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Abstract

The forthcoming laser installations related to inertial confinement fusion, Laser Mégajoule~LMJ! ~France! and
National Ignition Facility~NIF! ~USA!, require multidimensional numerical simulation tools for interpreting current
experimental data and to perform predictive modeling for future experiments. Simulations of macroscopic plasma
volumes of the order of 1 mm3 and laser exposure times of the order of hundreds of picoseconds are necessary. We
present recent developments in the PARAX code towards this goal. The laser field is treated in a standard paraxial
approximation in three dimensions. The plasma response is described by single-fluid, two-temperature, fully nonlinear
hydrodynamical equations in the plane transverse to the laser propagation axis. The code also accounts for the dominant
nonlocal transport terms in spectral form originating from a linearized solution to the Fokker–Planck equation. The
simulations of interest are hohlraum plasmas in the case of indirect drive or the plasma corona for direct drive. Recent
experimental results on plasma-induced smoothing of RPP laser beams are used to validate the code.

Keywords: ICF plasmas; Laser–plasma interaction; Nonlocal transport; Plasma-induced smoothing; Transport
modeling of plasmas

1. INTRODUCTION

A detailed understanding of the interaction of a laser beam
with a preformed underdense plasma is of outstanding inter-
est in the context of inertial confinement fusion~ICF!. Due
to the complexity of the interaction process, analytical mod-
els are only of limited use. Therefore numerical tools have to
be conceived to be able to model laser–plasma interaction
~LPI; Hüller et al., 1996; Elisseevet al., 1997; Bergeret al.,
1998; Myattet al., 2002; Pesmeet al., 2002!. Much work

has been done for conditions where the plasma response can
be taken to be linear and where the specific transport prop-
erties of laser-produced plasmas play less of a role~Hüller
et al., 1996; Elisseevet al., 1997!. The forthcoming large-
scale experiments for ICF in France~Laser Mégajoule~LMJ!,
Bordeaux! and the USA~National Ignition Facility~NIF!,
Livermore! require codes that are capable of simulating the
interaction process with a sufficient reliability in order to
have the possibility of doing predictive modeling of future
experiments. This necessitates that the relevant physics is
taken into account. Specifically, the following physical mod-
els must be included:

1. The nonlinear aspect of plasma response cannot be
neglected.Asimple ion-acoustic wave~IAW ! response
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for self-focusing and the three-wave model for stimu-
lated scattering are of limited use for realistic laser
parameters.

2. Backscattering processes—the stimulated Raman and
Brillouin scattering—have to be accounted for in a
self-consistent picture of the interaction process. They
are important for the energy balance in the target and
for the effect of fast electrons on the pellet compression.

3. Nonlocal aspect of the energy transport. For tempera-
tures of several hundreds electron volts to a few
kiloelectron volts and densities; 0.1nc, the transport
properties cannot be described by standard collisional
equations. The transport is neither purely collisional
~diffusive fluxes! nor collisionless~convective fluxes!.
The plasma is semicollisional, a state that establishes
itself whenever the characteristic mean-free path~mfp!
for electron–ion collisions is of the order of the gradi-
ent scale lengths of the thermodynamic variables~den-
sity, temperature, etc.!. The consequence is a strongly
modified pattern of temperature relaxation processes
in the plasma. The issue of this so-called nonlocal
transport~NLT ! has been studied extensively in the
literature ~Luciani et al., 1983; Bychenkovet al.,
1995, 1998; Brantovet al., 1996; Schurtzet al., 2000;
Alouani-Bibi and Matte, 2002!.

In addition, constraints on simulations due to large and
disparate time and space scales exist:

1. mixing of very disparate length scales. The plasma
response takes place at scales of the order or less than
the laser wavelengthl0 but the characteristic scale
length of evolution of laser and plasma parameters
amounts to several hundreds of laser wavelengths.

2. long time of simulations. The characteristic time of the
plasma response varies in a very wide range from a
few laser periods~in the case of Raman scattering! to
thousands of laser periods for slower processes that
involve the ion response.

3. large volume of simulations. The plasma volume to be
treated in simulations is of the order of 1 mm3. This is
necessary for adequate description of speckle statis-
tics, the backscattering processes, and the nonlinear
evolution of speckles.

Ideally one would like to model the interaction process
with first-principle tools such as Fokker–Planck or particle-
in-cell ~PIC! methods coupled to the full set of Maxwell’s
equations. Unfortunately these kind of calculations can at
present only be done for microscopic plasma volumes.
Hence a certain coarse graining is necessary and the most
promising approach at present would be to use some hydro-
dynamic model to describe the plasma.

As a whole, the contemporary LPI codes are complicated
and difficult to validate. The most promising way is to have
at hand simple and clean experiments that reduce the num-
ber of physical effects involved to a minimum and allow us

to deduce certain global characteristics~e.g., coherence
times! that can be compared to the calculations. Once these
codes have been validated in a convincing way, they can
then be used to perform predictive modeling of future
experiments~design experiments!. Nonlinear hydrodynamic
calculations are particularly time consuming and a full
parallelization of such codes is mandatory.

In the following, we present some physics packages that
have been recently developed in the code PARAX~Riazuelo
& Bonnaud, 2000; Walraet, 2003!. The most important
ingredients of this code and their implementation are briefly
described as well as its first successful validation.

2. PRESENTATION OF THE MODEL

2.1. Electromagnetic module

The code is conceived to describe a propagation of a single
laser beam in a weakly inhomogeneous, underdense plasma
and the effects of ion density perturbations. For that, it is not
necessary to solve the full set of Maxwell equations. The
wave equation for the electric field can be simplified by
assuming that the propagation takes place dominantly in one
given direction~here denoted as thez-direction!. One assumes
that the light that is linearly polarized in thex-direction can
be characterized by the frequencyv0 and the wave vector
k0 5 ~v00c!!12 neo0nc and that the amplitude is a slowly
varying function of space and time:

E 5 E~r , t !expSıE
0

z

k0~z' ! dz'D. ~1!

Then the laser amplitudeE satisfies the paraxial equation
~Feit & Fleck, 1988; Riazuelo & Bonnaud, 2000! that can be
written in the following form:
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Here,ne is the local plasma density andne0 the intial plasma
density,nc5 mee0v0

20e2 is the critical density.¹42 5 ]x
21 ]y

2

is the Laplacian in the plane transverse to the direction of
propagation, it describes the diffraction of the propagating
laser beam. The factor@1 1 ~1 1 ¹4

20k0
2!102#21 takes into

account deviations from the exact paraxial equation and
allows us to model light propagation within an opening
angle of the order of 308 around thez-axis. Evidently it can
be treated numerically only in a spectral approach~Feit &
Fleck, 1988!. The term containing the electron–ion collision
frequencynei takes into account the laser energy losses due
to inverse bremsstrahlung.

The paraxial approximation of the laser beam is based on
several assumptions:]z ,, k0, ]t ,, v0, and]z

2 ,, ¹4
2. These
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conditions are supposed to be satisfied for the cases consid-
ered below.

2.2. Linearized plasma response

The simplest response of a plasma is due to the pondero-
motive force that acts in the transverse direction. Quasineutral-
ity is assumed and the response describes IAWs propagating
in the plane transverse to the propagation direction of the
laser beam:

~]t
2 1 2gs]t 2 cs

2¹4
2 ! ln

ne

ne0

5
Z

cmi nc

¹4
2~`I !. ~3!

Here,gs is a damping term and the intensity is given asI 5
ce06E6202. The characteristic speed of propagation of the
density perturbations are determined by the acoustic veloc-
ity cs 5!~ZTe 1 3Ti !0mi .

There are two features in this equation that go beyond the
standard IAW equation. First is the logarithmic term on the
left-hand side instead of the linear density perturbation.
This is an ad hoc attempt to extend the equation to the
nonlinear case. It prevents unphysical negative values ofne

and reproduces the Boltzmann density depletion. Second is
the operator̀ in front of the ponderomotive force on the
right hand side. It is a spectral operator that takes account of
nonlocal transport properties in the linear response regime
~Brantovet al., 1998!:

`k 5
1

2
1

0.88Z507

~k4lei !
407 1

2.54Z

11 5.5Z~k4lei !
2 . ~4!

Here, Z is the charge state of the ion,lei is the mfp for
electron–ion collisions andk4 the perpendicular wave number.

2.3. Nonlinear hydrodynamics

For intensities of the order of 1014 W0cm2 and density
perturbations above 10%, the plasma response becomes
nonlinear. In this case, the simple IAW equation~3! has to be
replaced by the full Euler equations~Loubère, 2002!. The
model used are the single-fluid~due to quasineutrality,ne5
Zni !, two-temperature equations:

]t ni 5 2¹4{~ni u!, ~5!

]t ~mi ni u! 5 2¹ptot , ~6!

]t ~ni ei ! 5 2¹4{~ni ei 1 pi !u, ~7!

]t ~neee! 5 2¹4{~neee 1 pe!u. ~8!

Here, ptot 5 pe 1 pi is the total plasma pressure,pe 5
~ge 2 1!neee is the electron pressure andpi 5 ~gi 2 1!
~ni ei 2 mi ni u202! is the ion pressure,e denotes the total
energy, which is related to the pressure by an equation of
state for a given adiabatic coefficientg 5 cp0cv. The elec-
tron inertia has been neglected in the electron equation of
state.

As before, the plasma response is in the transverse plane
only. The hydrodynamics are solved in Lagrangian form on
an unstructured triangular mesh using a discontinuous
Galerkin-type approach that gives high-precision numerics
with little numerical diffusion and oscillations. In the above
equations the coupling to the electromagnetic field~the
ponderomotive force! as well as the transport terms are still
missing—they are presented in the following section.

Figure 1 gives a simple visual impression of how linear
and nonlinear responses differ for high intensities. Ampli-
tudes and frequency of self-focusing are clearly affected.
This is especially important for density bumps that are
severely overestimated in the linear model. Also the speed

Fig. 1. Time evolution of a mono-speckle forI 5 6{1014 W0cm2, ne 5 0.1nc, andTe 5 600 eV. The snapshots are taken at 17.5, 22.5,
and 30 ps. The upper row presents the results of the linear plasma response, the lower one the full nonlinear calculation. The calculations
include only the ponderomotive force as coupling term, not the nonlocal transport.
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of propagation of density perturbations is no longer given
by the ion-acoustic velocity, which is only correct in the
initial stage, but will be larger. The dynamics of a laser–
plasma interaction can be significantly modified.

3. NONLOCAL TRANSPORT

3.1. The properties of nonlocal transport

Using an approach based on the linearized version of the
Fokker–Planck equation, a set of transport coefficients in
the context of semicollisional plasmas has been derived by
Brantov et al. ~1996! and Bychenkovet al. ~1995!. As
mentioned in the introduction, the transport coefficients are
in general strongly varying functions of the productklei.
Figure 2 shows the dependence of the electron heat conduc-
tivity on the parameterklei.

The mathematical procedure of implementation of the
nonlocal transport coefficients in the code is similar for each
term. As an example, let us consider the following simpli-
fied heat equation comprising just the time dependence of
the temperature due to the heat flux:

]t Te 5
2

3ne

¹{~ke¹Te!. ~9!

The electron heat conductivityke is known ink-space only;
hence the equation has to be evaluated ink-space itself. As
one is above all interested in conditions where the semicol-
lisionality dominates, the gradient scale length is of the
order of the mfp and therefore the conductivity does not
vary much over the gradient. One can therefore assumeke to
be constant locally and approximate the source¹{~ke¹Te! as

keDTe. Transforming to Fourier space then amounts to the
following replacement:

¹{~k¹T ! r 2k2kkTk. ~10!

It has been assumed as well that the transport is isotropic in
the transverse plane and that one can use the identification
k 5!kx

2 1 ky
2. The change in temperature is then given as:

dTe 5
2

3

Dt

ne

FT21 @ fnl ~klei !akTk# . ~11!

Note that the coefficienta5nevTeis given in real space. The
function fnl is a nonlinear function ofklei, which can be
decomposed as:

fnl ~klei ! 5 g~Z!klei h~klei !, ~12!

with g~Z! 5 ~3.261 13.6Z!0~4.2 1 Z! giving the charge
dependence. If the functionh would be equal to 1, one
would simply recover the standard expression for the colli-
sional Spitzer–Härm conductivity:k5kSH5g~Z!nevTelei.
In the general case the function is not equal to one and
depends strongly on the collisionality of the plasma. It is
possible to represent the functionh as a harmonic mean
between the strongly collisional and the collisionless state,
which gives a good approximation over the whole range of
collisionality parameters:

h21 5 hc
21 1 hnc

21, ~13!

hc
21 5 11 S501 10Z

121 Z
XD0.9

, ~14!

hnc 5 0.11MZ0X. ~15!

Here,X5!Zklei , hc is the collisional contribution, andhnc

is the noncollisional one.

3.2. Temperature relaxation in a hot spot

The effect of nonlocal transport can be easily appreciated by
looking at a simple hot-spot relaxation due to the heat flux
into the ambient medium~Senechaet al., 1998!.Assuming a
uniform temperature background of 700 eV, a local tempera-
ture perturbation of the formT~r, t50!5T0exp~2r 20R2!1
700 eV is imposed. The speckle radiusR is taken to be 7mm
and the perturbation amplitude isT0 5 70 eV. For a density
of ne 5 0.1nc and a charge stateZ 5 5, the resulting mfp is
lei 5 2.2 mm and hence of the order of the characteristic
gradient scale length of the perturbationR. For this case the
above heat equation can be solved analytically and the
relaxation times of the hot spot for the collisional regime
and the nonlocal transport regime can be calculated to give

Fig. 2. The electron heat conductivityke as a function ofklei. For
klei r 0 one recovers the standard collisional transport value; the limit
klei .. 1 corresponds to the collisionless regime. The conductivity coeffi-
cient is normalized by the Spitzer–Härm coefficient.
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tSH 5
3neR2

8kSH

5
0.028R2

vTelei z
' 0.1 ps, ~16!

tnl 5 tSH~11 10MZklei !
0.9 ' 1.15 ps. ~17!

Here,z~Z! 5 ~0.241 Z!0~4.21 Z! takes into account the
dependence on the charge state.

Obviously for the given, realistic plasma conditions the
relaxation times differ by a factor of 10, which implies a
strong variation in the plasma response to be expected.

The procedure outlined here for the evaluation of the
nonlocal heat flux applies in exactly the same way for all the
possible transport coefficients and associated transport terms.

3.3. Nonlocal Navier–Stokes equations

The resulting transport terms modify the Euler equations
such that one obtains nonlocal Navier–Stokes equations that
can be written in the standard way as follows:

]t ni 5 2¹{~ni u!, ~18!
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]t Ti 5 2
2

3
Ti¹{u 2 u{¹Ti 1

2

3ni

¹{~ki¹Ti !. ~21!

In the above equations are some transport terms that are
purely local such as the absorption due to inverse brems-
strahlung and the ponderomotive force term. The remaining
terms going beyond those coming from the Euler equations
involve the nonlocal transport coefficients that are only
known in k-space. From the numerical point of view this
implies that a splitting scheme has to be employed in order
to evaluate the transport. The transport is treated as a source
for the Euler equations, which is evaluated in Fourier space.
The coupling therefore requires the transfer of quantities
between thek-space on a Eulerian grid and the real space on
a Lagrangian grid. This leads to nontrivial numerical issues
of coupling very different numerical schemes.

The nonlocal transport results from a linearization of the
full Fokker–Planck equation and is nevertheless used in

nonlinear hydrodynamics. This is, however, justified as
comparisons with kinetic calculations have shown that this
approach remains valid even in the weakly nonlinear regime
~Brunner & Valeo, 2000, 2002!. The present model is one of
several available in the literature. Comparison with other
models~Schurtzet al., 2000; Alouani-Bibi & Matte, 2002!
is needed to better understand their robustness and the limits
of validity.

4. COMPARISON WITH EXPERIMENTS

Comparison with other codes and with experiments is an
important part of code development. The present code has
already passed successfully a number of tests. Here we
present a comparison of the code with the results of a recent
experiment on plasma-induced laser beam smoothing.

4.1. Experiment on the plasma-induced incoherence

The experiment measured the time-resolved transmitted
light of a RPP laser beam passing through a preformed
plasma~Malka et al., 2003!. An enhanced spatiotemporal
smoothing of the laser beam was observed~Fig. 3!. The
plasma-induced smoothing of a laser beam has been observed
before, albeit under very different conditions, where self-
focusing of the beam played an important role. In these
experiments, however, the average power in a speckle was
of the order of 3% of the critical power for self-focusing. An
important parameter is the measured coherence time, which
in the experiment was of the order of 50 ps. The mechanism
that was put forward to explain the loss of coherence induced
by the plasma is multiple scattering. Even without self-
focusing, the presence of the ponderomotive force creates
small density perturbations. The incident light is then scat-
tered off these density perturbations, which leads to an
angular spreading of the light and to a loss of spatial and
temporal coherence. The characteristic time constant should
therefore be given by the transit time for an IAW across a
speckle width. The random phase plate produced speckles
with a characteristic radius of 2.8mm. For a plasma temper-

Fig. 3. Time-resolved images of transmitted light using a RPP during
600 ps for 100mm spatial extension. Left: with plasma, right: in vacuum.
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ature ofTe 5 250 eV the acoustic velocity iscs 5 0.06mm0
ps. The resulting acoustic transit time is thereforetac 5
50 ps, which agrees with the measured coherence time.

4.2. Calculations of the plasma-induced incoherence

In the following some calculations are presented that allow
us to validate the code for the simplest configuration: linear
plasma response with nonlocal transport. This is justified as
the experimental conditions were such that the level of
backscattering was without significance and the laser inten-
sity ^I & ' 631013 W0cm2 and plasma density~ne5 0.01nc!
such that the plasma response could be described by an IAW
equation. The results are summarized in Figures 4, 5, and 6.

Figure 4 shows increasing fluctuations of the laser inten-
sity as a function of the plasma length, implying an increas-
ing loss of coherence. The variation of the laser intensity
D I0 NI was calculated as follows:

D I 5 M^~I ~z, t ! 2 I0~z!!2&t , ~22!

whereI0~z! 5 ^I ~z, t !&t and NI 5 ^^I ~z, t !&t &s. The temporal
and spatial average are defined as^ . . .&t 5 T21* I ~z, t ! dt
and ^ . . .&s 5 L21* I ~z, t ! dz, respectively. Here,L is the
plasma length andT the duration of the simulation.

The condition for multiple scattering to take place in the
plasma can be shown to be~Malka et al., 2003!

S11
r0

2

lei
2 D2S ^I &

nccTe

ne

nc
D2

k0
2LLR . 1, ~23!

whereLR5 k0 r0
2 is the Rayleigh length. The term in the left

parentheses takes into account the effect of the nonlocal

transport as the speckle radiusr05 2.8mm is of the order of
the mfplei 5 4mm.

The important parameter is the plasma lengthL, which, in
the experiment, was of the order of 2 mm. Even for very low
intensities and densities, laser beam smoothing can be achieved
if the light interacts with a sufficiently long plasma. The
calculation clearly shows~see Fig. 5! that the intensity
profile is stationary over the first millimeter of plasma
before slow variations on the time scale of the ion-acoustic
transit time set in. In a similar way Figure 6 shows an
arbitrary transverse intensity profile at the beginning of the
plasma and after the light propagated through 2 mm of
plasma. At the beginning of the plasma, the profile does not
change and remains strongly correlated for all times. In
contrast, the initial correlation has been completely destroyed
at the end of the simulation box.

The physical effect taking place is the following sequence:
the stationary random phase structure of the incident laser
beam leads to nonstationary density perturbations and sub-
sequently multiple scattering of the light takes place.

Fig. 4. The increasing fluctuations of the laser intensity as a function of the
plasma length. The curve is the mean value of 32 randomly chosen points
in the transverse plane. The additional lower and upper curves give the
mean square deviation of the values.

Fig. 5. Temporal evolution of the central intensity. The intensity depicted
is in units of 1.853 1014 W0cm2.

Fig. 6. The transverse intensity distribution for the RPP case at an arbi-
trary point in the transverse plane. Left column: entrance of simulation box
~z5 0!; right column: end of simulation box~z5 2240mm!. Upper row:
at t 5 0; lower row: att 5 100 ps.
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5. CONCLUSION

We presented recent developments in the PARAX code,
which was conceived to model the interaction of a paraxial
laser beam with a preformed plasma in the context of
inertial confinement fusion. The code structure requires the
coupling of very different numerical modules, which are
optimized each for specific physics applications. This mod-
ule coupling plus the fact that one operates in parallel on the
Eulerian and Langrangian grids is nontrivial. The code has
been optimized with respect to this coupling and has been
validated qualitatively and quantitatively in the linear regime
using experimental data on plasma-induced smoothing. The
next step is the validation of the nonlinear plasma response
for smoothing under conditions of strong self-focusing.

One has to be aware of the fact that macroscopic calcula-
tions of LPI using a nonlinear plasma response are very
demanding as far as CPU time is concerned. A linear plasma
simulation that models roughly one eighth of one LMJ beam
requires of the order of one day on 40 processors at 833 MHz.
Performing the same calculation using the fully nonlinear
plasma response and the most relevant nonlocal transport
terms adds a factor of 10–20 to the CPU time. Hence, the
nonlinear macroscopic calculations can only be done with
high-speed, massively parallel machines.

The present code can be considered a first but large step
towards macroscopic modeling of laser–plasma interactions.
The various minimal ingredients for a realistic physics basis
have been presented. However, this is still far from what one
needs in the long run. Missing components are, for example:
the backscattering processes~SRS and SBS!, the expansion
of the plasma in the parallel direction, and a nonlocal
transport model that would be valid in the strongly nonlin-
ear regime.

Once the code has been decently validated by interpreting
and reproducing present experimental data it can be used for
predictive modelling of the forthcoming plasmas in the
large-scale facilities LMJ and NIF.
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