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the seven equation Baer-Nunziato model of compressible multi-phase flows as a rep-
resentative model involving non-conservative products as well as relaxation source
terms which are allowed to become stiff. The new scheme is validated against a set
of test cases on 2D/3D unstructured moving meshes on parallel machines and the
high order of accuracy achieved by the method is demonstrated by performing a nu-
merical convergence study. Classical Riemann problems and explosion problems with
exact solutions are simulated in 2D and 3D. The overall numerical code is also profiled
to provide an estimate of the computational cost required by each component of the
whole algorithm.
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1 Introduction

In this work we pursue the development of the direct cell-centered Arbitrary-Lagrangian-
Eulerian (ALE) ADER algorithm [? ] supplemented with a posteriori Multi-dimensional
Optimal Order Detection (MOOD) stabilization technique. In [? ] the ALE-ADER-MOOD
numerical scheme has been solely tested and validated on the hydrodynamics system of
conservation laws in multiple space dimensions on unstructured meshes. The hydrody-
namics equations have been used as a first non-trivial hyperbolic system generating com-
plex physical features (vorticity, shocks, contacts, wave interactions, etc.) which might
be difficult to capture with a numerical scheme. We have shown that the ALE-ADER-
MOOD approach can accurately solve such a system in 2D and 3D on unstructured mov-
ing grids.

Nonetheless, the Euler equations of compressible gas dynamics are relatively simple
compared to more advanced models used in different fields of computational physics.
Unfortunately the complexity of these models immutably leads to more equations to be
solved as well as to more demanding terms, such as stiff sources, non-conservative prod-
ucts and/or constraints (divergence free, positivity). Dealing with such systems is an
interesting challenge for high-order numerical schemes on moving unstructured meshes.

In this work we consider the seven-equation Baer-Nunziato (BN) system [2] that mod-
els compressible two-phase flows. The BN model consists in the combination of two
systems of compressible Euler equations, one for each phase, coupled together via non-
conservative products and relaxation sources. Exact numerical solutions, in ideal situ-
ations, can also be derived, which help the validation of our numerical method. The
Baer-Nunziato system is used in this paper as a representative example of more complex
physical systems of PDEs encountered in other fields of physics, hence requiring efficient,
accurate and robust algorithms to be solved numerically.

Our aim is to show that the a posteriori MOOD stabilization technique developed in
[13, 21, 22, 43? ] can deal with such complex balance laws for which the occurrence
of non-conservative and/or (stiff) source terms is part of modeling, and, as such, must
be properly solved. The general framework for our study originates from [? ], where
the a priori WENO technique is then replaced by an a posteriori MOOD technique [? ].
Within the a posteriori MOOD context several difficult properties are more easily fulfilled
such as the positivity preservation of some physical quantities (density, internal energy
and pressure). This substitution must be adapted to the presence of non-conservative
products and stiff sources.

The rest of this paper is organized as follows. The second section briefly presents
the direct high order accurate unlimited ADER Arbitrary-Lagrangian-Eulerian (ALE)
scheme that was previously designed in [? ], while in Section 3 the a posteriori MOOD
technique is fully described, including the detection criteria which are properly selected
and chosen for the Baer-Nunziato model. Decrementing technique as well as implemen-
tation issues and developer choices (cascade of schemes, parachute bullet-proof scheme)
are discussed there. In Section 4 we gather the numerical results for a set of test cases
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run in 2D and 3D. Complex flows involving interacting shock waves, contact discontinu-
ities and rarefaction waves are considered. A profiling of the overall direct ALE code is
provided in order to measure the relative cost of its main components. From these tests
and a code profiling we will be able to assess the validity, efficiency and robustness of our
high order accurate ALE scheme supplemented with the a posteriori MOOD detection and
decrementing technique. Conclusions and perspectives are proposed in Section 5.

2 Direct high accurate unlimited ADER Arbitrary-Lagrangian-
Eulerian scheme

In this paper we consider nonlinear systems of hyperbolic balance laws which may con-
tain non-conservative products and source terms that might become stiff. For the sake
of completeness we present in the following the three dimensional formulation of the
governing equations, knowing that the two dimensional equations can be obtained by
neglecting the z component and all its associated variables. A general formulation of
such systems is given by

∂Q
∂t

+∇·F(Q)+B(Q)·∇Q=S(Q), x∈Ω⊂R3,t∈R+
0 , (2.1)

where Q=(q1,q2,··· ,qv) is the vector of v conserved variables, F=(f,g,h) is the conser-
vative nonlinear flux tensor, B = (B1,B2,B3) is the purely non-conservative part of the
system written in block-matrix notation and S(Q) is the vector of algebraic source terms.
We furthermore introduce the abbreviation P=P(Q,∇Q)=B(Q)·∇Q to ease notation in
some parts of the manuscript.

In our moving mesh framework the computational domain Ω(t)⊂R3 is discretized
at any time level tn by a set of moving and deforming tetrahedral elements Tn

i . NE de-
notes the total number of elements and the union of all elements is referred to as the
tetrahedrization T n

Ω of the domain:

T n
Ω =

NE⋃
i=1

Tn
i . (2.2)

We assume that the mesh configuration continuously changes in time. Consequently
we adopt the mapping between the physical element Tn

i to the reference element Te de-
fined in the reference coordinate system ξ−η−ζ, see Fig. 1.

The spatial reference element Te is the unit tetrahedron defined by the vertices ξe,1 =
(ξe,1,ηe,1,ζe,1) = (0,0,0), ξe,2 = (ξe,2,ηe,2,ζe,2) = (1,0,0), ξe,3 = (ξe,3,ηe,3,ζe,3) = (0,1,0) and
ξe,4 =(ξe,4,ηe,4,ζe,4)= (0,0,1), where ξ =(ξ,η,ζ) and x=(x,y,z) are the vector of the spa-
tial coordinates in the reference system and the position vector in the physical system,
respectively. Let Xn

k,i =(Xn
k,i,Y

n
k,i,Z

n
k,i) be the vector of physical spatial coordinates of the

k-th vertex of tetrahedron Tn
i , then the linear mapping from Tn

i to Te reads

x=Xn
1,i+

(
Xn

2,i−Xn
1,i
)

ξ+
(
Xn

3,i−Xn
1,i
)

η+
(
Xn

4,i−Xn
1,i
)

ζ. (2.3)
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Figure 1: Spatial mapping from the physical element Tn
i defined with x=(x,y,z) to the unit reference tetrahedron

Te in ξ=(ξ,η,ζ).

For any finite volume scheme data are represented by piecewise constant cell aver-
ages at a given time level. As a consequence, we define at each time level tn within the
control volume Tn

i the mean value of the state vector Qn
i as

Qn
i =

1
|Tn

i |

∫
Tn

i

Q(x,tn) dx, (2.4)

where |Tn
i | is the volume of element Tn

i .
In the next section a polynomial reconstruction technique is described and used to ob-

tain piecewise high order unlimited polynomials wh(x,tn) from the known cell averages
Qn

i . Contrarily to [25? ] we do not employ a WENO technique to limit the reconstruction,
instead we use an iterative a posteriori MOOD loop presented in Section 3. High order
of accuracy in time is achieved by applying a local space-time discontinuous Galerkin
predictor method starting from the high order reconstruction polynomials wh(x,tn) (see
Section 2.2).

2.1 Polynomial reconstruction

The reconstruction operator generates piecewise polynomials wh(x,tn) of degree M which
are computed for each element Tn

i considering the so-called reconstruction stencil Si
and its associated known cell averages. The reconstruction stencil Si is composed of
a number ne of neighbor elements of Tn

i , which is bigger than smallest number M=
(M+1)(M+2)(M+3)/6 needed to reach the nominal order of accuracy M+1, accord-
ing to [6, 41, 47]. As suggested in [29, 30], for an unstructured mesh we usually take
ne' d·M, with d∈ [2,3] representing the number of space dimensions. The stencil is re-
cursively constructed: first the Voronoi neighborhood of the current cell Tn

i is listed in
stencil Si, then, if the number of elements has not reached the prescribed number ne, the
Voronoi neighborhood of any cell already stored in Si is added to this list, etc.
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In the WENO approach adopted in [8, 25, 25? ? ? ? ], nine reconstruction stencils
are first determined and further used to compute nine different polynomials for each cell
of the computational domain. These stencils are supposed to cover sufficiently enough
“directions” for the polynomials in order to “catch” local phenomena. Next, these nine
polynomials are blended with nonlinear weights to obtain the actual high order WENO
limited polynomials wh(x,tn).

In this work only one central stencil is considered with ne elements, hence we com-
pute only one high order reconstruction polynomial per cell, as done in [? ]. Let us call
this unique stencil Si, hence

Si =
ne⋃

j=1

Tn
m(j), (2.5)

where 1≤ j≤ne is a local index counting the elements in the stencil and m(j) is a mapping
from the local index j to the global index of the element in T n

Ω . We rely on the orthogonal
Dubiner-type basis functions ψl(ξ,η,ζ) [17, 23, 40], defined on the reference element Te,
to explicitly write the high order reconstruction polynomial as

wh(x,tn)=
M
∑
l=1

ψl(ξ)ŵn
l,i :=ψl(ξ)ŵn

l,i, (2.6)

where the mapping to the reference coordinate system is given by (2.3) and ŵn
l,i denote

the unknown degrees of freedom, also called expansion coefficients, of the reconstruction
polynomial on stencil Si for element Tn

i at time tn. In the rest of the paper we will use the
tensor index notation based on the Einstein summation convention implying summation
over two equal indices.

We require integral conservation for the reconstruction on each element Tn
j belonging

to stencil Si, therefore

1
|Tn

j |

∫
Tn

j

ψl(ξ)ŵn
l,idx=Qn

j , ∀Tn
j ∈Si. (2.7)

This yields an overdetermined linear system of equations for the unknowns ŵn
l,i that can

be solved using either a least squares technique (LSQ), see [30], or a more sophisticated
singular value decomposition (SVD) algorithm. The so-called reconstruction matrix, that
is given by the integrals of the linear system (2.7), depends on the current configuration
of the elements in stencil Si which are moving in an ALE framework. As a consequence
the reconstruction matrix can not be inverted and stored in the preprocessing step as
done in the Eulerian framework [30, 43]. Here, system (2.7) is solved on-the-fly at each
timestep for each reconstruction stencil Si, whose topology remains constant in time since
we assume that the mesh connectivity does not change. For further details on the recon-
struction technique we refer the reader to [30? ].
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2.2 Local space-time Discontinuous Galerkin predictor on moving curved meshes

The reconstructed polynomials wh(x,tn) computed at time tn are then evolved during one
time step locally within each element Ti(t), without needing any neighbor information,
but still solving the original PDEs (2.1). As a result one obtains piecewise space-time
polynomials of degree M, denoted by qh(x,t), that allows the scheme to achieve high
order of accuracy even in time.

An element-local weak space-time formulation of the governing equations (2.1) is em-
ployed, following the approach developed in the Eulerian framework on fixed grids by
Dumbser et al. in [24, 27, 28, 36]. Later, such technique has been extended to the La-
grangian framework on moving grids in 1D and 2D [8, 25, 32? ? ? ] and to moving
tetrahedral meshes in 3D [? ]. All the details regarding the description of the local space-
time Galerkin predictor can be found in the aforementioned references, hence we limit us
to briefly recall it in the following.

According to [27, 33, 36? ] we use the local space-time Discontinuous Galerkin pre-
dictor method due to the presence of stiff source terms. Let x= (x,y,z) and ξ = (ξ,η,ζ)
be the spatial coordinate vectors defined in the physical and in the reference system,
respectively, and let x̃=(x,y,z,t) and ξ̃ =(ξ,η,ζ,τ) be the corresponding space-time co-
ordinate vectors. Let furthermore θl = θl(ξ̃)= θl(ξ,η,ζ,τ) be a space-time basis function
defined by the Lagrange interpolation polynomials passing through the space-time nodes
ξ̃m =(ξm,ηm,ζm,τm), which are defined by the tensor product of the spatial nodes of clas-
sical conforming high order finite elements in space and the Gauss-Legendre quadrature
points in time.

Since the Lagrange interpolation polynomials lead to a nodal basis, the functions θl
satisfy the following useful interpolation property:

θl(ξ̃m)=δlm, (2.8)

where δlm denotes the Kronecker symbol. Following [24], the local solution qh, the fluxes
Fh = (fh,gh,hh), the source term Sh and the non-conservative products Ph =B(qh)·∇qh,
are approximated within the space-time element Ti(t)×[tn;tn+1] with

qh=qh(ξ̃)=θl(ξ̃)q̂l,i, Fh=Fh(ξ̃)=θl(ξ̃)F̂l,i, Sh=Sh(ξ̃)=θl(ξ̃)Ŝl,i, Ph=Ph(ξ̃)=θl(ξ̃)P̂l,i.
(2.9)

Using (2.8) we evaluate in a pointwise manner the degrees of freedom of Fh, Sh and
Ph from qh as

F̂l,i =F(q̂l,i), Ŝl,i =S(q̂l,i), P̂l,i =P(q̂l,i,∇q̂l,i), ∇q̂l,i =∇θm(ξ̃ l)q̂m,i, (2.10)

with ∇q̂l,i representing the gradient of qh at node ξ̃ l .
An isoparametric approach is adopted, where the mapping between the physical

space-time coordinate vector x̃ and the reference space-time coordinate vector ξ̃ is rep-
resented by the same basis functions θl used for the discrete solution qh. Consequently
we have

x(ξ̃)= θl(ξ̃)x̂l,i, t(ξ̃)= θl(ξ̃) t̂l , (2.11)
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where x̂l,i =(x̂l,i,ŷl,i, ẑl,i) are the degrees of freedom of the spatial physical coordinates of
the moving space-time control volume, which are unknown, while t̂l denote the known
degrees of freedom of the physical time at each space-time node x̃l,i =(x̂l,i,ŷl,i, ẑl,i, t̂l). The
mapping in time is simply linear

t= tn+τ∆t, τ=
t−tn

∆t
, ⇒ t̂l = tn+τl ∆t, (2.12)

with tn denoting the current time. ∆t is the time step and it is computed under a classical
Courant-Friedrichs-Levy number (CFL) stability condition, i.e.

∆t=CFLmin
Tn

i

di

|λmax,i|
, ∀Tn

i ∈Ωn, (2.13)

where di is the insphere diameter of tetrahedron Tn
i and |λmax,i| corresponds to the max-

imum absolute value of the eigenvalues computed from the solution Qn
i in Tn

i . On un-
structured meshes the CFL stability condition must satisfy the more restrictive inequality
CFL≤ 1

d .
The Jacobian of the space-time transformation from the physical to the reference ele-

ment and its inverse read

Jst =
∂x̃
∂ξ̃

=


xξ xη xζ xτ

yξ yη yζ yτ

zξ zη zζ zτ

0 0 0 ∆t

, J−1
st =

∂ξ̃

∂x̃
=


ξx ξy ξz ξt
ηx ηy ηz ηt
ζx ζy ζz ζt
0 0 0 1

∆t

. (2.14)

We point out that in the Jacobian matrix tξ=tη=tζ=0 and tτ=∆t, as can be easily derived
from the time mapping (2.12).

Let us introduce the nabla operator ∇ in the reference space ξ = (ξ,η,ζ) and in the
physical space x=(x,y,z):

∇ξ =


∂

∂ξ
∂

∂η
∂

∂ζ

, ∇=

 ∂
∂x
∂

∂y
∂
∂z

=

 ξx ηx ζx
ξy ηy ζy
ξz ηz ζz




∂
∂ξ
∂

∂η
∂

∂ζ

=

(
∂ξ

∂x

)T

∇ξ , (2.15)

and two integral operators

[ f ,g]τ =
∫
Te

f (ξ,η,ζ,τ)g(ξ,η,ζ,τ)dξ, 〈 f ,g〉=
1∫

0

∫
Te

f (ξ,η,ζ,τ)g(ξ,η,ζ,τ)dξdτ, (2.16)

that denote the scalar products of two functions f and g over the spatial reference element
Te at time τ and over the space-time reference element Te×[0,1], respectively.
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The system of balance laws (2.1) is then reformulated in the reference coordinate sys-
tem (ξ,η,ζ) using the inverse of the associated Jacobian matrix (2.14) adopting the gradi-
ent notation (2.15) as

∂Q
∂τ

+∆t

[
∂Q
∂ξ
· ∂ξ

∂t
+

(
∂ξ

∂x

)T

∇ξ ·F+B(Q)·
(

∂ξ

∂x

)T

∇ξQ

]
=∆tS(Q). (2.17)

By introducing the abbreviation H= ∂Q
∂ξ ·

∂ξ
∂t +

(
∂ξ
∂x

)T
∇ξ ·F+B(Q)·

(
∂ξ
∂x

)T
∇ξQ, then (2.17)

simplifies to
∂Q
∂τ

+∆tH=∆tS(Q). (2.18)

The numerical approximation of H is computed by the same isoparametric approach
(2.9), i.e. Hh = θl(ξ̃)Ĥl,i.

Inserting this approximation and (2.9) into (2.18), then multiplying (2.18) with a space-
time test function θk(ξ) and further integrating the resulting equation over the space-time
reference element Te×[0,1], one obtains a weak formulation of the original governing
PDE (2.1): 〈

θk,
∂θl

∂τ

〉
q̂l,i = 〈θk,θl〉∆t

(
Ŝl,i−Ĥl,i

)
.

The term on the left hand side can be integrated by parts in time, yielding

[θk(ξ,1),θl(ξ,1)]1 q̂l,i−
〈

∂θk

∂τ
,θl

〉
q̂l,i =[θk(ξ,0),ψl(ξ)]

0ŵn
l,i+〈θk,θl〉∆t

(
Ŝl,i−Ĥl,i

)
, (2.19)

where the initial condition of the local Cauchy problem wn
h has been introduced in a

weak form. The integrals appearing in (2.19), which are given definition (2.16), are evalu-
ated on the space-time reference element where also the basis functions θl(ξ̃) are defined.
Gaussian quadrature formulae of suitable order of accuracy are employed, see [54] for
details. Adopting the following more compact matrix-vector notation

K1=[θk(ξ,1),θl(ξ,1)]1−
〈

∂θk

∂τ
,θl

〉
, F0=[θk(ξ,0),ψl(ξ)], M= 〈θk,θl〉, (2.20)

we can rewrite system (2.19) into

K1q̂l,i =F0ŵn
l,i+∆tM

(
Ŝl,i−Ĥl,i

)
. (2.21)

Equation (2.21) constitutes de facto an element-local nonlinear system of algebraic
equations for the unknown space-time expansion coefficients q̂l,i. It is solved using the
following iterative scheme

q̂r+1
l,i −∆tK−1

1 MŜr+1
l,i =K−1

1

(
F0ŵn

l,i−∆tMĤr
l,i

)
, (2.22)
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where r denotes the iteration number. Stiff algebraic source terms S must be implicitly
discretized, see [27, 32, 33, 36].

Together with the solution, we have to evolve the geometry of the space-time con-
trol volume which moves in time. We choose to consider only the vertex coordinates of
element Tn

i , whose motion is described by the ODE system

dx
dt

=V(Q,x,t), (2.23)

with V = V(Q,x,t) denoting the local mesh velocity. Our Arbitrary-Lagrangian-Eulerian
(ALE) method allows the mesh velocity to be chosen independently from the fluid ve-
locity, so that the scheme may reduce either to a pure Eulerian approach in the case
where V= 0 or to an almost Lagrangian algorithm if V coincides with the fluid veloc-
ity v. Any other choice for the mesh velocity is also possible leading to an ALE regime.
Following the same philosophy as previously, the velocity inside element Ti(t) is also ex-
pressed in terms of the space-time basis functions θl as Vh = θl(ξ,τ)V̂l,i , with the notation
V̂l,i=V(q̂l,i,x̂l,i, t̂l). This approach gives a full space-time description of the time evolution
of the element geometry, because the solution of the trajectory equation (2.23) provides
the velocity vector for each space-time degree of freedom x̃l,i :=(x̂l,i, t̂l). Consequently, by
means of the isoparametric definition (2.11), one has a complete and continuous descrip-
tion of the high order space-time volume Ti(t)×∆t.

The local space-time DG method is used again to solve (2.23) for the unknown coor-
dinate vector x̃l =(xl ,yl ,zl ,tl), according to [8, 25, 32], hence

K1x̃l =[θk(ξ,0),x(ξ,tn)]0+∆tMV̂l,i, (2.24)

where x(ξ,tn) is given by the mapping (2.3) based on the known vertex coordinates of
tetrahedron Tn

i at time tn. The above system is iteratively solved together with (2.22) un-
til the residuals of the predicted solution at iteration r are less than a user-given tolerance,
typically set to 10−12. Since the initial condition for the predictor stage is given by the un-
limited reconstruction polynomials wh(x,tn) the iterative process described above might
fail, hence never achieving convergence. It may be related to positivity problems, as well
as to unphysical oscillations or Gibbs phenomena. Such issues will be properly treated
a posteriori by the MOOD loop, illustrated in Section 3, therefore we set also a maximum
number of iterations rmax for the solution of the coupled nonlinear system (2.22)-(2.24).
According to [24], for the linear homogeneous case at most (M+1) iterations are needed
to reach convergence. Because M≤ 5 in our work we typically set rmax = 20 to be more
generous in the case of this nonlinear inhomogeneous PDEs with stiff sources like sys-
tem (3.1). In this way the predictor stage ends either because the prescribed tolerance has
been reached or because the maximum number of iterations has been exceeded.

Once the above procedure is performed for all cells, an element-local predictor for
the numerical solution qh, for the fluxes Fh =(fh,gh,hh), for the source term Sh and also
for the mesh velocity Vh is available. This procedure is locally carried out for each cell,



10

consequently it remains to update the mesh motion globally, by assigning a unique ve-
locity vector to each node. To address this issue, in the next section a local nodal solver
algorithm for the velocity together with an embedded rezoning technique are presented.

2.3 Mesh motion

The aim of any ALE scheme is to follow as closely as possible the flow motion. The
fluid flow can generate highly deformed cells that may drastically reduce the admissible
timestep, according to (2.47), or even lead to tangled elements. In order to guarantee
excellent resolution properties for contact waves and material interfaces together with a
good mesh quality, the mesh velocity must be chosen carefully. For this reason a suitable
Lagrangian nodal solver technique [20, 45] is used to assign to each node k a unique
velocity vector Vk accurately representing the “true” fluid velocity, therefore leading to
the new vertex Lagrangian coordinates

XLag
k = Xn

k +∆tVk, (2.25)

where Xn
k are the coordinates of node k at the current time level tn.

To maintain an overall acceptable geometrical mesh quality we rely on a local rezon-
ing algorithm [42, 60] which yields a new vertex position XRez

k that does not take into
account the underlying flow features but only local geometrical characteristics. In this
work we use the algorithm proposed in [42] which carries on a minimization of a nodal
based local objective function.

The final node position is given by a weighted linear combination between the La-
grangian coordinates XLag

k and the rezoned coordinates XRez
k using the relaxation algo-

rithm from [35, 44], that is

Xn+1
k =XLag

k +ωk

(
XRez

k −XLag
k

)
, (2.26)

where ωk is a node-based coefficient associated to the deformation of the Lagrangian grid
over the time step ∆t, see [35, 44] for the details.

Since we are dealing with a direct ALE formulation the mesh velocity is a degree
of freedom. As a consequence we could run our ALE code in a pure Eulerian regime
by setting Xn+1

k =X0
k or in an almost Lagrangian regime with Xn+1

k =XLag
k . We could also

force ωk=1 leading to a pure geometrically rezoned mesh with coordinates Xn+1
k =XRez

k or
we might even adopt any user-given mesh velocity according to a prescribed boundary
velocity.

2.4 Finite volume scheme

The same approach already developed in two and three space dimensions presented in
[8, 25? ] is briefly summarized here. To begin with, the governing PDE (2.1) is more
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compactly reformulated using a space-time divergence operator ∇̃

∇̃·F̃+B̃(Q)·∇̃Q=S(Q), ∇̃=

(
∂

∂x
,

∂

∂y
,

∂

∂z
,

∂

∂t

)T

, (2.27)

where the space-time flux tensor F̃ and the system matrix B̃ are given by F̃=(f,g,h,Q)
and B̃=(B1,B2,B3,0). For the computation of the state vector at the new time level Qn+1,
the balance law (2.27) is integrated over a four-dimensional space-time control volume
Cn

i =Ti(t)×
[
tn;tn+1], which after the application of the theorem of Gauss yields∫

∂Cn
i

F̃· ñdS+
∫
Cn

i

B̃(Q)·∇̃Qdxdt=
∫
Cn

i

S(Q)dxdt. (2.28)

The non-conservative products are treated with a path-conservative approach [11, 12,
25, 26, 28, 31, 48, 49, 57], hence leading to∫

∂Cn
i

(
F̃+D̃

)
· ñdS+

∫
Cn

i \∂Cn
i

B̃(Q)·∇̃Qdxdt=
∫
Cn

i

S(Q)dxdt, (2.29)

where a new term D̃ has been introduced in order to take into account potential jumps of
the solution Q on the space-time element boundaries ∂Cn

i . This term is computed by the
path integral

D̃·ñ=
1
2

1∫
0

B̃
(
Ψ(Q−,Q+,s)

)
·ñ ∂Ψ

∂s
ds=

1
2

 1∫
0

B̃
(
Ψ(Q−,Q+,s)

)
·ñds

(Q+−Q−
)

, (2.30)

where the integration path Ψ in (2.30) is chosen to be a simple straight-line segment
Ψ(Q−,Q+,s) = Q−+s(Q+−Q−) [12, 28, 31, 48] and (Q−,Q+) are the conserved vari-
ables in element Tn

i and its direct neighbor Tn
j , respectively. In (2.29) the first integral is

written as the sum of the fluxes computed over the three-dimensional space-time vol-
ume ∂Cn

i , given by the evolution of each face of tetrahedron Ti(t) within the timestep ∆t.
Here ñ= (ñx,ñy,ñz,ñt) denotes the outward pointing space-time unit normal vector on
the varying space-time face ∂Cn

i .
Let Ni denote the Neumann neighborhood of tetrahedron Ti(t), which is the set of di-

rectly adjacent neighbors Tj(t) that share a common face ∂Tij(t) with tetrahedron Ti(t).
The space-time volume ∂Cn

i is composed by four space-time sub-volumes ∂Cn
ij, each of

them defined for each face of tetrahedron Ti(t), and two more space-time sub-volumes,
Tn

i and Tn+1
i , that represent the tetrahedron configuration at times tn and tn+1, respec-

tively (see [? ] for details). Hence, the space-time volume ∂Cn
i involves overall a total

number of six space-time sub-volumes, i.e.

∂Cn
i =

 ⋃
Tj(t)∈Ni

∂Cn
ij

∪ Tn
i ∪ Tn+1

i . (2.31)
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Each of the space-time sub-volumes is mapped to a reference element in order to simplify
the integral computation. For the configurations at the current and at the new time level,
Tn

i and Tn+1
i , we use the mapping (2.3) with (ξ,η,ζ)∈ [0;1]. The space-time unit normal

vectors simply read ñ=(0,0,0,−1) for Tn
i and ñ=(0,0,0,1) for Tn+1

i , since these volumes
are orthogonal to the time coordinate. For the lateral sub-volumes ∂Cn

ij we adopt a linear
parametrization to map the physical volume to a four-dimensional space-time reference
prism.

Starting from the old vertex coordinates Xn
ik and the new ones Xn+1

ik , that are known
from the mesh motion algorithm described in Section 2.3, the lateral sub-volumes are
parametrized using a set of linear basis functions βk(χ1,χ2,τ) that are defined on a local
reference system (χ1,χ2,τ) which is oriented orthogonally w.r.t. the face ∂Tij(t) of tetra-
hedron Tn

i , e.g. the reference time coordinate τ is orthogonal to the reference space coor-
dinates (χ1,χ2) that lie on ∂Tij(t). The temporal mapping is simply given by t= tn+τ∆t,
hence tχ1=tχ2=0 and tτ=∆t. The lateral space-time volume ∂Cn

ij is defined by six vertices
of physical coordinates X̃n

ij,k. The first three vectors (Xn
ij,1,Xn

ij,2,Xn
ij,3) are the nodes defining

the common face ∂Tij(tn) at time tn, while the same procedure applies at the new time
level tn+1. Therefore the six vectors X̃n

ij,k are given by

X̃n
ij,1=

(
Xn

ij,1,tn
)

, X̃n
ij,2=

(
Xn

ij,2,tn
)

, X̃n
ij,3=

(
Xn

ij,3,tn
)

,

X̃n
ij,4=

(
Xn+1

ij,1 ,tn+1
)

, X̃n
ij,5=

(
Xn+1

ij,2 ,tn+1
)

, X̃n
ij,6=

(
Xn+1

ij,3 ,tn+1
)

, (2.32)

and the parametrization for ∂Cn
ij reads

∂Cn
ij = x̃(χ1,χ2,τ)=

6

∑
k=1

βk(χ1,χ2,τ)X̃n
ij,k, (2.33)

with 0≤χ1≤ 1, 0≤χ2≤ 1−χ1 and 0≤ τ≤ 1. The linear basis functions βk(χ1,χ2,τ) are
given by

β1(χ1,χ2,τ) =(1−χ1−χ2)(1−τ), β4(χ1,χ2,τ)=(1−χ1−χ2)(τ)

β2(χ1,χ2,τ) =χ1(1−τ), β5(χ1,χ2,τ)=χ1τ,
β3(χ1,χ2,τ) =χ2(1−τ), β6(χ1,χ2,τ)=χ2τ. (2.34)

The coordinate transformation is associated with a matrix T that reads

T =

(
ê,

∂x̃
∂χ1

,
∂x̃

∂χ2
,
∂x̃
∂τ

)T

, (2.35)

with ê= (ê1,ê2,ê3,ê4). Let êp represent the unit vector aligned with the p-th axis of the
physical coordinate system (x,y,z,t) and let x̃q denote the q-th component of vector x̃.
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The determinant of T produces at the same time the space-time volume |∂Cn
ij| of the

space-time sub-volume ∂Cn
ij and the space-time normal vector ñij, as

ñij =

(
εpqrs êp

∂x̃q

∂χ1

∂x̃r

∂χ2

∂x̃s

∂τ

)
/|∂Cn

ij|, (2.36)

where the Levi-Civita symbol has been used according to the usual definition

εpqrs =


+1, if (p,q,r,s) is an even permutation of (1,2,3,4),
−1, if (p,q,r,s) is an odd permutation of (1,2,3,4),
0, otherwise,

(2.37)

and with

|∂Cn
ij|=

∥∥∥∥εpqrs êp
∂x̃q

∂χ1

∂x̃r

∂χ2

∂x̃s

∂τ

∥∥∥∥. (2.38)

The final one-step direct ALE finite volume scheme takes the following form:

|Tn+1
i |Qn+1

i = |Tn
i |Qn

i − ∑
Tj∈Ni

1∫
0

1∫
0

1−χ1∫
0

|∂Cn
ij|G̃ij ·ñij dχ2 dχ1 dτ+

∫
Cn

i \∂Cn
i

(Sh−Ph)dxdt, (2.39)

where in the term G̃ij ·ñij we embed the Arbitrary-Lagrangian-Eulerian numerical flux
function as well as the path-conservative jump term, which allows the discontinuity of
the predictor solution qh that occurs at the space-time sub-volume ∂Cn

ij to be properly
resolved. The volume integrals appearing in (2.39) are approximated using multidimen-
sional Gaussian quadrature rules [54] of suitable order of accuracy and the term G̃ij is
evaluated relying on a simple ALE Rusanov-type scheme [8, 32] as

G̃ij =
1
2
(
F̃(q+

h )+F̃(q−h )
)
·ñij+

1
2

 1∫
0

B̃(Ψ)·ñ ds−|λmax|I

(q+
h −q−h

)
, (2.40)

where q−h and q+
h are the local space-time predictor solution inside element Ti(t) and

the neighbor Tj(t), respectively, and |λmax| denotes the maximum absolute value of the
eigenvalues of the matrix Ã·ñ in space-time normal direction. Using the normal mesh
velocity V·n, matrix Ãñ reads

Ãñ= Ã·ñ=
(√

ñ2
x+ñ2

y+ñ2
z

)[( ∂F
∂Q

+B
)
·n−(V·n)I

]
, (2.41)

with I denoting the ν×ν identity matrix, A=∂F/∂Q+B representing the classical Eulerian
system matrix and n being the spatial unit normal vector given by

n=
(ñx,ñy,ñz)T√

ñ2
x+ñ2

y+ñ2
z

. (2.42)
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Finally we remark that integration over a closed space-time control volume, as done
in this scheme, automatically respects the geometric conservation law (GCL), since ap-
plication of Gauss’ theorem yields ∫

∂Cn
i

ñdS=0. (2.43)

As already pointed out in [? ] the numerical method in general allows a mass flux even
for V=v. Consequently there is no associated pure Lagrangian scheme in sensu stricto to
this numerical method. Nonetheless genuinely accurate results can be achieved with this
high accurate numerical method as can be seen in [25? ].

2.5 Timestep constraint

The timestep ∆t, which is needed for the discretization of the governing equations (2.39),
is computed taking into account two different criteria, namely a classical CFL stability
condition and a user-defined geometrical limitation.

The Courant-Friedrichs-Levy (CFL) stability condition is given by (2.13), while the
second criteria is based on the limitation of the rate of change of the element volume
within one timestep, i.e. the volume of each cell Tn

i is not allowed either to increase or
to decrease more than a certain threshold which is provided by the user at the beginning
of the computation. Such a limitation is typically adopted in the Lagrangian and ALE
framework [45, 46]. As clearly stated by (2.13), the timestep tends to become very small
when the elements are highly compressed or stretched. Therefore, when compression
occurs, we impose the condition

|Tn+1
i |≤Cv |Tn

i |, (2.44)

where Cv is a coefficient which sets the maximum admissible variation of volume for the
cell. For our applications we choose Cv=0.8 and the volume at the new time level |Tn+1

i |
is conveniently estimated by using the current vertex velocities Vn

k for each vertex k of Tn
i

to approximate the new vertex positions Xn+1
k , hence obtaining

Xn+1
k ≈Xn

k +∆tV,i V
n
k ∀k∈Tn

i , (2.45)

with ∆tV,i denoting the unknown timestep which satisfies the volume criterion (2.44). By
using expression (2.45) to explicitly derive a formula for the new cell volume |Tn+1

i |, the
volume restriction (2.44) constitutes a second or third order algebraic equation for the
unknown ∆tV,i, in two and three space dimensions, respectively. The volume timestep is
assumed to be as always the minimum between all ∆tV,i, i.e.

∆tV =min
Tn

i

∆tV,i. (2.46)
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According to [45] the final expression for the next timestep ∆tn+1 is given by

∆tn+1=min (∆tCFL,∆tV ,CM∆tn), (2.47)

where ∆tn is the current timestep and CM=1.01 is a coefficient which allows the timestep
to smoothly increase avoiding large and quick modifications of ∆t.

2.6 Remarks

Last but not least, we would like to state clearly that within the family of high order one-
step direct ALE methods proposed in this paper, the choices of the Riemann solver, the
reconstruction technique and the mesh velocity are deliberately independent from each
other, hence the method in general allows a mass flux. This means that even for V=v the
proposed scheme is not meant to be a pure Lagrangian method in sensu stricto. However,
the family of schemes presented in this paper is able to resolve material interfaces and
contact waves very well, much better than traditional high order Eulerian methods on
fixed meshes.

3 Direct a posteriori limited ADER-MOOD Arbitrary-Lagrangian-
Eulerian scheme

The direct ADER ALE numerical method previously described is of high accuracy both
in space and time through the construction of high order accurate space and time poly-
nomials. Without any spatial limiting the order of accuracy of the scheme is formally
M+1. However, to ensure stability and robustness of the scheme, some dissipative mech-
anism must be added to deal with steep fronts or shock waves. In [8, 25? ] the limit-
ing was introduced by the use of one of the classical WENO reconstruction techniques
[29, 30, 37, 38, 41]. The numerical results in [25? ] show that this approach maintains
the overall accuracy and provides the necessary robustness of the scheme. In [? ] an al-
ternative technique to WENO in this ALE context using the so-called a posteriori MOOD
(Multi-dimensional Optimal Order Detection) method was adopted. The use of the a pos-
teriori MOOD technique in replacement of WENO polynomial reconstruction in general
improves the numerical efficiency of the overall method. Some reduction of memory
and CPU time consumption along with some improvements of the overall accuracy are
clearly observed, see [? ]. Moreover some properties which previously were fulfilled re-
lying on some special techniques are now built into the MOOD paradigm, for instance
the WENO technique may demand the introduction of a flattener variable used to smear
out the oscillations and to ensure positivity of density and pressure [5? ].

In this paper we extend the MOOD approach to new different system of conserva-
tion laws with non-conservative products and stiff source terms. Basically the unlim-
ited numerical technique described in the previous section must be supplemented with
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some sort of limiting that we choose to build in an a posteriori framework. The a poste-
riori MOOD paradigm is based on the observation that it seems relatively easy to check
against some criteria the validity of a numerical discrete solution provided by a numeri-
cal scheme solving a nonlinear system of equations at the end of a timestep. If some cells do
not pass the check, they can be re-updated, that is re-computed starting from data at time
tn using a more dissipative numerical method. If these cells are still detected as prob-
lematic, then, at last, an ultra-dissipative and bullet-proof robust scheme is used. These
ones are then re-updated for a last time within the current timestep starting again with
data at tn. This so-called iterative MOOD loop ends with cells updated either with a high
accurate but less robust scheme, or, with a lower accurate but more robust one.

MOOD has been designed originally on fixed grid for Euler equations [13, 14, 21, 22]
and more recently it has been successfully substituted to WENO within a 3D ADER high
order finite volume scheme solving different systems of conservation laws [43]. The a
posteriori MOOD concept has also been successfully employed as an a posteriori subcell
finite volume limiter for high order Discontinuous Galerkin finite element schemes in [62,
63? ], or as an efficient high-order finite volume solver for convection-diffusion problems
[15, 16, 50] and also to construct all-entropy finite volume schemes [58, 59].

In the following we briefly review the MOOD approach as a stabilization technique
along with the important detection criteria designed for each system of equations solved
in this article.

3.1 MOOD paradigm as an a posteriori stabilization technique

The direct ALE framework previously presented is a nominally high-order accurate scheme
in space and time. In Section 2.1 we have presented a polynomial reconstruction tech-
nique with no extra dissipation, meaning that the discrete numerical solution and the
displaced mesh at time tn+1 may not be free from spurious oscillations. The MOOD loop
is composed by the following three entities:

1. Detection criteria. The detection criteria set is a list of properties which are checked
to assess if a numerical solution in a cell is acceptable at the end of a timestep. The
first set of criteria is based on the physics solved by the simulation and correspond
to properties that must be fulfilled to ensure physical admissibility of a numerical
solution. They are called the Physical Admissible Detection (PAD) criteria and can not
be decorrelated from the system of equations which is solved.

The second set of criteria is based on numerical properties. These are called Numer-
ical Admissible Detection (NAD) criteria and they ensure that the numerical solution
is essentially non-oscillatory. In [13, 21, 22, 43, 62, 63] the NAD criteria are mostly
built relying on the relaxed discrete maximum principle (DMP). Also we check if
the computed solution is a representable datum, that is to say we check from a
computer science point of view for Not-a-Number (NaN) or infinite (inf)situations.
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If one of the PAD or the NAD criteria is not fulfilled, then locally some action must
be taken to supplement the scheme with more dissipation.

2. Parachute or bullet-proof scheme. The last available scheme is called the parachute
to express the fact that in any extremely difficult case this scheme is used as a last
resort. As such, the candidate numerical solution provided must always be consid-
ered as an acceptable one. In most works involving a MOOD loop [13, 14, 21, 22, 43],
the first-order Godunov finite volume scheme is chosen.

3. Cascade. The cascade is a list of ordered numerical schemes which one would like
to try. Generally they are ranked from the most accurate and prone to instability
scheme up to the least accurate but robust parachute scheme [43]. Here this se-
quence is related to the accuracy of the polynomial reconstructions. Precisely one
sets a maximal polynomial degree dmax and, in an ideal situation, the correspond-
ing method is a space-time dmax-th order scheme. Several intermediate polynomial
degrees for the reconstructions can be adopted, e.g. we can use the following decre-
menting list: Pdmax→P2→P1→P0.

In an ALE implementation [? ] as well as in the Eulerian context [43], the MOOD
loop embraces the main evolution routines of the high order unlimited numerical scheme
and, possibly, it iterates to recompute some cells marked as problematic by the detection
criteria, see Figure 2.

3.2 Baer-Nunziato (BN) model

Next we consider the so-called Baer-Nunziato (BN) model for compressible two-phase
flows [2] describing detonation waves in solid-gas combustion processes. Here the first
phase is the solid phase with subscript 1 or s, while the second one is the gas phase
(subscript 2 or g). Let us denote by k=1,2 the phase number and by φk the volume fraction
of phase k fulfilling the condition φ1+φ2 = 1, while ρk and pk are accordingly the phase
density and pressure. Furthermore the velocity vector of each phase is uk =(uk,vk,wk).

The seven-equation† Baer-Nunziato model with relaxation source terms constitutes

†In 3D the seven-equation model involves de facto 11 equations, hence leading to a relatively demanding
system to solve numerically.
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Figure 2: Sketch of the MOOD loop embracing an existing ALE ADER-P0PM solver. The three main
ingredients of the MOOD loop is the Detection Criteria (blue box), the cascade of schemes illustrated by the
Decrementing procedure (green box) which possible ends with the parachute scheme (the scheme using P0
data, that is to say the first order Godunov finite volume scheme in our situation).
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the following non-conservative system of nonlinear hyperbolic PDEs:

∂

∂t
(φ1ρ1)+∇·(φ1ρ1u1) = 0,

∂

∂t
(φ1ρ1u1)+∇·(φ1ρ1u1u1)+∇φ1 p1 = pI∇φ1 −λ(u1−u2),

∂

∂t
(φ1ρ1E1)+∇·((φ1ρ1E1+φ1 p1)u1) = −pI∂tφ1 −λuI ·(u1−u2),

∂

∂t
(φ2ρ2)+∇·(φ2ρ2u2) = 0,

∂

∂t
(φ2ρ2u2)+∇·(φ2ρ2u2u2)+∇φ2 p2 = pI∇φ2 −λ (u2−u1),

∂

∂t
(φ2ρ2E2)+∇·((φ2ρ2E2+φ2 p2)u2) = pI∂tφ1 −λuI ·(u2−u1),

∂

∂t
φ1+uI∇φ1 = µ(p1−p2).

(3.1)

In this work we consider drastically simplified interphase drag and pressure relax-
ation source terms. Alternative formulations and choices for these terms can be found in
[39]. To close the system the stiffened gas equation of state is used for each phase:

pk =(γk−1)ρkek−γkπk, (3.2)

where ek denotes the internal energy of phase k and the specific total energy is given
by Ek = ek+

1
2 uk

2. Finally the parameter µ characterizes the pressure relaxation and λ
the friction between the two phases. Following [2, 39] the velocity at the interface I is
assumed to be the solid velocity uI =u1, while for the interface pressure we choose the
gas pressure pI = p2. Note that many other choices are possible [51, 52]. In any case
the proper resolution of material interfaces, which are given by jumps in the volume
fractions, is a challenging task for any numerical method solving (3.1). For this system
the Physical Admissible Detection (PAD) and Numerical Admissible Detection (NAD)
criteria are designed as follows.

3.2.1 Physical Admissible Detection criteria (PAD)

The Physical Admissible Detection (PAD) criteria state that for a numerical solution to
be valid it must be “admissible”. Several physical constraints for a numerical solution to
be admissible are easily identified for the BN model: first, the phase density ρk and the
pressure pk must always be positive in a cell i, i.e.

ρ∗k,i >0, p∗k,i >0, (3.3)

then, the volume fractions of each phase must verify 0≤φk≤1. In fact only φ1 is tested
since φ2 is deduced from the equation φ1+φ2 = 1. Furthermore in a moving framework
the volume of any cell i must also be strictly positive, that is:

|T∗i |>0. (3.4)
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3.2.2 Numerical Admissible Detection criteria (NAD)

The Numerical Admissible Detection (NAD) criteria are based on the relaxed Discrete
Maximum Principle (DMP) with the so-called u2 criterion [22? ] applied on each conser-
vative variable (φkρk,φkρkuk,φkρkEk,φ1).

The DMP+u2 detection process acts on a generic variable A for a candidate solution
A∗i at time tn+1 in cell i for a given set of neighbor cells with index j∈Vi. We define the set
of vertex neighbors Vi, which contains all neighbors of cell Ti that have a common vertex
with Ti. First, if A∗i fulfills the DMP, that is

min
j∈Vi

(An
j ,An

i )≤A∗i ≤max
j∈Vi

(An
j ,An

i ), (3.5)

then the cell is valid for this variable. If the DMP is not fulfilled, then one checks the u2
criterion [21, 22]. A candidate solution A∗i in cell T∗i which violates the DMP is nonethe-
less eligible if the following conditions hold:

X max
i X min

i >0 and

∣∣∣∣∣X min
i
X max

i

∣∣∣∣∣≥1−ε, (3.6)

where ε is a smoothness parameter set to 1/2 and X ∗i represents a “measure” of the local
discrete directional curvature, e.g. the second derivative of the third order polynomial
reconstruction evaluated at the space barycenter of the control volume Tn

i . Specifically,
we have

X ∗i =
∂An

i
∂x2 +2 ∂An

i
∂xy +

∂An
i

∂y2 in 2D ,

X ∗i =
∂An

i
∂x2 +

∂An
i

∂y2 +
∂An

i
∂z2 +2 ∂An

i
∂xy +2 ∂An

i
∂xz +2 ∂An

i
∂yz in 3D.

(3.7)

Note that the continuous approximation of the conserved variable An
i is provided by the

high order reconstruction polynomial wn
h computed at time tn. Since we need at least a

third order accurate scheme for evaluating the second derivatives appearing in (3.7), if
the local order has been decremented for cell i, then the u2 criterion is no longer applied
for that cell. The minimal and maximal values of (3.6) are defined as

X min
i =min

j∈Vi

(
X ∗i ,X ∗j

)
and X max

i =max
j∈Vi

(
X ∗i ,X ∗j

)
, (3.8)

considering the Voronoi neighborhood Vi of cell i, i.e. all those neighbors which share at
least one node with element Ti. Note that the detection of smooth local extrema has also
been discussed in the context of extremum preserving PPM schemes [18] and MPWENO
schemes [4, 55].

Last we add a test for impossible discrete values: NaN (Not-a-Number) and Inf (Infi-
nite).

In Table 1 we summarize the detection criteria enforced by the physics underlying
the Baer-Nunziato model. The positivity of the solution is implied if the PAD criteria are
fulfilled.
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System Non-cons. (Stiff) Physical Admissibility Numerical Admissibility
product source Detection (PAD) Detection (NAD)

for appropriate variables for all conservative variables
Baer-Nunziato

X X
ρk >0, pk >0

DMP+u2
NaN

system 0≤φk≤1 Inf

Table 1: Summary of the detection criteria for the MOOD method for the Baer-Nunziato model considered
in this work. DMP: Discrete Maximum Principle check, u2: curvature regularity check [21, 22], NaN: Not-a-
Number check, Inf: Infinite check.

3.3 Cascade, parachute and summary

In this work we have mimicked the cascade already used in the Eulerian and ALE frame-
works [43? ]: Pdmax→PLIM

1 →P0. The maximal degree is set to dmax = 3,4 and the PLIM
1

scheme uses P1 reconstructions on conservative variables with Barth & Jespersen slope
limiting [7].

The MOOD loop first computes the unlimited Pdmax candidate solution Q∗i for each
cell i and checks if any cell is problematic according to the detection criteria PAD and
NAD. Then the solution in troubled/problematic cells Q∗i is discarded and recomputed
starting at time tn with PLIM

1 reconstructions. For the numerical flux evaluation we also
need PLIM

1 reconstructions for each direct neighbor Tj of Ti to assure that the cell is up-
dated with same order fluxes for each face. Moreover the local space-time DG predictor
is recomputed with a first order accurate time integration to secure the stiff source term
integration. This new candidate solution in troubled cells is checked again for validity.
At this point the candidate solution has possible Pdmax-updated cells and PLIM

1 -updated
ones. However some cells can still be invalid because the PLIM

1 may still produce some
non-admissible states especially when complex hyperbolic systems are simulated and
positivity is not ensured by construction. Last, for these still problematic cells, we rely
on the parachute scheme using P0 “reconstructions”, that is first order in space and time.
Being our bullet-proof scheme, these remaining problematic cells are recomputed and
valid by construction, in the sense that the PAD criteria are fulfilled‡. In the worst case
scenario all cells in the domain are updated with the first-order P0 scheme. Contrarily, in
the best possible situation (globally smooth flow), all cells are updated with the unlimited
Pdmax scheme. Usually, a numerical solution at the end of a timestep ends up with a mix
of cells that have been updated either via Pdmax , PLIM

1 or P0. Note that the MOOD loop
always converges to an acceptable discrete solution provided that the parachute scheme
can produce such a solution.

In our implementation if any of the conservative variables does not fulfill the detec-
tion criteria, then one considers that all variables need correction on the next MOOD
iteration, hence implying that one unique cell polynomial degree is decremented for all

‡Recall that the parachute scheme must be chosen so that PAD criteria are fulfilled at minima. Being the last
resort scheme used to ensure that the simulation can still run, any arrangement with numerics and physics
is allowed at this stage.



22

variables.

4 Numerical experiments

This section introduces and describes a list of representative test cases for the BN sys-
tem of PDEs. Numerical solutions given by the direct ALE-MOOD numerical method
of M+1th order of accuracy are presented (M = 3,4). The CFL is generally set to 1/d
if not stated otherwise. All tests are run on unstructured meshes made of triangles or
tetrahedra with our code implemented under MPI framework. Moreover all simulations
are run at minima on several cores on local machines or massively parallel ones (Super-
MUC supercomputer based in Munich, Germany, at the Leibniz Rechenzentrum (LRZ)).
For all the test problems we set the mesh velocity to be equal to the solid phase velocity,
which also represents the interface velocity according to our assumptions, see Section
3.2. Therefore, V=u1 =uI. Two-dimensional simulations are performed setting M= 4,
while we adopt M=3 for 3D runs. The meshes are automatically created by an external
software by providing a characteristics mesh size denoted in the following by h.

The methodology of validation and verification involves the following test cases:

• 2D and 3D smooth non-trivial solutions of the BN model are simulated to assess
the effective orders of accuracy of the numerical method. This test also proves that
the a posteriori detection procedure is able to determine smooth solution, avoid-
ing any unnecessary artificial limiting and its associated numerical dissipation. A
convergence study is performed for different nominal order of accuracy (maximal
polynomial degree of the reconstruction M=dmax);

• two 1D Riemann problems solved on a 2D mesh (addressed as RP2 and RP3 ac-
cording to [25]), involving simple separated waves generated by discontinuous ini-
tial data possibly enhanced by stiff source terms. These test cases can be found in
[19, 25, 28] and their initial data are listed in Table 4.2. The exact solutions of these
Riemann problems have been derived in [1, 19, 53] and are used in this work for
comparison purposes;

• a 2D double Mach reflection problem which is designed for compressible two-phase
flow. This test problem has been proposed in [28], starting from the original ver-
sion of Woodward and Colella [61] for the compressible Euler equations. Here it
becomes more complex as it involves reflection and refraction of shocks and con-
tact with solid boundary conditions;

• two 3D spherical explosion problems based on the previous 1D Riemann problems
are set for the compressible Baer-Nunziato model. They are called “Explosion prob-
lems” (EP). The first problem EP2 (according to the notation used in [25]) is the
spherical version of RP2, whereas the second problem EP3 adopts a stiff interphase
drag leading to non-trivial source terms. The reference solutions are obtained by
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solving an equivalent non-conservative one-dimensional PDE in spherical geome-
try (with geometric reaction source terms) using a path-conservative second order
TVD scheme [28] on an extremely fine fixed 1D mesh;

• as a last test we propose some quick profiling of the numerical code to show the
amount of time spent in each main part of the algorithm.

4.1 Convergence studies

In this section a numerical convergence study is performed in two and three space di-
mensions. This test problem for the BN model can be found in [3, 25, 28, 31, 37]. First,
an exact stationary and rotationally symmetric solution of the governing PDE is sought
and then the problem is made unsteady by superimposing a constant, uniform velocity
field v̄=(ū,v̄) using the principle of Galilean invariance of Newtonian mechanics. The
exact solution is then simply given by the advection of the non-trivial initial condition
with the superimposed constant velocity field v̄. The rotationally symmetric solution is
found by writing the governing BN equations (3.1) in polar coordinates and by imposing
angular symmetry, see [28] for details. An ODE system in the radial coordinate only re-
mains and it can be solved analytically. Using this manufactured analytical solution we
are able to calculate the convergence rates when the mesh is successively refined. For the
computational setup, we use the parameters from [25, 28]:

γ1=1.4,γ2=1.35,π1=π2=0, ū= v̄=2,µ=λ=0,ρ1=1,ρ2=2, p10=1, p20=
3
2

, s1=
3
2

, s2=
7
5

.

The computational domain is the square Ω=[−10;10]×[−10;10] in 2D and Ω=[−10;10]×
[−10;10]×[−5;5] in 3D discretized with triangular/tetrahedral meshes with periodic bound-
ary conditions. The numerical convergence rates are computed for the solid volume frac-
tion φs at the final time t=2.0 on a sequence of successively refined meshes obtained by
fixing a number of elements NG along each direction. We simulate this problem with the
ALE-MOOD-Pk schemes, k = 2,3,4 with a posteriori MOOD limiting acting. The results
are listed in Table 4.1.

We observe that the schemes reach their designed order of accuracy even if the a
posteriori stabilization process is active. In other words the MOOD procedure is able
to detect that the numerical solution is smooth enough and do not need any limiting.
Indeed, in this case the number of bad cells is exactly zero, meaning that the ALE scheme
is run completely unlimited.
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d
ALE-MOOD-P2 ALE-MOOD-P3 ALE-MOOD-P4

h εL2 O(L2) h εL2 O(L2) h εL2 O(L2)

2
D

3.3188E-01 4.2739E-03 — 3.3291E-01 9.7121E-04 — 3.3413E-01 8.9462E-04 —

2.5341E-01 1.8596E-03 3.1 2.5451E-01 3.1389E-04 4.2 2.5447E-01 2.2806E-04 5.0

1.6911E-01 6.0825E-04 2.8 1.6917E-01 6.3690E-05 3.9 1.6918E-01 3.6773E-05 4.5

1.2483E-01 2.5379E-04 2.9 1.2453E-01 1.8413E-05 4.1 1.2462E-01 9.2487E-06 4.5

Expect. 3 Expect. 4 Expect. 5

3
D

3.7135E-01 6.8289E-03 — 3.7057E-01 1.3726E-03 — 3.7081E-01 7.5658E-04 —

2.3024E-01 1.9897E-03 2.6 2.3024E-01 2.6186E-04 3.5 2.3023E-01 1.0363E-04 4.2

1.8053E-01 9.0159E-04 3.3 1.8066E-01 8.6867E-05 4.5 1.8066E-01 2.8278E-05 5.4

Expect. 3 Expect. 4 Expect. 5

Table 2: Numerical convergence results for the compressible Baer–Nunziato model using the third to fifth order
version of the Arbitrary–Lagrangian–Eulerian one–step finite volume schemes supplemented with a posteriori
MOOD stabilization technique. The error norms refer to the variable φs (solid volume fraction) at time t=2.0.
h refers to the characteristics mesh length.
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ρs us ps ρg ug pg φs t f

RP2 [19] γs =3.0, πs =100, γg =1.4, πg =0, λ=µ=0
L 800.0 0.0 500.0 1.5 0.0 2.0 0.4

0.10
R 1000.0 0.0 600.0 1.0 0.0 1.0 0.3

RP3 [28] γs =1.4, πs =0, γg =1.67, πg =0, λ=103, µ=102

L 1.0 0.0 1.0 1.0 0.0 1.0 0.99
0.2

R 0.125 0.0 0.1 0.125 0.0 0.1 0.01

Table 3: Initial condition for the Riemann problems using the Baer-Nunziato model run in this paper. The left
state (L) and the right state (R) are provided as well as model values for γk, πk, λ,µ and the final time t f .

4.2 Riemann problems

The initial computational domain is the box Ω(0)= [−0.5;0.5]×[−0.05;0.05] and the ini-
tial discontinuity between the left state QL and the right state QR is located at x0=0. The
domain is paved with triangles using a characteristic mesh size of h= 1/200, hence ob-
taining a total number of NE = 8862 elements. Periodic boundary conditions have been
imposed in y direction, while we use transmissive boundaries along the x direction.

Friction and pressure relaxation are neglected in the first Riemann problem RP2, while
for RP3 we use a stiff interphase drag λ=103 and pressure relaxation µ=102. Please note
that RP3 involves two almost pure ideal gases that differ in their value of γ. As done in
[25, 28] the exact solution for RP3 is computed using the exact Riemann solver for the
Euler equations of compressible gas dynamics [56] with two different values of γ on the
left and on the right of the contact discontinuity, respectively.

The numerical results have been obtained using the fifth order version of our ALE
finite volume schemes together with a posteriori MOOD stabilization procedure.

Figures 3-6 show a comparison between the reference solution and a one-dimensional
cut through the reconstructed numerical solution wh. For RP3 we show the mixture den-
sity ρ = φsρs+(1−φs)ρg in Figure 6, whereas velocity and pressure distribution for the
two phases are overlapping due to the stiff relaxation source terms. In all cases one can
note a good agreement between numerical and reference solution. The material contact
is well resolved in all cases and the overall accuracy is adequate remembering that the
underlying scheme runs in a fifth order accurate mode on smooth parts of the flow and
remains robust in the vicinity of discontinuities where it runs on a first order accurate
basis.

In Figure 3 we have also provided the bad cell count (in percents) as a function of
number of cycles. The blue line shows the percent of cells updated with the parachute
first order scheme along with a polynomial fit, while the red line presents the percent of
bad cells updated with the second order scheme. As expected, as the waves move away
from the x=0 location more cells are detected as problematic and subsequently updated
with a more dissipative scheme. Nonetheless the total number of troubled cells is at max-
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imum around 30% and according to the last panel of this figure we can observe that these
bad cells are distributed in the central part of the domain where all the discontinuities
are concentrated.

A key feature of the MOOD approach is that it allows the user to be free to set and
provide the main ingredients of the MOOD loop. Therefore, we also run the Riemann
problem RP2 considering a reduced cascade of schemes, namely Pdmax→PLIM

1 . We consider
a sequence of four refined meshes with characteristic mesh size of h=1/100, h=1/200, h=
1/300 and h=1/400. Figure 4 depicts the associated cell order distribution for each mesh
and we can notice that the location of the bad cells is closer to the discontinuities as the
mesh is refined, still having some wrongly detected bad cells. Moreover, in Figure 5 we
show that the percentage of cells updated with the parachute PLIM

1 scheme consistently
decreases when the mesh is refined, from a value of ≈30% to ≈12%.

Figure 6 depicts the number of bad cells detected for each timestep and further up-
dated with one of the scheme in the cascade. We observe that for this RP the total number
of bad cells is around 15% of the total number of cells. Moreover the polynomial degrees
used for the last timestep are shown in the bottom panel of this figure: due to the dissi-
pation of the scheme we can see that the shock wave and the head of the rarefaction are
particularly marked for decrementing whereas the rest of the domain only presents some
randomly located troubled cells.

From the cell order distribution given in the bottom panel of Figures 3 and 6 one can
note that shock and contact waves are not clearly marked and isolated by the detection
criteria and this might be due to the switching from a high order to a low order scheme
occurring across element boundaries. Moreover, in a smooth region close to a discontinu-
ity we will inevitably produce a jump in the numerical reconstruction, between the cell
marked as “problematic”, which lies on the discontinuity, and the first cell on the plateau
or on a smooth region, which is correctly not detected as problematic by the MOOD de-
tection criteria. This phenomenon has already been observed in [38] in the context of
high order ENO schemes and such a problem could be partially overcome by refining
the computational mesh, as highlighted in Figure 4. A more fine grid allows the discon-
tinuities to be located more precisely in our ALE context and they are better identified
by the detection procedure of the MOOD approach, hence leading to a lower number
of bad cells which are “better distributed” on the computational mesh, i.e. close to the
shock/contact waves.
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Figure 3: Fifth order numerical results for Riemann problem RP2 of the seven-equation Baer-Nunziato model
at time t=0.1 and comparison with the reference solution. From top-left to bottom-right: mesh, solid volume
fraction, bad cell percents as a function of number of cycle (blue: first order, red: second order), solid variables
(density, x component of the velocity, pressure) and gas variables. Bottom panel represents the polynomial
degrees used for the last cycle by the MOOD procedure (blue cells are updated with a first order scheme while
yellow with the unlimited 5th order).
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Figure 4: Cell polynomial order used for the last cycle by the MOOD procedure for Riemann problem RP2
solved with a fifth order accurate scheme on a sequence of refined unstructured meshes of characteristic mesh
size h. From top to bottom: h=1/100, h=1/200, h=1/300 and h=1/400. The parachute scheme is chosen
to be the Plim

1 method.
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with degree M=4.
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Figure 6: Fifth order numerical results for Riemann problem RP3 of the seven-equation Baer-Nunziato model
with drag and pressure relaxation (λ=103,µ=102) at time t=0.2 and comparison with the reference solution.
From top-left to bottom-right: mesh, bad cell percents as a function of number of cycle (blue: first order,
red: second order), mixture density, mixture x component of the velocity and mixture pressure. Bottom panel
represents the polynomial degrees used for the last cycle by the MOOD procedure (blue cells are updated with
a first order scheme while yellow with the unlimited 5th order).
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4.3 Double Mach reflection problem for compressible two phase flow

Here we run a double Mach reflection problem [61] adapted to compressible two phase
flows [28]. It consists of a discontinuity initially located at x = 0 moving with veloc-
ity vd = (10,0) to the right and hitting a 30o wedge. The left state behind the discon-
tinuity is calculated from the generalized Ranking Hugoniot conditions. With γs = 3,
πs = 2, γg = 1.4, πg = 0, we obtain the following initial condition for the conserved vari-
ables in 2D: WL = (0.4587156,2.087156,0,11.31078,4.285714,35.35714,0,301.875,0.25) and
WR=(0.25;0,0,0.875,0.75,0,0,1.3392857,0.25). The right state corresponds to ρs=ρg=1 and
pg =1/γg, ps =1. Transmissive boundary conditions are imposed in x-direction whereas
we set solid wall conditions on the upper and lower boundaries. The final time is set to
t=0.2 and we use two different meshes with characteristic mesh spacing of h=1/50 and
h = 1/100, leading to a total number of triangles NE = 41456 and NE = 167950, respec-
tively. Note that the meshes are on purpose chosen relatively coarse because a fifth order
accurate ALE scheme is employed. Results are gathered in Figure 7 (polynomial degrees,
gas and solid densities are displayed). We observe that the initial discontinuity moves
with the correct speed, since it attains its correct final position x= 2. For the gas phase
(undisturbed sound speed cg = 1) we retrieve the typical flow structures present in the
double Mach reflection problem at a Mach number of Mg=10 [37, 61]. Contrarily, for the
solid phase, the sound speed being larger cs = 3, the Mach number Ms = 10/3 is lower.
Hence, we only see the flow phenomena of a classical single Mach reflection. As already
observed in [28], both phases completely decouple from each other.

One can also notice that the polynomial degrees are 0 or 1 in the vicinity of the dis-
continuities. From these plots we can truly see the structure of the main waves in the
domain. Obviously when more cells are employed the numerical results do improve in
quality. Nonetheless the detection capability of the scheme is not degradated when using
a coarse mesh. Also a lot of cells are updated with the unlimited scheme (yellow cells)
which justifies that the detection is parsimoniously and appropriately acting.

In Figure 8 we present the percentages of bad cells detected for each timestep for the
two resolutions h= 1/50 on the left panel, and h= 1/100 on the right one. The number
of troubled cells never exceeds 4% for second order cells and 3% for first order ones. On
average only 5% of cells are detected and re-updated by our scheme for this problem.
When the mesh resolution increases this number even drops.
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Figure 7: Double Mach reflection problem for compressible two phase flows for h = 1/50 (left panels) and
h=1/100 (right panels) at final time t=0.2 — Results for the fifth order accurate ALE scheme with a posteriori
MOOD stabilization — From top to bottom: polynomial degrees, gas density and solid density.
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Figure 8: Double Mach reflection problem for compressible two phase flows for h = 1/50 (left panel) and
h=1/100 (right panel) at final time t=0.2 — Results for the fifth order accurate ALE scheme with a posteriori
MOOD stabilization — Bad cell percents as a function of number of cycle (blue: first order, red: second order)
and cubic fits (straight lines).
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4.4 Spherical explosion problems

We use the same initial condition given for the Riemann problems listed in Table 4.2 to
solve two different spherical explosion problems with the compressible Baer-Nunziato
model (3.1). The computational domain Ω(0) is initially the sphere of radius R = 0.9,
which has been discretized with a characteristic mesh size of h = 1/100 for r≤ rc and
h = 1/50 for r > rc for a total number of tetrahedra of NE = 2632305. r =

√
x2+y2+z2

represents the generic radial position. In all cases the initial state Q(x,0) is assigned
taking

Q(x,0)=
{

Qi, if |x|< rc
Qo, else

, (4.1)

with rc =0.5 representing the location of the initial discontinuity. The left state reported
in Table 4.2 is assumed to be the inner state Qi, while the right state represents here the
outer state Qo. In particular the initial condition of Riemann problem RP2 is used for the
first explosion problem EP2. In the third explosion problem EP3 we use again the initial
values of RP2 and we set λ= 105 and µ= 0, hence adopting a stiff interphase drag. The
final time is set to t f = 0.15 for EP2, while t f = 0.18 is used for EP3. Figures 9 - 10 show
a comparison between the numerical results obtained with a fourth order ALE-MOOD
scheme and the one-dimensional reference solution.

Since the mesh is moving with the interface velocity uI, i.e. V=uI =u1, the contact
discontinuity of the solid phase φ1 is relatively well resolved in both cases. Along with
classical comparison against exact/reference solution, we also display a cut in the sphere
to observe the mesh and, more important, the polynomial degrees actually used for the
last iteration. Moreover we present the percentage of bad cells detected as a function of
the time iteration for the entire simulation (second panels of Figures 9 and 10)). For EP2
the number of bad cells is of the order 2 to 4 percents both for second order and first
order cells, whereas it reaches 20% for second order updated cells and about 2% for first
order ones. The relatively low number of bad cells justifies why testing an unlimited
scheme as a first stage is an efficient strategy: more than 80% of the total number of cells
do not need any limiting! On the remaining cells more time must be invested to properly
stabilize the simulation, and here it is done by decrementing the polynomial degree of
the reconstruction.

We would like to remark that the plots of the polynomial degrees used in the sim-
ulation (first panels of Figures 9 and 10) clearly have the imprint of the principal wave
structure of the problem which states that the a posteriori detection procedure is perform-
ing well in observing discontinuities (and subsequently decrementing the polynomial
degree of the reconstructions).
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Figure 9: Fourth order numerical results for the 3D explosion problem EP2 of the seven-equation Baer-Nunziato
model at time t=0.15 and comparison with the reference solution.
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Figure 10: Fourth order numerical results for the 3D explosion problem EP3 with λ=105 of the seven-equation
Baer-Nunziato model at time t=0.18 and comparison with the reference solution.
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4.5 Profiling and CPU time consumption

We estimate the relative amount of time spent in the main components of the ALE-
MOOD code for the RP3 test case which presents a lot of bad cells that need to be decre-
mented and properly treated within the MOOD loop. It is obvious that the profiling of
our a posteriori stabilized code tremendously depends both on the test case considered
and on the technical implementation. If the isentropic vortex was chosen then no bad
cell would ever been detected and the cost of the MOOD loop would be null. Here, on
purpose, we choose the most demanding test of this paper in terms of number of bad
cells. To evaluate the computational cost of the main components of the code, we have
monitored the computational time used for the following parts:

1. the unlimited (first) iteration. This is the first iteration carried out using the un-
limited polynomial reconstruction. If no problematic cells are detected, then this
iteration terminates the timestep. The code is split here into three sub-steps:

(a) Polynomial reconstruction: this is the unlimited polynomial reconstruction pro-
cedure illustrated in Section 2.1;

(b) Space-Time Prediction: this corresponds to the algorithm described in Section
2.2;

(c) Finite Volume scheme: we sum up the space-time flux integration presented in
Section 2.4 and the mesh motion explained in Section 2.3.

We will measure the time spent in each of these routines and the associated relative
amount.

2. the subsequent MOOD procedure. The “Detection” step decides if problematic cells
are present for each iteration. We closely monitor the amount of time of this pro-
cedure described in Section 3.3. If some problematic cells are detected, then some
Re-update must be done. We globally measure the amount of time spent in the detec-
tion and decrementing processes as well as for re-updating those cells which have
been marked as “problematic”.

The third, fourth and fifth order accurate ALE-MOOD code is used to simulate the Rie-
mann problem RP3 with the Baer-Nunziato model. We remark that RP3 involves stiff
sources, hence requiring the local space-time predictor to use an implicit solver for the
source term prediction which definitely is computationally expensive. The same unstruc-
tured mesh made of NE=2246 elements is used for the three runs. Results of this profiling
are provided in Table 4. From this table (and the numerical results previously shown) we
confirm that the number of troubled cells is below 30%, while the detection step con-
sumes less than 1% of the total amount of the simulation.

We have also computed the number of degrees of freedom (d.o.f.) and the cost per
cell, per degree of freedom per timestep according to

Td.o.f.=TCPU/Nd.o.f./Ncycle, (4.2)
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Ord.
Unlimited first iteration MOOD procedure T N T

Pol.Recons. Predict. FV scheme Detect. Re-upd. Bad cells CPU d.o.f. /d.o.f.

A
L

E
-M

O
O

D

2

0.05 s 1.18 s 0.85 s 0.01 s 1.8 s '625 3.88 s 18 0.22 s

1.3% 30.8% 22.3% 0.0% 45.6% 27.7% 100%

54.4% 45.6%

3

0.05 s 2.15 s 3.31 s 0.00 s 4.93 s '730 10.4 s 40 0.26 s

0.5% 21.0% 32.7% 0.0% 45.8% 32.5% 100%

54.2% 45.8%

4

0.21 s 9.89 s 23.90 s 0.00 s 28.24 s '700 62.23 s 75 0.83 s

0.3% 16.1% 39.2% 0.0% 44.4% 31.2% 100%

55.6% 44.4%

Table 4: Profiling of the ALE-MOOD code solving the RP3 problem described above for the Baer-Nunziato
system of equations. Horizontal lines: third, fourth and fifth order numerical scheme results. Vertical lines:
percentage of total time for each procedure. The “Bad cells” column displays the percentage of bad cells
detected on average for the entire simulation with respect to the total number of cells. (Note that the same
cell can be detected several times per timestep.)

where the number of time steps is Ncycle=770 for the simulation at order 2, 757 for order
3 and 736 for order 4.

In Figure 11 (top panels) we show the time spent in the unlimited scheme (sum of
Reconstruction, Predictor, Finite Volume scheme) and in the MOOD loop (Detection, Re-
update) in percent by respect to the total time and as a function of the time index. From
left to right we display the results for the third, fourth and fifth order accurate schemes.
From these plots we observe that the unlimited scheme covers about 50−60% of the total
cost. Consequently the stabilization of the simulation represents on average 40−50% of
the CPU time. This rather large cost is mainly due to the fact that

• this test has a relative large number of bad cell. Not only the troubled cells must
be re-updated but also their direct neighbors, in order to have a consistency with
the space-time flux integration along the space-time boundaries of each control vol-
ume. Another mild test would have less bad cells, leading to a relative lower stabi-
lization cost;

• in our choice of implementation, no matter the polynomial degree of the recon-
struction, all cells are updated with the highest integration rules needed for the
unlimited scheme. In other words, if the fifth order scheme is used, then a bad cell
is re-updated with a nominally fifth order accurate space-time integration, that is
with a lot of unnecessary space-time integration points. Of course a “better imple-
mentation” would demand that only one space-time point is used for a first and
second order accurate re-updated bad cell;

• in the BN model seven conservative variables are tested for NAD. This considerably
increases the chances to detect a false bad cell. Moreover the presence of possible
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seven discontinuous waves also makes those simulations extremely delicate. The
detection procedure is consequently more strict, leading to more time spent in the
stabilization procedures.

In Figure 11 (bottom panels) we present the same histograms but for each component
of the code: Reconstruction, Predictor, Finite Volume (unlimited scheme) and Detection,
Re-update (MOOD loop). From these plots one can note that the cost of the Detection
and Reconstruction are negligible which might not be obvious at first glance. Finally, the
Prediction step cost decreases with the accuracy of the scheme, while the Finite Volume
update increases. This is clearly due to the fact that the higher the accuracy, the larger
the number of integration points needed between neighbor cells. These points require
a special treatment by the finite volume scheme (flux, Riemann solver, etc.). We must
also remark that in the case of a non-conservative system with stiff source terms like the
BN model, the treatment of the non-conservative products and the stiff sources are also
computationally expensive.

We also perform the same study for the three-dimensional case, considering the spher-
ical explosion problem EP3 which also involves a stiff relaxation source term. The com-
putational domain is discretized using a total number of NE =830713 tetrahedra and we
run this test case with orders M=2,3. The final time of the simulation has been reached
with a total number of time steps Ncycle =377 for the third order and Ncycle =395 for the
fourth order of accuracy. Finally, the results are reported in Table 4.5, where one can note
that in 3D most of the computational time is again required by the re-updating stage,
consistently with the two space dimensions case. About 25% of the time is covered in
the unlimited scheme by the numerical flux evaluation of the finite volume algorithm,
hence explaining the high amount of time needed to re-update those cells which have
been detected as problematic. Indeed, the higher the number of troubled cells, the higher
the number of numerical fluxes that has to be computed and re-computed. Further re-
search and work would be necessary to consider a quadrature-free approach, as the one
suggested in [? ], or design some other strategy in order to improve the efficiency of the
ALE flux evaluation.

For the sake of clarity we have also performed the same simulations with the WENO
ADER-ALE algorithm described in [25] and it turns out that, for such complex systems,
the WENO scheme is faster and approximately two times more efficient, as clearly no-
table in Table 6. This result is in disagreement with what we observed in [? ], where
the ALE-MOOD code has proved to be much more efficient than the original WENO
algorithm [25? ]. Such a behavior is mainly due to the aforementioned reasons.

For comparison purposes we propose in Figure 12 the same diagnostics but when
the two-dimensional hydrodynamics equations are solved and the classical Sod shock
tube problem is simulated on the same mesh used previously. Because the hydrodynam-
ics system of conservation laws has only four equations in 2D and neither source terms
nor non-conservative products, the amount of time spent in each part of the code does
change. For instance the amount of time spent in the reconstruction procedure is now
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Figure 11: Profiling of the third, fourth and fifth order accurate ADER-ALE-MOOD codes from left to right
for the BN model on the RP3 test case — Top line: Percent of the time spent in the unlimited scheme
(sum of Reconstruction, Predictor, Finite Volume scheme) and in the MOOD loop (Detection, Re-update)
— Bottom line Percent of the time spent in each component of the code : Reconstruction, Predictor, Finite
Volume (unlimited scheme) and Detection, Re-update (MOOD loop) of bad cells — The abscissa represent the
iteration index.



41

Ord.
Unlimited first iteration MOOD procedure T N T

Pol.Recons. Predict. FV scheme Detect. Re-upd. Bad cells CPU d.o.f. /d.o.f.

A
L

E
-M

O
O

D 2

0.05 s 1.70 s 2.70 s 0.00 s 6.8 s '115450 11.25 s 30 0.37 s

0.5% 15.1% 24.1% 0.0% 60.3% 13.9% 100%

39.7% 60.3%

3

0.27 s 6.30 s 29.69 s 0.00 s 58.53 s '171125 94.79 s 80 1.18 s

0.3% 6.6% 31.4% 0.0% 61.7% 20.6% 100%

38.3% 61.7%

Table 5: Profiling of the ALE-MOOD code solving the EP3 problem described above for the Baer-Nunziato
system of equations. Horizontal lines: third and fourth order numerical scheme results. Vertical lines: percentage
of total time for each procedure. The “Bad cells” column displays the percentage of bad cells detected on average
for the entire simulation with respect to the total number of cells. (Note that the same cell can be detected
several times per timestep.)

2D - RP3 3D - EP3

A
L

E
-W

E
N

O Ord.
T N T T N T

CPU d.o.f. /d.o.f. CPU d.o.f. /d.o.f.

2 1.74 s 18 0.10 s 4.05 s 30 0.14 s

3 5.75 s 40 0.14 s 35.88 s 80 0.45 s

4 29.25 s 75 0.39 s - - -

Table 6: Profiling of the ALE-WENO code solving the test problems RP3 in 2D and EP3 in 3D described above
for the Baer-Nunziato system of equations. We show the total computational time per timestep, the number
of degrees of freedom and the computational time needed to update each degree of freedom per timestep. As
done for the ALE-MOOD code, we consider M=2,3,4.

not negligible anymore (about 20%) and it increases with a high order of accuracy as ex-
pected. The relative amount of time spent in re-updating the bad cells drops to 30% on
average. This is also not negligible because the space-time integration is still performed
with high accuracy as for the BN model.

5 Conclusion and Perspectives

This paper follows [? ] in which the novel a posteriori Multi-dimensional Optimal Order
Detection (MOOD) approach was applied to the context of direct Arbitrary-Lagrangian-
Eulerian (ALE) ADER schemes solving the hydrodynamics equations in multi-dimensions
on moving meshes. In this work we have shown how to extend such ALE-ADER-MOOD
approach to different systems of equations involving non-conservative products and stiff
source terms. The candidate model is the seven-equation Baer-Nunziato model of multi-
phase flows with inter-phase drag and pressure relaxation terms.

Within the unlimited ALE-ADER-WENO scheme designed in [? ] to solve 3D hydro-
dynamics problems on unstructured simplicial grids, we have substituted the MOOD
paradigm [13, 21, 22, 43] to the a priori WENO polynomial limiting technique.
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Figure 12: Profiling of the third, fourth and fifth order accurate ADER-ALE-MOOD codes from left to right for
the hydrodynamics model on the Sod problem — Top line: Percent of the time spent in the unlimited scheme
(sum of Reconstruction, Predictor, Finite Volume scheme) and in the MOOD loop (Detection, Re-update)
— Bottom line Percent of the time spent in each component of the code : Reconstruction, Predictor, Finite
Volume (unlimited scheme) and Detection, Re-update (MOOD loop) of bad cells — The abscissa represent the
iteration index.
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The ALE-MOOD scheme has been implemented within a 2D/3D parallel MPI code
dedicated to solve hyperbolic PDE on fixed and moving unstructured grids, see [? ?
]. Some modifications have been designed to take into account the presence of non-
conservative products and source terms. A test suite in 2D and 3D has been simulated
and results are reported in this work. Generally speaking the ALE-MOOD numerical
method produces accurate results on these complex systems of equations. An evolution
of the number of problematic cells is systematically provided in order to visualize the
extra-work brought by the use of the MOOD paradigm. The numerical results presented
in this paper indicate that the high order direct ADER-ALE finite volume schemes sup-
plemented with a posteriori MOOD stabilization paradigm constitute a valid numerical
method to solve complex hyperbolic PDE systems with nonconservative products and
stiff source terms in multiple space dimensions on unstructured meshes on parallel ma-
chines.

Moreover we have provided a crude but representative profiling of the overall nu-
merical method to estimate the relative cost of the main components of the code. The
new approach is less efficient than the original WENO formulation [? ? ], although it
is easier to code and permits to save memory consumption because it only needs one
reconstruction stencil in two and three space dimensions, see [? ] for details. There-
fore in the near future we plan to optimize further the Re-update component of the
MOOD loop by adapting the space-time integration to the polynomial degree chosen or
even developing a quadrature-free integration as done in [? ]. We also plan to employ
the ADER-ALE-MOOD machinery to deal with astrophysical and Inertial Confinement
Fusion (ICF) problems for which highly accurate moving mesh techniques may become
mandatory when the computational domain may drastically change its size.
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