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Motivation

I Approximate the solution of the resistive MHD equations with high-order
discontinuous Galerkin (DG) method

I Broad range of applications in space or astrophysics

I Possible to have other auxiliary conserved quantities not built into the PDE

I Entropy of the system is one such quantity

I Important as entropy helps separate possible flow states from the
impossible

I Entropy aware schemes have increased robustness



Divergence-free condition

I Known numerical issue: It is possible for the approximate flow to not be
divergence-free even if it is initially

I Generalized Lagrange multiplier (GLM) terms advect divergence errors
away from where they are generated

I Possible to damp errors as well with an additional source term

r = (0 ,
→
0 , 0 ,

→
0 ,−αψ)T , α > 0

I Entropy conservation and the divergence-free condition are linked

I Several non-conservative terms have been proposed to alter the equations
for entropy purposes

I Powell term needed for symmetrization of the advective parts of the PDEs



Resistive GLM-MHD equations

ut +
→
∇ ·

↔
fa(u)−

→
∇ ·

↔
fv (u,

→
∇u) + Υ = 0

I Conservative variables, advective and resistive fluxes

u = (% , %
→v , E ,

→
B , ψ)T

↔
fa(u) =

↔
fa,Euler(u) +

↔
fa,MHD(u) +

↔
fa,GLM(u)

↔
fv (u,

→
∇u) =

(→
0 , τ , τ→v −

→
∇T − η

(
(
→
∇×

→
B)×

→
B
)
, η
(

(
→
∇

→
B)T −

→
∇

→
B
)
,

→
0
)T

I Non-conservative terms

Υ = ΥMHD + ΥGLM

ΥMHD = (
→
∇ ·

→
B)φMHD =

(→
∇ ·

→
B
)(

0 , B1 , B2 , B3 ,
→v ·

→
B , v1 , v2 , v3 , 0

)T

ΥGLM =
↔
φGLM ·

→
∇ψ = φGLM

1
∂ψ

∂x
+ φGLM

2
∂ψ

∂y
+ φGLM

3
∂ψ

∂z

with
φGLM
` = (0 , 0 , 0 , 0 , v`ψ , 0 , 0 , 0 , v`)T , ` = 1, 2, 3



Entropy definitions

I First examine the ideal parts of the resistive GLM-MHD equations

I Introduce the mathematical entropy function

S(u) = − %s
γ − 1

, s = ln(p%−γ) = −(γ − 1) ln(%)− ln(β)− ln(2)

where the pressure is

p = (γ − 1)

(
E − %

2
‖→v‖2 − 1

2
‖

→
B‖2 − 1

2
ψ2
)

and β is proportional to the inverse temperature

β =
%

2p

I Note there is a sign convention difference between mathematics and
physics



Entropy definitions I

I Entropy for smooth solutions is conserved

St +
→
∇ ·

→
f S = 0,

→
f S =

→vS

whereas for discontinuous solutions the entropy decays

St +
→
∇ ·

→
f S ≤ 0

I Can move into entropy space with the new set of variables

w =
∂S
∂u

=

[
γ − s
γ − 1

− β‖→v‖2 , 2β→v , −2β , 2β
→
B , 2βψ

]T

I Contract the PDE system on the left with w to obtain conservation law



Entropy behavior for Ideal GLM-MHD

I Contract from the left with w to determine

wT
(
ut +

→
∇ ·
(↔
fa,Euler(u) +

↔
fa,MHD(u) +

↔
fa,GLM(u)

)
+ Υ

)
= 0

where we split the advective flux into three parts for convenience

I From the definition of the entropy variables and many manipulations:

wTut = St

wT (
→
∇ ·

↔
fa,Euler) =

→
∇ ·

→
f S

wT
(→
∇ ·

↔
fa,MHD + ΥMHD

)
= 0

wT
(→
∇ ·

↔
fa,GLM + ΥGLM

)
= 0

I Entropy conservation not possible when
→
∇ ·

→
B 6= 0 unless a

non-conservative term is included



Entropy behavior for resistive GLM-MHD

I Examine how viscous and resistive effects change entropy

I Know for smooth solutions that

wT (ut +
→
∇ ·

↔
fa −

→
∇ ·

↔
fv + Υ) = 0

m

St +
→
∇ ·

→
f S − wT →

∇ ·
↔
fv = 0

I Integrate over the domain to obtain a variational form of the entropy
evolution for the DG scheme to mimic∫

Ω

St +
→
∇ ·

→
f S − wT →

∇ ·
↔
fv dV = 0



Entropy behavior for resistive GLM-MHD I

I Apply Divergence Theorem (advective) and integration-by-parts (viscous)∫
Ω

St dV +

∫
∂Ω

(
→
f S ·→n)− wT (

↔
fv ·→n) dS = −

∫
Ω

(
→
∇w)T↔

fv dV

I Possible to re-formulate viscous fluxes as
↔
fv (u,

→
∇u) = K

→
∇w

with a symmetric, positive semi-definite block matrix K ∈ R27×27

I Term on the right hand side can be bounded!

−
∫
Ω

(
→
∇w)T↔

fv dV = −
∫
Ω

(
→
∇w)TK

→
∇w dV ≤ 0.



Entropy behavior for resistive GLM-MHD II

I Satisfy the entropy inequality up to the prescription of proper boundary
conditions ∫

Ω

St dV +

∫
∂Ω

(
→
f S ·→n)− wT (

↔
fv ·→n) dS ≤ 0

I For periodic boundaries (closed systems) we see that the entropy decays in
time ∫

Ω

St dV ≤ 0



DGSEM: Mapping the equations

I Subdivide domain Ω into Nel non-overlapping, conforming, curved
hexahedral elements Eν , ν = 1, 2, . . . ,Nel

I Transform into computational coordinates
→
ξ = (ξ, η, ζ)T in the reference

element E = [−1, 1]3 by mapping →x =
→
X (

→
ξ)

I Element mapping defines Jacobian, J, covariant and contravariant basis
vectors →ai ,

→a i , i = 1, 2, 3

I Basis vectors vary on curved elements

I Important that the contravariant vectors satisfy the metric identities

3∑
i=1

∂
(
Jai

n
)

∂ξi = 0 , n = 1, 2, 3



DGSEM: Mapping the equations I

I Transform divergence of block vectors, divergence of space vectors, and
the gradient of state vectors or a scalar into reference space

→
∇x ·↔g =

1
J

→
∇ξ ·

(
MT↔g

)
,

→
∇x ·

→
h =

1
J

→
∇ξ ·

(
MT→

h
)

→
∇xu =

1
J
M

→
∇ξu,

→
∇xh =

1
J

M
→
∇ξh

I Compact notation due to two matrices dependent on the metric terms

M =

 Ja1
1 I9 Ja2

1 I9 Ja3
1 I9

Ja1
2 I9 Ja2

2 I9 Ja3
2 I9

Ja1
3 I9 Ja2

3 I9 Ja3
3 I9

 , M =

 Ja1
1 Ja2

1 Ja3
1

Ja1
2 Ja2

2 Ja3
2

Ja1
3 Ja2

3 Ja3
3





DGSEM: Mapping the equations II

I Define compact tilde notation for contravariant block and spatial vectors

↔
g̃ = MT↔g =

↔g M ,
→

h̃ = MT→
h

I Obtain the transformed resistive GLM-MHD equations

Jut +
→
∇ξ ·

↔

f̃
a

+

(
→
∇ξ ·

→

B̃
)
φMHD +

↔

φ̃GLM ·
→
∇ξψ =

→
∇ξ ·

↔

f̃
v

(u,↔q)

J↔q = M
→
∇ξw

I Introduce auxiliary variable, ↔q, that is the gradient of the entropy variables



DGSEM: Variational formulation

I Multiply by test functions ϕ and
↔
ϑ and integrate over the reference

element〈
Jut +

→
∇ξ ·

↔

f̃
a

+

(
→
∇ξ ·

→

B̃
)
φMHD +

↔

φ̃GLM ·
→
∇ξψ,ϕ

〉
=

〈
→
∇ξ ·

↔

f̃
v

(u,↔q) ,ϕ

〉
〈
J↔q,

↔
ϑ
〉

=
〈
M

→
∇ξw,

↔
ϑ
〉

I Introduce inner product notation on the reference element for state and
block vectors

〈u, v〉 =

∫
E

uTv d
→
ξ and

〈↔
f,↔g
〉

=

∫
E

3∑
i=1

fTi gi d
→
ξ



DGSEM: Nodal DG, LGL, and collocation
I Lagrange basis with degree N

u1(x , y , z , t)
∣∣
e ≈ U1(ξ, η, ζ, t) :=

N∑
i,j,k=0

U1,ijk(t) `i (ξ) `j (η)`k(ζ)

I Legendre-Gauss-Lobatto nodes (because they include the boundary)

I Collocation of flux and solution, e.g., velocity

V2,ijk(t) :=
U3,ijk(t)

U1,ijk(t)

I Collocation of interpolation and integration: (N + 1)3 LGL nodes/weights

〈f, 1〉 =

∫
E

f(ξ, η, ζ) d
→
ξ ≈

N∑
i,j,k=0

F(ξi , ηj , ζk)ωi ωj ωk = 〈F, 1〉N



DGSEM: Property of the derivative matrix

I On the continuous level have integration-by-parts

1∫
−1

uv ′ dx = uv
∣∣1
−1 −

1∫
−1

u′v dx

I Define the differentiation and mass matrices

Dij :=
∂`j
∂ξ

∣∣∣∣
ξ=ξi

(i , j = 0, . . . ,N), M = diag(ω0, . . . , ωN)

I For LGL nodes the DG derivative matrix satisfies summation-by-parts
(SBP) property

(MD) + (MD)T = B := diag(−1, 0, . . . , 0, 1)

I Used to discretely mimic integration-by-parts

uTMDv = uT (B −DTM)v

= uTBv − uTDTMv

= uTBv − (Du)TMv



DGSEM: Discrete metric identities

I Compute the metric terms as a curl using the DG derivative matrix

Jai
n = −x̂i · ∇ξ ×

(
IN(Xl∇ξXm)

)
, i = 1, 2, 3, n = 1, 2, 3, (n,m, l) cyclic

I Ensures that the discrete metric identities (DMI) hold

3∑
i=1

∂IN
(
Jai

n
)

∂ξi = 0, n = 1, 2, 3.

I Discrete metric identities are crucial for entropy conservation/stability



DGSEM: General strong form

I Apply the SBP property once on all spatial derivative terms to generate
boundary terms

I Resolve the discontinuity at the interface with numerical surface fluxes for
the advective and viscous components (denoted with ∗)

I Non-conservative terms also discontinuous and contribute at the boundary
(denoted with ♦)

I Apply the SBP property again to arrive at the strong form DG method



DGSEM: General strong form I

〈JUt ,ϕ〉N+

〈
→
∇ξ · IN

(↔

F̃a
)
,ϕ

〉
N

+

∫
∂E ,N

ϕT {(Fa,∗
n − Fa

n)} ŝ dS

+

〈
ΦMHD →

∇ξ · IN
(→

B̃
)
,ϕ

〉
N

+

∫
∂E ,N

ϕT
{(

ΦMHDBn

)
♦ −ΦMHDBn

}
ŝ dS

+

〈↔

Φ̃GLM ·
→
∇ξIN(ψ) ,ϕ

〉
N

+

∫
∂E ,N

ϕT
{(

ΦGLM
n ψ

)
♦ −ΦGLM

n ψ
}

ŝ dS

=

〈
→
∇ξ · IN

(↔

F̃v
)
,ϕ

〉
N

+

∫
∂E ,N

ϕT {Fv,∗
n − Fv

n} ŝ dS

〈
J

↔
Q,

↔
ϑ
〉
N

=

∫
∂E ,N

W∗,T
(↔
ϑ ·→n

)
ŝ dS−

〈
W,

→
∇ξ · IN

(
MT ↔

ϑ
)〉

N

I Know how to handle the conservative terms (top and bottom)
I What about non-conservative terms (middle two)?



DGSEM: Conservative terms (viscous)

I Viscous volume contributions use the standard LGL-DGSEM, e.g., in the ξ
direction at each LGL node(
F̃v

1,ijk(U)
)
ξ

=
1
Mii

(
δiN
[
F̃v,∗

1 − F̃v
1

]
Njk
− δi0

[
F̃v,∗

1 − F̃v
1

]
0jk

)
+

N∑
m=0

DimF̃v
1,mjk

I Use the Bassi-Rebay (BR1) viscous interface coupling in terms of the
discrete entropy variables and gradients

Fv,∗
n =

{{↔
Fv
}}
·→n W∗ = {{W}}



Conservative terms (advective): Why care about split forms??

I One interpretation of split forms is the average of conservative and
advective forms, e.g.

(ab)x =
1
2
(
(ab)x + axb + abx

)
I Split forms have known beneficial dealiasing properties!

I Could address geometric dealiasing by splitting apart mapping terms from
physical fluxes

I Can further add physical dealiasing depending on how one interprets the
non-linearities in the PDE



Conservative terms (advective): Quadratic flux example
I Consider a simple on dimensional quadratic flux f = 1

2u2

I Analyze the modal energy at different orders to heuristically explain split
form dealiasing



DGSEM: Split form advective terms

I Advective volume contributions use the split form LGL-DGSEM, e.g., in
the ξ direction at each LGL node

(
F̃a

1,ijk(U)
)
ξ

=
1
Mii

(
δiN
[
F̃a,∗

1 − F̃a
1

]
Njk
− δi0

[
F̃a,∗

1 − F̃a
1

]
0jk

)
+ 2

N∑
m=0

Dim
{{

J→a1}}
(i,m)jk · F

#
1 (Uijk ,Umjk)

I Introduces a two-point numerical volume flux denoted by a # symbol

I Only conditions on the volume flux are consistency and symmetry

F#
1 (U,U) = F1 and F#

1 (Uijk ,Umjk) = F#
1 (Umjk ,Uijk)



DGSEM: Sharp fluxes

I Great deal of freedom selecting the form of the sharp fluxes

I Sharp fluxes can be designed to build other physical properties into the
discretization

I Numerical volume flux can recover split formulations of the PDEs

I Entropy conservative formulations generate a specific split form

I Don’t need to know this form explicitly in the DG framework



DGSEM: Entropy conservative sharp flux

I Design an entropy conservative with Tadmor’s finite volume condition

I Discrete entropy conservation condition (DECC)

JWKT F#,EC
` (UL,UR) = JΨ`K− {{B`}} JθK , ` = 1, 2, 3

with the entropy flux potential
→
Ψ = WT↔

Fa −
→
F S + θ

→
B

and θ = WTφMHD = 2β(
→
V ·

→
B)

I Low-order flux extends to high-order in the split form DG framework



DGSEM: Entropy conservative sharp flux I

I Entropy conservative flux in first spatial direction

F#,EC
1 (UL,UR) =



%ln {{v1}}

%ln {{v1}}2 − {{B1}}2 + p + 1
2

({{
B2

1
}}

+
{{

B2
2
}}

+
{{

B2
3
}})

%ln {{v1}} {{v2}} − {{B1}} {{B2}}
%ln {{v1}} {{v3}} − {{B1}} {{B3}}

f EC
1,5

ch {{ψ}}
{{v1}} {{B2}} − {{v2}} {{B1}}
{{v1}} {{B3}} − {{v3}} {{B1}}

ch {{B1}}


with

p =
{{%}}
2 {{β}}



DGSEM: Advective numerical surface flux

I F̃a,∗ is the numerical surface flux

I We link the choice of the numerical volume flux and the numerical surface
flux, e.g.,

F̃a,∗(UL,UR) = F̃#,EC(UL,UR)

F̃a,∗(UL,UR) = F̃#,EC(UL,UR)− λmax

2
[UR − UL]

I First choice leads to an entropy conservative (EC) method

I Second choice yields an entropy stable (ES) scheme



DGSEM: Non-conservative MHD terms

I Compute non-conservative MHD volume contributions as a partial split
form

ΦMHD →
∇ξ · IN

(→

B̃
)
≈ ΦMHD→

DNC
div ·

→

B̃ =
N∑

m=0

Dim

(
ΦMHD

ijk

(→
Bmjk ·

{{
J→a 1}}

(i,m)jk

))
+

N∑
m=0

Djm

(
ΦMHD

ijk

(→
Bimk ·

{{
J→a 2}}

i(j,m)k

))
+

N∑
m=0

Dkm

(
ΦMHD

ijk

(→
Bijm ·

{{
J→a 3}}

ij(k,m)

))
I Define non-conservative MHD surface coupling with(

ΦMHDBn

)
♦ =

(
ΦMHD

)− ({{→
B
}}
·→n
)

where (·)− denotes the interior value of the considered element



DGSEM: Non-conservative GLM terms

I Compute non-conservative GLM volume contributions with a standard
gradient form

↔

Φ̃GLM ·
→
∇ξIN(ψ) ≈

↔

Φ̃GLM ·
→
DNC

gradψ =
N∑

m=0

Dim

((
J→a 1

ijk ·
↔
ΦGLM

ijk

)
ψmjk

)
+

N∑
m=0

Djm

((
J→a 2

ijk ·
↔
ΦGLM

ijk

)
ψimk

)
+

N∑
m=0

Dkm

((
J→a 3

ijk ·
↔
ΦGLM

ijk

)
ψijm

)
I Define non-conservative GLM surface coupling with(

ΦGLM
n ψ

)
♦ =

((↔
ΦGLM

)−
·→n
)
{{ψ}}

where (·)− denotes the interior value of the considered element



DGSEM: Entropy conservative steps
I We use these DG discretization principles for the volume and surface

contributions to demonstrate entropy stability for the resistive
GLM-MHD equations

I Due to the construction of the DGSEM we discretely mimic the
continuous analysis:

1. Contract the strong DGSEM formulation into entropy space taking ϕ = W,
↔
ϑ =

↔
F̃v

2. Advective and non-conservative volume contributions generate the entropy
flux at the interfaces (SBP, DECC, DMI)

3. Sum over all elements cancels extraneous MHD surface terms in entropy
space (DECC, definition of

(
ΦMHDBn

)
♦ and

(
ΦGLM

n ψ
)
♦)

4. Include the viscous BR1 boundary coupling and rewrite the viscous flux
volume contributions ↔

Fv (U,
→
∇U) = K

→
∇W

5. Assume periodic boundary conditions

I Determine that the total discrete entropy decays

dS
dt
≡

Nel∑
ν=1

〈JνSνt , 1〉N ≤ 0



Numerical results: Convergence

I Use the method of manufactured solutions to test convergence

I Consider a solution of the form

u =
[
h, h, h, 0, 2h2 + h, h,−h, 0, 0

]T
where

h = h(x , y , z , t) = 0.5 sin(2π(x + y + z − t)) + 2

I Introduces an additional source term into the approximation



Numerical results: Convergence I

Nel L2(%) L2(v1) L2(p) L2(B1)

43 1.62E-01 1.74E-01 3.42E-01 1.19E-01
83 6.11E-03 8.38E-03 1.59E-02 3.51E-03
163 2.40E-04 5.02E-04 1.18E-03 1.39E-04
323 1.93E-05 2.51E-05 7.42E-05 7.56E-06

avg EOC 4.34 4.25 4.06 4.65

Table : L2-errors and EOC of manufactured solution test for N =3



Numerical results: Entropy conservation

I Entropy is conserved for well-resolved simulations

I Purposely choose a challenging spherical blast wave test case with
discontinuities to demonstrate entropy conservation

I Inner and outer states given by

% v1 v2 v3 p B1 B2 B3 ψ

inner 1.2 0.1 0.0 0.1 0.9 1.0 1.0 1.0 0.0
outer 1.0 0.2 −0.4 0.2 0.3 1.0 1.0 1.0 0.0

Table : Inner and outer primitive states for the entropy conservation test.

which are blended over δ0 with the function

u =
uinner + λuouter

1 + λ
, λ = exp

[
5
δ0

(r − r0)

]
, r = ‖→x −→xc‖



Numerical results: Entropy conservation I

Figure : Evolution of 3D blast wave for entropy conservative and entropy stable
approximations



Numerical results: Entropy conservation II

ES N=4
EC N=4
EC N=5
∼(Δt)4.2

E
n

tr
o
p

y 
ch

a
n

g
e
: 

(1
 -

 S
(t

=
0

.5
)/S

0
)

10−15

10−12

10−9

10−6

10−3

CFL ∼ Δt
0.0125 0.025 0.05 0.1 0.2 0.4 0.8

Figure : Log-log plot of entropy change from the initial entropy S0 to S(t = 0.5) over
the timestep for a 3D spherical blast wave



Numerical results: Divergence cleaning test

I Demonstrate effect of GLM divergence cleaning with malicious initial
condition

I Explicitly defined to not be divergence-free

I For periodic boundaries explore the use of damping in the GLM anstaz

I Define initial conditions

%(x , y , 0) = 1, E(x , y , 0) = 6, B1(x , y , 0) = exp
(
− 1

8
(x−0.5)2+(y−0.5)2+(z−0.5)2

0.02752

)
on a curved domain Ω = [0, 1]3 given by



Numerical results: Divergence cleaning test I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time

0.0

0.5

1.0

1.5

2.0

no
rm

ai
liz

ed
‖~ ∇
·~ B
‖ L

2
(Ω

)

w/o GLM

α = 0

α = 1

α = 2

Figure : Evolution of divergence error for maliciously chosen test case with periodic
boundary conditions. Without divergence cleaning crashes while GLM divergence
with/without divergence cleaning controls the errors



Numerical results: Robustness

I Demonstrate the increased robustness of entropy aware approximations

I Use a generalization of the well-known Orszag-Tang vortex to 3D flows
with initial conditions 

%

v1

v2

v3

p
B1

B2

B3

ψ


=



25
36π

− sin(2πz)

sin(2πx)

sin(2πy)
5

12π

− 1
4π sin(2πz)
1
4π sin(4πx)
1
4π sin(4πy)

0


I Choose viscosity parameters such that Rek ≈ 1000, Rem ≈ 1667

I Find that standard DGSEM crashes while the entropy stable DGSEM runs!



Numerical results: Robustness I

Figure : Visualization of the time evolution of the magnetic energy for a 3D version of
the viscous Orszag-Tang vortex with N = 7 on a 103 internally curved hexahedral mesh



Numerical results: Robustness II

I Demonstrate the increased robustness of entropy aware approximations

I Use an insulating version of the inviscid Taylor-Green vortex

I Domain Ω = [0, 2π]3 with primitive variable initial conditions

% = 1
→v = (sin(x) cos(y) cos(z), − cos(x) sin(y) cos(z), 0)T

p =
100
γ

+
1
16

(cos(2x) + cos(2y)) (2 + cos(2z))

+
1
16

(cos(4x) + cos(4y)) (2− cos(4z))

→
B = (cos(2x) sin(2y) sin(2z), − sin(2x) cos(2y) sin(2z), 0)T

I Even more strenuous test because there is no viscosity!

I Use 643 degrees of freedom with polynomial orders N = 3, 7, 15

I Standard DGSEM crashes while all configurations of entropy stable
DGSEM run!



Conclusions

I Showed that re-writing the viscous fluxes in terms of the gradient of the
entropy variables was important for entropy stability

I Building an entropy stable DGSEM involved several important
components:

1. Derivative matrix needed the SBP property

2. Design of a two-point entropy conserving finite volume flux

3. Discrete metric identities must be satisfied

4. Discretization of two non-conservative terms one for PDE symmetrization
and another for Galilean invariance

I Entropy stable DG method remains high-order and has demonstrably
improved robustness

I Further investigations: shock capturing (artificial viscosity), efficient
implementation to mitigate increased computational effort


