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Summary of the talk

@ Introduction

@ Neural Network for dummies

@ High accurate FV a posteriori MOOD schemes for systems of PDEs.
@ MOOD weaknesses: R-DMP, implicit, massive parallelisation

@ NN training for CFD in a FV MOOD context

@ Numerical experiments on 1D advection equation

@ Numerical experiments on 1D hydrodynamics

@ Conclusions - Perspectives
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Introduction

What do we need in a CFD high accurate FV/FE schemes?
@ Identify bad/troubled cells (subcell limiter, MOOD, hierarchical limiters, etc.)
@ Choose a stencil (WENO, CWENO)

@ Determine the amount of dissipation (artificial viscosity, slope limiter, hierachical
coefficients etc.)

v
Why do we struggle with limiting/stabilizing a numerical scheme?
@ (highly) Non-linear solution and non-linear methodology
@ Free-parameters in the methodologies
v

Could we use Neural Networks for such CFD computations?

Can we improve a Finite Volume high-accurate scheme with a NN? More efficient, more

accurate, faster, simpler, etc. 7

We will show an attempt to do so in a 1D FV MOOD scheme for advection and Euler equations
v

[1] A. Bourriaud, R. Loubeére, R. Turpault, a priori Neural Networks vs a posteriori MOOD loop. A high accurate Finite Volume
scheme testing bed. To be submitted in 09/2019

[2] D. Ray, J. Hesthaven, An artificial neural network as a troubled-cell indicator, JCP 367, 2018, Pages 166-191

[3] N. Discacciati, J.S. Hesthaven, D. Ray, Controlling oscillations in high-order Discontinuous Galerkin schemes using artificial
viscosity tuned by neural networks, preprint 2019
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Neural Network for dummies

Neuron/Perceptron
dendrites
nucleus
R E Pl Inspired by neural structure in brain
Cbiléy axon LK
) mon @ In-put signals are transformed into out-put signal(s)
P terminals - .. .
in, @ An artificial perceptron/neuron § mimics the behavior
of a single neuron
in2 z f out g
@ Perceptron: X =linear combinaison, f=non-linear mix
in,
bias
Perceptron
Input signals: ¥; = (y1,...,yp) and output y;
P
u=> wpiye, ¥j="F(uj—b)
p=1
f: non-linear activation function, 5 !
Y Sluy,by) ——=;

Activation
function

| |

‘ Tanh(x

Rel.U
max(0, z)

Unknowns = b; bias, wj j: weights
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Neural Network for dummies

Multilayer perceptron network
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input layer

hidden layer I  hidden layer 2

Multi-connected set of perceptrons = Multi-Layer Perceptron (MLP) network
@ Network architecture: ¢ =1,..., L layers of P; > 1 perceptron(s) each
@ Input/source layer is 1st, ouptut layer is last, in-btwn are hidden layers

@ N:=MLP=feed-forward network, weights and bias determined by a supervised learning

. N
Mapping : X = (x1,x2,...,x1) — Y =(y1,¥2,...,y0) = N(X)
Input — Output
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Neural Network for dummies

NN must be trained (to fix its weights/bias)

A NN does exercice with a trainer which corrects/validates its predictions = “supervised
training”

A false prediction is backwardly propagated into the NN for it to “learn” from its mistake.
Need for a training data-set, a verification data-set, a test data-set and a cost function.

TRUTH
o T
Set of Input data O(X) : Is X aone? : _ | Set of Output data !
X — e Y :
1
]111111 I TTTTTT |,
111 ! TTTTTT
= 1 Y=0(X)=
Zol8ls | FFFFFF XOXOXX
ol FFFFFF] XXX0 OO0
OXXOXX
____________ XOXOXX
> ——> Y=N(X)
~ 7 7 PREDICTION

epoch

TRAINER
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Neural Network for dummies

Multilayer perceptron network: what for?

A NN is employed nowadays in many applications

@ voice, speech, image classification, google translate, automatic cars, go/chess players
@ identifying faces, self-driving autonomous cars, langage driven image, etc.
@ Bank, marketing, retail/sale, etc.
.
@ Is good at detecting patterns, features. Is good at answering Yes or No.
@ Is not good to predict real values.
@ Can make mistakes. Can not predict things that it has never learned the existence of.
v
Can we use this in a CFD community?
Already done in [2], [3], [4] and elsewhere for trouble cell indicator, artificial viscosity tuner,
residual distribution scheme pickers, etc.
Today we are interested in using a NN in our High Accurate MOOD FV scheme
v
[2] D. Ray, J. Hesthaven, An artificial neural network as a troubled-cell indicator, JCP 367, 2018, Pages 166-191
[3] N. Discacciati, J.S. Hesthaven, D. Ray, Controlling oscillations in HO DG schemes using artificial viscosity tuned by neural
networks, preprint 2019
[4] M.H. Veiga, R. Abgrall, Towards a general stabilisation method for conservation laws using a multilayer Perceptron neural
network: 1D scalar and system of equations, preprint 2019, jhal-01856358;
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High accurate FV MOOD scheme

Basics

Governing equations: hyperbolic system of PDEs (advection or Euler)

ow  oF(W
ow , oFW) =0, W : conservative variables, F(W) : flux vector.
ot Ox )

Finite Volume discretization

Domain: Q = [Xmin, Xmax], uniform mesh Q; = [x;_1 5, x;41/2] for i =1,..., M. cell center:
1

xi = 3(Xi—1/2 + Xip1/2) and Ax = Xiy1/5 = Xi_1/2.

Time: [0, T], cells [t", t"T1] of size At = At"T1/2 = ¢t _ 1,

Space/time dependent solution W(x, t) represent. over cell Q; at time t" by its mean value

1 Xi41/2
wr = 7/ W (x, t") dx.
Ax Xi—1/2

FV scheme with HO reconstruction W,-n(x,-ﬂ/z) is given by
Wittt = W7 — At [F(W"(xi41/2)) — F(W"(x;_1/2))]
n

n J— n A7 " H
F(w (X,'+1/2)) = ]-'-+1/2 = F (W, (X,-+1/2), Wi+1(xi+1/2)) <— Numerical flux

i
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High accurate FV MOOD scheme

Polynomial reconstruction to reach (d + 1)th order of accuracy in space

P4 polynomial reconstruction using centred stencil in cell /;

—d
Search for W; € P4(l;) with same mean value in /;

Xi+1/2 ~—d
[ a=w,

Xi—1/2

and best fit (LS sense) on a centred stencil of sufficient neighbor cells, Sf’,

</ e W,d(x) dx) — Wy,

k—1/2

2
(W) =3

kesd

Involves solving a linear system only. Here we choose: |S¢| > 1.5d.

Reconstruction operator

—~d
RY (W}’,d,Sﬂ,(Wk")keS;,) — W; ePy(l).

—d=
Reconstruction of d =0 = FV data, ie W; 0(X) = W7 for all x in [;.

IR




High accurate FV MOOD scheme

Time discretization

SSPRK 3rd order scheme
Wit = W+ At L(W)),

where L is the spatial discrete operator associated to the current FV scheme.
ARK3 time discretization is an iterative scheme such that

wl = wp+acc(wy) (1)
L 3.1

wi) = wil arcwl?) - owp=Jwis wpd )

w?® = wlaccwy) - owiti= %WZ + %Wf). 3)

Reaching > 3 order of accuracy in time

SSPRK3 introduces a third-order error = formally third-order accurate
However, we may set At < Ax’/3 where r is the spatial order of accuracy such that the time
error matches with spatial error leading to a formal rth order accurate space/time scheme.
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High accurate FV MOOD scheme

a posteriori MOOD stabilization

n Y i n+l
‘17 1 Polynomial “7
i Reconstruction =1 FVSOLVER i
Degree d \
Limiting HLLC  Runge—Kutta
Polynomial W n+l
Reconstruction N FV SOLVER I
/
Degreed Central stencil
A HLLC  Runge—Kutta v 2
MOOD loop =
N " Troubled cells é
E ext scheme PR B
< in cascade Detection
d = max(0, d-1) CAD, PAD, NAD
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High accurate FV MOOD scheme

a posteriori MOOD stabilization

MOOD tools

@ Detection criteria answer the question “Is the candidate solution valid in cell ;7"
@ Parachute scheme must ensure solution acceptability (ex: 1st order FV scheme)
@ Cascade of schemes to be tested (ex: d =3 — 2 — 1 — 0) and MOOD loop

What can we improve?

Parachute, Cascade and Loop and the variables to check/limit are somewhat fixed by the
developer and/or user.

But the detection criteria are not entirely mathematically justified. Here we can act!
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High accurate FV MOOD scheme

a posteriori detection criteria

Computational - CAD the numerical solution should pass the Computer Admissible Detection
criteria. No NaN (Not-a-Number), Inf (Infinite), etc.
Ensure that the code has not already crashed

Physical - PAD the num. sol. must verify the physical properties given of the PDEs model.
The PAD criteria are adapted to the physics.
Advection equation = solution in-between the initial bounds
Euler = p7+ " > 0 and internal energy 57“’* >0
Ensure that the code will not crashed in the next time step
Numerical - NAD the numerical solution should be Numerically admissible <— Fuzzy concept
Essentially non-oscillatory (ENO): usually rely on a Relaxed Discrete Maximum
Principle (RDMP) on the conservative variables for variable A
—§ + min (A7) < ATTLF < max (A7) 46,
kesd kesd

the relaxing parameter § is fixed to § = min (1074,1073|M¢ — m¢9|).

Alternatively a u2 smooth extrema indicator can be used in replacement of §.
Ensure that the code is essentially non-oscillatory
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High accurate FV MOOD scheme

MOOD weaknesses
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1. NAD criteria. the RDMP criteria is not firmly based on mathematical concepts and some
parameters still need to be tuned. Due to no definition of what is an oscillation and how to
charaterise it (even a posteriori ). Smooth new extrema should not be limited, non-smooth ones
should.

2. Massive parallelisation. tendency to slow down massively parallel simulation. The cells do
not endure the same amount of work depending on their physical local situation (may be
re-computed several times (up to the parachute scheme)), while some cells are updated once by
the highest accurate scheme.

2. Implicitness. Explicit nature of the numerical method as it stands. The dissipation is added
localy in space in order to act there (and not everywhere as for an implicit scheme).

Most of those drawbacks are due to the a posteriori MOOD re-update

If a NN could a priori predict the polynomial degree in each cell, then the need for a posteriori
detection could be mitigated (ideally removed).
However the a posteriori loop must remain to ensure the CAD, PAD criteria.

Let us try to use a NN to do this but in a simplified context:
d; < 3, 1D, advection/Euler, for a uniform grid. J

SARLS ey e



NN training for a 1D FV MOOQOD context
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Goal: make an educated guess of the d; = 0,1,2 or 3 in cell I; a priori at t"

Input: mean values in stencil Sld:3: Xi=(W7_5,Wi_,, Wi, W, Wi W, W.,)

Output: probability that MOOD scheme uses d; = 0,1, 2 or 3 for the current time-step
E— 3

Yi=P=(Py,P1,P2,P3), with 0<Py<1, > Pg=1=d= {ds.t Py = max 3(Pk)}
prard =0,1,2,

4

Architecture of NN

Layers £: 1 Input, H > 1 Hidden and 1 Output layers: 3 < ¢ < L = H + 2 layers in total
Perceptrons: 7 in Input, 4 in Ouput, 10 in Hidden layers

Activation fcts: f(x) = sigmoid and f(x) = x (output £)

Learning: Levenberg-Marquadt back-propagation algorithm [5,6,7] = network training that
updates weight and bias values according to L-M optimization.

Effective construction by Matlab, simuation in F90

trainlm function with 200 good predictions to validate the NN over a max of 5000.
The NN is stored and passed into the FO90 MOOD scheme and used a priori to anticipate d;.

[5] Marquardt, D., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” SIAM Journal on Applied
Mathematics, Vol. 11, No. 2, June 1963, pp. 431-441.

[6] Hagan, M.T., and M. Menhaj, “Training feed-forward networks with the Marquardt algorithm,” IEEE Transactions on Neural
Networks, Vol. 5, No. 6, 1999, pp. 989-993, 1994.

[7]Hagan, M.T., H.B. Demuth, and M.H. Beale, Neural Network Design, Boston, MA: PWS Publishing; 1996.
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NN training for a 1D FV MOQOD context

Advection equation

Initializing the NN

Choose the architecture (L layers, Py perceptrons/layer). All weights and biases are set to 1.

Training

Profile function at t”: evolution of a mix of sin and Heaviside functions.

X7 are the mean normalised values in the vicinity of cell /;

1) Simulation [t", t"*1] with a posteriori MOOD scheme: for X;, get Y7 = MOOD(X") = d?”
2) (in parallel) Simulation with a priori NN scheme: get \A’? = NN(X7) = c7,.”

3) The prediction is backwardly propagated into the NN (accordingly updates weights/biases)

v

Training data-set

Set of pairs (X7, Y?) at time t". For Nc cell and N; time iterations => N x N; data.

Simulations made starting from unknowns data G(x) at t =0

G= 4 smooth and irregular shaped profiles: Gaussian, square, triangular shaped and continuous
profile Image of initial data in pdf or png format

v
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NN training for a 1D FV MOQOD context

How does it look like in practice?

X

. Neural
—
X7 X, Network

‘/
./
DS
|
|
) ! A
— | R
_— o 5
+H—+—+—++++—- +H+—t+t+++—=2
el i e Nl T e
. 7 =
p/ * _ P, A s
_— | _—
i, " | "
i-l i i+l : il i i+l
X
: =3 MOOD d
X X, —» Scheme DETECT i
X .

16 / 42
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a priori NN and a posteriori MOOD scheme

IN: (W, - W),
M Neural Network |
|

OUuT: d;

W 'n Polynomial
l

Reconstruction FV SOLVER Wi

S
7

Degree d Central stencil

5/\ A HLLC  Runge—Kutta E
i MOOD loop |
:: l—l Troubled cells é
s Z. Parachute & | Detection <
~ L - 1 ~
d=0 CAD, PAD, N.

NN may come from another software, but it is built once for all

NN calls: each cell at each time-step. NN evaluation cost depends on its architecture
Ideally: NN prediction is 99% correct, MOOD loop only for CAD, PAD — almost never on
10 — 20% of NAD troubled cell re-updates by MOOD loop are anticipated by the NN
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Numerical experiences
Methodology of testing
NN architecture, training

L = 3 + 2 layers, hidden layers with 5 perceptrons, input with 7, ouput with 4

Profil G(x) (conpound wave) to train. NN validated with 200 success predictions
Max degree 3, min degree 0.

Methodology of testing — Compare the quality of numerical solutions

Low Accurate/Robust

Accurate/ENO High accurate/Oscillatory
1st order God FV scheme

a posteriori MOOD Unlimited FV scheme
a priori NN 777

Goal: NN reproduces MOOD results, measure of accuracy (eye-norm), cost, history of d,

. 1 \AA/ ‘ | Simulation starting from an un-seen initial
ANANAY \VARY; \\/ \
BVALVIAVS \L/‘ = ‘ ‘ compound waves G(x)

Mix of sines, Heaviside, plateaus
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Numerical experiences |

Advection equation with constant velocity u =1

Five rotations of the initial profile, 500 cells, d; = 3,2,1,0, RK3
Exact, Unlim 4th order, MOOD
1.2 T ‘
Exact
i MOOD ——
] ﬁ Unlim Order 4 —+—
) ;\X //\\
3 0.6
8
>
) f \ j&
0.2
) f X, b j \
W 2 L‘J‘:W yw -
0 2 4 6 8 10
Position
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Numerical experiences |
Advection equation with constant velocity u =1
Five rotations of the initial profile, 500 cells, d; = 3,2,1,0, RK3
Exact, MOOD, NN 2 layers, P, = 10, 20, 30, Training steps 200

12 ‘ Exact ——
MOOD —+—
1 — i
Y NN 2x50
i ! {1
of L
A .
o * &
g 0e | [ I{%
g ‘
Yy } S It
' (S S il
! il
0.2 F I A !
‘L fg % 1
0 2 4 6 8 10

Position
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Numerical experiences |

Advection equation with constant velocity u =1

Five rotations of the initial profile, 500 cells, d; = 3,2,1,0, RK3

Exact, MOOD, NN 3 layers, P, = 10, 3 Networks, Training steps 200
1.2 ‘
Exact ——
MOOD —+—
1 ; o
A= A X e
£ Fi NN 3x10 3
i i
Fk ; 7%
o8 i | 1
; ol
5 0.6 * ! I 3
£ F1o [ 1 i
g Pl ] il
0.4 b e 1h
P { [ | 1l
] 1 | 1 T
I I | 1 K
0.2 1 i 3 t
Pl 1 i
¥ i 1 1 %
0 2 4 6 8 10
Position
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Numerical experiences |
Advection equation with constant velocity u =1
Five rotations of the initial profile, 500 cells, d; = 3,2,1,0, RK3
Exact, MOOD, NN 3 layers, P, = 10, Training steps: 200, 1000, 5000

1.2 ‘
Exact
MOOD ——
NN 3x10 200tr —+—
1 " NN 3x10 1000tr —*—
i i % NN 3x10 5000tr
i : 3
It 1%
[
r ol L
206 Lo i}
8" | [ it
© 7 1 d
2 § 1 S IR T |
0.4 It ' [ Iy
Il [ 7\
0.2 1 ' | [ | ¥
1 { | i ¥ ¥ 1
L % ; 4 ¥ .\
¥ % I ik 1 & i
0 [ N L B R
0 2 4 6 8 10
Position
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Numerical experiences |
Advection equation with constant velocity u =1
Five rotations of the initial profile, 500 cells, d; = 3,2,1,0, RK3
Exact, MOOD, NN 2,3,5 layers, P, = 10, Training steps: 200, 1000, 3000

1.2 ;
Exact ——
MOOD —=—
1 y i
e & X tr —«—
R % NN 5x10 3000tr
1 4
08
3 0.6 \;i i
K| 1
= It
0.4 % 1 il
| I
%& il
. ]
0.2 ﬁ ; oy
3 ¥ J
0 2 4 6 8 10
Position
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Numerical experiences
Hydrodynamics system of PDEs

Scheme and NN architecture

NN validated with 200 success predictions over 5000.

Polynomial degree for the density p is predicted by NN, and all conservative variables adopt this
degree (like in MOOD). Max polynomial degree 3, min degree 0

Test 2 architectures:

archl= L = 3 4 2 layers, hidden layers with 20 perceptrons, input with 7, ouput with 4.

arch2= L = 3 + 2 layers, hidden layers with 50, 20, 10 perceptrons, input with 7, ouput with 4.

Training situations: Adv=advection profile, Rie=set of Riemann problem simple waves, or Mix

Adv=H(x) (mix sin, Heaviside) for p, u =0, p = p7,

oL uL PL PR ur PR
Rie— RP1 2 0 2 1 0 1 — RP4=RP1 sym
RP2 2 -1 1 2 1 1 — RP5=RP2 sym
RP3 1 0 2 1 0 1 — RP6=RP3 sym

Simulations and diagnostics

Sod, Blastwave (Collela-Woodward) test problems. Diagnostics: NN solution ~ MOOD
solution?
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Sod problem: simple waves °03§ I
(p,u,p) = (1,0,1), (p,u, p)r = (0.125,0,1), 500 uniform 028 \
. 0.26
cells, T = 0.1, exact solution
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Numerical experiences

Sod problem: simple waves

(p,u,p)r = (1,0,1), (p,u,p)r = (0.125,0,1), 500 uniform
cells, T = 0.1, exact solution

0.9 \
0.8 \

\
0.6 \

NN10 Rie ——
NN50 Rie —e—

Variable

Variable

Variable

044

TNT0 Rle ——
NN50 Rie —e—

0.42
04

038

036
0.34
0.32

0.28

02% 66

068 07 072 074 076 078 08 082
Position

NN1O Rile ——
NNS0 Rie —e—

\\ 01191 0.92 0.93 0.94 0.95 0.96 0.97 0.98
05 1 NN10 Rie ——
0.4 —— !
o i SN\
’ t__% s 08
02 E 0.7 -
A N\ I
015 0.2 0.4 0.6 0.8 10 N
Position 05 \_
0'40 1 0.15 02 0.25 0.4 0.45° 05 0.55

03 035
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Numerical experiences o

038

N0 Mix ——
NN50 Mix —e—

L

036
0.34

Variable

Sod problem: simple waves o

(p,u,p)r =(1,0,1), (p,u, p)r = (0.125,0,1), 500 uniform [ °*
cells, T = 0.1, exact solution o

0265 068 07 072 074 076 078 08 082
Position

1.1 . NN1O Mix ——

NNTO Mix —x—
1 NN50 Mix —e—
0.9 l\
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=07 t T T
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Sod problem: simple waves 0032
(p,u,p)r =(1,0,1), (p,u, p)r = (0.125,0,1), 500 uniform | °*
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02%55 0.68 07 072 0.74 0.76 0.78 0.8 0.82
03 Position T
1 NNTO Ady —— 028 Wit
NNT0 Mix —x—
1 ™ NN10 Rie —— o
00D —— 02
0.9 Loz
\ ng 02
0.8 “o1s
o 0.7 \ 014 | !
g 0.6 0.12 S e ey
g ‘\ o b 91 0.92 0.93 Oﬂgosmono 0.96 0.97 0.98
0.5 N\, 11 i
NN1G s ——
0.4 * = ! m— o0
0.9
0.3 3 3
» 2 0.8
0.2 Eo7
0.1 06
0 0.2 0.4 0.6 0.8
Position 05
0.4

0.15_ 02 025

03 035
Position

04 045— 05 /055

SHARK, May 20-24, 2019 29 /42



o4 e
os N e ==
. - MOOD ——
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Numerical experiences

Sod problem: simple waves

(p,u,p)L =(1,0,1), (p,u, p)r = (0.125,0,1), 500 uniform cells, T = 0.1, exact solution

Observations

1- Difficulties to perform like MOOD, to reduce the oscillations at the shock and at the same
time not spoiling the rarefaction/contact.

2- Architecture: large network (50) captures the rarefaction head, not the small one but is
monotonic

3- Training: advection profile seems sufficient provided a large network is employed (apart from
rarefaction head)

4- Often the NN catches the unlimited 4th order of 1st order behavior.
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Numerical experiences

Blastwave problem: interaction of waves

(p, 4, p). = (1,0,1000), (p, v, p)us = (1,0,1000) and
(p,u,p)r = (1,0,100), T = 0.038, 1000 uniform cells,
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Numerical experiences

Blastwave problem: interaction of waves

(p, 4, p). = (1,0,1000), (p, v, p)us = (1,0,1000) and
(p,u,p)r = (1,0,100), T = 0.038, 1000 uniform cells,
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Numerical experiences

Blastwave problem: interaction of waves

(p, 4, p). = (1,0,1000), (p, v, p)us = (1,0,1000) and
(p,u,p)r = (1,0,100), T = 0.038, 1000 uniform cells,
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Numerical experiences

Blastwave problem: interaction of waves

(p, 4, p). = (1,0,1000), (p, v, p)us = (1,0,1000) and
(p,u,p)r = (1,0,100), T = 0.038, 1000 uniform cells,

N——ariatie

ix —e—
00D ——

reference solution %5 052 o; 0% 05808 062 064 066
Mo ——
T - Miods ——
NN10 Mix —*— T
NN50 Mix —e—
MOOD —— 5
6
%4
5 %o
2 5
o4 1 i\ 1
% L
K 872 074 o7 078 08 08 084 08 088
>3 , Positon
NRTO Mix
NNSO Mix —=—
_MOOD ——
2 5 7'(\ ;3 \\
o4 wy
1 5
Sal
0 L L | 2 k
0 0.2 0.4 0.6 0.8 1 \(
Position !
0 084 066 =0.68 07 072 074 076 078 0.8
Positon
SR e e o



Numerical experiences B A
Blastwave problem: interaction of waves :
2
(p,u, P)1 = (1,0,1000), (p, u, p)u = (1,0,1000) and o
(p,u,p)r = (1,0,100), T = 0.038, 1000 uniform cells,
reference solution %5 052 054 056 pocsasn 06 062 064 066
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Numerical experiences

Blastwave problem: interaction of waves

(p, u, p)L = (1,0,1000), (p, u, p)m = (1,0,1000) and (p, u, p)r = (1,0,100), T = 0.038, 1000
uniform cells, reference solution

Observations

1- Difficulties to perform like MOOD

2- Architecture: large network (50) usually captures the interacting waves better

3- Training: advection profile does not perform well, Rie training with large NN behaves
reasonnably well, strangely Mix training with small NN behaves better than large NN.
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Conclusions N (W W)

Neural Network needs

Thsiitut ds
‘athematiques de
Borgeaux

Neural Network

OUT: d;

@ to be trained to recognize “patterns” [ Polynomial WVH
P - X FV SOLVER i
and classify situations ] Reconstruction i
. Degree d  Central stencil
@ architecture <— not clear?
.. HLLC R —Ki
@ training dataset <— conpount wave? /Vlogl\oop e Rua
@ validation dataset < unknown fcts ¢/ B
e . - Troubled cells é
@ verification dataset <— classical tests Z Parachute Z Detection —1%
< scheme <
@ build once and a priori evaluated =0 CAD, PAD, N}
v

Test the use of a NN in conjonction with a FV High accurate MOOD FV scheme

Trut: a posteriori MOOD loop used to determine d; = 0 — dmax
Given FV data WY, in stencil, NN a priori predicts which d; to use

Tested on advection and Euler 1D equation up to order 4 on uniform grid to replace the
NAD criteria

a posteriori MOOD loop still needed for PAD and CAD
Results are promissing but highly dependent on the NN (arch., training)
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Perspectives

Neural Network
@ Test different architectures P%PHP, huge NNs (P = 256),
@ Rule of a thumb to design an appropriate architecture?

@ Enough to learn from profiles? Mandatory to have real problems? Exact solutions (then
exact d)?

Range of testing
@ Order 4,5, ..., different cascades (some orders may be useless)

@ 2D: train with all Riemann problems? What about physical instabilities?
@ 3D, // efficiency, AMR

@ Other system of PDEs: MHD, M1 model, Baer-Nunziato, etc.

o

Implicit scheme?
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