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Abstract: In this short note we try to improve the use of a limiter for the tensor artificial viscosity in the
context of Lagrangian compatible hydrodynamics scheme for he Euler equations in 2D Cartesian geometry.
It has been demonstrated the effectiveness of a limiter on perfectly quadrangular grids aligned with the flow,
however if the mesh is not alined with the flow or if it is simply unstructured, then, not only the limiter is
not effective anymore but it generates instabilities leading to lack of symmetry. Our goal is to improve such
limiters by mean of very simple modifications if possible.

1 Introduction, Context and Presentation

This short note presents the first results of our investigations on the effect of the different limiters in the
Tensor Artificial Viscosity (TAV) for compressible hydrodynamics problems. The tensor artificial viscosity
has been described in Journal of Computatinal Physics paper JCP, 172 (2001) 739-765 [6] by Campbell and
Shashkov. In this paper a subcell-based artificial viscosity is developed, by comparison with a previous work
of Caramana and Shashkov, see [8], who developed an edge-based artificial viscosity. Both formulations use
a limiter (subcell-based or edge-based) and the improvement of the limiters is the subject of this report.

The context of this study is the Euler equations solved by the compatible Lagrangian scheme with tensor
artificial viscosity (see reference [5]) in 2D Cartesian geometry. ALE INC(ubator) [4], a 2D Arbitrary-
Larangian-Eulerian code on general polygonal grid for compressible flows, has been used in its Lagrangian
regime to carry the experiments. In a previous report [13] we showed that the limiters used in the tensor
artificial viscosity, or in the edge viscosity, may generate parasital instabilities when used with unstructured
grids. The artificial viscosity without limiter however performs well on almost any grid. Here we shows such
cases where the limiter creates instabilities, then we present the reason why limiter are needed. Finaly, we
try to modify the limiter in order to be able to deal with unstructured mesh; we only investigate very simple
modifications of existing limiters. Several results obtained with these different limiters are presented in this
report.

In the rest of this report we present the role of an artificial viscosity module for such a scheme (purpose,
effect, limiter form, etc.) in section 2. Then we present in section 3 the modifications we made to the
limiters andin section 4 we present the effect of thses modifications on the well-known Noh test problem in
2D Cartesian geometry on several grids. Finally we conclude this study.
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2 Artificial viscosity

The purpose of an artificial viscosity is to allow a numerical Lagrangian scheme to handle steep fronts and
shock waves. As a results, using an artificial viscosity leads to shock waves and steep fronts spread over
three to five cells. The idea of artificial viscosity dates back to Von-Neumann in his early paper [3]. Since
then several attempts have been tried to improve this formulation with more or less success. The very last
ones, up to our knowledge, are the edge-based artificial viscosity ([8], [9]) and the tensor artificial viscosity
([6]). These two forms, as well as the original Von-Neumann artificial viscosity, are already implemented in
ALE INC.

2.1 Description

Let’s briefly describe the role of the artificial viscosity in a Lagrangian numerical scheme for compressible
hydrodynamics (we refer the reader to the enlightening paper of Von-Neumann [3]).
Basically, in a Lagrangian scheme there is no dissipative effect, therefore to handle shock wave without
spurious oscillations one needs to add an artificial term to the equation which looks like the second spatial
derivative of the velocity u: ∂xxu. The discretization of such a term spreads the steep front of the shock wave
over several cells (usually three to five). When the velocity field is linear or constant this term vanishes.
Moreover as the entropy does not increase in expansion fan, there is no need to use artificial viscosity,
therefore this term should disappear in this case as well. Finally one needs to detect when this term has to
be added or not. Modern form of artificial viscosity only acts when compression occurs; therefore a so-called
compression switch is computed in order to turn off the viscosity on region at rest, in uniform motion or in
expansion. However it has been pointed out earlier by Caramana et al. (see [8]) that such a compression
switch is inefficient in the very important case of converging shock wave, as depicted in Fig.1: indeed as
a converging shock wave travels through a quadrangular mesh, edges in the radial direction encounter a
compression due to the shock wave (edges af, bg, ch, di, ej in Fig.1), the shock wave actually travels across
these edges, therefore these edges need the action of the artificial viscosity. On the other hand edges in
the angular direction (fg, gh, ij in Fig.1) encounter a compression only due to the cylindrical geometry; no
shock wave travels across these edges, hence no artificial viscosity should act on these. In both cases the
compression switch detects, as expected, a compression and tells the viscosity to act, however we would like
to make the difference between the first case (shock wave compression encountered by edge af) and the
second one (cylindrical compression encountered by edge fg); this is the purpose of a limiter.

Paraphrasing Campbell and Shashkov in [6] one can say that Caramana et al in [8] specified five properties
that an artificial viscosity should posses, these are:

1. Dissipativity: The artificial viscosity must only act to decrease kinetic energy;

2. Galilean invariance: The viscosity should vanish smoothly as the velocity field becomes constant;

3. Self-similar motion invariance: The viscosity should vanish for uniform contraction and rigid-rotation;

4. Wave-front invariance: The viscosity should have no effect along a wave front of constant phase, on a
grid aligned with the shock wave;

5. Viscous force continuity: The viscous force should go to zero continuously as compression vanishes and
remain zero for expansion.

Caramana et al. has been very careful and asked the artificial viscosity to “have no effect along a wave front
of constant phase, on a grid aligned with the shock wave”: he does precise that the grid should be
aligned with the shock wave and as we already saw, this property is fulfilled thanks to a limiter, which is
therefore not adapted when the grid is not aligned with the shock wave.

Mathematically the tensor artificial viscosity is written as a corner-based entity. However, the first piece
of the TAV is the edge-based ”q” the form of which was described by Wilkins [2] who attributed it to
Kurapatenko [1] (see also [6] for details):

qe = ρ
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Figure 1: Action of a limiter. A cylindrical convergent shock wave (dashed-dotted line) travels through a
quadrangular mesh. Edges af, bg, ch, di, ej encounter compression due to the shock wave traveling across; the
artificial viscosity should act. Edges fg, gh, ij encounter compression due to the cylindricity of the problem;
artificial viscosity should be turned off on these edges.
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where c1, c2 are non-dimensional constants usually set to unity, γ is the ratio of specific heats, ρ, cs the
density and sound-speed ahead of the shock and ∆v the velocity jump across the shock.
The final form of the TAV subcell force to be added to the scheme reads:

µcn = (1 − ψcn) ρcn
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where lcn is a corner length (reflecting the aspect ratio of the corner volume while being relatively insensitive
to small changes in the velocity direction see [6] for details) and |∆vcn| is the velocity jump across the corner
volume. We do not detail these term as they are “fixed” by the method. On the other hand we focus on the
definition of the limiter ψcn.
The limiter developed for the tensor artificial viscosity is defined as follows: ψcn is built thanks to the edge
limiters ψe1

, ψe2
of the two associated edges e1, e2 of corner cn
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, ψe2

) , (2C)

ψe1
= min

(
ψet,eb

e1
, ψel,er

e1

)
, (2D)

where the top-bottom tb, lr limiters associated with edge e1 are

ψel,er

e1
= max

(

0,min

(

1, Rer

e1
, Rel

e1
,
1

2
(Rer

e1
+Rel

e1
)

))

, (2E)

ψet,eb

e1
= max

(

0,min

(

1, Ret

e1
, Reb

e1
,
1

2
(Ret

e1
+Reb

e1
)

))

, (2F)

and the ratio are defined as
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where (div ~u)e is a discrete approximation of the divergence of the velocity at edge e.
The choice of the left, right, top, bottom edges for a given edge e is made by picking the edge on the left,
right making the biggest angle with e and the edges from the two associated cells (said top, bottom) making
the biggest angle with edge e; see Fig.2 for an example.
For the structured mesh shown in Fig.2, the choice of left, right, top, bottom edges is obvious, and they

are fixed as the simulation goes on (if the mesh is not really distorted during the simulation). On the other
hand, if the mesh is unstructured, then the left, right, top, bottom edges are not well-defined at any time
and may change in time: this is one of the problem when using a limiter with unstructured mesh.

The final viscosity corner force implemented in ALE INC. involves the limiter and terms of the two
adjacent corners in the same cell: cn−, cn+ (see Fig.2) and looks like:

~fcn = (1 − ψcn−)νcn−(A−

cn−
+A+

cn−
) + (1 − ψcn)νcn(A−

cn +A+
cn) + (1 − ψcn+)νcn+(A−

cn+ +A+

cn+), (2I)

where A−

cn−
are terms that involve the first edge of cn−, A+

cn−
are terms that involve the second edge of

cn−. All the algebra is developed in [6] and we don’t repeat here in order not to confuse the reader. The
real important point of the previous equation is the fact that the limiter appears in front of each νcn and
µcn = (1 − ψcn) νcn (see equation (2B)).

2.2 An illustrative example: limiter works!

A very simple illustrative example is given by the Noh problem in Cartesian 2D geometry on quadrangular
mesh. Suppose this problem is solved on a 101× 21 and a 101× 3 polar grids (101 points in radial direction
and 21, 9, 3 points in angular direction, see Fig.3). In the three cases the angular resolution should not
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Figure 2: Choice of left, right, top, bottom edges for a given edge e23 to be used in the limiter. Left-right
edges make the biggest angle with e23, namely e12 and e34. Top-bottom edges are edges from cells c1, c2
making the biggest angle with edge e23, namely e78 and e56 — Corner cn has two neighbor corners cn−, cn+

in the same cell and two associated edges e49 and e69.
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Figure 3: Noh problem in Cartesian geometry for a 101 × 3 or 101 × 21 polar mesh — Initial meshes.
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Figure 4: Noh problem in Cartesian geometry for 101 × 3, 101 × 9, 101 × 21 polar meshes for the tensor
artificial viscosity — Density as a function of radius (ALE INC.) at t = 0.65 — (a) without limiter the
accuracy depends of the angular resolution, (b) with limiter the accuracy is independent of the angular mesh
resolution.

matter as far as the symmetry, the accuracy of the shock position and the value of the post-shock plateaus.
In Fig.4 is presented the convergence which is obtained with a polar mesh when the number of radio points
is fixed 101 but the number of angular cells increases 3, 9, 21. These plots are the density as a function of
the radius for any cell compared to the exact solution (black line) at the final time t = 0.65. In theory the
angular dimension is ignorable and should not affect the accuracy of the results. However without limiter
one gets an improvement of the accuracy, whereas with limiter, the best accuracy is already achieved for the
smallest mesh without any improvement as the mesh is refined in the angular direction.

Therefore for this type of mesh the designed limiter works perfectly fine even for a very low angular res-
olution. Indeed, we are respecting the requirements listed by Caramana in the fourth property the viscosity
should fulfill and the limiter works nicely.

2.3 An illustrative example: limiter does not work!

Actually the limiter does not work so well, specifically if the mesh is not nicely aligned with the front wave;
the limiter is then not capable to detect any mesh line aligned with the front to turn off the viscosity.
Therefore the limiter is like “blind” and it gives wrong information as to turn off or to limit the action of
the viscosity. Then on some portions of the mesh the viscosity is limited, on some others it can be simply
turned off, and these portions can be different in time due to the dynamics of the problem. Most of the time
it leads to severe and dramatic loss of symmetry.
In order to illustrate this behavior let’s recompute the Noh problem on a full disk (in order to avoid any
boundary effects) with different meshes: a quadrangular polar mesh, well suited for limiter, two triangular
meshes obtained by splitting each quadrangle of the previous mesh into two or four triangles (using one or
two diagonals) and finally with a real unstructured triangular mesh1. In Fig.5 are presented the meshes
at tfinal = 0.6 and in Fig.6 the density as a function of radius versus the exact solution when the tensor
artificial viscosity with limiter is used. The damages caused by the limiter are clearly visible not only on
the mesh (the bottom-left mesh presents instability and the top-right mesh has developed a bizarre counter-
clockwise spiral motion) but on the loss of 1D cylindrical symmetry as well (bottom-left panels). Only with
the quadrangular mesh is the limiter producing good results, but if the mesh is not well aligned with the

1The way this mesh is built is of no importance for this illustration therefore we skip this explanation.
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Figure 5: Noh problem at tfinal = 0.6 — Meshes — Tensor viscosity with limiter — Top-left to bottom-
right: polar quadrangular, triangular (quadrangle split into two triangles), triangular (into four triangles),
unstructured meshes.
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Figure 6: Noh problem at tfinal = 0.6 — Cell density as a function of the cell radius — Tensor viscosity
with limiter — Top-left to bottom-right: polar quadrangular, triangular (quadrangle split into two triangles),
triangular (into four triangles), unstructured meshes. On the third panel the scale has been reduced to [2; 16]
but the oscillation of the density are much bigger.
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wave the results are severely damaged.
On the other hand, in Fig.7 and 8, are presented the results obtained when no limiter is used on the same
configuration as previously: the symmetry is preserved much more even if the accuracy of the results seems
reduced. More specificaly, all points originaly at position (r, θ), with r the radius and θ the angle, seemed
to evolve, as expected along the θ-radius line.

Great care has however to be taken, because several triangular meshes may produce symmetrical results
even is they look like unstructured triangular mesh. For example the mesh plotted in Fig.9 is one of these ones
producing good results when limiter is used, but it is a “fake” good result in the sense that some cancellations
occur to annihilate the instabilities which appear and grow otherwise (see [13] for more details).

Then the question of whether or not we should use a limiter in cases where the mesh is not aligned with
the flow still remains2. In this report we will try to show the behavior of slightly modified limiters on this
unique test case.

3 Modified limiters

Limiter can not be modified in any way we choose, several properties have to be fulfilled by the resulting
viscosity corner-based forces ~fcn ≡ ~fz

p (see equ.(2I)):

1. Conservation of momentum:

∑

p

~fz
p = 0, (3A)

the summation of the subcell forces into a given zone z (sum over all points p of zone z) must be zero;

2. Positivity of the heating:

−
∑

p

~fz
p . ~up ≥ 0, (3B)

the evolution of the cell-centered specific internal energy ez should always be positive or zero (~up is

the velocity of point p). Indeed en+1
z = en

z +∆t
(

−
∑

p
~fz
p . ~up

)

is the discretized PDE associated with

the heating.

By construction we already know that without limiter or with the default version of the limiter these
properties are fulfilled. However these two properties are affected when changing the form of the limiter,
therefore we have to make sure that they are still valid after our modifications.

In the following we will first modified µcn to make disappear the limiter, that is to say

νcn = ρcn
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and the force looks like

~fp
z = ~fcn = νcn−(A−

cn−
+A+

cn−
) + νcn(A−

cn +A+
cn) + νcn+(A−

cn+ +A+

cn+), (3D)

and is unlimited in this case. By construction we know that ~fcn fulfills equations (3A-3B). Then we produce
new limiters which are not necessarily corner-based ones and test them into ALE INC. However we would
like these new limiters to reduce to the old one when the mesh is aligned with the waves, as for the Noh
problem with a coarse mesh in the angular direction.

2The situation where the user does not know if the mesh is and will remain aligned with the shock waves is highly probable;

therefore asking why we want to use a limiter in these cases seem reasonable.
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Figure 7: Noh problem at tfinal = 0.6 — Meshes — Tensor viscosity without limiter — Top-left to bottom-
right: polar quadrangular, triangular (quadrangle split into two triangles), triangular (into four triangles),
unstructured meshes.
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Figure 8: Noh problem at tfinal = 0.6 — Cell density as a function of the cell radius — Tensor viscos-
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triangles), triangular (into four triangles), unstructured meshes.
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Figure 9: Initial mesh that produces good results on the Noh problem when a limiter is used.

3.1 Cell-based limiter

One modification consists in computing a zone-centered or cell-based limiter ψz common for any corner of
this zone, then if the limited force is ~F z

p = (1 − ψz)~f
z
p , we can show the preservation of the momentum as

∑

p

~F z
p =

∑

p

(1 − ψz)~f
z
p = (1 − ψz)

∑

p

~fz
p

︸ ︷︷ ︸

=0

= 0, (3E)

where the sum is for all points p of zone z. And the positivity of the heating is obtained thanks to

−
∑

p

~F z
p .~up = −

∑

p

(1 − ψz)~f
z
p .~up = −(1 − ψz)

∑

p

~fz
p .~up

︸ ︷︷ ︸

≥0

≤ 0. (3F)

The way ψz is computed is simply by:

ψz = max
cn∈z

(ψcn), (3G)

that is to say, the limiter in the zone z is the maximum value of all corner limiters in this given zone. So if
at least one corner limiter is equal to 1 then the cell limiter is equal to 1 and the viscosity is turned off in
the entire cell therefore for all corner in zone z.

3.2 Edge-based limiter

The limiter developed for the edge viscosity in [8] can be used. This limiter is edge-based and therefore does
not need a lot of adaptation to be used in the subcell tensor artificial viscosity.
as already a new We use this limiter into the corner force as the corner force can be split into edge-based
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entities (in fact the term A−

cn−
involves the left edge of cn−); thus each of these terms has an associated edge

limiter that we can plug into the force equation:

~fp
z = ~fcn = νcn−(A−

cn−
+ A+

cn−
) + νcn(A−

cn + A+
cn) + νcn+(A−

cn+ + A+

cn+), (3H)

where A−

cn−
= (1 − ψe)A

−

cn−
and e is the left edge associated with corner cn−.

The preservation of momentum and the positivity of the heating is obtained trivially as for the edge-based
artificial viscosity from [8].

3.3 Corner-based limiter

An other solution is to keep the corner-based form of the limiter but to change the way it is computed.
Given the corner-based limiter we assoicated all corners linked together by their node (all corners around
one node that basically define the median mesh, for example all corners around node 3 in Fig.2). By taking
the maximum of all these corner limiter values, one builds a modified corner limiter that links corners from
different cells together thru this maximum.

4 Numerical results

In order to test these modified limiters, we ran the Noh problem (t = 0.6) on a full disk in Cartesian ge-
ometry with the polar mesh where each quadrangle is split into four triangles (see Fig.8 third panel). This
mesh is built onto a quadrangular mesh obtained with 35 points in radial direction and 35 points in angular
directions; each of these quadrangles is split into four triangles by adding a point at their center. Therefore
the triangular mesh used for these simulations posses 4655 cells and 2346 points.
We ran this problem on a full disk to avoid any boundary effect due to the limiter. The CFL is set to 1/4
(we tried smaller CFL as well with the same results) and the merit factor for the subpressure method (to
kill parasital Hourglass mode, see [7] for details) set to 0.0. (We observed that parasital Hourglass modes
are not responsible for this behavior.).

This problem with such a mesh leads to relatively bad results with the original limiters, as we already
saw in the previous section, for the tensor artificial viscosity. The edge-based viscosity is not able to produce
any better results on this problem (see [8]). Therefore we focus on improving the results on this particular
problem expecting a general improvement for other problems.

No limiter: Results are plotted in Fig.11. There is no lack of symmetry, and the angular resolution plays
a role for the accuracy (which should not be the case with a good limiter see Fig.4).

Original limiter: Results are plotted in Fig.12 as described in this paper. We already know that this
limiter is not adapted to this context, but we need a reference result to compare with.

Original edge-based limiter: Results are plotted in Fig.13. This limiter was described in [8] and is edge-
based, however Campbell and Shashkov stated that it is not well adapted to the tensor artificial viscosity
and developed the corner-based limiter from the previous paragraph. As already noticed some instabilities
appear close to the center.

Cell-based limiter: In order to compute the cell-based limiter one can choose to use the original corner-
based limiter (see Fig.14 top panels) or the original edge-based limiter (see Fig.14 bottom panels) as building
brick. This leads to two different cell-based limiters. However both of them are not able to cure the bad
behaviors as can be seen on the results.

Modified Corner-based limiter: The modified corner limiter is used in this case and produces the results
in Fig.15; no improvement can be seen.
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Figure 10: Initial mesh used for the simulation (zoomed on the center) — This mesh is built onto a quad-
rangular mesh obtained with 35 points in radial direction and 35 points in angular directions; each of these
quadrangles is split into four triangles by adding a point at their center. Therefore this triangular mesh used
for these simulations possess 4655 cells and 2346 points.
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Figure 11: Noh problem at t = 0.6 — Left: Final mesh — Right: Cell density as a function of radius vs
exact solution — No limiter is used for the tensor artificial viscosity; symmetry is preserved
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Figure 12: Noh problem at t = 0.6 — Left: Final mesh — Right: Cell density as a function of radius vs
exact solution — The original corner limiter for the tensor artificial viscosity is used, it produces unexpected
instabilities.
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Figure 13: Noh problem at t = 0.6 — Left: Final mesh — Right: Cell density as a function of radius vs
exact solution — The original edge limiter for the tensor artificial viscosity is used, it produces unexpected
instabilities.
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Figure 14: Noh problem at t = 0.6 — Left: Final mesh — Right: Cell density as a function of radius vs
exact solution — Top: The cell-based limiter for the tensor artificial viscosity is used (with the original
corner limiter as a building brick) — Bottom: The cell-based limiter for the tensor artificial viscosity is
used (with the original edge limiter as a building brick). These limiter modifications still produce unexpected
instabilities.
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Figure 15: Noh problem at t = 0.6 — Left: Final mesh — Right: Cell density as a function of radius vs
exact solution — The modified corner limiter for the tensor artificial viscosity is used, it produces unexpected
instabilities.

Modified Edge-based limiter: The modified edge limiter is used in this case and produces the results
in Fig.16. Clearly such a modification does not help in this context.

5 Conclusions

In this report we present the first results obtained as to study and eventually modify the existing limiter in
the tensor artificial viscosity as described in [6].

The purpose of a limiter is to turn off the artificial viscosity along phase front where compression occurs
only due to convergent symmetry for example. In this case the angular resolution should not play any role
as far as the accuracy is concerned: the limiter ensures this statement.

Although such a limiter works perfectly fine with a nicely aligned mesh, it does not anymore when the
mesh is unstructured or simply not aligned.
Our goal was to describe very simple reasonable modifications that can be made to such a limiter and prove
numerically that such simple modification did not improve the bad behavior one can observe on the Cartesian
Noh problem in 2D on a triangular mesh. The triangular mesh is obtained from the polar quadrangular
mesh by splitting each quadrangle into four triangles after the introduction of a new point at the center of
the quadrangle.

The modifications made to the limiter did not lead to any improvement of the behavior for this prob-
lem; it seems that simple modifications of the limiter are not enough to cure the observed bad behavior on
unstructured mesh. It seems that with such limiters the antagonist wish of (i) preserving the symmetry us-
ing unstructured meshes and (ii) preserving the property of angular independence for converging/diverging
cylindrical problem, can not be achieved. More profound changes have to be investigated, maybe not only
on the form of the limiter itself but on the concept of limiter if non-aligned meshes have to be used.
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Figure 16: Noh problem at t = 0.6 — Left: Final mesh — Right: Cell density as a function of radius vs
exact solution — The modified edge limiter for the tensor artificial viscosity is used, it produces unexpected
instabilities.

Finally the rather negative conclusions are:

• the concept of limiter for tensor artificial viscosity is only well defined for a mesh aligned with the flow
and works well in this context;

• the use of a limiter leads to lack of symmetry and inaccuracy in the solution when an unstructured
mesh is used; however if no limiter is added to the artificial viscosity such instabilities do not appear,
therefore the form of the core of the artificial viscosity has not to be modified;

• simple modifications on the form of the limiter do not seem to improve this behavior (at least the ones
we tried, see the numerical examples);

• the concept of limiter for unstructured grid may have to evolve in the context of unstructured grid;

• using a limiter in the tensor artificial viscosity is less important than for the edge-based artificial
viscosity. This point has not been proved in this paper but is obvious by comparing the results from [8]
and the ones presented in this report; moreover we carried out some numerical experiments confirming
this point.
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