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a b s t r a c t

This paper deals with the extension to the cylindrical geometry of the recently introduced Reconnection
algorithm for Arbitrary-Lagrangian–Eulerian (ReALE) framework. The main elements in standard ALE
methods are an explicit Lagrangian phase, a rezoning phase, and a remapping phase. Usually the new
mesh provided by the rezone phase is obtained by moving grid nodes without changing connectivity
of the underlying mesh. Such rezone strategy has its limitation due to the fixed topology of the mesh.
In ReALE we allow connectivity of the mesh to change in rezone phase, which leads to general polygonal
mesh and permits to follow Lagrangian features much better than for standard ALE methods. Rezone
strategy with reconnection is based on using Voronoi tesselation machinery. In this work we focus on
the extension of each phase of ReALE to cylindrical geometry. The Lagrangian, rezone with reconnection
and remap phases are revamped to take into account the cylindrical geometry. We demonstrate the effi-
ciency of our ReALE in cylindrical geometry on series of numerical examples.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A new reconnection-based Arbitrary-Lagrangian–Eulerian (ALE)
framework called Reconnection ALE (ReALE) has been recently
introduced in [1]. The main elements in standard ALE methods
are an explicit Lagrangian phase, a rezoning phase, and a remap-
ping phase. Usually the new mesh provided by the rezone phase
is obtained by moving grid nodes without changing connectivity
of the underlying mesh. Such rezone strategy has its limitation
due to the fixed topology of the mesh and may lead to stagnation
of the mesh in certain situations [1]. Contrarily to classical ALE
framework, the rezone part of ReALE allows topological mesh
reconnection using the machinery of Voronoi tesselation [2]. The
new feature of this technique is an underlying set of generators
moving with the fluid as ‘‘pseudo-Lagrangian particles”. The new
generator position is a combination between its Lagrangian new
position and the displaced Lagrangian cell centroid. These genera-
tors, as particles, can change neighbors especially when shear or
vortex motions occur. The Voronoi machinery is then used on this
set of generators to define the rezone mesh: Each generator is asso-
ciated to the same Voronoi cell which, accordingly, may have chan-
ged its neighborhood. This Voronoi mesh is the rezone mesh onto

which the physical variables are further remapped. Consequently
as the Lagrangian and rezone meshes are a priori different, the con-
servative remap phase must be modified to handle polygonal
meshes possibly with different connectivity.

In [1] the 2D Cartesian geometry was only considered as to
prove the feasibility of this ALE with reconnection approach. Con-
trarily in this work we investigate the extension of ReALE to cylin-
drical geometry. Although staggered and cell-centered Lagrangian
schemes were considered in [1] to prove the generality of ReALE,
in this work we focus on Lagrangian cell-centered discretization
because the presentation and implementation are simpler. How-
ever there is no theoretical limitation in using a staggered place-
ment of variable for ReALE in cylindrical geometry. High-order
cell-centered discretization of the Lagrangian hydrodynamics
equations has been described [3]; all conserved quantities, includ-
ing momentum, and hence cell velocity are cell-centered. Exten-
sion to cylindrical geometry has also been studied in [4] in a
control volume or area-weighted discretization. The control vol-
ume scheme conserves momentum, total energy and satisfies a lo-
cal entropy inequality in its first-order semi-discrete form. The
main difference between these approaches relies on the problem
of preserving spherical symmetry in two-dimensional cylindrical
geometry. Being given a one-dimensional spherical flow on a polar
grid, equally spaced in angle, Maire [4] analyzed the ability of the
schemes to maintain spherical symmetry. It turns out that the
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control volume formulation does not preserve symmetry whereas
the area-weighted formulation does similarly to staggered
Lagrangian schemes [5]. In the context of ReALE the preservation
of symmetric polar grid is not a goal as we are dealing with polyg-
onal meshes by nature. We leave this issue for later investigation.
However this cylindrical geometry extension of ReALE is motivated
since in many application problems, such as inertial confinement
problems, physical domains have axisymmetric features. This
paper is organized as follows; we first recall some notion of
cylindrical geometry, then in a second section we derive the cell-
centered Lagrangian scheme. In the third section the rezone and
remap parts are extended to cylindrical geometry. Numerical test
case are provided in the fourth section where comparisons to exact
solution and/or experimental solution are proposed. Finally con-
clusions and perspectives are drawn.

2. Cylindrical geometry

We are interested in discretizing the equations of the 2D
Lagrangian hydrodynamics in cylindrical geometry, taking into ac-
count under the same form both Cartesian and cylindrical geome-
try. To this end, we re-use the notations introduced by Dukowicz in
[6]. In the Lagrangian formalism the rates of change of mass, vol-
ume, momentum and total energy are computed assuming that
the computational volumes follow the material motion. This repre-
sentation leads to the following set of equations for an arbitrary
moving control volume V(t):

d
dt

Z
VðtÞ

qdV ¼ 0; ð1aÞ

d
dt

Z
VðtÞ

dV �
Z

VðtÞ
r � U dV ¼ 0; ð1bÞ

d
dt

Z
VðtÞ

qU dV þ
Z

VðtÞ
$P dV ¼ 0; ð1cÞ

d
dt

Z
VðtÞ

qEdV þ
Z

VðtÞ
r � ðPUÞdV ¼ 0: ð1dÞ

where d
dt denotes the material, or Lagrangian, time derivative. Here,

q, U, P, E respectively denote the mass density, velocity, pressure
and specific total energy of the fluid. Eqs. 1a, 1c, 1d express the con-
servation of mass, momentum and total energy. The thermody-
namic closure is obtained by adding the Equation Of State (EOS)
of the form P = P(q,e), where the specific internal energy, e, is re-
lated to the specific total energy by e ¼ E� 1

2 kUk
2. We note that vol-

ume variation Eq. (1b) which is also named Geometric Conservation
Law (GCL), is equivalent to the local kinematic equation

d
dt

X ¼ UðXðtÞ; tÞ; Xð0Þ ¼ x; ð2Þ

where X is a point located on the control volume surface, S(t), at
time t > 0 and x corresponds to its initial position. We note that
the case of Cartesian or cylindrical geometry can be combined by
introducing the pseudo Cartesian frame (O,X,Y), equipped with
the orthonormal basis (eX,eY), through the use of the pseudo radius
RðYÞ ¼ 1� aþ aY , where a = 1 for cylindrical geometry and a = 0
for Cartesian geometry. We remark that Y corresponds to the radial
coordinate in the cylindrical case meaning that we assume rota-
tional symmetry about X-axis, refer to Fig. 1. We note that if we re-
fer to standard cylindrical coordinates, (Z,R), then X corresponds to
Z and Y to R. In this framework, the volume V is obtained by rotating
the area A about the X-axis. Thus, the volume element, dV, writes
dV ¼ RdA, where dA = dXdY is the area element in the pseudo
Cartesian coordinates. Note that we have omitted the factor 2p
due to the integration in the azimuthal direction, namely we
consider all integrated quantities to be defined per unit radian.

The surface S, which bounds the volume V, is obtained by rotating,
L, the boundary of the area A, about the X-axis. Thus, the surface ele-
ment, dS, writes dS ¼ RdL, where dL is the line element along the
perimeter of A.

In view of subsequent spatial discretization, we shall express
the volume integrals associated with the divergence and gradient
operators using the Green formula. We recall that, in the pseudo
Cartesian frame, the divergence operator writes

r � U ¼ @u
@X
þ 1
R

@

@Y
ðRvÞ ¼ @u

@X
þ @v
@Y
þ a

v
R

¼ 1
R

@

@X
ðRuÞ þ @

@Y
ðRvÞ

� �

where (u,v) are the components of the vector U. The gradient oper-
ator writes as usual

$P ¼ @P
@X

eX þ
@P
@Y

eY :

By replacing the volume integral form of the divergence operator by
its surface integral form and by employing the previous notations
one deduces the Green formula in the pseudo Cartesian framework
asZ

V
r � U dV ¼

Z
L

U � NRdL: ð3Þ

where N is the unit outward normal associated with the contour L.
To derive the surface integral form of the gradient operator, we use
the vector identity U � $P ¼ r � ðPUÞ � Pr � U, which holds for any
vector U. The integration of this identity over the volume V leads toZ

V
U � $P dV ¼

Z
L

PU � NRdL�
Z

A
Pr � URdA:

Assuming a constant U vector, we finally getZ
V
$P dV ¼

Z
L

PNRdL� aeY

Z
A

P dA; ð4Þ

since for a constant U vector, we have r � U ¼ a
R

U � eY . We have ex-
pressed the volume integral of the gradient operator as a function of
a surface integral plus a source term, which ensures the compatibil-
ity with the surface integral form of the divergence operator. This
approach leads to a discretization which is known as Control Volume
formulation (CV). An alternative approach to define the surface inte-
gral form of the gradient operator is obtained by settingZ

V
$P dV ¼

Z
A
$PRdA ¼ R

Z
A
$P dA:

Here, we have used the mean value theorem, hence R is defined as
the averaged pseudo radius R ¼ 1

jAj
R

A RdA, where jAj is the surface

Fig. 1. Notation related to the pseudo Cartesian geometry.
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of the area A. We remark that in the case of Cartesian geometry
R ¼ 1 since a = 0. Finally, applying the Green formula, we getZ

V
$P dV ¼ R

Z
L

PN dL: ð5Þ

We recover the Cartesian definition of the gradient operator
weighted by the averaged pseudo radius. This alternative approach
leads to the so-called Area-Weighted formulation (AW). We point out
that, in this case, the compatibility between the surface integrals of
the divergence and gradient operators is lost. Finally let us remark
that formulae (5) and (4) coincide in the case of the Cartesian geom-
etry since a = 0 and R ¼ 1.

3. Compatible cell-centered Lagrangian scheme

We develop a sub-cell force-based discretization over a domain
D which is paved using a collection of polygonal cells without gap
or overlaps. Such discretization has been introduced in [7,8]. Using
the previous results and particularly the gradient operator defini-
tion given by (4), we rewrite the set of Eq. (1) in the control volume
formulation over the moving polygonal cell Xc(t) as

mc
d
dt

1
qc

� �
�
Z
@XcðtÞ

U � NRdL ¼ 0; ð6aÞ

mc
d
dt

Uc þ
Z
@XcðtÞ

PNRdL ¼ aAcPceY ; ð6bÞ

mc
d
dt

Ec þ
Z
@XcðtÞ

PU � NRdL ¼ 0: ð6cÞ

Here, Ac is the area of the cell Xc(t) and mc its constant mass. For any
fluid variable /, /c denotes its mass density average, i.e.
/c ¼ 1

mc

R
XcðtÞ q/dV . The area-weighted formulation is obtained

using (5) for the gradient operator definition. In comparison to
the control volume formulation, the previous system only differs
in the momentum equation. Using the notations previously intro-
duced, the area-weighted formulation of the momentum equation
writes

mc
d
dt

Uc þRc

Z
@XcðtÞ

PN dL ¼ 0; ð7Þ

where the cell averaged pseudo radius is Rc ¼ 1
Ac

R
Ac
RdA. We point

out that, in the case of Cartesian geometry Rc ¼ 1 for all c, therefore
the area-weighted formulation coincides with the control volume
formulation. Moreover recalling that mc = Vcqc and Rc ¼ Vc=Ac im-
plies that (7) can be rewritten as

lc
d
dt

Uc þ
Z
@XcðtÞ

PN dL ¼ 0; ð8Þ

where lc ¼ Acqc ¼ mcRc denotes the Cartesian inertia. Conse-
quently (8) has the same form as the momentum equation written
in Cartesian geometry although the Cartesian inertia is not a
Lagrangian mass (i.e it is not constant in time).

We have written a set of semi-discrete evolution equations for

the cell-centered variables 1
qc
;Uc; Ec

� �
, whose thermodynamic clo-

sure is given by the EOS, Pc = P(qc,ec), where ec ¼ Ec � 1
2 kUck2. The

motion of the grid is ruled by the discrete trajectory equation writ-
ten at each point: d

dt Xp ¼ UpðXpðtÞ; tÞ;Xpð0Þ ¼ xp, where Xp denotes
the position vector of point p and Up its velocity. Let us note that by
setting a = 0 in the previous set of equations we recover the same
system as in Cartesian geometry [3]. In the following we determine
the numerical fluxes and the nodal velocity used to move the grid.

3.1. Geometric conservation law

Introducing Vc ¼
R

XcðtÞRdA the measure of the volume obtained
by rotation of the polygonal cell Xc about X-axis, Eq. (6a) writes as
the GCL

d
dt

Vc �
Z
@Xc ðtÞ

U � NRdL ¼ 0: ð9Þ

Likewise in the case of Cartesian geometry, we use the fact that Vc is
a function of the position vector Xp of point p 2 PðcÞ, where PðcÞ de-
notes the set of points of the Lagrangian cell Xc. The cylindrical cor-
ner area vector, refer to Fig. 2 is given by

ApcNpc ¼
1
2

Rp� þ 2Rp

3
ðXp � Xp� Þ þ

Rpþ þ 2Rp

3
ðXpþ � XpÞ

� �
� ez

where Apc is the corner area that can be computed knowing that
N2

pc ¼ 1. Noticing that the half-edge outward normals are given by
L�pcN�pc ¼ � 1

2 ðXp� � XpÞ � ez, we rewrite the previous equation as

ApcNpc ¼
Rp� þ 2Rp

3
L�pcN�pc þ

Rpþ þ 2Rp

3
LþpcNþpc: ð10Þ

As noticed by Whalen in [9], the corner area vector is the funda-
mental geometric object that uniquely defines the time rate of
change of the cell volume as

d
dt

Vc ¼
X

p2PðcÞ
ApcNpc � Up: ð11Þ

This last result yields the definition of the discrete divergence oper-
ator over cell Xc as follows:

ðr � UÞc ¼
1
Vc

d
dt

Vc ¼
1
Vc

X
p2PðcÞ

ApcNpc � Up: ð12Þ

We claim that we have completely defined the volume flux in terms
of the corner area vector and the nodal velocity, moreover this der-
ivation is compatible with the mesh motion.

3.2. Sub-cell force-based discretization

Let us discretize momentum and total energy equations by
means of sub-cell forces. To this end we use the partition of each
polygonal cell Xc into sub-cells Xpc, where p 2 PðcÞ (see Fig. 2).
The sub-cell force that acts from sub-cell onto point is defined as

Fpc ¼
Z
@Xpc\@Xc

PNRdL: ð13Þ

We also use the sub-cell based partition to approximate the total
energy flux as

Fig. 2. Polygonal cell Xc in cylindrical geometry. Given the half-edge outward
normals L�pcN

�
pc at point p and two consecutive points p�, p+ one defines the

cylindrical corner area vector as ApcNpc ¼ Rp� þ2Rp

3 L�pcN
�
pc þ

Rpþ þ2Rp

3 LþpcN
þ
pc . The parti-

tion into sub-cells Xpc is shown.
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Z
@Xc

PU � NRdL ¼
X

p2PðcÞ

Z
@Xpc\@Xc

PNRdL

 !
� Up ¼

X
p2PðcÞ

Fpc � Up:

Substituting the previous results into system (6c) yields

mc
d
dt

1
qc

� �
�
X

p2PðcÞ
ApcNpc � Up ¼ 0; ð14aÞ

mc
d
dt

Uc þ
X

p2PðcÞ
Fpc ¼ aPcAceY ; ð14bÞ

mc
d
dt

Ec þ
X

p2PðcÞ
Fpc � Up ¼ 0: ð14cÞ

We have expressed the numerical fluxes in terms of the corner area
vector, the sub-cell force and the nodal velocity. The last two re-
main to be determined to complete the discretization. This task is
achieved by investigating the thermodynamic consistency and the
conservation of the sub-cell force-based discretization [4]. To en-
sure a local entropy inequality, it is sufficient to postulate the fol-
lowing form for the sub-cell force:

Fpc ¼ApcPcNpc �MpcðUp � UcÞ: ð15Þ

Here Mpc is a sub-cell based 2 � 2 matrix such that: Mpc is symmet-
ric, and, Mpc is positive semi-definite. The physical dimension of Mpc

corresponds to an area times a density times a velocity. We remark
that entropy production within cell c is directly governed by the
general form of the sub-cell matrix Mpc and the velocity jump be-
tween the nodal and the cell-centered velocity, DUpc = Up � Uc. Fi-
nally total energy conservation is ensured provided that for all
point pX
c2CðpÞ

Fpc ¼ 0: ð16Þ

We remark that this last equation is the same condition than the
one obtained in Cartesian geometry for any compatible cell-cen-
tered or staggered sub-cell based discretization. Moreover under
this condition, and, up to the boundary terms and the radial source
term contributions, momentum is conserved over the entire do-
main. This result is remarkable in the sense that it is written under
the same form regardless the geometry.

The last unknowns of the scheme, namely the sub-cell matrix
Mpc and the node velocity Up, are obtained thanks to a node-cen-
tered Riemann solver.

3.3. Node-centered Riemann solver

The node-centered solver that provides the grid velocity is
obtained as a consequence of total energy conservation. Substitut-
ing the sub-cell force (15) into (16) gives for all point p

MpUp ¼
X

c2CðpÞ
ðApcPcNpc þMpcUcÞ; ð17Þ

where Mp is the sum of the corner matrices around node p, which is
defined as Mp ¼

P
c2CðpÞMpc . We construct the natural extension of

the Cartesian cell-centered scheme [3] to cylindrical geometry by
defining the corner matrix as

Mpc ¼ z�pcR
�
pcL�pc N�pc � N�pc

� �
þ zþpcR

þ
pcLþpc Nþpc � Nþpc

� �
; ð18Þ

where R�pc ¼ 1
3 Rp� þ 2Rp
� 	

. We recall that z�pc are the generalized
non-linear corner impedances given by z�pc ¼ qc ac þ Ccj½
ðUp � UcÞ � N�pcj�, where ac is the isentropic sound speed and Cc is a
material dependent parameter, which is given by cþ1

2 in case of a
gamma gas law. Note that this formula is the two-dimensional
extension of the 2-shock swept mass flux defined for one-dimen-
sional approximate Riemann problem initially proposed by

Dukowicz [10] for shock wave. We also mention that we recover
the acoustic approximation by setting Cc = 0. One can easily check
that this definition leads to a symmetric positive definite Mpc ma-
trix. Therefore, Mp is also symmetric positive definite and thus al-
ways invertible, which defines a unique nodal velocity Up by
inverting Eq. (17). Let us mention that this solver preserves the
spherical symmetry in the case of a one-dimensional spherical flow
computed on an equal angle polar grid.

The high-order extension of our control volume discretization,
both in time and space, is obtained by using the Generalized Rie-
mann Problem (GRP) methodology in the acoustic approximation
(see [4] for the details). Moreover an extension of this cell-centered
Lagrangian scheme in area-weighted formulation is also available
[4]. For multi-species computation one simply considers the iso-
pressure, iso-temperature closure model. Each fluid is character-
ized by its mass fraction Cf, and during the Lagrangian phase, the
concentration of each fluid evolves following the trivial equation
d
dt Cf ¼ 0 (refer to [1]).

4. Rezone and remap in cylindrical geometry

As mentioned in [1] ReALE consists in modifying the rezone and
remap phases of an ALE code assuming that the Lagrangian scheme
can handle polygonal mesh. The cell-centered Lagrangian scheme
previously described in its control volume or area-weighted ver-
sion is well suited for this purpose. Therefore it is adopted as the
first phase of our ReALE algorithm. The extension of the rezone
and remap phases is presented in the following subsections.

4.1. Rezone phase through Voronoi machinery

In cylindrical geometry the simulation is performed on an ac-
tual 2D mesh. Any notion of mesh symmetry is therefore to be con-
sidered in the plane (Z,R). Consequently, the rezone phase is
assumed to operate on this plane behaving ‘‘as a Cartesian plane”.
Therefore neither the generator displacement nor the Voronoi
machinery is modified compared to [1]. However because ReALE
cornerstone lays in the generator displacement and for the sake
of clarity we recall these steps.

Let Xn
c and Xnþ1

c denotes the Lagrangian cells at time tn and
tn+1 = tn + Dt, where Dt is the current time step. The position vector
of the generator of the Lagrangian cell Xn

c is denoted Gn
c (see Fig. 3).

We will define the new position of the generator at time tn+1. First,
we compute a Lagrangian-like displacement of the generator by
setting

Gnþ1;lag
c ¼ Gn

c þ DtUc; ð19Þ

where Uc is the ‘‘pseudo-Lagrangian” velocity of the generator with-
in the cell. This velocity is computed so that the generator remains
located in the new Lagrangian cell. To this end we define this veloc-
ity to be the average of the velocities of the points of the cell,
namely Uc ¼ 1

jPðcÞj
P

p2PðcÞU
nþ1

2
p . Here U

nþ1
2

p is the time-centered veloc-
ity of point p between times tn and tn+1. Any other formula could
be used, as instance by weighting the point velocity by the distance
between Gn

c and Xn
c . Let us introduce the centroid of the Lagrangian

cell Xnþ1
c ¼ 1

jXnþ1
c j

R
Xnþ1

c
XdV , where jXnþ1

c j denotes the volume of the
cell Xnþ1

c . The updated position of the generator is defined by mean
of a convex combination between the new Lagrangian-like position,
Gnþ1;lag

c and the centroid Xnþ1
c of the Lagrangian cell

Gnþ1
c ¼ Gnþ1;lag

c þxc Xnþ1
c � Gnþ1;lag

c

� �
; ð20Þ

where xc 2 [0;1] is a parameter that remains to determine.With
this convex combination, the updated generator lies in between
its Lagrangian position at time tn+1 and the centroid of the Lagrang-
ian cell Xnþ1

c .We note that for xc = 0 we get a Lagrangian-like
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motion of the generator whereas for xc = 1 we obtain a centroidal-
like motion, which tends to produce a smooth mesh.1 We compute
xc requiring that the generator displacement satisfies the principle
of material frame indifference, that is for pure uniform translation
or rotation we want xc to be zero.To this end, we construct xc using
invariants of the right Cauchy–Green strain tensor associated to the
Lagrangian cell Xc between times tn and tn+1.Let us recall some gen-
eral notions of continuum mechanics to define this tensor.First, we
define the Cartesian deformation gradient tensor F ¼ @Xnþ1

@Xn , where
Xn+1 = (Xn+1,Yn+1)t denotes the vector position of a point at time
tn+1 that was located at position Xn = (Xn,Yn)t at time tn.The Carte-
sian deformation gradient tensor is the Jacobian matrix of the
map that connects the Lagrangian configurations at time tn and
tn+1.The right Cauchy–Green strain tensor, C = FtF, is a 2 � 2 sym-
metric positive definite tensor.We notice that this tensor reduces
to the unitary tensor in case of uniform translation or rotation. It ad-
mits two positive eigenvalues, k1 and k2 with the convention
k1 6 k2.These can be viewed as the rates of expansion in a given
direction during the transformation.To determine xc, we first con-
struct the cell-averaged value of the deformation gradient tensor,
Fc, and then the cell-averaged value of the Cauchy–Green tensor
by setting Cc ¼ Ft

cFc .Noticing that the two rows of the F matrix cor-
respond to the gradient vectors of the X and Y-coordinates, we can
set Ft ¼ ½$nXnþ1;$nYnþ1�, where for any functionsw = w(Xn), we have
$nw ¼ @w

@Xn ;
@w
@Yn

� 	t
. With these notations, one defines the cell-aver-

aged value of the gradient of the w function over the Lagrangian cell
Xn

c

ð$nwÞc ¼
1
jXn

c j

Z
Xn

c

$nwdV ¼ 1
jXn

c j

Z
@Xn

c

wNdS

’ 1
jXn

c j
XjPðcÞj
p¼1

1
2

wn
p þ wn

pþ1

� �
Ln

p;pþ1N
n
p;pþ1 ð21Þ

where wn
p � wðXn

pÞ and Ln
p;pþ1N

n
p;pþ1 is the unit outward normal to the

edge Xn
p;X

nþ1
p

h i
. In the previous equation, we have first used the

Green formula then an approximation of the integral using the trap-
ezoidal rule on a polygonal cell. Applying (21) to w = Xn+1 and
w = Yn+1 we get a cell-averaged expression of the gradient tensor F

and, consequently deduce the cell-averaged value of the tensor Cc.

Knowing this symmetric positive definite tensor in each cell, we
compute its real positive eigenvalues k1,c, k2,c and define the param-
eter xc ¼ 1�ac

1�amin
, where ac ¼ k1;c

k2;c
and amin = mincac. We emphasize the

fact that for uniform translation or rotation k1,c = k2,c = 1 and xc = 0,
therefore the motion of the generator is quasi Lagrangian and we ful-
fill the material frame indifference requirement. For other cases, xc

smoothly varies between 0 and 1. Once the new generator position
Gnþ1

c is computed one constructs the corresponding Voronoi mesh
using the Voronoi machinery. This mesh needs a last treatment as
this Voronoi mesh may have arbitrary small edges. Such edges can
drastically and artificially reduce the time step, and, more important
can lead to a lack of robustness. Even if in theory such faces could be
kept, we prefer to remove/clean them, see [1].

4.2. Remap phase by exact-intersection

The remapping phase is a conservative interpolation of physical
variables from the Lagrangian polygonal mesh at the end of the
Lagrangian step onto the new polygonal mesh after the rezone
step. The remapping phase must provide valid physical variables
to the Lagrangian scheme, and conservation of mass, momentum
and total energy must be ensured. Moreover at least a second-or-
der accuracy remapping has to be constructed. In ReALE the re-
zoned mesh may have a different connectivity than the
Lagrangian mesh. Therefore the remapping phase of ReALE is based
on exact-intersection of a priori two different polygonal meshes.
Primary variables are cell-centered density, velocity and specific
total energy. Conservative quantities are cell-centered mass,
momentum and total energy. First piecewise linear representations
of cell-centered variables qc, qcUc, qcEc are constructed on the
Lagrangian mesh. Then a slope limiting process [12] is performed
to enforce physically justified bounds. This phase does not change
compared to the Cartesian geometry. Then conservative quantities,
namely mass, momentum and total energy, are obtained by inte-
gration of these representations in cylindrical geometry. Moreover
for multi-species computation each mass fraction is remapped.

4.2.1. Control volume based remap
In control volume formulation, volume integrations are per-

formed using the true cylindrical volume, V ¼
R

X RdA, that is to
say the measure of the volume obtained by rotation of the surface
X about the Z-axis. New conservative quantities are calculated by
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1 This latter case is equivalent to perform one Lloyd iteration [11].
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integration over polygons of intersection of new (rezoned) and old
(Lagrangian) meshes. Let us consider one non empty polygon
resulting from the intersection between an old cell Xold

c and a
new cell Xnew

d namely Xcd ¼ Xold
c

T
Xnew

d . Then the mass embedded
into this polygon is obtained by integration over Xcd of the piece-
wise linear limited representation of cell-centered density qc(X)

Dmcd ¼
Z

Xcd

qcðXÞRdA: ð22Þ

Due to the linear representation of qc(X), the previous equation
exhibits the integrals of R; R2; RZ which are reduced by the Green
theorem to the boundary integrals, and subsequently evaluated
from the coordinates of the Xcd region vertices. As a consequence
the mass in any new cell Xnew

d ¼
S

cXcd is simply obtained by
summation

mnew
d ¼

Z
Xnew

d

qðXÞRdA ¼
Z
S

c
Xcd

qðXÞRdA ¼
X

cnXcd–;
Dmcd: ð23Þ

Momentum and total energy are calculated likewise. Finally, pri-
mary variables in Xd are recovered by division by new volume
Vnew

d (for density) or new mass mnew
d (for momentum and energy).

To use the multi-species EOS, we need to remap the concentra-
tions of the F fluids from the Lagrangian grid onto the rezoned one.
To this end, we first compute the mass of fluid f in the Lagrangian

cell Xold
c ; mf ;c ¼

R
Xold

c
qCRdA. We note that mold

c ¼
PF

f¼1mf ;c sincePF
f¼1Cf ;c ¼ 1. Then, the mass of each fluid is conservatively interpo-

lated onto the rezoned grid following the methodology previously
described. We denote its new value by mnew

f ;c . At this point we no-

tice that mnew
c –

PF
f¼1mnew

f ;c , this discrepancy comes from the fact
that our second-order remapping does not preserve linearity due
to the slope limiting. Hence, we define the new concentrations

Cnew
f ;c ¼

mf ;cnew

mnew
c

and impose the renormalization Cnew
f ;c  

Cnew
f ;cPF

f¼1
Cnew

f ;c

so

that
PF

f¼1Cnew
f ;c ¼ 1. We point out that this renormalization does

not affect the global mass conservation.

4.2.2. Area-weighted based remap
The difference between control volume and area-weighted for-

mulation lays in the form of the momentum equation. As previ-
ously mentioned Eq. (7) has the same form as in Cartesian
geometry modulo the presence of the Cartesian inertia
lc ¼ mcRc . Consequently the remapping of the momentum equa-
tion in area-weighted cylindrical geometry is performed as in
Cartesian geometry. Then the momentum embedded into
Xcd ¼ X old

c

T
Xnew

d is obtained by integration of the piecewise linear
limited representation of cell-centered momentum (qU)c(X)

DWcd ¼
Z

Xcd

ðqUÞcðXÞRdA ¼ Rc

Z
Xcd

ðqUÞcðXÞdXdY ;

where the integration is performed over the Cartesian volume dXdY.
The momentum in a new cell Xnew

d is given by

Wnew
d ¼

Z
Xnew

d

ðqUÞcðXÞRdA ¼
Z
S

c
Xcd

ðqUÞcðXÞRdA ¼
X

cnXcd–;
DWcd:

The new velocity in cell Xnew
d is finally given by

Unew
d ¼Wnew

d

ld
¼Wnew

d

mnew
d

Rd
new;

where mnew
d has been remapped using the true cylindrical volume

and Rd
new has been recomputed on the new area Anew

d .

5. Numerical tests

In this section we present the numerical results obtained by the
cylindrical cell-centered ReALE code based on CHIC code, [3]. Let us
remind that any vector is written in the (Z,R) space and that multi-
species test cases are run with concentration equations. The first
test is the well-known Sedov test case; it is used as a sanity check
as no physical vorticity is expected to occur and therefore recon-
nection-based methods are not required. The second is a helium
bubble shock interaction in cylindrical geometry, it is run in order
to show the predictive capabilities of ReALE technique. This test
generates vorticity which is a classical cause of failure for Lagrang-
ian schemes. For a fixed-connectivity ALE code, it usually leads to a
conflict between the Lagrangian motion with a tendency to tangle
the mesh and, the mesh-regularization motion with a tendency to
avoid bad quality cells. Such a conflict produces a stagnation of the
mesh that reconnection technique is intended to cure [1]. Experi-
mental results of the shock/bubble interaction are compared to
the simulations. The last test problem is the rise of a light bubble
under gravity for which the same type of vortex motion is ex-
pected. As no mesh symmetry is supposed to be preserved, we
run the code in its control volume formulation for the last two test
cases. Only the Sedov problem is run in area-weighted formulation
to show the ability of the code to handle this formulation.

5.1. Sedov problem

Let us consider the Sedov blast wave problem with spherical
symmetry. This problem models an intense explosion in a perfect
gas with a diverging shock wave. The computational domain is
X = [0,1.2] � [0,1.2]. The initial conditions are characterized by
(q0,P0,U0) = (1,10�6,0) for a perfect gas with polytropic index set
to c ¼ 7

5. We set an initial delta-function energy source at the origin
prescribing the pressure in the cell containing the origin as
P or ¼ ðc� 1Þq0

E0
Vor

, where Vor denotes the volume of the cell and
E0 is the total amount of released energy. Choosing E0 ¼
0:425536, the solution consists of a diverging shock whose front
is located at radius R = 1 at time t = 1. The peak density reaches
the value 6. Symmetry boundary conditions are applied on the axis.
The initial mesh is a degenerate Voronoi mesh obtained from
50 � 50 uniformly distributed generators and four more generators
on the corners of the domain. This test does not need ALE, and a
fortiori ReALE, technique; pure Lagrangian schemes usually per-
form well. However this is used to assess the validity of ReALE ap-
proach. We present the density and mesh in Fig. 4 left-panel.
Moreover density is presented as a function of the cell radius for
any cell against the exact solution (straight line) in the right-panel
of Fig. 4. The final Lagrangian mesh presents expanded cells in the
rarefaction wave and compressed ones after the shock wave. On
this sanity check ReALE technique in cylindrical geometry is able
to produce a smooth mesh and accurate results.

5.2. Helium bubble shock interaction

The computational domain is X = [0;0.65] � [0;0.089] which
represents a cylinder of diameter 0.178 and initial length 0.65.
The spherical helium bubble is represented as a disk defined by
the coordinates of its center (Zc,Rc) = (0.320,0) and its radius
Rb = 0.0225 (see Fig. 5). We prescribe wall boundary conditions at
each boundary except at Z = 0.65, where we impose a piston-like
boundary condition defined by the inward velocity Vw = (uw,0).
The incident shock wave is defined by its Mach number,
Ms = 1.25. The bubble and the air are initially at rest. The initial
data for helium are (q1,P1) = (0.182,105), its molar mass is
M1 ¼ 5:269� 10�3 and its polytropic index is c1 = 1.648. The initial
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data for air are (q2,P2) = (1,105), its molar mass is M2 ¼ 28:963
�10�3 and its polytropic index is c2 = 1.4. Specific internal energies
are e1 = 8.4792 � 105 and e2 = 2.5 � 105. Using the Rankine–
Hugoniot relations, we find that the velocity of the piston is given
by uw = �140.312. The incident shock velocity is Dc = �467.707.
The incident shock wave hits the bubble at time ti = 657.463 � 10�6.
The stopping time for our computation is tend = ti + 1594 � 10�6 =
2251.463 � 10�6. The mesh is built with a set of 4856 generators
designed to produce a Voronoi mesh that has a mesh line which
exactly matches the bubble boundary, see Fig. 5. In all figures the
top part is the actual computational domain that is mirrored
around the Z-axis for visualization purposes. In Fig. 6 are displayed
density and mesh around the bubble for five intermediate times
and the final time of the simulation, namely ta = ti + 20 � 10�6,
tc = ti + 145 � 10�6, td = ti + 223 � 10�6, tf = ti + 600 � 10�6 and
tg = ti + 1594 � 10�6. These correspond to five shadow-photo-
graphs of experimental results from [13] (Fig. 8 of page 53) that
we reproduced in Fig. 6 (right-panels). Let us note that the final
time has a different color scale and that the visualization window
follows the bubble. We observe a quite good agreement with the
experimental results even for this coarse mesh; the timing of the
shock waves and the shape of the deformed bubble fit the sha-
dow-graphs of the experimental results. Of great importance is
the fact that the bubble detaches from the Z-axis at tf and more
clearly at tg, this can be also guessed from the experimental sha-
dow-graphs. Finally in Fig. 7 are displayed the density waves pres-
ent in the full domain at intermediate times tb = ti + 82 � 10�6,

tc = ti + 145 � 10�6, td = ti + 223 � 10�6, and te = ti + 1007 � 10�6.
The dark zones are the inside bubble and the air that has not been
yet attained by the initial shock wave. Multiple reflections and
refractions can be observed in the density wave patterns.

5.3. Rise of a light bubble under gravity

This problem consists in the rise of a light bubble in a heavy gas
bubble under gravity [14]. The statement of the problem is sketched
in Fig. 8. The computational domain is X = [�15,20] � [0,15]. This
domain is split into three regions filled with air (ideal gas EOS with
c = 1.4) at rest. One defines for each point (Z,R) its radius

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Z2

p
and angle h so that Z(R,h) = Rcosh. The initial data

are given in Zone I (inside the bubble), Zone II (transition layer)
and Zone III (exterior) by

Zone I Zone II Zone III
R 6 R1 R1 < R < R2 R P R2

e1 = 3 � 103 e2(R) e3 = 15.6
p1 = 0.6 p2(R,h) p3(R,h) = 0.6e�Z(R, h)/D

R1 = 6.6 is the radius of the light bubble, R2 = 8.5 is the radius of the
transition layer towards the atmosphere, D = 63.7 is the inhomoge-
neity parameter for the atmosphere. In Zone II a linear transition is
applied between the values of p and e of Zones I and III
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p2ðR; hÞ ¼ ð1� aðRÞÞp1 þ aðRÞp3ðR; hÞ;
e2ðRÞ ¼ ð1� aðRÞÞe1 þ aðRÞe3;

with a(R) = (R � R1)/(R2 � R1). Gravity is set downward the Z direc-
tion with magnitude G = 9.8 � 10�2 see Fig. 8.The bubble rises in
the Z direction because of the density gradients and velocity. In
its motion it further deforms into a classical mushroom shape.
The final time is tfinal = 14. The initial mesh is made of a total of

1901 cells split into roughly 1200 quadrangles outside Zone II
and 653 polygonal cells inside refer to Fig. 9 top-middle panel.
Walls boundary conditions are assumed everywhere besides for
the Z-axis where symmetry boundary condition is applied. In
Fig. 9 left column are plotted the density and mesh for the time
moments t0 = 0, t1 = 1, t2 = 8 and t3 = 14. As for the bubble/shock
problem the visualization is performed after reflection against
the Z-axis. The colored vorticity and vector velocity fields are
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shown in Fig. 9 middle and right columns respectively. As ex-
pected the bubble rises upwards the Z direction. It adopts a mush-
room shape as can be seen in Fig. 9 at t3 = 14. Time t1 = 1 shows
how the ReALE technology starts to adapt the mesh while waves
are emanating from the bubble. At time t2 = 8 the bubble starts
to deform while the cells ahead the tip of the bubble are highly
compressed; this process is pursued up to final time. Vorticity
and velocity vector plots confirm that the fluid undergoes a vor-
tex-like motion. Such a vortex-like motion has a natural tendency
to highly stretch cells in classical ALE simulation without recon-
nection leading to inaccuracy or failure of the simulation. Con-
trarily ReALE is able to undergo such motion while allowing
cells to change neighborhood. These ReALE results are in agree-
ment with the numerical results provided in [14]. In this paper
the authors use a different numerical method that leads to a
non smooth polygonal mesh as shown in Fig. 4.19 of page 111.

ReALE technique form this point of view seems superior as our
mesh keeps a general good geometrical quality.

6. Conclusion and perspectives

In this paper we investigate the extension to cylindrical geom-
etry of the recently developed Reconnection Arbitrary-Lagrangian–
Eulerian (ReALE) technology [1]. This extension is fairly obvious;
indeed, the cell-centered Lagrangian scheme was already available
in cylindrical geometry using a control volume or area-weighted
formulation. Moreover, the rezone technology using Voronoi
machinery with moving generators introduced in [1] can be used
likewise. The last part of our ReALE code, namely the remapping
part, is more demanding as it must utilize a control volume based
exact-intersection of a priori two different polygonal meshes
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provided by the Lagrangian and rezone phases. In the control
volume formulation true volume integrals are used to remap mass,
momentum and total energy whereas in area-weighted formula-
tion the momentum is remapped as in Cartesian geometry.
Multi-fluid is treated with concentration equations that must be
remapped likewise.

We show that the extension of ReALE to cylindrical geometry
produces good results on numerical test cases. First we run the Se-
dov problem as a sanity check. Then we simulate an helium bubble
shock interaction problem. We compare our multi-species simula-
tion against experimental shadow-graphs proving the validity and
accuracy of the ReALE technology in cylindrical geometry. The last
problem is the rise of a light bubble under gravity that presents
vortex-like motion. Unlike ReALE, a classical fixed-connectivity
ALE code usually presents difficulties to capture such a motion.

In the near future we plan to investigate the association of ReALE
with interface reconstruction in planar and cylindrical geometries.
Moreover we will investigate the possible extension of ReALE to 3D.
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