

SOLUTION PROPERTY PRESERVING METHOD FOR EULER EQUATIONS: A BVD_MOOD_APPROACH

Siengdy TANN¹, Xi DENG², Yuya SHIMIZU¹, Raphaël LOUBERE³, Feng XIAO¹

¹Department of Mechanical Engineering Tokyo Institute of Technology

> ²Department de mécanique Aix-Marseille Université

³Institut de Mathématiques de Bordeaux Université de Bordeaux

- **1. Introduction**
- **2. General Framework**
- **3. Solution Property Preserving Method**
- 4. Numerical Results (1D and 2D cases)
- **5. Conclusion and Future Work**

1. Introduction

- High order schemes developed for handling both smooth and discontinuous solution
 - MUSCL scheme, PPM (2nd order scheme)
 - WENO, DG scheme (3rd order scheme or higher-order)
- △ One issue of high order scheme is generating non-physical negative density or pressure leads to blow-up the computation or code crash.
- To prevent this issue:
 - DG, finite volume/difference WENO flux limiter restricted the CFL number
 - Flux Corrected Transport (FCT), cut-off limiter, bounded preserving, etc.
 - Multi-dimensional Optimal Order Detection (MOOD)

1. Introduction

- ✤ MOOD is an *a posteriori* limiting process scheme:
 - Physical Admissible Detection (PAD)
 - Numerical Admissible Detection (NAD)
- THINC scheme using hyperbolic tangent function, mimics a jump-like solution and is employed to capture discontinuous solution
- BVD algorithm selecting the appropriate reconstructions rely on jump between reconstructed values at the cell boundary

A new BVD \implies $P_nT_m - BVD$ Multi-stage BVD (Deng, JCP, 2019)

Research Purpose

> New Algorithm is proposed:

1. How to get the high-accurate in smooth solutions?

- High order polynomial based reconstruction

- 2. How to deal with discontinuous solutions?
 - Boundary Variation Diminishing (BVD) algorithm
- 3. How to preserve the positivity of physical properties of fluids?

- Multi-dimensional Optimal Order Detection (MOOD)

2. General Framework

Finite Volume Method

The scalar hyperbolic conservation laws:

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = 0 \tag{1}$$

where U(x,t) is solution function and F(U) is the flux function. In the case of linear advection, $F(U) = \alpha U$ or $\alpha = F'(U)$, the characteristic speed.

A uniform discretization of the domain $\Omega = [x^L, x^R]$

$$x_i = x_0 + (i + \frac{1}{2})\Delta x$$
 For $i = 1, ..., N$ where $\Delta x = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}$

The cell elements of control volumes

$$I_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$$
 For $i = 1, ..., N$

Introduce the cell average as volume-integrated average (VIA) as:

$$\overline{U}_i(t) = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U(x,t) dx$$

(2)

2. General Framework

For each cell I_i , the VIA $\overline{U}_i(t)$ is updated by

$$\frac{d\overline{U}_i}{dt} = -\frac{1}{\Delta x} \left(\tilde{F}_{i+\frac{1}{2}} - \tilde{F}_{i-\frac{1}{2}} \right),\tag{3}$$

where $\tilde{F}_{i+\frac{1}{2}}$ and $\tilde{F}_{i-\frac{1}{2}}$ are numerical fluxes at cell boundaries

Numerical fluxes computed by a Riemann Solver (HLLC in this work)

$$\tilde{F}_{i+\frac{1}{2}} = F_{i+\frac{1}{2}}^{Riemann} \left(U_{i+\frac{1}{2}}^{L}, U_{i+\frac{1}{2}}^{R} \right).$$
(4)

Particularly, the Riemann flux can be written into a canonical form

$$F_{i+\frac{1}{2}}^{Riemann}\left(U_{i+\frac{1}{2}}^{L}, U_{i+\frac{1}{2}}^{R}\right) = \frac{1}{2}\left(F\left(U_{i+\frac{1}{2}}^{L}\right) + F\left(U_{i+\frac{1}{2}}^{R}\right)\right) - \frac{\left|a_{i+\frac{1}{2}}\right|}{2}\left(U_{i+\frac{1}{2}}^{R} - U_{i+\frac{1}{2}}^{L}\right)$$
(5)
Central flux Dissipation

- The spatial discretization reconstructed by piecewise polynomial reconstruction scheme and THINC schemes
- ➤ The time integration scheme is 4th-order Runge-Kutta (SSPRK)

Some properties of numerical solution should be preserved by the numerical scheme:

- High accuracy in regular zones \rightarrow Accuracy on smooth profile.
- Free from spurious oscillation close to steep gradient → Non oscillatory behavior.
- Sharp capture of discontinuity → Accuracy on discontinuous profile.
- Robustness for extreme situations \rightarrow Fail-safe behavior.

Illustration of the solution property preserving method

- \mathcal{R}_{HO} is a linear 5th-order upwind scheme
- \mathcal{R}_{ENO} and \mathcal{R}_{SHARP} is THINC scheme with small beta and large beta value

> THINC Method

THINC scheme uses the hyperbolic tangent function which is sigmoid function and is differentiable and monotone function.

- THINC reconstruction function is defined as

$$U_{i}(x) = U_{min} + \frac{U_{max}}{2} \left(1 + \gamma tanh\left(\beta \left(\frac{x - x_{i-\frac{1}{2}}}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}} - \tilde{x}_{i}\right)\right)\right),$$
(6)

where $U_{min} = min(\overline{U}_{i-1}, \overline{U}_{i+1})$, $U_{max} = max(\overline{U}_{i-1}, \overline{U}_{i+1}) - U_{min}$ and $\gamma = sgn(\overline{U}_{i+1} - \overline{U}_{i-1})$.

 β is used for controlling the jump thickness

$$\overline{U}_i(x) = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U_i(x) dx$$

> THINC Method

- The value of cell I_i interface for left-side and right-side:

$$U_{i}^{L}\left(x_{i+\frac{1}{2}}\right) = U_{min} + \frac{U_{max}}{2}\left(1 + \gamma \frac{\tanh(\beta) + A}{1 + A \tanh(\beta)}\right),$$

$$U_{i}^{R}\left(x_{i-\frac{1}{2}}\right) = U_{min} + \frac{U_{max}}{2}(1 + \gamma A),$$
(7)

where
$$A = \frac{\overline{B} - 1}{\tanh(\beta)}$$
, $B = exp(\gamma\beta(2C - 1))$ and $C = \frac{\overline{U}_i - \overline{U}_{min} + \epsilon}{\overline{U}_{max} + \epsilon}$ with $\epsilon = 10^{-20}$.

- \mathcal{R}_{ENO} is THINC reconstruction with $\beta \leq 1.2$
- \mathcal{R}_{SHARP} is THINC reconstruction with $\beta \ge 1.6$

(Sun, JCP, 2016 & Xiao, JMF, 2005, & Deng, CF, 2018)

An a posteriori MOOD procedure

- The detection criteria are split into a Physical Admissible Detection (PAD) and a Numerical Admissible Detection (NAD) (Clain, JCP, 2011 & Diot, JCP, 2012)

Detect: $PAD(U_i^{n+1,*})$, and $NAD(U_i^{n+1,*})$

• Physical Admissible Detection (PAD)

$$\rho_i^* > 0 \quad \text{and} \quad p_i^* > 0 \tag{8}$$

Sketch of the finite volume with a posteriori MOOD procedure

\succ Illustration of the behavior of the reconstruction $\mathcal R$

The behavior of FV schemes with different reconstructions

- \mathcal{R}_{HO} is a linear 5th-order upwind scheme (P4)
- \mathcal{R}_{ENO_2} and \mathcal{R}_{ENO_1} are THINC schemes with $\beta = 1.2$ and $\beta = 1.1$
- \mathcal{R}_{SHARP} is THINC scheme with $\beta = 1.6$
- \mathcal{R}_{LO} is a piece-wise constant scheme (P0)

Smooth sine profile $U(x) = \sin(2\pi x)$

Local selection of reconstruction operator: a 3-stage BVD algorithm

The selector relies on a 3-stage Boundary Variation Diminishing (BVD) algorithm.

• Total boundary variation (TBV) by the sum of the jumps of \mathcal{R} at interfaces:

$$TBV_{i}^{\mathcal{R}} = \left| U_{i-\frac{1}{2}}^{L,\mathcal{R}} - U_{i-\frac{1}{2}}^{R,\mathcal{R}} \right| + \left| U_{i+\frac{1}{2}}^{L,\mathcal{R}} - U_{i+\frac{1}{2}}^{R,\mathcal{R}} \right| \ge 0.$$
(9)

where each term represents the amount of dissipation in the numerical flux in (5) for one edge of cell I_i .

BVD algorithm is to compare the $TBV_i^{\mathcal{R}_1}$ and $TBV_i^{\mathcal{R}_2}$ of the reconstructions \mathcal{R}_1

and \mathcal{R}_2 of the same date U, and selects the least dissipative one in cell I_i .

Local selection of reconstruction operator: a 3-stage BVD algorithm

A 3-stage BVD algorithm procedure is as following:

• Stage 1. Selection between \mathcal{R}_{HO} and $\mathcal{R}_{ENO_2} \rightarrow \mathcal{R}_{ST_1}$

For all cell *i*, if $TBV_i^{\mathcal{R}_{HO}} > TBV_i^{\mathcal{R}_{ENO_2}}$ then $(r_{i-1}, r_i, r_{i+1}) = ENO_2$, else $r_i = HO$.

 $\implies \qquad \mathcal{R}_{ST_1} = \{r_i, i = 1, \dots, N\}$

• Stage 2. Selection between \mathcal{R}_{ST_1} and $\mathcal{R}_{ENO_1} \rightarrow \mathcal{R}_{ST_2}$

For all cell *i*, if $TBV_i^{\mathcal{R}_{ST_1}} > TBV_i^{\mathcal{R}_{ENO_1}}$ then $(r_{i-1}, r_i, r_{i+1}) = ENO_1$, else $r_i = ST_1$. $\mathcal{R}_{ST_2} = \{r_i, i = 1, ..., N\}$

• Stage 3. Selection between \mathcal{R}_{ST_2} and $\mathcal{R}_{SHARP} \rightarrow \mathcal{R}_{ST_3}$

For all cell *i*, if $TBV_i^{\mathcal{R}_{ST_2}} > TBV_i^{\mathcal{R}_{SHARP}}$ then $r_i = SHARP$, else $r_i = ST_2$.

 $\Re_{ST_3} = \{r_i, i = 1, ..., N\}$

✓ 1D Linear Advection Equation

	Min Value
WENO-Z	-0.001131
Present	1.88e-18

- ✓ 1D Euler Equations
 - SOD and Lax Shock tube problem

- ✓ 1D Euler Equations
 - Collela-Woodward Blast-wave

The result time *t* =0.038

✓ 1D Euler Equations

- Double rarefaction and Le Blanc problem

✓ 1D Euler Equations

- Sedov Blast-waves

✓ 2D Euler Equations

- Riemann Problem

- ✓ 2D Euler Equations
 - Performance of the present scheme

The result time t = 0.3

21

- ✓ 2D Euler Equations
 - Performance of the present scheme

The result time *t* =0.8

600 x 600 cells

✓ 2D Euler Equations

WENO-Z

- Shock-Vortex Interaction problem

200 x 200 cells

The result time *t* =0.5

Present

- ✓ 2D Euler Equations
 - Shock-Bubble Interaction problem

The result time *t* =0.15

WENO-Z

- ✓ 2D Euler Equations
 - Sedov Blast-waves (near vacuum region problem)

The result time *t* =1

- ✓ 2D Euler Equations
 - High Mach number astrophysical jets (2000)

5. Conclusion

- The new approach differs from classical polynomial-based and relies on several types of reconstructions:
 - 1. 5th-order upwind scheme for smooth solution
 - 2. Viscous non-linear THINC functions to add dissipation
 - 3. Sharp non-linear ones to handle discontinuity and steep gradients
 - 4. No reconstruction at all extreme situations
- > This approach is to choose these reconstructions based on the BVD strategy.
- ✓ The present scheme can sharply capture both contact discontinuities and shocks (THINC) and is extremely robust to positivity issues (an *a posteriori* treatment).

Future Work

Apply the scheme to complex PDEs with source terms and Reaction Euler equations

Thank you very much for your attention and advices