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1. Introduction

* High order schemes developed for handling both smooth and
discontinuous solution

- MUSCL scheme, PPM (2" order scheme)
- WENO, DG scheme (3" order scheme or higher-order)

A One issue of high order scheme is generating non-physical
negative density or pressure leads to blow-up the computation

or code crash.

s To prevent this issue:

- DG, finite volume/difference WENO flux limiter restricted the CFL number

- Flux Corrected Transport (FCT), cut-off limiter, bounded preserving, etc.

- Multi-dimensional Optimal Order Detection (MOOD)




1. Introduction

*» MOOD is an a posteriori limiting process scheme:

- Physical Admissible Detection (PAD)
- Numerical Admissible Detection (NAD)

% THINC scheme using hyperbolic tangent function, mimics a
jump-like solution and is employed to capture discontinuous

solution

% BVD algorithm selecting the appropriate reconstructions rely on

jump between reconstructed values at the cell boundary

AnewBvD == P T . — BVD Multi-stage BVD

(Deng, JCP,2019)
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Research Purpose

» New Algorithm iIs proposed:

1. How to get the high-accurate in smooth solutions?
- High order polynomial based reconstruction
2. How to deal with discontinuous solutions?
- Boundary Variation Diminishing (BVD) algorithm
3. How to preserve the positivity of physical properties of fluids?

- Multi-dimensional Optimal Order Detection (MOOD)

=) Multi-stage BVD-MOOD Approach
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2. General Framework
> Finite Volume Method

The scalar hyperbolic conservation laws:

oUu OF(U
LOFW)

dt 0x (1)

where U(x, t) is solution function and F(U) is the flux function. In the case of linear
advection, F(U) = aU or a = F'(U), the characteristic speed.

A uniform discretization of the domain Q = [x%, x¥]

X;i = xog + (i + %)Ax Fori=1,..,N where Ax = xl.+% — xl._%

The cell elements of control volumes

Iy = [xi_%,xi%] Fori=1,..,N

Introduce the cell average as volume-integrated average (VIA) as:

X, 1
l+§

i J U(x, t)dx (2)

U;(t) =

1

2




2. General Framework
For each cell |, the VIA U;(t) is updated by

Ui 1z 7 3
at = (et =) G)

where F, 1 and F,_: are numerical fluxes at cell boundaries
2 2

Numerical fluxes computed by a Riemann Solver (HLLC in this work)

Fi+%= Fiii%emann (UiL+%' Uii%) ' (4)
Particularly, the Riemann flux can be written into a canonical form
Riemann (y;L /R 1 L R |ai+%| R L
(Ui T (F () T () (e ) O
Centrlal flux Dissip'ation

» The spatial discretization reconstructed by piecewise polynomial
reconstruction scheme and THINC schemes

> The time integration scheme is 4"-order Runge-Kutta (SSPRK)




3. Solution Property Preserving Method

Some properties of numerical solution should be preserved by the
numerical scheme:

» High accuracy in regular zones - Accuracy on smooth profile.

» Free from spurious oscillation close to steep gradient - Non
oscillatory behavior.

= Sharp capture of discontinuity = Accuracy on discontinuous
profile.

= Robustness for extreme situations = Fail-safe behavior.
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lllustration of the solution property preserving
method

Ry is a linear 5"-order upwind scheme

Reno and Rsyarp is THINC scheme
with small beta and large beta value




3. Solution Property Preserving Method
» THINC Method
THINC scheme uses the hyperbolic tangent function which is sigmoid

function and is differentiable and monotone function.

- THINC reconstruction function is defined as

2

X, 1—X, 1
l+§ l_i

U r—X_1
Ui(x) = Upin + L s ytanh| B z__ X; ) (6)

- '(i) where Umin = min(ﬁi—lr l_]i+1)'

Unax = max(Ui—lr Ui+1) — Unin

and y = sgn(Ui41 — Ui_1).

Ui+1(x)I . . )
| B is used for controlling the jump
thickness
0,0) = — xi+;U d
‘ i(x)—A_x j i(x)dx
X. 1

i+% =3




3. Solution Property Preserving Method
» THINC Method

- The value of cell |, interface for left-side and right-side:

U tanh + A
UiL (xi+1) = Umin + — (1 + (B) );
2

2 Y1+ A tanh(p)
’ (7)
R . _ max
Ui (xi—%) = Upin + 2 (1 + VA);
B
where 4 = @@ 1 g _ o (yB(2C — 1)) and C = UiUmint€ ith ¢ = 1020
tanh(B) ’ N4 Umax+€ '

- Rgno 1S THINC reconstruction with g < 1.2

- Rsyarp 1S THINC reconstruction with f > 1.6

(Sun,JCP,2016 & Xiao,JMF,2005, & Deng,CF,2018)




3. Solution Property Preserving Method
» An a posteriori MOOD procedure

- The detection criteria are split into a Physical Admissible Detection (PAD)

and a Numerical Admissible Detection (NAD) (Clain,JCP,2011 & Diot,JCP,2012)
Detect:  PAD(U/"*"*), and  NAD(U]*")

o Physical Admissible Detection (PAD)

p;>0 and p; >0 (8)
RK STEP
n "
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Sketch of the finite volume with a posteriori MOOD procedure




3. Solution Property Preserving Method

> lllustration of the behavior of the reconstruction R

The behavior of FV schemes with different reconstructions

- Ry is a linear 5™-order upwind scheme (P4)

- Rgno, and Ry, are THINC schemes with = 1.2 and g = 1.1
- Rsyarp 1S THINC scheme with g = 1.6

- R, is a piece-wise constant scheme (P0)
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3. Solution Property Preserving Method
» Local selection of reconstruction operator: a 3-stage BVD algorithm
The selector relies on a 3-stage Boundary Variation Diminishing (BVD) algorithm.

= Total boundary variation (TBV) by the sum of the jumps of R at interfaces:

LR R,R
U —U"7|+
l_i l_i

TBVR = vtk —UuR% > o. (9)
l+§ l+§

where each term represents the amount of dissipation in the numerical flux in (5) for one edge
of cell I;.

BVD algorithm is to compare the TBVng1 and TBVl.722 of the reconstructions R,

and R, of the same date U, and selects the least dissipative one in cell ;.

1 Ulﬁ.l/z 1 1
i Uitay, = Uiy, i \? Ui
i Ry |
: P 27 :
Ul L J 1
L | | (Deng,CF2018 & Deng, JCP,2019)
O O O
il il g Y8

BVD principle



3. Solution Property Preserving Method

» Local selection of reconstruction operator: a 3-stage BVD algorithm
A 3-stage BVD algorithm procedure is as following:

= Stage 1. Selection between Ry, and Rgyo, 2 Rsr,
For all cell i, if TBVL.RHO > TBVl.geENO2 then (r;_4,13,7741) = ENO,,else r; = HO.
) Rgp, ={r,i=1,..,N}
= Stage 2. Selection between R and Rpyp, 2 Rsr,
For all cell i, if TBVL.RST1 > TBVL.:RENO1 then (r;_q,13,1541) = ENOq,else r; = ST;.

‘ :R'STZ — {rili — 1; )N}

= Stage 3. Selection between Rgr, and Rsyarp 2 Rsr,
R
For all cell i, if TBV, T2 TBVL.RSHARP then r; = SHARP, else r; = ST,.

) R ={r,i=1..,N}




4. Numerical Experiments

v 1D Linear Advection Equation
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4. Numerical Experiments
v' 1D Euler Equations
- SOD and Lax Shock tube problem
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4. Numerical Experiments
v' 1D Euler Equations

- Collela-Woodward Blast-wave The result time t =0.038
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4. Numerical Experiments
v' 1D Euler Equations

- Double rarefaction and Le Blanc problem
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4. Numerical Experiments

v' 1D Euler Equations .
The result time t =0.001

- Sedov Blast-waves
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4. Numerical Experiments

v' 2D Euler Equations
- Riemann Problem
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4. Numerical Experiments

v' 2D Euler Equations

- Performance of the present scheme The result time £ =0.3
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4. Numerical Experiments

v' 2D Euler Equations

- Performance of the present scheme The result time t =0.8
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4. Numerical Experiments

v' 2D Euler Equations

The result time t =0.5
- Shock-Vortex Interaction problem
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4. Numerical Experiments

v' 2D Euler Equations

- Shock-Bubble Interaction problem
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4. Numerical Experiments

v' 2D Euler Equations
- Sedov Blast-waves (near vacuum region problem) The result time t =1
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4. Numerical Experiments

v' 2D Euler Equations
- High Mach number astrophysical jets (2000)
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5. Conclusion

» The new approach differs from classical polynomial-based and relies on
several types of reconstructions:
1. 5™-order upwind scheme for smooth solution
2. Viscous non-linear THINC functions to add dissipation
3. Sharp non-linear ones to handle discontinuity and steep
gradients

4. No reconstruction at all extreme situations

» This approach is to choose these reconstructions based on the BVD strategy.

v' The present scheme can sharply capture both contact discontinuities and
shocks (THINC) and is extremely robust to positivity issues (an a posteriori

treatment).




Future Work

> Apply the scheme to complex PDEs with source terms and Reaction Euler
equations
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