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Motivation

» Approximate the solution of the resistive MHD equations with high-order
discontinuous Galerkin (DG) method

» Broad range of applications in space or astrophysics
» Possible to have other auxiliary conserved quantities not built into the PDE
» Entropy of the system is one such quantity

» Important as entropy helps separate possible flow states from the
impossible

» Entropy aware schemes have increased robustness



Divergence-free condition

» Known numerical issue: It is possible for the approximate flow to not be
divergence-free even if it is initially

> Generalized Lagrange multiplier (GLM) terms advect divergence errors
away from where they are generated

» Possible to damp errors as well with an additional source term
— —
r=(0,0,0,0,—ay)’, a>0
» Entropy conservation and the divergence-free condition are linked

» Several non-conservative terms have been proposed to alter the equations
for entropy purposes

» Powell term needed for symmetrization of the advective parts of the PDEs



Resistive GLM-MHD equations

ut+§-?a(u)—€-?v(u,€u)+T:0

» Conservative variables, advective and resistive fluxes
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» Non-conservative terms
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Entropy definitions

» First examine the ideal parts of the resistive GLM-MHD equations

» Introduce the mathematical entropy function

S =—-F7, s=In(po™") = ~(y = 1)In(2) ~ In(5) ~ In(2)

where the pressure is
Op=2  Llyg2z 12
=(H-1)(E-Z — =Bl ==
p=(r-1) (£~ IV - JIBIE - 30*)
and (3 is proportional to the inverse temperature

—
5—2p

» Note there is a sign convention difference between mathematics and
physics



Entropy definitions |

» Entropy for smooth solutions is conserved
— = —
Se+V-f°=0, £ =VS
whereas for discontinuous solutions the entropy decays
- —s
S:+V-f5<0
» Can move into entropy space with the new set of variables

T

oS —s . N —
=2 = |12 _ V|3, 287, —28, 28B, 28¢

W‘%_ v—1

» Contract the PDE system on the left with w to obtain conservation law



Entropy behavior for Ideal GLM-MHD

» Contract from the left with w to determine
w’ (ut + 6 (?a,Euler(u) +?a,MHD(u) +f’a,GLM(u)) + T) -0
where we split the advective flux into three parts for convenience

» From the definition of the entropy variables and many manipulations:

wiu, =5,

Wr(g _‘f’a,Euler) —v. Fs
w’ (6 ) ?a,MHD + TMHD) -0
w’ (6 JfBeLM TGLM) -0

— =
» Entropy conservation not possible when V - B # 0 unless a
non-conservative term is included



Entropy behavior for resistive GLM-MHD

» Examine how viscous and resistive effects change entropy

» Know for smooth solutions that

R

wT(ut+€-fa—€~?v+T):0
(3
St-‘rﬁ'?s—WTe'?v:O

> Integrate over the domain to obtain a variational form of the entropy
evolution for the DG scheme to mimic

<>

/5t+€-?5—wT€~ YAV =0
Q



Entropy behavior for resistive GLM-MHD |

» Apply Divergence Theorem (advective) and integration-by-parts (viscous)
/stdv+/(?5-m —wT(F - 7)dS = 7/(€W)T?Vdv
Q o9 Q

» Possible to re-formulate viscous fluxes as

> —>

f(u, Vu) = KVw
with a symmetric, positive semi-definite block matrix K € R*"*%7
» Term on the right hand side can be bounded!
- /(§W)T‘FV av = — /(€W)T5§wdv <o.
Q Q



Entropy behavior for resistive GLM-MHD |l

» Satisfy the entropy inequality up to the prescription of proper boundary

conditions
/S:dVJr/(fsﬁ))fwT(?v-ﬁ)ngO
Q o0

» For periodic boundaries (closed systems) we see that the entropy decays in

time
/St dv <0
Q



DGSEM: Mapping the equations

» Subdivide domain Q into N non-overlapping, conforming, curved
hexahedral elements E,,v =1,2,..., Ng

» Transform into computational coordmatesf (&,1,¢)7 in the reference
element E = [—1,1]® by mapping X = X(f)

» Element mapping defines Jacobian, J, covariant and contravariant basis
vectors aj,a’,i=1,2,3

» Basis vectors vary on curved elements

» Important that the contravariant vectors satisfy the metric identities
3 .
o(Ja})
§ T =0, n=1,23

i=1



DGSEM: Mapping the equations |

» Transform divergence of block vectors, divergence of space vectors, and
the gradient of state vectors or a scalar into reference space

i te ), S e ()
Vu = %Mﬁgu, Vih— %Mv;h

» Compact notation due to two matrices dependent on the metric terms

Jatle Ja2le Jalle Ja}  Ja?  Jad
M= | Jallo Ja3lo Jadlo |, M= | Jai Ja3 Ja3

Jadlo Ja3le Jadle Jay  Ja3  Jad



DGSEM: Mapping the equations ||

» Define compact tilde notation for contravariant block and spatial vectors

=MTg=gM, h=M"h

091

» Obtain the transformed resistive GLM-MHD equations
Juy +§5 f + <€5 . é) d)MHD Jr(f;GLM : 651/) = 65 £ (u,ﬁ)
Jg = MVew

> Introduce auxiliary variable, G, that is the gradient of the entropy variables



DGSEM: Variational formulation

>
» Multiply by test functions ¢ and 9 and integrate over the reference
element

<Jut+€§ A+ <€§ : é) ¢MHD+¢~5GLM'€€¢a‘P> = <€§ 'fv(u7a)7‘P>
<J6, 3> - <M€§w,§>

» Introduce inner product notation on the reference element for state and
block vectors

(u,v) :/uTvdg and <ﬁ§> :/if,-Tg;dg

E E i=1



DGSEM: Nodal DG, LGL, and collocation
» Lagrange basis with degree N

ui(x,y, 2, t)|, = U(§m, ¢ 1) == D> U e(8) 6(€) 4(n) i (€)

i.j,k=0

> Legendre-Gauss-Lobatto nodes (because they include the boundary)

» Collocation of flux and solution, e.g., velocity

Us i (t)
Vo in(t) = i
2 o)
» Collocation of interpolation and integration: (N + 1)* LGL nodes/weights

N

(f,1) = /f(ﬁﬂl,C) g ~ p F(&,mj, k) wiwjwie = (F, 1)y

E ij,k=0



DGSEM: Property of the derivative matrix
> On the continuous level have integration-by-parts
1 1
/uv' dx = uv|171 — / u'vdx
—1 —1
» Define the differentiation and mass matrices

ol;
D,‘j = 875

(i,j=0,...,N), M = diag(wo, . .., wn)
£=¢;

» For LGL nodes the DG derivative matrix satisfies summation-by-parts
(SBP) property

(MD) + (MD)" = B := diag(-1,0,...,0,1)
» Used to discretely mimic integration-by-parts
u" MDv=u"(B-D"M)v
=u"Bv—u" D" Mv
u"Bv — (Du)" Mv



DGSEM: Discrete metric identities

» Compute the metric terms as a curl using the DG derivative matrix
Jah = —% - Ve x (]IN(X,V5X,,,)) ,i=1,2,3, n=1,2,3, (n,m, /) cyclic
> Ensures that the discrete metric identities (DMI) hold

>, 91(Jal)

— = =1,2,3.
¢ 0, n ,2,3

i=1

» Discrete metric identities are crucial for entropy conservation/stability



DGSEM: General strong form

v

Apply the SBP property once on all spatial derivative terms to generate
boundary terms

v

Resolve the discontinuity at the interface with numerical surface fluxes for
the advective and viscous components (denoted with *)

» Non-conservative terms also discontinuous and contribute at the boundary
(denoted with ©)

v

Apply the SBP property again to arrive at the strong form DG method



DGSEM: General strong form |

Wt (Ve 1"(F) o) + [T (R~ Fa ses

OE,N

+<’I>MHD§£ ) HN(E) ,<p> +/<PT {(q>MHDB ><> _ <I>MHDBn} 2ds
N

<(I>GLM V I (q/} > / { QGLM (PSLMw} 2ds

OEN
(5 (F) ) < fo s
N oEN

<J6, §>N - /W*’T (3- n’> 5dS — <w, Ve »HN<MT3) >N

2E,N

» Know how to handle the conservative terms (top and bottom)

» What about non-conservative terms (middle two)?



DGSEM: Conservative terms (viscous)

» Viscous volume contributions use the standard LGL-DGSEM, e.g., in the £
direction at each LGL node

N
cv 1 EV)* cv Vv, * cv cv
(F]_’uk(u))'s = M ((5,’N |:F1 — Fl] Nik — 6,’0 |:F1 — Flj|0jk> + ;DimFl,mjk

> Use the Bassi-Rebay (BR1) viscous interface coupling in terms of the
discrete entropy variables and gradients

For — {{F’}} A W = fw}



Conservative terms (advective): Why care about split forms??

» One interpretation of split forms is the average of conservative and
advective forms, e.g.

(ab)y = % ((ab), + axb + aby)

» Split forms have known beneficial dealiasing properties!

» Could address geometric dealiasing by splitting apart mapping terms from
physical fluxes

» Can further add physical dealiasing depending on how one interprets the
non-linearities in the PDE



Conservative terms (advective): Quadratic flux example

» Consider a simple on dimensional quadratic flux f = %uz

» Analyze the modal energy at different orders to heuristically explain split
form dealiasing

N=3 N=6
2
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DGSEM: Split form advective terms

» Advective volume contributions use the split form LGL-DGSEM, e.g., in
the £ direction at each LGL node

2 1 fas fas = . : +
(Fl,,-,-k(U))E =0 (5,»N [Fl’ - Fl} e~ 0 [Fl’ - Fl}ojk> 42 ;D,m €97 B e - FE (Ui, Umie)

» Introduces a two-point numerical volume flux denoted by a # symbol

» Only conditions on the volume flux are consistency and symmetry

F?f(U, U) = F1 and F#(U;jk, Umjk) = F;f&(um‘,'k7 U,Jk)



DGSEM: Sharp fluxes

v

Great deal of freedom selecting the form of the sharp fluxes

v

Sharp fluxes can be designed to build other physical properties into the
discretization

v

Numerical volume flux can recover split formulations of the PDEs

v

Entropy conservative formulations generate a specific split form

v

Don't need to know this form explicitly in the DG framework



DGSEM: Entropy conservative sharp flux

» Design an entropy conservative with Tadmor’s finite volume condition
» Discrete entropy conservation condition (DECC)
[WIT FPC(UL, UR) = [We] - {Be} [0], ¢=1,2.3

with the entropy flux potential
v=WTF - FS10B
and 6 = WT¢MHD — 23(V . B)

» Low-order flux extends to high-order in the split form DG framework



DGSEM: Entropy conservative sharp flux |

» Entropy conservative flux in first spatial direction

" v}

Ol - (B + 5+ 3 ({BEY + {BE) + (B3
"} {v} — (B} (B}
"} fvs} - (B} (B}

A%
cn (v}
{vid {82} — {v} {B}
fwvid B} — {wsh {B:}
Ch {Bl}}

Ff’EC(UL, UR) =

with
{o}
2{B}

P =




DGSEM: Advective numerical surface flux

F®* is the numerical surface flux

v

We link the choice of the numerical volume flux and the numerical surface
flux, e.g.,

v

ﬁa’*(Ul_, UR) = I'E#’EC(UL7 UR)
Am
2

F** (UL, Ug) = F*B9(UL, UR) — 222 [Ug — U]

v

First choice leads to an entropy conservative (EC) method

v

Second choice yields an entropy stable (ES) scheme



DGSEM: Non-conservative MHD terms

» Compute non-conservative MHD volume contributions as a partial split
form

—

MDY, -H”(E) ~ @MHPGNC.B — Dim (@%HD (ijk {3y (i,m)jk))

M= i0=

+ 3 Dim (B3 (Bio- 97 B,

0

+ i Dim (‘I’}'}/{HD (§um : {{J33}}ij(k,m)))
m=0

3
I

» Define non-conservative MHD surface coupling with

(28 = (2") ({8} )

where (-) denotes the interior value of the considered element



DGSEM: Non-conservative GLM terms

» Compute non-conservative GLM volume contributions with a standard
gradient form

< N < —- N p=g
M G M) ~ SN DNC g = Z Dim ((JE’I,}k ) {,E;kLM> wmjk)
m=0
N =g
+ Z Dim ((ng.f.k : ‘I’?kLM) 1/Jimk)
m=0
N <>
+ Z Dim ((lej?k : ‘I’?kLM) w,-jm)
m=0
» Define non-conservative GLM surface coupling with
((pGLMw)() _ ((chM)* .ﬁ> T}

where (-)” denotes the interior value of the considered element



DGSEM: Entropy conservative steps

» We use these DG discretization principles for the volume and surface
contributions to demonstrate entropy stability for the resistive
GLM-MHD equations

» Due to the construction of the DGSEM we discretely mimic the
continuous analysis:

1.

5.

Contract the strong DGSEM formulation into entropy space taking ¢ = W,
g

Rd

9 =Fv

. Advective and non-conservative volume contributions generate the entropy

flux at the interfaces (SBP, DECC, DMI)

. Sum over all elements cancels extraneous MHD surface terms in entropy

space (DECC, definition of (<I“’1\’IHD.‘5’,,)<> and (<I’,(,;LMLD)O)

. Include the viscous BR1 boundary coupling and rewrite the viscous flux

volume contributions - N N
FY(U,VU) = KVW

Assume periodic boundary conditions

» Determine that the total discrete entropy decays

= Nei
dS v QU
EEZU Y1)y <0

v=1



Numerical results: Convergence

» Use the method of manufactured solutions to test convergence
» Consider a solution of the form

u=[h, h, h0,2h% + h h,—h0,0]"

where
h=h(x,y,z,t) =05sin2r(x+y+z—1t))+2

» Introduces an additional source term into the approximation



Numerical results: Convergence |

Nel L*(e) L*(w) L*(p) | L*(By)
4 1.62E-01 | 1.74E-01 | 3.42E-01 | 1.19E-01
8 6.11E-03 | 8.38E-03 | 1.59E-02 | 3.51E-03

16° 2.40E-04 | 5.02E-04 | 1.18E-03 | 1.39E-04
323 1.93E-05 | 2.51E-05 | 7.42E-05 | 7.56E-06

avg EOC 4.34 4.25 4.06 4.65

Table : L[2-errors and EOC of manufactured solution test for N=3



Numerical results: Entropy conservation

» Entropy is conserved for well-resolved simulations

» Purposely choose a challenging spherical blast wave test case with
discontinuities to demonstrate entropy conservation

» Inner and outer states given by

0 | v v2 vsi | p | Bi| B | Bs| %
inner | 1.2 | 0.1 0.0 01|09 |10| 10| 10|00
outer | 1.0 | 02| -04 |02 |03 | 10| 10| 10| 0.0

Table : Inner and outer primitive states for the entropy conservation test.

which are blended over do with the function

u= Uinnerl‘:_)\)\uouter 7 A= exp [%(I’ _ ro):| 7 ;= ||)~(>_ )?CH



Numerical results: Entropy conservation |
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Figure : Evolution of 3D blast wave for entropy conservative and entropy stable

approximations



Numerical results: Entropy conservation |l
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Figure : Log-log plot of entropy change from the initial entropy So to S(t = 0.5) over
the timestep for a 3D spherical blast wave



Numerical results: Divergence cleaning test

» Demonstrate effect of GLM divergence cleaning with malicious initial
condition

» Explicitly defined to not be divergence-free
» For periodic boundaries explore the use of damping in the GLM anstaz

» Define initial conditions

o(x,y,0) =1, E(x,y,0)=6, Bi(x,y,0)=exp (-~} =005 u0s")

on a curved domain Q = [0, 1]* given by




Numerical results: Divergence cleaning test |

2.0 T T T T T T T
— w/o GLM

a=0

normailized ||V - B||2(q)

0.0 L L L L
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Time

Figure : Evolution of divergence error for maliciously chosen test case with periodic
boundary conditions. Without divergence cleaning crashes while GLM divergence
with /without divergence cleaning controls the errors



Numerical results: Robustness

» Demonstrate the increased robustness of entropy aware approximations

» Use a generalization of the well-known Orszag-Tang vortex to 3D flows
with initial conditions

e 36r

vi —sin(27z)
V2 sin(2mx)
v3 sin(2wy)
Pl= o

B —Lsin(2rz)
B> 2 sin(4mx)
Bs + sin(4my)
P 0

» Choose viscosity parameters such that Rex =~ 1000, Rem ~ 1667
» Find that standard DGSEM crashes while the entropy stable DGSEM runs!



Numerical results: Robustness |

Figure : Visualization of the time evolution of the magnetic energy for a 3D version of
the viscous Orszag-Tang vortex with N = 7 on a 103 internally curved hexahedral mesh



Numerical results: Robustness Il

» Demonstrate the increased robustness of entropy aware approximations
» Use an insulating version of the inviscid Taylor-Green vortex

» Domain Q = [0,27]? with primitive variable initial conditions

o=1
V = (sin(x) cos(y) cos(z), — cos(x)sin(y) cos(z), 0)"
p= % 1—16 (cos(2x) 4 cos(2y)) (2 + cos(2z))

+ 1i6 (cos(4x) + cos(4y)) (2 — cos(4z))
B = (cos(2x) sin(2y) sin(2z), — sin(2x) cos(2y) sin(2z), 0) "
» Even more strenuous test because there is no viscosity!

> Use 64° degrees of freedom with polynomial orders N = 3,7, 15

» Standard DGSEM crashes while all configurations of entropy stable
DGSEM run!



Conclusions

» Showed that re-writing the viscous fluxes in terms of the gradient of the
entropy variables was important for entropy stability

» Building an entropy stable DGSEM involved several important
components:
1. Derivative matrix needed the SBP property
2. Design of a two-point entropy conserving finite volume flux
3. Discrete metric identities must be satisfied
4

. Discretization of two non-conservative terms one for PDE symmetrization
and another for Galilean invariance

» Entropy stable DG method remains high-order and has demonstrably
improved robustness

» Further investigations: shock capturing (artificial viscosity), efficient
implementation to mitigate increased computational effort



