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1. Introduction

- MUSCL scheme, PPM (2nd order scheme) 

- WENO, DG scheme (3rd order scheme or higher-order)

❖ High order schemes developed for handling both smooth and

discontinuous solution

Δ One issue of high order scheme is generating non-physical

negative density or pressure leads to blow-up the computation

or code crash.

❖ To prevent this issue:

- DG, finite volume/difference WENO flux limiter restricted the CFL number

- Flux Corrected Transport (FCT), cut-off limiter, bounded preserving, etc.

- Multi-dimensional Optimal Order Detection (MOOD) 
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1. Introduction

❖ THINC scheme using hyperbolic tangent function, mimics a

jump-like solution and is employed to capture discontinuous

solution

❖ MOOD is an a posteriori limiting process scheme:

- Physical Admissible Detection (PAD)

- Numerical Admissible Detection (NAD) 

❖ BVD algorithm selecting the appropriate reconstructions rely on

jump between reconstructed values at the cell boundary

A new BVD 𝑷𝒏𝑻𝒎 − 𝑩𝑽𝑫 Multi-stage BVD

(Deng, JCP,2019)
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Research Purpose

➢ New Algorithm is proposed: 

1. How to get the high-accurate in smooth solutions? 

- High order polynomial based reconstruction 

2. How to deal with discontinuous solutions? 

- Boundary Variation Diminishing (BVD) algorithm 

3.  How to preserve the positivity of physical properties of fluids? 

- Multi-dimensional Optimal Order Detection (MOOD) 

Multi-stage BVD-MOOD Approach
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2. General Framework

The scalar hyperbolic conservation laws:

𝜕𝑈

𝜕𝑡
+
𝜕𝐹(𝑈)

𝜕𝑥
= 0 (1)

where U(𝑥, 𝑡) is solution function and F(𝑈) is the flux function. In the case of linear 

advection, F 𝑈 = 𝛼𝑈 or 𝛼 = 𝐹′(𝑈), the characteristic speed. 

A uniform discretization of the domain Ω = 𝑥𝐿, 𝑥𝑅

𝑥𝑖 = 𝑥0 + (𝑖 + 1
2
)∆𝑥 For i = 1,…,N

The cell elements of control volumes

𝐼𝑖 = [𝑥
𝑖−

1

2

, 𝑥
𝑖+

1

2

] For i = 1,…,N

Introduce the cell average as volume-integrated average (VIA) as: 

ഥ𝑈𝑖 𝑡 =
1

∆𝑥
න

𝑥
𝑖−
1
2

𝑥
𝑖+
1
2

𝑈 𝑥, 𝑡 𝑑𝑥 (2)

where ∆𝑥 = 𝑥
𝑖+

1

2

− 𝑥
𝑖−

1

2

➢ Finite Volume Method
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2. General Framework

For each cell Ii, the VIA ഥ𝑈𝑖(𝑡) is updated by 

𝑑ഥ𝑈𝑖
𝑑𝑡

= −
1

Δ𝑥
෨𝐹
𝑖+
1
2
− ෨𝐹

𝑖−
1
2
,

where ෨𝐹
𝑖+

1

2

and ෨𝐹
𝑖−

1

2

are numerical fluxes at cell boundaries

෨𝐹
𝑖+
1
2
= 𝐹

𝑖+
1
2

𝑅𝑖𝑒𝑚𝑎𝑛𝑛 𝑈
𝑖+
1
2

𝐿 , 𝑈
𝑖+
1
2

𝑅 .

Numerical fluxes computed by a Riemann Solver (HLLC in this work)

(3)

(4)

Particularly, the Riemann flux can be written into a canonical form 

𝐹
𝑖+
1
2

𝑅𝑖𝑒𝑚𝑎𝑛𝑛 𝑈
𝑖+
1
2

𝐿 , 𝑈
𝑖+
1
2

𝑅 =
1

2
𝐹 𝑈

𝑖+
1
2

𝐿 + 𝐹 𝑈
𝑖+
1
2

𝑅 −

𝑎
𝑖+
1
2

2
𝑈
𝑖+
1
2

𝑅 −𝑈
𝑖+
1
2

𝐿
(5)

➢ The spatial discretization reconstructed by piecewise polynomial

reconstruction scheme and THINC schemes

➢ The time integration scheme is 4th-order Runge-Kutta (SSPRK)

Central flux Dissipation
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3. Solution Property Preserving Method

Illustration of the solution property preserving 
method 

Some properties of numerical solution should be preserved by the 

numerical scheme: 

▪ High accuracy in regular zones  → Accuracy on smooth profile.

▪ Free from spurious oscillation close to steep gradient → Non 

oscillatory behavior. 

▪ Sharp capture of discontinuity → Accuracy on discontinuous 

profile.

▪ Robustness for extreme situations → Fail-safe behavior.

- ℛ𝐻𝑂 is a linear 5th-order upwind scheme

- ℛ𝐸𝑁𝑂 and ℛ𝑆𝐻𝐴𝑅𝑃 is THINC scheme 
with small beta and large beta value

BVD

BVD
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3. Solution Property Preserving Method

➢ THINC Method

THINC scheme uses the hyperbolic tangent function which is sigmoid 

function and is differentiable and monotone function. 

- THINC reconstruction function is defined as 

𝑈𝑖 𝑥 = 𝑈𝑚𝑖𝑛 +
𝑈𝑚𝑎𝑥

2
1 + 𝛾𝑡𝑎𝑛ℎ 𝛽

𝑥 − 𝑥
𝑖−
1
2

𝑥
𝑖+
1
2
− 𝑥

𝑖−
1
2

− ෤𝑥𝑖 ,
(6)

where 𝑈𝑚𝑖𝑛 = 𝑚𝑖𝑛 ഥ𝑈𝑖−1, ഥ𝑈𝑖+1 ,

𝑈𝑚𝑎𝑥 = 𝑚𝑎𝑥 ഥ𝑈𝑖−1, ഥ𝑈𝑖+1 − 𝑈𝑚𝑖𝑛

and 𝛾 = 𝑠𝑔𝑛(ഥ𝑈𝑖+1 − ഥ𝑈𝑖−1). 

Ii-1 Ii Ii+1
𝑥
𝑖−
3
2

𝑥
𝑖−
1
2

𝑥
𝑖+
1
2

𝑥
𝑖+
3
2

𝛽 is used for controlling the jump 

thickness

ഥ𝑈𝑖 𝑥 =
1

∆𝑥
න

𝑥
𝑖−
1
2

𝑥
𝑖+
1
2

𝑈𝑖 𝑥 𝑑𝑥

ഥ𝑈𝑖 𝑥

ഥ𝑈𝑖+1 𝑥

ഥ𝑈𝑖−1 𝑥

𝑈𝑖 𝑥

𝑈𝑖+1 𝑥

𝑈𝑖−1 𝑥

𝑈
𝑖−
1
2

𝐿 𝑥

𝑈
𝑖−
1
2

𝑅 𝑥

𝑈
𝑖+
1
2

𝐿 𝑥

𝑈
𝑖+
1
2

𝑅 𝑥
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➢ THINC Method

- The value of cell Ii interface for left-side and right-side: 

𝑈𝑖
𝐿 𝑥

𝑖+
1
2
= 𝑈𝑚𝑖𝑛 +

𝑈𝑚𝑎𝑥

2
1 + 𝛾

tanh 𝛽 + 𝐴

1 + 𝐴 tanh 𝛽
,

𝑈𝑖
𝑅 𝑥

𝑖−
1
2
= 𝑈𝑚𝑖𝑛 +

𝑈𝑚𝑎𝑥

2
1 + 𝛾𝐴 ,

(7)

where 𝐴 =

𝐵

cosh 𝛽
−1

tanh(𝛽)
, 𝐵 = 𝑒𝑥𝑝 𝛾𝛽(2𝐶 − 1) and 𝐶 =

ഥ𝑈𝑖−ഥ𝑈𝑚𝑖𝑛+𝜖

ഥ𝑈𝑚𝑎𝑥+𝜖
with 𝜖 = 10−20.

3. Solution Property Preserving Method

- ℛ𝐸𝑁𝑂 is THINC reconstruction with 𝛽 ≤ 1.2

- ℛ𝑆𝐻𝐴𝑅𝑃 is THINC reconstruction with 𝛽 ≥ 1.6

(Sun,JCP,2016 & Xiao,JMF,2005, & Deng,CF,2018)
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➢ An a posteriori MOOD procedure

3. Solution Property Preserving Method

- The detection criteria are split into a Physical Admissible Detection (PAD) 

and a Numerical Admissible Detection (NAD)  (Clain,JCP,2011 & Diot,JCP,2012)

Detect:       PAD 𝑈𝑖
𝑛+1,∗ , and NAD 𝑈𝑖

𝑛+1,∗

𝜌𝑖
∗> 0 and 𝑝𝑖

∗ > 0 (8)

o Physical Admissible Detection (PAD) 

Sketch of the finite volume with a posteriori MOOD procedure 
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➢ Illustration of the behavior of the reconstruction ℛ

3. Solution Property Preserving Method

The behavior of FV schemes with different reconstructions

- ℛ𝐻𝑂 is a linear 5th-order upwind scheme (P4)

- ℛ𝐸𝑁𝑂2 and ℛ𝐸𝑁𝑂1 are THINC schemes with 𝛽 = 1.2 and 𝛽 = 1.1

- ℛ𝑆𝐻𝐴𝑅𝑃 is THINC scheme with 𝛽 = 1.6

- ℛ𝐿𝑂 is a piece-wise constant scheme (P0)

Smooth sine profile 𝑈 𝑥 = sin(2𝜋𝑥) Discontinuous step profile 𝑈 𝑥 =
1

2
1 +

𝑥− Τ1 4

𝑥− Τ1 4



3. Solution Property Preserving Method

➢ Local selection of reconstruction operator: a 3-stage BVD algorithm 

The selector relies on a 3-stage Boundary Variation Diminishing (BVD) algorithm. 

▪ Total boundary variation (TBV) by the sum of the jumps of ℛ at interfaces:

𝑇𝐵𝑉𝑖
ℛ = 𝑈

𝑖−
1
2

𝐿,ℛ −𝑈
𝑖−
1
2

𝑅,ℛ + 𝑈
𝑖+
1
2

𝐿,ℛ −𝑈
𝑖+
1
2

𝑅,ℛ ≥ 0. (9)

where each term represents the amount of dissipation in the numerical flux in (5) for one edge 
of cell 𝐼𝑖. 

BVD algorithm is to compare the 𝑇𝐵𝑉𝑖
ℛ1 and 𝑇𝐵𝑉𝑖

ℛ2 of the reconstructions ℛ1

and ℛ2 of the same date U, and selects the least dissipative one in cell 𝐼𝑖.   
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Ii Ii+1
𝑥
𝑖−
1
2

𝑥
𝑖+
1
2

𝑥
𝑖+
3
2

𝑈𝑖

𝑈𝑖+1

BVD principle

𝑈
𝑖+ ൗ1 2

𝐿

𝑈
𝑖+ ൗ1 2

𝑅

𝑈
𝑖+ ൗ1 2

𝐿 − 𝑈
𝑖+ ൗ1 2

𝑅

(Deng,CF2018 & Deng, JCP,2019)



3. Solution Property Preserving Method

➢ Local selection of reconstruction operator: a 3-stage BVD algorithm 
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A 3-stage BVD algorithm procedure is as following:

▪ Stage 1. Selection between ℛ𝐻𝑂 and ℛ𝐸𝑁𝑂2 → ℛ𝑆𝑇1

For all cell 𝑖, if 𝑇𝐵𝑉𝑖
ℛ𝐻𝑂 > 𝑇𝐵𝑉

𝑖

ℛ𝐸𝑁𝑂2 then 𝑟𝑖−1, 𝑟𝑖 , 𝑟𝑖+1 = 𝐸𝑁𝑂2, 𝑒𝑙𝑠𝑒 𝑟𝑖 = 𝐻𝑂.

ℛ𝑆𝑇1 = 𝑟𝑖 , 𝑖 = 1, … , 𝑁

▪ Stage 2. Selection between ℛ𝑆𝑇1 and ℛ𝐸𝑁𝑂1 →ℛ𝑆𝑇2

For all cell 𝑖, if 𝑇𝐵𝑉
𝑖

ℛ𝑆𝑇1 > 𝑇𝐵𝑉
𝑖

ℛ𝐸𝑁𝑂1 then 𝑟𝑖−1, 𝑟𝑖 , 𝑟𝑖+1 = 𝐸𝑁𝑂1, 𝑒𝑙𝑠𝑒 𝑟𝑖 = 𝑆𝑇1.

ℛ𝑆𝑇2 = 𝑟𝑖 , 𝑖 = 1,… , 𝑁

▪ Stage 3. Selection between ℛ𝑆𝑇2 and ℛ𝑆𝐻𝐴𝑅𝑃→ℛ𝑆𝑇3

For all cell 𝑖, if 𝑇𝐵𝑉
𝑖

ℛ𝑆𝑇2 > 𝑇𝐵𝑉𝑖
ℛ𝑆𝐻𝐴𝑅𝑃 then 𝑟𝑖 = 𝑆𝐻𝐴𝑅𝑃, 𝑒𝑙𝑠𝑒 𝑟𝑖 = 𝑆𝑇2.

ℛ𝑆𝑇3 = 𝑟𝑖 , 𝑖 = 1,… , 𝑁
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4. Numerical Experiments

✓ 1D Linear Advection Equation

WENO-Z Multi-stage BVD-MOOD

The result time t =2

Min Value

WENO-Z -0.001131

Present 1.88e-18
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✓ 1D Euler Equations

The result time t =0.16

The result time t =0.25
Contact and shock can
be sharply resolved

200 cells

200 cells

WENO-Z Present

- SOD and Lax Shock tube problem

4. Numerical Experiments
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✓ 1D Euler Equations

- Collela-Woodward Blast-wave The result time t =0.038

400 cells

WENO-Z Present

4. Numerical Experiments
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✓ 1D Euler Equations

- Double rarefaction and Le Blanc problem

5th-order FD 

WENOPresent

Positivity-preserving techniques

4. Numerical Experiments

The result time t =0.6

(Zhang,JCP,2012)

400 cells

The result time t =6

800 cells

Present
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✓ 1D Euler Equations

- Sedov Blast-waves

Present

Positivity-preserving techniques

5th-order FD 

WENO

(Zhang,JCP,2012)

4. Numerical Experiments

The result time t =0.001
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✓ 2D Euler Equations

- Riemann Problem

400 x 400 cells PresentWENO-Z

4. Numerical Experiments
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✓ 2D Euler Equations

- Performance of the present scheme

4. Numerical Experiments

PresentWENO-Z

900 x 900 cells

1200 x 1200 cells

6th-order WENO-θ

(Jung, Adv Comput Math, 2017)

The result time t =0.3
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✓ 2D Euler Equations

- Performance of the present scheme

4. Numerical Experiments

PresentWENO-Z

The result time t =0.8

600 x 600 cells
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✓ 2D Euler Equations

- Shock-Vortex Interaction problem 

4. Numerical Experiments

PresentWENO-Z

The result time t =0.5

200 x 200 cells
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✓ 2D Euler Equations

- Shock-Bubble Interaction problem 

4. Numerical Experiments

PresentWENO-Z

The result time t =0.15

400 x 200 cells



25

✓ 2D Euler Equations

4. Numerical Experiments

- Sedov Blast-waves (near vacuum region problem)

Present

5th-order FD 

WENO

(Zhang,JCP,2012)

The result time t =1

320 x 320 cells
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✓ 2D Euler Equations

- High Mach number astrophysical jets (2000) 

4. Numerical Experiments

ACWNCS6-CU (800x400 cells) Present (640x320 cells)
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5. Conclusion

➢ The new approach differs from classical polynomial-based and relies on 

several types of reconstructions:

1. 5th-order upwind scheme for smooth solution

2. Viscous non-linear THINC functions to add dissipation

3. Sharp non-linear ones to handle discontinuity and steep 

gradients

4. No reconstruction at all extreme situations

➢ This approach is to choose these reconstructions based on the BVD strategy. 

✓ The present scheme can sharply capture both contact discontinuities and

shocks (THINC) and is extremely robust to positivity issues (an a posteriori

treatment).



28

Future Work

➢ Apply the scheme to complex PDEs with source terms and Reaction Euler 

equations
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