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Introduction Discontinuous Galerkin scheme

History
Introduced by Reed and Hill in 1973 in the frame of the neutron transport
Major development and improvements by B. Cockburn and C.-W. Shu in
a series of seminal papers

Procedure
Local variational formulation
Piecewise polynomial approximation of the solution in the cells
Choice of the numerical fluxes
Time integration

Advantages
Natural extension of Finite Volume method
Excellent analytical properties (L2 stability, hp−adaptivity, . . . )
Extremely high accuracy (superconvergent for scalar conservation laws)
Compact stencil (involve only face neighboring cells)
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Introduction Discontinuous Galerkin scheme

1D scalar conservation law
∂ u
∂t

+
∂ F (u)

∂x
= 0, (x , t) ∈ ω × [0,T ]

u(x ,0) = u0(x), x ∈ ω

(k + 1)th order discretization
{ωi}i a partition of ω, such that ωi = [xi− 1

2
, xi+ 1

2
]

0 = t0 < t1 < · · · < tN = T a partition of the temporal domain [0,T ]

uh(x , t) the numerical solution, such that uh|ωi = ui
h ∈ Pk (ωi )

ui
h(x , t) =

k+1∑

m=1

ui
m(t)σm(x)

{σm}m a basis of Pk (ωi )

Variational formulation on ωi∫

ωi

(
∂ u
∂t

+
∂ F (u)

∂x

)
ψ dx with ψ(x) a test function
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Introduction Discontinuous Galerkin scheme

Integration by parts
∫

ωi

∂ u
∂t
ψ dx −

∫

ωi

F (u)
∂ ψ

∂x
dx +

[
F (u)ψ

]xi+ 1
2

xi− 1
2

= 0

Approximated solution
Substitute u by ui

h

Take ψ among the basis function σp

k+1∑

m=1

∂ ui
m

∂t

∫

ωi

σm σp dx =

∫

ωi

F (ui
h)
∂ σp

∂x
dx −

[
F σp

]xi+ 1
2

xi− 1
2

Numerical flux

Fi+ 1
2

= F
(

ui
h(xi+ 1

2
, t),ui+1

h (xi+ 1
2
, t)
)

F(u, v) =
F (u) + F (v)

2
− γ(u, v)

2
(v − u)

γ(u, v) = max(|F ′(u)|, |F ′(v)|) Local Lax-Friedrichs
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Introduction Discontinuous Galerkin scheme

Subcell resolution of DG scheme
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Figure : Linear advection of composite signal after 4 periods
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Introduction Discontinuous Galerkin scheme

Subcell resolution of DG scheme
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Introduction Spurious oscillations - Gibbs phenomenon

Gibbs phenomenon
High-order schemes leads to spurious oscillations near discontinuities
Leads potentially to nonlinear instability, non-admissible solution, crash
Vast literature of how prevent this phenomenon to happen:

=⇒ a priori and a posteriori limitations

A priori limitation
Artificial viscosity
Flux limitation
Slope/moment limiter
Hierarchical limiter
ENO/WENO limiter

A posteriori limitation
MOOD (“Multi-dimensional Optimal Order Detection”)
Subcell finite volume limitation
Subcell limitation through flux reconstruction
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Introduction Objectives

Admissible numerical solution
Maximum principle / positivity preserving
Prevent the code from crashing (for instance avoiding NaN)
Ensure the conservation of the scheme

Spurious oscillations
Discrete maximum principle
Relaxing condition for smooth extrema

Accuracy
Retain as much as possible the subcell resolution of the DG scheme
Minimize the number of subcell solutions to recompute
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DG as a subcell finite volume Flux reconstruction
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DG as a subcell finite volume Flux reconstruction

DG as a subcell finite volume
Rewrite DG scheme as a specific finite volume scheme on subcells
Exhibit the corresponding subcell numerical fluxes: reconstructed flux

Variational formulation
∫

ωi

∂ ui
h

∂t
ψ dx =

∫

ωi

F (ui
h)
∂ ψ

∂x
dx −

[
F ψ

]xi+ 1
2

xi− 1
2

= 0, ∀ψ ∈ Pk (ωi )

Quadrature rule exact for polynomials up to degree 2k
F (ui

h) ≈ F i
h ∈ Pk+1(ωi ) (collocated or projection)

∫

ωi

∂ ui
h

∂t
ψ dx = −

∫

ωi

∂ F i
h

∂x
ψ dx +

[
(F i

h −F)ψ
]xi+ 1

2

xi− 1
2

Subcells decomposition through k + 2 flux points
xi−1

2
xi+1

2

x̃0 x̃1 x̃2 x̃k x̃k+1
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DG as a subcell finite volume Flux reconstruction

Subresolution basis functions
ωi is subdivided in k + 1 subcells Si

m = [x̃m−1, x̃m]

Let us introduce the k + 1 basis functions {φm}m such that ∀ψ ∈ Pk (ωi )

∫

ωi

φm ψ dx =

∫

Si
m

ψ dx , ∀m = 1, . . . , k + 1

k+1∑

m=1

φm(x) = 1

Let us define ψm =
1
|Si

m|

∫

Si
m

ψ dx the subcell mean value

Variational formulation
∫

ωi

∂ ui
h

∂t
φm dx = −

∫

ωi

∂ F i
h

∂x
φm dx +

[
(F i

h −F)φm

]xi+ 1
2

xi− 1
2

|Si
m|
∂ ui

m

∂t
= −

∫

Si
m

∂ F i
h

∂x
dx +

[
(F i

h −F)φm

]xi+ 1
2

xi− 1
2
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DG as a subcell finite volume Flux reconstruction

Subcell finite volume

∂ ui
m

∂t
= − 1
|Si

m|

([
F i

h

]x̃m

x̃m−1

−
[
φm

(
F i

h −F
) ]xi+ 1

2

xi− 1
2

)

We introduce the k + 2 function Lm(x), the Lagrangian basis functions
associated to the flux points

Let us define F̂ i
h =

k+1∑

m=0

F̂ i
m Lm(x) ∈ Pk+1(ωi ) such that

F̂ i
m − F̂ i

m−1 =
[
F i

h

]x̃m

x̃m−1

−
[
φm

(
F i

h −F
) ]xi+ 1

2

xi− 1
2

, ∀m = 1, . . . , k + 1

F̂ i
0 = Fi− 1

2
and F̂ i

k+1 = Fi+ 1
2

Reconstructed flux

F̂ i
m = F i

h(x̃m)− C(m)

i− 1
2

(
F i

h(xi− 1
2
)−Fi− 1

2

)
− C(m)

i+ 1
2

(
F i

h(xi+ 1
2
)−Fi+ 1

2

)

C(m)

i− 1
2

=
k+1∑

p=m+1

φp(xi− 1
2
) and C(m)

i+ 1
2

=
m∑

p=1

φp(xi+ 1
2
)
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DG as a subcell finite volume Flux reconstruction

Correction terms

Let B ∈ Rk+1 be defined as Bj = (−1)j+1 (k + 1)(k + j)!

(j!)2(k + 1− j)!

ξ̃m =
x̃m − xi− 1

2

xi+ 1
2
− xi− 1

2

, ∀m = 0, . . . , k + 1

C(m)

i− 1
2

=




1− (ξ̃m)
...

1− (ξ̃m)k+1


 · B and C(m)

i+ 1
2

=




1− (1− ξ̃m)
...

1− (1− ξ̃m)k+1


 · B

Subcell finite volume equivalent to DG

∂ ui
m

∂t
= − 1
|Si

m|
[
F̂ i

h

]x̃m

x̃m−1

, ∀m = 1, . . . , k + 1

Other choice on the correction terms lead to different schemes (spectral
difference, spectral volume, . . . )
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DG as a subcell finite volume Flux reconstruction

Pointwise evolution scheme
∫

ωi

φm
(∂ ui

h
∂t

+
∂ F̂ i

h
∂x

)
dx = 0, ∀m = 1, . . . , k + 1

∫

ωi

ψ
(∂ ui

h
∂t

+
∂ F̂ i

h
∂x

)
dx = 0, ∀ψ ∈ Pk (ωi ) =⇒ ∂ ui

h
∂t

+
∂ F̂ i

h
∂x

= OPk

∀m = 1, . . . , k + 1,
∂ ui

h(xm, t)
∂t

+
∂ F̂ i

h(xm, t)
∂x

= 0

Reconstructed flux

F̂ i
h = F i

h +
(

F i
h(xi− 1

2
)−Fi− 1

2

)
gLB(x) +

(
F i

h(xi+ 1
2
)−Fi+ 1

2

)
gRB(x)

The gLB(x) and gRB(x) are the correction functions taking into account
the flux discontinuities
To recover DG scheme, the correction functions writes

gLB(x) =
k+1∑

m=0

C(m)

i− 1
2

Lm(x) and gRB(x) =
k+1∑

m=0

C(m)

i+ 1
2

Lm(x)
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DG as a subcell finite volume Flux reconstruction

Reconstructed flux

xi+1
2

xi−1
2

xi+3
2

F̂ i+1
h

Fi−1
2

Fi+1
2

Fi+3
2

Fi+1
h

F̂ i
h

F i
h

Figure : Reconstructed flux taking into account flux jumps
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DG as a subcell finite volume Flux reconstruction

Flux reconstruction / CPR
In the case of DG scheme, the correction functions gLB(x) and gRB(x)
are nothing but the right and left Radau Pk polynomials

H. T. HUYNH, A Flux Reconstruction Approach to High-Order Schemes
Including Discontinuous Galerkin Methods. 18th AIAA Computational
Fluid Dynamics Conference Miami, 2007.

Z.J. WANG and H. GAO, A unifying lifting collocation penalty formulation
including the discontinuous Galerkin, spectral volume/difference methods
for conservation laws on mixed grids. JCP, 2009.

In the FR/CPR approach, the reconstructed flux is used pointwisely at
some solution points to resolve the PDE

Subcell finite volume
The reconstructed flux is used as a numerical flux for the subcell finite
volume scheme
The correction terms are very simple and explicitly defined
There is no need to make use of Radau polynomial

François Vilar (IMAG) Subcell limitation through flux recontruction May 24th, 2018 14 / 56



A posteriori subcell limitation
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A posteriori subcell limitation Projection

RKDG scheme
SSP Runge-Kutta: convex combinations of first-order forward Euler
For sake of clarity, we focus on forward Euler time stepping

ui,n
h (x) =

k+1∑

m=1

ui,n
m σm(x)

∫

ωi

ui,n+1
h σp dx =

∫

ωi

ui,n
h σp dx + ∆t

(∫

ωi

F i,n
h
∂ σp

∂x
dx −

[
Fn σp

]xi+ 1
2

xi− 1
2

)

Projection on subcells of RKDG solution
A k th degree polynomial is uniquely defined by its k + 1 submean values

Introducing the matrix Π defined as πmp =
1
|Si

m|

∫

Si
m

σp dx , then

Π




ui,n
1
...

ui,n
k+1


 =




u i,n
1
...

u i,n
k+1
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A posteriori subcell limitation Projection

Projection

x̃k x̃k+1x̃0 x̃1

xi+1
2

u i,n
k+1

xi−1
2

u i,n
1 u i,n

2
u i,n
k

u
i,n
h

(x)

Figure : Polynomial solution and its associated submean values
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A posteriori subcell limitation Detection

Set up
Compute a candidate solution un+1

h from un
h through unlimited DG

For each cell, compute the submean values {u i,n+1
m }m

We assume that, for each cell, the {u i,n
m }m are admissible

Physical admissibility detection (PAD)

Check if u i,n+1
m lies in an convex physical admissible set (maximum

principle for SCL, positivity of the pressure and density for Euler, . . . )
Check if there is any NaN values

Numerical admissibility detection (NAD)
Discrete maximum principle DMP on submean values:

min
p

(u i−1,n
p ,u i,n

p ,u i+1,n
p ) ≤ u i,n+1

m ≤ max
p

(u i−1,n
p ,u i,n

p ,u i+1,n
p )

This criterion needs to be relaxed to preserve smooth extrema
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A posteriori subcell limitation Detection

Relaxation of the DMP

vL = ∂xu
n+1
i − ∆xi

2 ∂xxu
n+1
i

vmin \max = min \max (∂xu
n+1
i , ∂xu

n+1
i−1 )

If (vL > ∂xu
n+1
i ) Then αL = min(1,

vmax − ∂xu
n+1
i

vR − ∂xu
n+1
i

)

If (vL < ∂xu
n+1
i ) Then αL = min(1,

vmin − ∂xu
n+1
i

vR − ∂xu
n+1
i

)

vR = ∂xu
n+1
i + ∆xi

2 ∂xxu
n+1
i

vmin \max = min \max (∂xu
n+1
i , ∂xu

n+1
i+1 )

If (vR > ∂xu
n+1
i ) Then αR = min(1,

vmax − ∂xu
n+1
i

vR − ∂xu
n+1
i

)

If (vR < ∂xu
n+1
i ) Then αR = min(1,

vmin − ∂xu
n+1
i

vR − ∂xu
n+1
i

)
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A posteriori subcell limitation Detection

Relaxation of the DMP
α = min(αL, αR)

If (α = 1) Then DMP is relaxed

Hierarchical limiter

xi−1
2

xi+1
2

xi−3
2

xi+3
2

∂xu
n+1
i

∂xu
n+1
i+1

∂xu
n+1
i−1 vh(x)

vh(x) = ∂xu
n+1
i + (x − xi ) ∂xxu

n+1
i

M. YANG and Z.J. WANG, A parameter-free generalized moment limiter
for high-order methods on unstructured grids. AAMM., 2009.

D. KUZMIN, A vertex-based hierarchical slope limiter for p-adaptive
discontinuous Galerkin methods. J. of Comp. and Appl. Math., 2010.
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A posteriori subcell limitation Correction

Marked subcells
If a subcell mean value does not respect the PAD and NAD, the
corresponding subcell is marked
For all the marked subcells, as well as their first neighbors, we go back to
time tn to recompute the submean value

Corrected reconstructed flux
F̃ i

m = F(u i,n
m ,u i,n

m+1) if Si
m−1 or Si

m is marked

with u i,n
0 = u i−1,n

k+1 and u i,n
k+2 = u i+1,n

1

F̃ i
m = F̂ i

m otherwise

Modified submean values

u i,n+1
m = u i,n

m −
∆t
|Si

m|
(F̃ i

m − F̃ i
m−1)

Check if the modified submean values are now admissible

By means of Π−1, get the corrected moments
(

u i,n+1
1 , . . . ,u i,n+1

k+1

)t
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A posteriori subcell limitation Correction

Limited reconstructed flux

x̃k x̃k+1x̃1

F̂ i
k+1

x̃m−1 x̃mx̃0

xi−1
2

xi+1
2

F̂ i
0

F̂ i
1

F̂ i
m−1

F̂ i
m

F̃ i
m

F̃ i
m−1

Figure : Correction of the reconstructed flux
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A posteriori subcell limitation Correction

Flowchart
1 Project u i,n+1

h to get the submean values u i,n+1
m

2 Check u i,n+1
m through PAD and NAD

3 If u i,n+1
m is admissible go further in time, otherwise modify the

corresponding reconstructed flux values

F̃ i
m−1 = F(u i,n

m−1,u
i,n
m ) and F̃ i

m = F(u i,n
m ,u i,n

m+1)

4 Through the corrected reconstructed flux, recompute the submean values
for tagged subcells and their first neighbors

5 Return to point 2

Conclusion
The limitation only affects the DG solution at the subcell scale
The limited scheme is conservative at the subcell level
In practice, few submean values need to be recomputed
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Numerical results 1D scalar conservation laws
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Numerical results 1D scalar conservation laws

Initial solution on x ∈ [0,1]
u0(x) = sin(2πx)

Periodic boundary conditions

-1

-0.8
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-0.2

 0

 0.2

 0.4
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 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 exact solution

9th order DG

DG cell boundaries

Figure : Linear advection with a 9th DG scheme and 5 cells after 1 period
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Numerical results 1D scalar conservation laws

Convergence rates
L1 L2

h Eh
L1

qh
L1

Eh
L2

qh
L2

1
20 8.07E-11 9.00 8.97E-11 9.00
1

40 1.58E-13 9.00 1.75E-13 9.00
1

80 3.08E-16 - 3.42E-16 -

Table: Convergence rates for the linear advection case for a 9th order DG scheme
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period
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Figure : 9th order limited DG: NAD criterion
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period

 0
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 exact solution

9th order limited DG

corrected subcells

DG cell boundaries

Figure : 9th order limited DG on 10 cells: NAD and PAD criteria
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
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9th order limited DG

corrected subcells

DG cell boundaries

Figure : 9th order limited DG on 10 cells: subcell DMP
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period
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 0.4
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FR limitation

subcell FV limitation

DG cell boundaries

Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 10 periods
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FR limitation

subcell FV limitation

DG cell boundaries

Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 50 periods
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Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods
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DG cell boundaries

Figure : 9th order limited DG after 4 periods on 30 cells
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods

 0
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 exact solution

9th order limited DG

corrected subcells

DG cell boundaries

Figure : 9th order limited DG after 4 periods on 30 cells: subcell DMP
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Numerical results 1D scalar conservation laws

Burgers equation: u0(x) = sin(2π x)

Figure : 9th order limited DG on 10 cells for tf = 0.7
François Vilar (IMAG) Subcell limitation through flux recontruction May 24th, 2018 33 / 56



Numerical results 1D scalar conservation laws

Burgers equation: expansion and shock waves collision

Figure : 9th order limited DG on 15 cells for tf = 1.2
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Numerical results 2D scalar conservation laws

2D grid and subgrid
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(a) Grid
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(b) Subgrid

Figure : 5x5 Cartesian grid and corresponding subgrid for a 6th order DG
scheme
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Numerical results 2D scalar conservation laws

Initial solution on (x , y) ∈ [0,1]2

u0(x , y) = sin(2π(x + y))

Periodic boundary conditions
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(c) Solution map
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-0.5
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

 exact solution

6th limited DG

(d) Solution profile

Figure : Linear advection with a 6th DG scheme and 5x5 grid after 1 period
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Numerical results 2D scalar conservation laws

Convergence rates
L1 L2

h Eh
L1

qh
L1

Eh
L2

qh
L2

1
5 2.10E-6 6.23 2.86E-6 6.24
1

10 2.79E-8 6.00 3.77E-8 6.00
1

20 3.36E-10 - 5.91E-10 -

Table: Convergence rates for the linear advection case for a 6th order DG scheme

François Vilar (IMAG) Subcell limitation through flux recontruction May 24th, 2018 37 / 56



Numerical results 2D scalar conservation laws

Linear advection of a square signal after 1 period
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(e) Solution map
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(f) Solution profile

Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Linear advection of a square signal after 1 period
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Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period
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(h) Final solution

Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period
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(j) Solution profile for y = 0.75

Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period: x = 0.25
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Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with u0(x , y) = sin(2π (x + y))
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Figure : 6th order unlimited DG on a 10x10 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with u0(x , y) = sin(2π (x + y))

(m) Solution map (n) Detected subcells

Figure : 6th order limited DG on a 10x10 Cartesian mesh until t = 0.5
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Numerical results 2D scalar conservation laws

Burgers equation with u0(x , y) = sin(2π (x + y)) at t = 0.5

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

 exact solution

6th limited DG

Figure : 6th order limited DG density profile on a 10x10 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with composite signal
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Figure : 6th order limited DG on a 10x10 Cartesian mesh
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Numerical results 1D Euler system

Initial solution on x ∈ [0,1] for γ = 3
ρ0(x) = 1 + 0.999999 sin(πx), u0(x) = 0, p0(x) = (ρ0(x))γ

Periodic boundary conditions
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Figure : Smooth flow problem with 5th DG scheme and 10 cells at t = 0.1

François Vilar (IMAG) Subcell limitation through flux recontruction May 24th, 2018 47 / 56



Numerical results 1D Euler system

Convergence rates
L1 L2

h Eh
L1

qh
L1

Eh
L2

qh
L2

1
20 1.48E-5 4.35 2.02E-5 4.18
1

40 9.09E-7 4.88 1.38E-6 4.87
1

80 3.09E-8 4.95 4.73E-8 4.86
1

160 1.00E-9 - 1.63E-9 -

Table: Convergence rates on the pressure for the Euler equation for a 5th order DG
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Numerical results 1D Euler system

Sod shock tube problem
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Figure : 9th order limited DG on 10 cells

François Vilar (IMAG) Subcell limitation through flux recontruction May 24th, 2018 49 / 56



Numerical results 1D Euler system

Hell shock tube problem
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Figure : 9th order limited DG on 10 cells
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Numerical results 1D Euler system

Double rarefaction problem
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Figure : 9th order limited DG on 20 cells
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Numerical results 1D Euler system

Leblanc shock tube problem
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Figure : 3rd order vs 7th order limited DG on 100 cells
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Numerical results 1D Euler system

Shock acoustic-wave interaction problem
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Figure : 7th order limited DG on 50 cells

François Vilar (IMAG) Subcell limitation through flux recontruction May 24th, 2018 53 / 56



Numerical results 1D Euler system

Shock acoustic-wave interaction problem

 3.55

 3.6

 3.65

 3.7

 3.75

 3.8

 3.85

 3.9

 3.95

 4

 4.05

 4.1

-2 -1.5 -1 -0.5  0

 referential solution

7th order limited DG

3rd order limited DG

DG cell boundaries

(u) Zoom on [−2, 0]

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

 referential solution

7th order limited DG

3rd order limited DG

DG cell boundaries

(v) Zoom on [0.5, 2.3]
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Numerical results 1D Euler system

Shock acoustic-wave interaction problem
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Figure : 7th order limited DG on 50 cells
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Numerical results 1D Euler system

Shock acoustic-wave interaction problem
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Figure : 7th order limited DG on 50 cells
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