generalized sound speed, aH;n
c , writes aH;n

c ¼
ffiffiffiffiffiffiffiffiffiffi
cc PH;n

c
qn

c

r
, where cc is the ratio of specific heats, qn

c the mean zone density. The

generalized pressure, PH;n
c , writes PH;n

c ¼ Pn
c for the cell-centered scheme and PH;n

c ¼ Pn
c þ Qn

c for the staggered scheme, where
Pn

c denotes the mean zone pressure and Q n
c the scalar part of the artificial viscosity tensors in a zone.

The second criterion ensures that a zone does not change its volume by too large an amount in a time step. To this end, we
define the characteristic time
Dtvol ¼ Cvol min
c

1
j r � Uð Þnc j

;

where Cvol is a user defined coefficient and ðr � UÞnc stands for the discrete divergence operator related to cell c.
Finally, the new value of the time step reads
Dtnþ1 ¼min Dtcfl;Dtvol;CmulDtnð Þ:
Here, Cmul is a multiplicative coefficient which does not allow time step to increase too fast. For numerical applications, we
set (Ccfl,Cvol,Cmul) = (0.25, 0.1, 1.05). Note that for the staggered discretization the new value of the time step is always chosen
on the predictor step.

When we have to deal with polygonal cells containing small edges we need to supplement the previous time step control
with a criterion that prevents the cells from being non-convex or tangling during the Lagrangian phase. To this end, let us
consider a polygonal cell Xc and one of its vertex indexed by p. We also consider the previous and the next point of p in the
counter-clockwise ordered list of points of Xc. We label them respectively p� and p+. The triangle formed with these points is
denoted Tpc, its area writes
jTpcj ¼
1
2

XpXpþ � XpXp�
� �

� ez;
where ez supplements the orthonormal basis (ex, ey), i.e. ez = ex � ey. It is well known that the cell Xc is convex provided that
the area of Tpc is strictly positive for each point p of the cell. We will use this sufficient condition to predict an admissible time
step. During the Lagrangian phase, the position vector of the points is updated according to
Xnþ1
p ¼ Xn

p þ DtUnþ1
2

p ;
where Unþ1
2

p is the time-centered point velocity and Dt is the current time step. It turns out that the area of Tnþ1
pc is a quadratic

function of Dt. Thus, for each triangle Tpc we compute the strictly positive time step so that Tnþ1
pc > 0. Next, we compute its

minimum over the cell and the global minimum over the whole polygonal mesh to get the characteristic time Dtpol. Finally,
we modify the time step control as follows to take into account this new criterion
Dtnþ1 ¼min Dtcfl;Dtvol;CpolDtpol;CmulDtn
� �

;

where the safety coefficient is set to Cpol = 0.25.
6.5. Multi-species thermodynamic closure

In this paragraph, we describe the multi-species thermodynamic closure model that we are using to obtain an
effective equation of state for our multi-component fluid mixture. Every components are completely miscible from
a continuum view point. Let us denote by the subscript f the fth component of the mixture. We suppose that each
fluid follows a gamma gas law, namely its pressure, Pf, and specific internal energy, ef, write as function of temper-
ature Tf
Pf ¼
R
Mf

qf Tf ;

ef ¼
R

ðcf � 1ÞMf
Tf ;
where R denotes the perfect gas constant, cf the polytropic index of fluid f and Mf its molar mass. Each fluid is
characterized by its mass fraction Cf, which represents the ratio between the mass of the fluid f and the total mass
of the mixture. The mixture EOS closure problem requires to find the equilibrium mixture pressure, P, and temper-
ature, T, such that
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1
q
¼
XF

f¼1

Cf

qf
; volume conservation;

e ¼
XF

f¼1

Cf ef ; energy conservation;

Pf ¼ P; 8f ¼ 1 � � � F; pressure equilibrium;

Tf ¼ T; 8f ¼ 1 � � � F; temperature equilibrium;
where F denotes the total number of fluids, q, e are the density and the specific internal energy of the mixture and qf, ef the
density and specific internal energy of fluid f. The solution of the previous set of equations allows to write the following
effective mixture gamma gas law:
P ¼ ðc� 1Þqe;

where c is the effective polytropic index of the mixture, which writes
c ¼ 1þ
PF

f¼1
Cf

MfPF
f¼1

Cf

ðcf�1ÞMf

: ð10Þ
During the Lagrangian phase, the concentration of each fluid evolves following the trivial equation d
dt Cf ¼ 0.

7. Rezone phase

7.1. Generators displacement

Let Xn
c and Xnþ1

c denotes the Lagrangian cells at time tn and tn+1 = tn + Dt where Dt is the current time step. The position
vector of the generator of the Lagrangian cell Xn

c is denoted Gn
c . In this section we define the new position of the generator at

time tn + 1. First, we compute a Lagrangian-like displacement of the generator by setting
Gnþ1;lag
c ¼ Gn

c þ DtUc; ð11Þ
where Uc is the ‘‘Lagrangian” velocity of the generator within the cell. This velocity is computed so that the generator re-
mains located in the new Lagrangian cell. To this end we define this velocity to be the average of the velocities of the points
of the cell, namely
Uc ¼
1
jPðcÞj

X
p2PðcÞ

Unþ1
2

p :
Here, PðcÞ denotes the set of vertices of the Lagrangian cell Xc and Unþ1
2

p is the time-centered velocity of point p between
times tn and tn + 1.

Let us introduce, Xnþ1
c , the centroid of the Lagrangian cell Xnþ1

c , according to
Xnþ1
c ¼ 1

jXnþ1
c j

Z
Xnþ1

c

X dV ;
where jXnþ1
c j denotes the volume of the cell Xnþ1

c . The updated position of the generator is defined by mean of a convex com-
bination between the new Lagrangian-like position, Gnþ1;lag

c and the centroid Xnþ1
c of the Lagrangian cell at time tn + 1
Gnþ1
c ¼ Gnþ1;lag

c þxc Xnþ1
c � Gnþ1;lag

c

� �
; ð12Þ
where xc 2 [0;1] is a parameter that remains to determine. With this convex combination, the updated generator lies in be-
tween its Lagrangian position at time tn + 1 and the centroid of the Lagrangian cell Xnþ1

c . We note that for xc = 0 we get a
Lagrangian-like motion of the generator whereas for xc = 1 we obtain a centroidal-like motion, which tends to produce a
smoothed mesh. This latter case is equivalent to perform one Lloyd iteration [43,42]. It remains to determine xc.

7.2. Computation of the x parameter

The first role of the x parameter is to construct a convex combination between the Lagrangian grid and the centroidal
Voronoi grid, that is why we want it to be in [0,1]. Moreover, we want it to vanish smoothly for rigid rotation and translation
and recover the pure Lagrangian motion in these cases. In a nutshell, we want it to be Galilean invariant. To construct a
parameter that fulfills the previous requirements we utilize mechanical objects that characterize properly the mechanical
features of the flow.

A good candidate for this task is the right Cauchy–Green tensor, [22], evaluated between two consecutive Lagrangian time
steps. It can be regarded as quantifying the ratio of squared lengths of infinitesimal fibers between the initial and the initial
configurations. To be more precise, let dX1 = L1N1 denotes a material fiber of length L1 in the initial configuration, where N1 is
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a unit vector. This elementary fiber is stretched and rotated to dX2 = L2N2, in the final configuration, where N2 is a unit vector.
Introducing F as the deformation gradient between the initial and the final configuration, one has dX2 = FdX1. Therefore, one
can deduce that the length of the fiber in the final configuration is given by
Fig. 7.
perform
L2
2 ¼ dX2 � dX2 ¼ L1FN1 � L1FN1 ¼ L2

1F
tFN1 � N1: ð13Þ
Hence, the ration of the squared lengths writes as
L2

L1

� �2

¼ CN1 � N1;
where C = FtF is the Cauchy–Green tensor, which is symmetric definite positive and fulfills the requirements of Galilean
invariance. Here, the subscripts 1 and 2 refer to the initial and final configurations corresponding to the beginning and
the end of the Lagrangian time step.

Returning to our standard notations, we construct xc using invariants of the right Cauchy–Green strain tensor associated
with deformation of the Lagrangian cell Xc between times tn and tn + 1.

Let us recall some general notions of continuum mechanics to define this tensor. First, we define the deformation gradient
tensor F
F ¼ @Xnþ1

@Xn ;
where Xn+1 = (Xn + 1, Yn + 1)t denotes the vector position of a point at time tn + 1 that was located at position Xn = (Xn, Yn)t at time
tn. The deformation gradient tensor is nothing but the Jacobian matrix of the map that connects the Lagrangian configura-
tions of the flow at time tn and tn + 1, in the two-dimensional case its components write
F ¼
@Xnþ1

@Xn
@Xnþ1

@Yn

@Ynþ1

@Xn
@Ynþ1

@Yn
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The right Cauchy–Green strain tensor, C, is obtained by right-multiplying F by its transpose, i.e.
Fig. 9.
functio
C ¼ FtF:
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In our case, C is a 2 � 2 symmetric positive definite tensor. We notice that this tensor reduces to the unitary tensor in
case of uniform translation or rotation. It admits two positive eigenvalues, which are denoted k1 and k2 with the conven-
tion k1 6 k2. These eigenvalues can be viewed as the rates of expansion in a given direction during the transformation. To
determine xc, we first construct the cell-averaged value of the deformation gradient tensor, Fc, and then the cell-aver-
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Fig. 10. Sedov problem at time t = 1.0 for Lagrangian, ALE and ReALE strategies – Staggered ALE INC. code – Left column: Mesh. Right column: Density as a
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aged value of the Cauchy–Green tensor by setting Cc ¼ Ft
cFc. Noticing that the two rows of the F matrix correspond to the

gradient vectors of the X and Y coordinates, we can set Ft = [rnXn + 1, rnYn + 1], where for any functions
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Fig. 11. Sedov problem at time t = 1.0 for different generator displacement strategies – Cell-centered CHIC code – Left column: Mesh. Right column: Density
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w ¼ wðXnÞ;rnw ¼ ð @w@Xn ;
@w
@Yn Þt . With these notations, let us define the cell-averaged value of the gradient of the w function

over the Lagrangian cell Xn
c
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rnwð Þc ¼
1
jXn

c j

Z
Xn

c

rnwdV ¼ 1
jXn

c j

Z
@Xn

c

wNdS:
Here, we have used the Green formula and N is the unit outward normal to the boundary of the cell Xn
c referred as to @Xn

c .
Knowing that this cell is a polygon, we make use of the trapezoidal rule to obtain the following approximation for the pre-
vious integral
rnwð Þc ¼
1
jXn

c j
XjPðcÞj
p¼1

1
2

wn
p þ wn

pþ1

� �
Ln

p;pþ1N
n
p;pþ1; ð14Þ
where wn
p is the value of w evaluated at point Xn

p and Ln
p;pþ1N

n
p;pþ1 is the outward normal to the edge ½Xn

p;X
nþ1
p �. Applying (14) to

w = Xn + 1 and w = Yn + 1 we get a cell-averaged expression of the gradient tensor F and then deduce from it the cell-averaged
value of the right Cauchy–Green tensor Cc.

Knowing this symmetric positive definite tensor in each cell, we compute its real positive eigenvalues k1,c, k2,c. We finally
define the parameter xc as follows:
xc ¼
1� ac

1� amin
; ð15Þ
where ac ¼ k1;c
k2;c

and amin = mincac. We emphasize the fact that for uniform translation or rotation k1,c = k2,c = 1 and xc = 0,
therefore the motion of the generator is quasi Lagrangian and we fulfill the material frame indifference requirement. For
other cases, xc smoothly varies between 0 and 1. Note that more complex formulae for xc are also possible, however we
limit ourselves to the previous simple formula and postpone deeper investigations in this area for future papers.

In Section 9 we demonstrate sensitivity of choice of parameter xc on geometrical quality of the mesh and accuracy of
ReALE calculations on the example of Sedov problem. We also present color map for values of the xc for 2D Riemann prob-
lem, which demonstrate its ability to follow main features of the flow. These results justify the choice of xc described by
Eq. (15).
7.3. Cleaning

Once the new position of generators Gnþ1
c are computed one constructs the corresponding Voronoi mesh. This mesh needs

a last treatment as this Voronoi mesh may have arbitrary small faces (edges). Such faces can drastically and artificially re-
duce the time step, and, more important can lead to a lack of robustness. Consequently one defines a cutoff length Le

c ¼ eLc ,
where Lc is a characteristic length of the cell and e a small parameter. Any face f of cell c of length Lf smaller than the cutoff
length Le

c , is removed from the Voronoi mesh , which lead to corresponding change in the connectivity. More specifically the
vertices of such a face are merged (see Fig. 5 in Section 4); one vertex is then discarded from the vertex list and the connec-

tivity structure. In our calculations we have chosen e = 0.01 and Lc ¼
P

f2FðcÞ
Lf

jFðcÞj being the average of face lengths of cell c with
FðcÞ is the set of edges of cell c.

This ‘‘cleaned” polygonal mesh is no more of Voronoi kind but is well suited from a computational point of view.
In current code results of cleaning procedure depend on order in which cells are processed, that is, cleaning is order

dependent. For unstable flows like Rayleigh–Taylor problem, it can lead to symmetry breaking, as one can see in
Section 9.4.2.

One clearly can make cleaning procedure more symmetric and order ‘‘independent”. For example, we can use Jacobi like
cleaning procedure, when on the first pass one marks edges to be eliminated based on the minimal cut off length from two
neighboring cells and then, on second pass, eliminates them all at the same time and makes corresponding changes in data
structures.

One need to recognize that there is always be potential to developing non-symmetry in unstable flows like Rayleigh–
Taylor example because of round off error. It can happen even without any cleaning.
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Fig. 13. Triple point problem.
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8. Remap phase

The remapping phase consists of a conservative interpolation of physical variables from the Lagrangian polygonal mesh at
the end of the Lagrangian step onto the new polygonal mesh after the rezone step. The remapping phase must provide valid
physical variables to the Lagrangian scheme, moreover conservation of mass, momentum and total energy must be ensured,
and, second-order accuracy conservative interpolation must be performed.
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Fig. 14. Triple point problem at time tfail for which Lagrangian scheme fails – Cell-centered CHIC code – Left column: Internal energy and mesh. Right
column: Cell color corresponds to the initial domain (X1,X2 and X3) – Top: Lagrangian method; Middle: ALE method; Bottom: ReALE method. (For
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As the old (Lagrangian) and new (rezoned) polygonal meshes may not have the same connectivity, the remapping phase
of our ReALE codes is based on exact intersection of a priori two different polygonal meshes.

Primary variables are cell-centered density, velocity and specific total energy for the cell-centered discretization whereas
they are subcell density, nodal velocity and cell-centered specific internal energy for staggered discretization. Conservative
quantities are cell-centered mass, momentum and total energy for the cell-centered approach whereas they are subcell mass,
momentum and total energy for the staggered discretization.

8.1. Cell-centered based remap

If the primary variables are located at the same position, as it is the case for the cell-centered Lagrangian scheme, then the
remapping phase is fairly simple [77,61,49]. The quantities on the old Lagrangian mesh are cell-centered density, velocity
and total energy that must be transfered on the rezoned mesh. First piecewise linear representations of cell-centered vari-
ables qc, qcUc, qcEc are constructed on the Lagrangian mesh. Then a slope limiting process [17] is performed to enforce phys-
ically justified bounds. Conservative quantities, namely mass, momentum and total energy, are obtained by integration of
these representations. New conservative quantities are calculated by integration over polygons of intersection of new (re-
zoned) and old (Lagrangian) meshes. Finally, primary variables are simply recovered by division by new volume eV c (for den-
sity) or new mass ~mc (for momentum and energy).

8.2. Subcell-centered based remap

Some difficulties arise when staggered location of variables is used, as for any staggered Lagrangian scheme. Conservative
quantities are therefore not located on the same ‘‘entity”; mass is located at subcells, momentum at points. As a consequence,
total energy is not properly defined at a given location. In [84] a gathering-remapping-scattering algorithm has been devel-
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Fig. 15. Triple point problem at final time to observe stagnation of ALE mesh – Cell-centered CHIC code – Left column: Internal energy and mesh. Right
column: Cell color corresponds to the initial domain (X1,X2 and X3) – Top: ALE method; Bottom: Cell-centered (CHIC-based) ReALE method. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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oped (see Fig. 7 for a sketch); the main idea being to gather any conservative variable at subcell level, remap on subcell base
similarly to the cell-centered remapper from the previous paragraph, and scatter back primary variables from subcells (den-
sity) to cell (internal energy) or node (velocity). More specifically this method consists in the following three stage algorithm:

� Gathering: Mass, momentum, internal and kinetic energies are defined on subcells from subcell density, nodal velocity
and cell-centered specific internal energy in such a way that conservation is preserved.

� Subcell remapping: Conservative remapping from Lagrangian mesh subcells onto rezoned mesh subcells.
� Scattering: Conservative recovery of primary variables (subcell density, nodal velocity, cell-centered internal energy)

on the rezoned mesh.

This remapping stage is followed by a repair technique to ensure physically justified bound preservation [77,112,85].
8.3. Remapping of concentrations

To use the multi-species EOS, we need to remap the concentrations of the F fluids from the Lagrangian grid onto the re-
zoned one. To this end, we first compute the mass of fluid f in the Lagrangian cell Xnþ1

c ;mf ;c ¼
R

Xnþ1
c

qC dV . We note that

mc ¼
PF

f¼1mf ;c since
PF

f¼1Cf ;c ¼ 1. Then, the mass of each fluid is interpolated conservatively onto the rezoned grid following
the methodology previously described for the cell-centered quantities. We denote its new value by ~mf ;c . At this point we no-

tice that ~mc –
PF

f¼1 ~mf ;c , this discrepancy comes from the fact that our second-order remapping does not preserve linearity

due to the slope limiting. Hence, we define the new concentrations eC f ;c ¼ ~mc
~mf ;c

and impose the renormalization eCf ;c  
eC f ;cPF

f¼1
eC f ;c

so that
PF

f¼1
eCf ;c ¼ 1. We point out that this renormalization does not affect the global mass conservation.
0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

0.5

1

1.5

2

2.5

3

Fig. 16. Triple point problem at several times for ReALE – Cell-centered CHIC results for internal energy and mesh –From top-left to bottom-right: times
t = 1, 3, 4.5, 5.
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9. Numerical tests

In this section we present the numerical results obtained by the cell-centered ReALE code based on CHIC ALE code [87],
and, the staggered ReALE code based on ALE INC(ubator) [82]. All calculations are performed in Cartesian geometry – (x,y).

The first test is the well-known Sedov test case in planar geometry, it is used as a sanity check as no physical vorticity is
expected to occur and therefore reconnection-based methods are not required. The second is a ‘‘triple point” problem. It in-
volves interaction of the shock with obstacle, which leads to vorticity formation. Most of the ReALE studies are performed
using this problem. Third problem, shock interaction with a helium bubbler, is run in order to show the predictive capabil-
ities of ReALE technique-we compare numerical results with experimental data. Finally, a Rayleigh–Taylor instability is run
in order to assess the feasibility of capturing physical instability in an almost Lagrangian fashion. For this problem we com-
pare our results with results obtained by the front tracking code (FronTier – [41,58,59]) and a an implicit large eddy simu-
lation (ILES) incompressible Eulerian code (RTI3D – [4]).

All these tests, besides the Sedov test, generate high vorticity which is a classical cause of failure for Lagrangian schemes.
For ALE codes with fixed connectivity it usually leads to a conflict between: a physics-based vortex-like motion with a ten-
dency to tangle the mesh and, a geometrical-based opposite motion enforced by the rezoning to avoid bad geometric quality
cells. Such a conflict leads to a stagnation of the mesh that reconnection is intended to cure.
9.1. Sedov problem

Let’s consider the Sedov blast wave problem in Cartesian coordinates. This problem models an intense explosion in a per-
fect gas; it is an example of a diverging shock wave.

The computational domain is X, a quarter of a disk of radius 1.2 centered at the origin.
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Fig. 17. Triple point problem at several times for ReALE – Cell-centered CHIC results – Cell color corresponds to the initial domain. From top-left to bottom-
right: times t = 1, 3, 4.5, 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The initial conditions are characterized by (q0,P0,U0) = (1,10�6,0) for a perfect gas with polytropic index set to c ¼ 7
5. We

model an initial delta-function energy source at the origin by prescribing internal energy in the cell adjacent to the origin
(see Fig. 8)
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Fig. 18.
eor ¼
E0

Vor
; ð16Þ
where Vor denotes the volume of the cell and E0 is the total amount of released energy. For E0 ¼ 0:244816, the front of a
diverging shock is located at the radius R = 1 at the time t = 1. The peak density reaches the value 6. Symmetry boundary
conditions are applied on the axis whereas zero velocity boundary condition is applied at radius 1.2.

The initial polygonal mesh is a Voronoi tessellation computed using 441 generators, see Fig. 8. The positions of generators
are arranged similarly to how it described in Section 4 for meshing bubble, Fig. 4.

To run this test we do not need ALE, and a fortiori ReALE, technique; pure Lagrangian schemes usually perform well. How-
ever, we will present the Lagrangian, ALE and ReALE results (both for the cell-centered and staggered code) for the sake of
comparison. Different generator motions are also compared.
9.1.1. Lagrangian, ALE and ReALE results
We present the meshes in Fig. 9 (resp. Fig. 10) panels (a)–(c)–(e) for the cell-centered CHIC-based methods (resp. for the

staggered ALE INC.-based methods). The density for these methods is presented as a function of the cell radius for all cells in
Figs. 9 and 10 panels (b), (d), (f); it is plotted against an exact solution (straight line). As known, Lagrangian schemes behave
properly for the Sedov test case as seen on Figs. 9 and 10 panel (a) and (b). The final Lagrangian mesh presents expanded cells
in the rarefaction wave and compressed ones after the shock wave. ALE techniques (panels (c) and (d)) can improve the
smoothness of the mesh; some numerical diffusion is added during the remapping phase as can be seen on panels (d) of
Figs. 9 and 10. ReALE technique used with deformation-tensor based generator motion (see panels (e) and (f)) is able to pro-
duce a smooth mesh and density profiles comparable with standard ALE.
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The CHIC-based methods give higher pick density value in comparison with ALE INC.-based methods because formally
Lagrangian phase in CHIC method is second-order accurate and Lagrangian phase in ALE INC. method is first-order accurate.
Small differences in ALE results (panels (c) and (d)) can be attributed to slightly different rezone strategy.

9.1.2. Generator displacement
The same problem is run with the cell-centered CHIC-based ReALE code and staggered ALE INC.-based ReALE code with

three different generator the quasi-Lagrangian one (xc = 0), the quasi-centroidal one (xc = 1) and the motion based on the
deformation tensor (xc = f(k1,k2)).

The results for CHIC-based ReALE code presented in Fig. 11. As expected the quasi-Lagrangian generator motion leads to
non-smooth mesh which, however, adapted quite well to the flow. One can mention that symmetry is not well preserved,
which in particular can be attributed to non-smoothness of the mesh (Fig. 11(a) and (b)). On the other hand, the quasi-cent-
roidal generator motion (Fig. 11(c) and (d)), leads to a smooth mesh that is not adapted anymore to the fluid flow; density is
over-smoothed due to excessive remapping. Finally the motion based on the deformation tensor described in Section 7
(Fig. 11(e) and (f)), produces a locally smooth mesh and keeps finer cell region after the shock wave passes through, and coar-
ser cell region after expansion.

In Fig. 12 we present the same results for the staggered ALE INC.-based ReALE, code and the same conclusions apply.
Results presented here justify rezone strategy based on the analysis of the deformation tensor described in Section 7 and

the rest of the paper in all numerical ReALE simulations we use only this rezone strategy.
The Sedov test case is not extremely demanding neither for Lagrangian nor ALE scheme. Contrarily, the next test cases

involve generation of the vorticity and are intended to demonstrate the capabilities of the new ReALE method.

9.2. Triple point problem – two material Riemann problem

This problem is a three state two material 2D Riemann problem in a rectangular vessel. The triple point problem simu-
lation domain is X = [0;7] � [0;3] as described in Fig. 13. X is split into three regions filled with two perfect gases leading to
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Fig. 19. Triple point problem at several times for ReALE – Staggered-ALE INC. results – internal energy and mesh. From top-left to bottom-right: times t = 1,
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a two material problem. The high pressure high density state is X1 = [0;1] � [0;3], the low pressure high density state is
X2 = [1;7] � [0;1.5] and the low pressure low density is X3 = [1;7] � [1.5;3]. The initial densities are q1 = q3 = 1,
q2 = 0.125, the initial pressures are p1 = 1, p3 = p2 = 0.1, the initial velocity is zero everywhere. The perfect equation of state
is used with c1 = c3 = 1.5, c2 = 1.4.

Due to the discrepancy in density, two shocks in domains X2 and X3 propagate with different speeds. This creates a shear
along initial contact discontinuity and a vorticity formation. We note that the Lagrangian computation fails before vortex is
developed due to the mesh tangling. Capturing the vorticity is the difficult part of such simulation when standard ALE meth-
od is used.

Initially 72 � 32 generators are positioned on a perfect quadrangular grid leading to 2304 degenerate Voronoi cells. The
generators are located in such a way that, initially there is no mixed cells and the triple point coincides with a vertex of the
mesh. This mesh is intentionally coarse, such that differences between the methods can be visually observed. The boundary
conditions are reflective ones.

The fluid flow after the breakup of the initial discontinuity is characterized by a left facing rarefaction wave and
two right facing shock waves separated by an ‘‘horizontal” contact discontinuity. These two shocks travels with dif-
ferent speeds since the densities of the materials are different. This leads to a strong vortex formation. The final time
is t = 5.

9.2.1. Results obtained by cell-centered ReALE method
Lagrangian scheme failure. Time tfail ’ 1.67 corresponds, more or less, to the time after which any Lagrangian scheme

inexorably fails. In Fig. 14 we present the Lagrangian (top panels), ALE (middle panels) and ReALE (bottom panels) results
for the cell-centered CHIC code for this time moment. The internal energy and meshes are displayed in the left panel (top
part is mesh and internal energy, bottom part is color map for internal energy). In the right panels of Fig. 14 we present
the mesh for each method such that the cells have been colored according to in which domain (X1 in dark-red, X2 in or-
ange, X3 in white) they were initially located. The Lagrangian scheme produces results that follow the motion of the fluid
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Fig. 20. Triple point problem at several times for ReALE – Staggered ALE INC. results – Cell color corresponds to the initial domain. From top-left to bottom-
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4750 R. Loubère et al. / Journal of Computational Physics 229 (2010) 4724–4761
but the scheme fails because of mesh tangling in vicinity of the vortex. The ALE method does not allow the mesh to follow
the fluid motion and the mesh does not tangle. The ReALE seems to allow the cells to follow the vortex-shaped fluid mo-
tion, and up to this moment color map related to the initial location for Lagrangian and ReALE methods are very close,
Fig. 14. This is indication that our rezone strategy is able to keep ‘‘centers” of the cells very close to its Lagrangian
positions.

It is important to note that due to our choice of parameter xc, participating in movement of generators in ReALE method,
meshes in front of shocks have not changed.

‘‘Stagnation” of the mesh in ALE method. ALE and ReALE perform up to the final time t = 5. In Fig. 15 we present results for
ALE and ReALE for final time-arrangements are the same as in Fig. 14. Results of the ALE calculation clearly show a mesh
‘‘stagnation” behavior as can be seen on the initial domain color map, whereas the ReALE allows the cells to be carried along
with the vortex.
y
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Fig. 22. Shock/Bubble interaction. A piston (right-boundary) moving to the left and compresses air initially at rest sending a shock wave that passes
through an helium bubble.
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referred to the web version of this article.)
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In ALE calculation (top panels of Fig. 15), the mesh is ‘‘freezes” near the vortex center and the computation continues in an
almost Eulerian fashion (as Lagrange + Remap because the rezone phase systematically backs up the Lagrangian tn + 1 mesh
onto the previous tn Lagrangian mesh).

In ReALE calculation (bottom panels of Fig. 15), mesh is not Lagrangian, but it preserves Lagrangian character of the flow,
because mesh follows the vortex as generators are carried within the fluid in an almost Lagrangian fashion (bottom-right
panel in Fig. 15).3 As a consequence ReALE has a better accuracy, which can be seen comparing internal energy color maps
for ALE and ReALE. In ReALE results one can see roll up formation and in ALE results it is not that pronounced. Let as note that
quantitative analysis of accuracy will be presented in the separate paper.

ReALE results. In Fig. 16 we present dynamics of the ReALE simulation by showing the mesh and the specific internal en-
ergy at different time moments t = 1 (beginning of vortex development), t = 3 (before the fastest shock reaches right wall),
t = 4.5 (after shock reflection), t = 5 (after reflected shock reaches contact discontinuity). The meshes with initial domain col-
oring are presented in Fig. 17.

Features of the flow and xc factor. In Fig. 18 are presented the xc factors for different snapshots of the simulation. The xc

factor shows the deformation encountered by the mesh between two last time steps. Comparison of these plots with struc-
ture of the main waves presented in Fig. 16 clearly demonstrate that xc dynamically detect main features of the flow. It is
important to note that xc is very small in high vorticity regions (as it intended to be) and therefore movement of the gen-
erators in these areas is almost Lagrangian.
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9.2.2. Comparison of cell-centered and staggered ReALE methods
In this section we give brief comparison of ReALE calculations based on cell-centered CHIC method with results obtained

by ReALE method based on staggered ALE INC. method.
In Fig. 19 we present internal energy and mesh plots for ALE INC.-based ReALE method for different time moments. It has

to be compared with CHIC-based ReALE results presented in Fig. 16. In Fig. 20 we present coloring by initial region for stag-
gered method.

Finally, we present side by side comparison of two methods in Fig. 21.
One can see only very small differences between cell-centered and staggered ReALE methods.
Results presented in this section and results for Sedov problem allows us to conclude that ReALE approach can be used for

either cell-centered or staggered discretization basic Lagrangian scheme.
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.2 0.21 0.22 0.23 0.24 0.25 0.26
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.2 0.21 0.22 0.23 0.24 0.25 0.26

Fig. 25. Shock/Bubble interaction problem at tend = 1342.153 � 10�6— Left: Zoom of color map for Ic = Ch,c(1 � Ch,c): grayscale goes from Ic = 0 (white) to
Ic = 1/4 (black); Middle: Zoom of color map for density: colorscale goes from qc = 0.23 (blue) to qc = 1.42 (red); – Right: Schlieren image from experimental
data in [62]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
−0.04

−0.02

0

0.02

0.04

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
−0.04
−0.03
−0.02
−0.01

0
0.01
0.02
0.03
0.04

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
−0.04

−0.02

0

0.02

0.04

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
−0.04
−0.03
−0.02
−0.01

0
0.01
0.02
0.03
0.04

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
−0.04

−0.02

0

0.02

0.04

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
−0.04
−0.03
−0.02
−0.01

0
0.01
0.02
0.03
0.04

Fig. 24. Shock/Bubble interaction problem at t = 1005.15 � 10�6 (top panel), t = 1101.44 � 10�6 (middle panel) and t = tend = 1342.153 � 10�6 (bottom
panel) – Left column: Density and mesh. Right column: Coloring by the initial domains (white: air, red: bubble). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)



0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 26. Rayleigh–Taylor instability – ReALE results at times t = 0, 3, 5, 7, 9 (from (a) to (e)) – Mesh and density – Color scale is from blue (q = 1) to red
(q = 2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

R. Loubère et al. / Journal of Computational Physics 229 (2010) 4724–4761 4753
Detailed comparison of cell-centered and staggered discretizations is beyond of the goal. Actually it will require full new
paper. At this moment it will be premature to recommend one discretization over the other. Our goal in this paper is to dem-
onstrate that ReALE methodology can be used for both types of discretizations. For the sake of space, in the reminder of the
paper we will present only results for cell-centered discretization.

9.3. Bubble shock interaction

The computational domain is X = [0;0.65] � [0;0.178]. The bubble is a disk defined by the coordinates of its center
(xc,yc) = (0.320,0) and its radius Rb = 0.025 (see Fig. 22). We prescribe reflective boundary conditions at each boundary except
the right-boundary (initially at x = 0.65); right-boundary is the piston which moves inward with velocity Vw = (uw,0). The inci-
dent shock wave is defined by its Mach number, Ms = 1.22. The bubble and the air are initially at rest. The initial data for Helium
bubble is (q1,P1) = (0.182,105), its molar mass isM1 ¼ 5:269� 10�3 and its polytropic index is c1 = 1.648. The initial data for air
is (q2,P2) = (1,105), its molar mass isM2 ¼ 28:963� 10�3 and its polytropic index is c2 = 1.4. It is two material problem. Specific
internal energies are e1 = 8.4792 � 105 and e2 = 2.5 � 105. Using the Rankine–Hugoniot relations, we find that the x-velocity of
the piston is given by uw = �124.824. The x-component of the incident shock velocity is Dc = �456.482. The incident shock wave
hits the bubble at time ti = 668.153 � 10�6. The stopping time for our computation is tend = ti + 674 � 10�6 = 1342.153 � 10�6. It
corresponds to the time for which experimental Schlieren graph (results from [62]) is displayed in [103] (Fig. 9(i)). Initial mesh
is constructed with a set of 19,061 generators and designed to produce a Voronoi mesh that has a mesh lines which matches the
bubble boundary (see bottom left panel in Fig. 23, where a zoom of the initial mesh around the bubble is presented). The
description of initial mesh generation given in Section 4. Initial density is presented in top panel in Fig. 23. The middle panel
presents the final density which corresponds to the deformed bubble. The bottom panels of this figure show a zoom on the ini-
tial and final bubble location and the underlying initial and final meshes.

In Fig. 24 (left column) we present density at several intermediate time moments for a zoomed region around the bubble
(t = 1005.15 � 10�6 (top panel), t = 1101.44 � 10�6 (middle panel) and t = tend = 1342.153 � 10�6 (bottom panel)). Color
maps related to coloring by initial region are presented in right column of Fig. 24 (white color for the cells originally in
the air; red color for the cells originally in the bubble). One can conclude that Lagrangian motion is well preserved by ReALE
method.

In Fig. 25 (left panel) we present the cell-centered value Ic = Ch,c (1 � Ch,c) at final time tend = 1342.153 � 10�6, where Ch,c is
the concentration of helium in cell c. Originally Ch,c is equal to 1 if generator c belongs to helium bubble and 0
otherwise. Therefore, Ic is initially 0 for all cell. As the simulation advances, mixed cells are created close to the interface
between the different materials, leading to values Ic – 0. The Ic map show how much interface is diffused; grayscale
spreads from Ic = 0 (white) to Ic = 1/4 (black). As seen in left panel in Fig. 25 interface region is spread only over one or two cells.

Experimental results for this test case can be found in [62] and high-resolution numerical experiments performed with an
AMR Eulerian code in [103]. In Fig. 25 (middle and right panels) a comparison of the Schlieren image of the experimental
results from [62] (right panel) with our numerical results (middle panel) at tend = 1342.153 � 10�6.
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Presented numerical results show that qualitatively ReALE technique can reproduce experimental results (Fig. 25). We are
planning to perform quantitative comparison with available experimental results as well as with high-resolution numerical
results presented in [103] in special paper.
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Fig. 27. Rayleigh–Taylor instability – Top panel: ReALE results. Middle panel: ALE results. Bottom panel: RTI3D Eulerian code results – Left to Right: Density
at t = 7, 8, 9, Vorticity at t = 7, 8, 9. Color scale is from blue (minimal negative vorticity) to red (maximal positive vorticity). White color corresponds to zero
vorticity. Frontier interface is the thick black line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)



R. Loubère et al. / Journal of Computational Physics 229 (2010) 4724–4761 4755
9.4. Rayleigh–Taylor instability

Our final test in this paper is Rayleigh–Taylor instability problem. It consists of two ideal gases with densities qtop = 2 and
qbottom = 1; in both cases the adiabatic constant c = 1.4. Initially, the heavier gas is above the lighter gas in rectangular vessel
X = [0:1/3] � [0:1], with gravitational field directed vertically downward and with magnitude g = 0.1. The interface has been
deliberately perturbed as described by formula yðxÞ ¼ 1

2þ 1
100 cosð6pxÞ. Initially both gases are at the rest; the pressure dis-

tribution is approximately hydrostatic and is defined in the lighter gas
pbottomðx; yÞ ¼ 1þ 1
2
qtopg þ qbottomg

1
2
� y

� �
;

and in the heavier gas:
ptopðx; yÞ ¼ 1þ qtopgð1� yÞ:
It is well known that this configuration is unstable and as time progresses, the heavier gas will sink and the lighter gas
will rise through the formation of bubbles and spikes. This problem does not involve any shock wave, but the vorticity is so
high that pure Lagrangian schemes eventually fail.
9.4.1. Initial phase of instability
The ReALE simulation starts with a Voronoi cleaned mesh obtained via 24 � 72 generators (24 in x-direction, 72 in y, see

Fig. 26(a)). These are initially set so that the interface y(x) is well approximated by edges of cells (see Fig. 26(a)).
In Fig. 26 we present the density and mesh for several time moments: t = 0, 3, 5, 8, 9.
As a matter of comparison and verification we use results obtained by others methods:

� FronTier (front tracking) code [41,58,59] is used to get a reference solution for the interface between the two fluids. The
results of this code are used by the courtesy of J. Grove of the Los Alamos National Laboratory. FronTier is run with much
more finer resolution (106 � 320 cells). This interface is plotted with a black thick lines in Fig. 27.
� RTI3D code (an implicit large eddy simulation (ILES) incompressible Eulerian code based on control volume approach,

using a second-order Van-Leer method for volume fraction and momentum advection, see [4]). It is used with a grid res-
olution of 24 � 74 fixed cells. This Eulerian code provides a qualitative spatial and temporal behavior of vorticity. The
results of this code are used by the courtesy of M.J. Andrews of the Los Alamos National Laboratory.
� Finally the CHIC-based ALE code without reconnection is used with an initial logically rectangular grid of 24 � 72.
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Fig. 28. Time evolution of the mean vorticity for the Rayleigh–Taylor instability – ReALE, ALE and RTI3D results are displayed.
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In Fig. 27 we present the density (t = 7, 8, 9) and the vorticity (t = 7, 8, 9) for the ReALE, ALE codes (top and middle panels)
and the RTI3D code (bottom panel). The FronTier interface is plotted as a thick black line on the top of each graph. The color
scale for density is the same for all calculations, it is from 1 to 2. The general shape is resolved reasonably well by all three
methods The tip of the interface is better resolved by ReALE method, Fig. 27 – left panels.

In the right panels in Fig. 27 we present color maps for vorticity, curlh
c u which is finite difference approximation of curlu

in the cell Xc based on Green formula. For vorticity we have following ranges. For time t = 7 – ReALE:�3.53/3.55; ALE:�3.04/
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Fig. 29. Rayleigh–Taylor instability – ReALE with 66 � 200 generators at t = 8, 9, 10, 11, 12, 13, 14, 15 (from top-left to bottom-right) – Density.
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3.04; RTI3D: �5.00/5.00. For time t = 8 – ReALE: �3.72/3.84; ALE: �3.68/3.68; RTI3D: �4.95/4.95. For time t = 9 – ReALE:
�3.81/3.89; ALE: �4.52/4.52; RTI3D: �5.61/5.61.

We think that because RTI3D is incompressible code its vorticity color map is more sharp. ReALE clearly gives results clo-
ser to RTI3D and much sharper than ALE results. The ReALE results seem to better match spatial distribution of the vorticity,
which matches interface shape. We wish to point that with this low resolution the ALE simulation code produces acceptable
results. However, if a finer resolution is to be used, the mesh becomes very pinched and stretched so that numerical oscil-
lations are generated (see Fig. 1 from the motivation section as example). As a consequence vorticity and, in general, most
physical variables are contaminated leading to stability issues. In ReALE due to reconnection mesh follows the fluid, which
allows to obtain more meaningful results (see Section 9.4.2 for high-resolution ReALE results).

Finally in Fig. 28 we show the mean vorticity, as a function of time for all three methods ReALE, ALE and RTI3D. Discrete
mean vorticity is defined as follows:
Fig. 30.
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We observe that the ReALE suppresses vorticity less than ALE does. Qualitatively time evolution of mean vorticity is very
similar for all three methods.

9.4.2. ReALE simulation of the later stages of the Rayleigh–Taylor instability
In this section we present high-resolution (66 � 200 generators are used leading to 13,200 cells) results for later stages of

Rayleigh–Taylor instability. We perform our calculations up to time t = 15 when the heavy fluid has reached the bottom of
the vessel and lighter fluid almost reached top of the vessel. In Fig. 29 we present color maps of the density at time moments
t = 8, 9, 10, 11, 12, 13, 14, 15. In the last three figures one can clearly see violation of symmetry with respect to central ver-
tical line. This is because this flow is very unstable and also because cleaning procedure in our rezone strategy is non-sym-
metric and depends on cell ordering.

Finally, in Fig. 30, we present density, vorticity and cells colored by initial domain at time t = 15. Right panel in Fig. 30 also
shows the mesh.

Results presented in this section shows that ReALE method can be used to run problems with strong shear deformation
without any special tuning of the parameters of the rezone strategy during the calculations. This is impossible for standard
ALE methods without mesh reconnection, where user intervention is usually required.
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the reader is referred to the web version of this article.).
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10. Conclusion and perspectives

We have presented a new reconnection-based ALE method. It includes three main elements.

� An explicit Lagrangian phase in which the solution on polygonal mesh is updated (without changing mesh connectivity).
� A rezoning phase in which a new grid is defined using specific movement of generators and formalism of Voronoi dia-

grams. It allows the change of mesh connectivity. In this work we keep number of cells unchanged, but number of vertices
of each cell can change due to connectivity evolution. Generator movement is chosen in such a way that cell movement is
close to Lagrangian and cell shape is close to regular hexagon.
� A remapping phase in which the Lagrangian solution is transferred (conservatively interpolated) from one polygonal

mesh to another.

On numerical examples we have demonstrated that our new method is more accurate and robust in comparison with
standard ALE methods with fixed connectivity.

We recognize that our new method requires more testing, which we are planning to do in the future. We also recognize
that the question of efficiency is very important. The particular implementation of our method used to obtain numerical re-
sults in this paper was not intended to be optimal and uses pieces which originally were not intended to work together. For
this reason we do not present any comparison of efficiency of ALE and ReALE. We will do it in the future paper.

Also we are planning to explore different mechanisms for mesh adaptation. In the framework of current ReALE method at
rezone stage we can develop new strategies for the choice of x parameter to reflect features of the flow. We also could move
vertices (as in standard ALE) after reconnection is done. We are planning to use mechanism of weighted Voronoi diagrams
[44] to introduce adaptivity by choosing weight proportional to some monitor function, which may be an error indicator or
may just reflect some physics which requires mesh refinement. The adaptation can be also achieved by adding or deleting
cells. In principle, ReALE-like methods are perfectly suited for this strategy (cf. [37]).

In next paper we are planning to present 2D results in r � z- axisymmetric geometry, which will allow to demonstrate
performance of our method for interesting and more realistic problems.

Also in future we will incorporate interface reconstruction methods such as volume of fluid (VOF) [105,106] and moment
of fluid (MOF) [52,2,75]. Moreover, we plan to incorporate more advanced closure models for mixed multi-material cells
[111]. This will increase accuracy of multi-material calculations.

There is no conceptual difficulties in extending ReALE methodology to 3D, however, first, we plan to improve efficiency of
our new method in 2D by making code parallel.

Finally, we are planning to incorporate material strength into ReALE code. We are considering approach described in the
recent paper [73].
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