Subcell *a posteriori* limitation for DG scheme through flux recontruction

François Vilar

Institut Montpelliérain Alexander Grothendieck Université de Montpellier

May 24th, 2018

François Vilar (IMAG)

Subcell limitation through flux recontruction

May 24th, 2018

Introduction

- 2 DG as a subcell finite volume
- 3 A posteriori subcell limitation
 - 4 Numerical results

History

- Introduced by Reed and Hill in 1973 in the frame of the neutron transport
- Major development and improvements by B. Cockburn and C.-W. Shu in a series of seminal papers

Procedure

- Local variational formulation
- Piecewise polynomial approximation of the solution in the cells
- Choice of the numerical fluxes
- Time integration

Advantages

- Natural extension of Finite Volume method
- Excellent analytical properties (L₂ stability, hp-adaptivity, ...)
- Extremely high accuracy (superconvergent for scalar conservation laws)
- Compact stencil (involve only face neighboring cells)

1D scalar conservation law

•
$$\frac{\partial u}{\partial t} + \frac{\partial F(u)}{\partial x} = 0,$$
 $(x, t) \in \omega \times [0, T]$
• $u(x, 0) = u_0(x),$ $x \in \omega$

$(k+1)^{\text{th}}$ order discretization

•
$$\{\omega_i\}_i$$
 a partition of ω , such that $\omega_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$

- $0 = t^0 < t^1 < \cdots < t^N = T$ a partition of the temporal domain [0, T]
- $u_h(x, t)$ the numerical solution, such that $u_{h|\omega_i} = u_h^i \in \mathbb{P}^k(\omega_i)$

$$u_h^i(x,t) = \sum_{m=1}^{k+1} u_m^i(t) \,\sigma_m(x)$$

•
$$\{\sigma_m\}_m$$
 a basis of $\mathbb{P}^k(\omega_i)$

Variational formulation on ω_i

•
$$\int_{\omega_i} \left(\frac{\partial u}{\partial t} + \frac{\partial F(u)}{\partial x} \right) \psi \, dx$$
 with $\psi(x)$ a test function

Integration by parts

•
$$\int_{\omega_i} \frac{\partial u}{\partial t} \psi \, \mathrm{d}x - \int_{\omega_i} F(u) \frac{\partial \psi}{\partial x} \, \mathrm{d}x + \left[F(u) \psi \right]_{x_{i+\frac{1}{2}}}^{x_{i+\frac{1}{2}}} = 0$$

Approximated solution

- Substitute u by uⁱ_h
- Take ψ among the basis function σ_p

•
$$\sum_{m=1}^{k+1} \frac{\partial u_m^i}{\partial t} \int_{\omega_i} \sigma_m \sigma_p \, \mathrm{d}x = \int_{\omega_i} \mathcal{F}(u_h^i) \frac{\partial \sigma_p}{\partial x} \, \mathrm{d}x - \left[\mathcal{F} \sigma_p\right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}$$

Numerical flux

•
$$\mathcal{F}_{i+\frac{1}{2}} = \mathcal{F}\left(u_h^i(x_{i+\frac{1}{2}}, t), u_h^{i+1}(x_{i+\frac{1}{2}}, t)\right)$$

• $\mathcal{F}(u, v) = \frac{F(u) + F(v)}{2} - \frac{\gamma(u, v)}{2}(v - u)$
• $\gamma(u, v) = \max(|F'(u)|, |F'(v)|)$

François Vilar (IMAG)

Local Lax-Friedrichs

Subcell resolution of DG scheme

Subcell resolution of DG scheme

Gibbs phenomenon

- High-order schemes leads to spurious oscillations near discontinuities
- Leads potentially to nonlinear instability, non-admissible solution, crash
- Vast literature of how prevent this phenomenon to happen:

⇒ a priori and **a posteriori** limitations

A priori limitation

- Artificial viscosity
- Flux limitation
- Slope/moment limiter
- Hierarchical limiter
- ENO/WENO limiter

A posteriori limitation

- MOOD ("Multi-dimensional Optimal Order Detection")
- Subcell finite volume limitation
- Subcell limitation through flux reconstruction

Admissible numerical solution

- Maximum principle / positivity preserving
- Prevent the code from crashing (for instance avoiding NaN)
- Ensure the conservation of the scheme

Spurious oscillations

- Discrete maximum principle
- Relaxing condition for smooth extrema

Accuracy

- Retain as much as possible the subcell resolution of the DG scheme
- Minimize the number of subcell solutions to recompute

Introduction

- DG as a subcell finite volume
 - 3 A posteriori subcell limitation
 - Numerical results

ъ

DG as a subcell finite volume

- Rewrite DG scheme as a specific finite volume scheme on subcells
- Exhibit the corresponding subcell numerical fluxes: reconstructed flux

Variational formulation

•
$$\int_{\omega_i} \frac{\partial u_h^i}{\partial t} \psi \, \mathrm{d} x = \int_{\omega_i} \mathcal{F}(u_h^i) \frac{\partial \psi}{\partial x} \, \mathrm{d} x - \left[\mathcal{F} \psi \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} = 0, \qquad \forall \psi \in \mathbb{P}^k(\omega_i)$$

- Quadrature rule exact for polynomials up to degree 2k
- $F(u_h^i) \approx F_h^i \in \mathbb{P}^{k+1}(\omega_i)$ (collocated or projection) • $\int_{\omega_i} \frac{\partial u_h^i}{\partial t} \psi \, \mathrm{d}x = -\int_{\omega_i} \frac{\partial F_h^i}{\partial x} \psi \, \mathrm{d}x + \left[(F_h^i - \mathcal{F}) \psi \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}$

Subcells decomposition through k + 2 flux points

Subresolution basis functions

- ω_i is subdivided in k + 1 subcells $S_m^i = [\widetilde{x}_{m-1}, \widetilde{x}_m]$
- Let us introduce the k + 1 basis functions $\{\phi_m\}_m$ such that $\forall \psi \in \mathbb{P}^k(\omega_i)$

$$\int_{\omega_i} \phi_m \psi \, \mathrm{d} x = \int_{\mathcal{S}_m^i} \psi \, \mathrm{d} x, \qquad \forall \, m = 1, \dots, k+1$$

•
$$\sum_{m=1}^{k+1} \phi_m(x) = 1$$

• Let us define
$$\overline{\psi}_m = \frac{1}{|S_m^i|} \int_{S_m^i} \psi \, dx$$
 the subcell mean value

Variational formulation

•
$$\int_{\omega_{i}} \frac{\partial u_{h}^{i}}{\partial t} \phi_{m} dx = -\int_{\omega_{i}} \frac{\partial F_{h}^{i}}{\partial x} \phi_{m} dx + \left[(F_{h}^{i} - \mathcal{F}) \phi_{m} \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}$$

• $|S_{m}^{i}| \frac{\partial \overline{u}_{m}^{i}}{\partial t} = -\int_{S_{m}^{i}} \frac{\partial F_{h}^{i}}{\partial x} dx + \left[(F_{h}^{i} - \mathcal{F}) \phi_{m} \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}$

Subcell finite volume

•
$$\frac{\partial \overline{u}_{m}^{i}}{\partial t} = -\frac{1}{|S_{m}^{i}|} \left(\left[F_{h}^{i} \right]_{\widetilde{x}_{m-1}}^{\widetilde{x}_{m}} - \left[\phi_{m} \left(F_{h}^{i} - \mathcal{F} \right) \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \right)$$

 We introduce the k + 2 function L_m(x), the Lagrangian basis functions associated to the flux points

• Let us define
$$\widehat{F}_h^i = \sum_{m=0}^{k+1} \widehat{F}_m^i L_m(x) \in \mathbb{P}^{k+1}(\omega_i)$$
 such that

$$\widehat{F}_{m}^{i} - \widehat{F}_{m-1}^{i} = \left[F_{h}^{i}\right]_{\widetilde{x}_{m-1}}^{\widetilde{x}_{m}} - \left[\phi_{m}\left(F_{h}^{i} - \mathcal{F}\right)\right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}, \quad \forall m = 1, \dots, k+1$$
$$\widehat{F}_{0}^{i} = \mathcal{F}_{i-\frac{1}{2}} \quad \text{and} \quad \widehat{F}_{k+1}^{i} = \mathcal{F}_{i+\frac{1}{2}}$$

Reconstructed flux

•
$$\widehat{F}_{m}^{i} = F_{h}^{i}(\widetilde{x}_{m}) - C_{i-\frac{1}{2}}^{(m)} \left(F_{h}^{i}(x_{i-\frac{1}{2}}) - \mathcal{F}_{i-\frac{1}{2}}\right) - C_{i+\frac{1}{2}}^{(m)} \left(F_{h}^{i}(x_{i+\frac{1}{2}}) - \mathcal{F}_{i+\frac{1}{2}}\right)$$

• $C_{i-\frac{1}{2}}^{(m)} = \sum_{p=m+1}^{k+1} \phi_{p}(x_{i-\frac{1}{2}})$ and $C_{i+\frac{1}{2}}^{(m)} = \sum_{p=1}^{m} \phi_{p}(x_{i+\frac{1}{2}})$

Correction terms

• Let
$$\boldsymbol{B} \in \mathbb{R}^{k+1}$$
 be defined as $B_j = (-1)^{j+1} \frac{(k+1)(k+j)!}{(j!)^2(k+1-j)!}$
• $\tilde{\xi}_m = \frac{\tilde{x}_m - x_{i-\frac{1}{2}}}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}}, \quad \forall \, m = 0, \dots, k+1$
• $C_{i-\frac{1}{2}}^{(m)} = \begin{pmatrix} 1 - (\tilde{\xi}_m) \\ \vdots \\ 1 - (\tilde{\xi}_m)^{k+1} \end{pmatrix} \cdot \boldsymbol{B} \quad \text{and} \quad C_{i+\frac{1}{2}}^{(m)} = \begin{pmatrix} 1 - (1 - \tilde{\xi}_m) \\ \vdots \\ 1 - (1 - \tilde{\xi}_m)^{k+1} \end{pmatrix} \cdot \boldsymbol{B}$

Subcell finite volume equivalent to DG

•
$$\frac{\partial \,\overline{u}_m^i}{\partial t} = -\frac{1}{|S_m^i|} \Big[\widehat{F}_h^i \Big]_{\widetilde{x}_{m-1}}^{\widetilde{x}_m}, \quad \forall m = 1, \dots, k+1$$

• Other choice on the correction terms lead to different schemes (spectral difference, spectral volume, ...)

Pointwise evolution scheme

•
$$\int_{\omega_{i}} \phi_{m} \left(\frac{\partial u_{h}^{i}}{\partial t} + \frac{\partial \widehat{F}_{h}^{i}}{\partial x} \right) dx = 0, \quad \forall m = 1, \dots, k+1$$

•
$$\int_{\omega_{i}} \psi \left(\frac{\partial u_{h}^{i}}{\partial t} + \frac{\partial \widehat{F}_{h}^{i}}{\partial x} \right) dx = 0, \quad \forall \psi \in \mathbb{P}^{k}(\omega_{i}) \implies \frac{\partial u_{h}^{i}}{\partial t} + \frac{\partial \widehat{F}_{h}^{i}}{\partial x} = O_{\mathbb{P}^{k}}$$

$$\forall m = 1, \dots, k+1, \quad \frac{\partial u_h'(x_m, t)}{\partial t} + \frac{\partial F_h'(x_m, t)}{\partial x} = 0$$

Reconstructed flux

•
$$\widehat{F}_{h}^{i} = F_{h}^{i} + \left(F_{h}^{i}(x_{i-\frac{1}{2}}) - \mathcal{F}_{i-\frac{1}{2}}\right) g_{LB}(x) + \left(F_{h}^{i}(x_{i+\frac{1}{2}}) - \mathcal{F}_{i+\frac{1}{2}}\right) g_{RB}(x)$$

- The *g*_{LB}(*x*) and *g*_{RB}(*x*) are the correction functions taking into account the flux discontinuities
- To recover DG scheme, the correction functions writes

$$g_{LB}(x) = \sum_{m=0}^{k+1} C_{i-\frac{1}{2}}^{(m)} L_m(x)$$
 and $g_{RB}(x) = \sum_{m=0}^{k+1} C_{i+\frac{1}{2}}^{(m)} L_m(x)$

Reconstructed flux

Flux reconstruction / CPR

- In the case of DG scheme, the correction functions $g_{LB}(x)$ and $g_{RB}(x)$ are nothing but the right and left Radau \mathbb{P}^k polynomials
- H. T. HUYNH, A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods. 18th AIAA Computational Fluid Dynamics Conference Miami, 2007.
- Z.J. WANG and H. GAO, A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. JCP, 2009.
 - In the FR/CPR approach, the reconstructed flux is used pointwisely at some solution points to resolve the PDE

Subcell finite volume

- The reconstructed flux is used as a numerical flux for the subcell finite volume scheme
- The correction terms are very simple and explicitly defined
- There is no need to make use of Radau polynomial

Introduction

- 2 DG as a subcell finite volume
- 3 A posteriori subcell limitation
 - 4 Numerical results

RKDG scheme

- SSP Runge-Kutta: convex combinations of first-order forward Euler
- For sake of clarity, we focus on forward Euler time stepping

•
$$u_h^{i,n}(x) = \sum_{m=1}^{k+1} u_m^{i,n} \sigma_m(x)$$

• $\int_{\omega_i} u_h^{i,n+1} \sigma_p \, \mathrm{d}x = \int_{\omega_i} u_h^{i,n} \sigma_p \, \mathrm{d}x + \Delta t \left(\int_{\omega_i} F_h^{i,n} \frac{\partial \sigma_p}{\partial x} \, \mathrm{d}x - \left[\mathcal{F}^n \sigma_p \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \right)$

Projection on subcells of RKDG solution

- A k^{th} degree polynomial is uniquely defined by its k + 1 submean values
- Introducing the matrix Π defined as $\pi_{mp} = \frac{1}{|S_m^i|} \int_{S_m^i} \sigma_p \, \mathrm{d}x$, then

$$\mathbf{\Pi} \begin{pmatrix} u_1^{i,n} \\ \vdots \\ u_{k+1}^{i,n} \end{pmatrix} = \begin{pmatrix} \overline{u}_1^{i,n} \\ \vdots \\ \overline{u}_{k+1}^{i,n} \end{pmatrix}$$

Projection

Figure : Polynomial solution and its associated submean values

Set up

- Compute a candidate solution u_h^{n+1} from u_h^n through unlimited DG
- For each cell, compute the submean values $\{\overline{u}_m^{i,n+1}\}_m$
- We assume that, for each cell, the $\{\overline{u}_m^{i,n}\}_m$ are admissible

Physical admissibility detection (PAD)

- Check if $\overline{u}_m^{i,n+1}$ lies in an convex physical admissible set (maximum principle for SCL, positivity of the pressure and density for Euler, ...)
- Check if there is any NaN values

Numerical admissibility detection (NAD)

• Discrete maximum principle DMP on submean values:

$$\min_{p}(\overline{u}_{p}^{i-1,n},\overline{u}_{p}^{i,n},\overline{u}_{p}^{i+1,n}) \leq \overline{u}_{m}^{i,n+1} \leq \max_{p}(\overline{u}_{p}^{i-1,n},\overline{u}_{p}^{i,n},\overline{u}_{p}^{i+1,n})$$

This criterion needs to be relaxed to preserve smooth extrema

Relaxation of the DMP

•
$$v_L = \overline{\partial_x u_i}^{n+1} - \frac{\Delta x_i}{2} \overline{\partial_{xx} u_i}^{n+1}$$

• $v_{\min \setminus \max} = \min \setminus \max(\overline{\partial_x u_i}^{n+1}, \overline{\partial_x u_{i-1}}^{n+1})$
• If $(v_L > \overline{\partial_x u_i}^{n+1})$ Then $\alpha_L = \min(1, \frac{v_{\max} - \overline{\partial_x u_i}^{n+1}}{v_R - \overline{\partial_x u_i}^{n+1}})$
• If $(v_L < \overline{\partial_x u_i}^{n+1})$ Then $\alpha_L = \min(1, \frac{v_{\min} - \overline{\partial_x u_i}^{n+1}}{v_R - \overline{\partial_x u_i}^{n+1}})$

•
$$v_R = \overline{\partial_x u_i}^{n+1} + \frac{\Delta x_i}{2} \overline{\partial_{xx} u_i}^{n+1}$$

• $v_{\min \setminus \max} = \min \setminus \max(\overline{\partial_x u_i}^{n+1}, \overline{\partial_x u_{i+1}}^{n+1})$
• If $(v_R > \overline{\partial_x u_i}^{n+1})$ Then $\alpha_R = \min(1, \frac{v_{\max} - \overline{\partial_x u_i}^{n+1}}{v_R - \overline{\partial_x u_i}^{n+1}})$
• If $(v_R < \overline{\partial_x u_i}^{n+1})$ Then $\alpha_R = \min(1, \frac{v_{\min} - \overline{\partial_x u_i}^{n+1}}{v_R - \overline{\partial_x u_i}^{n+1}})$

Relaxation of the DMP

• $\alpha = \min(\alpha_L, \alpha_R)$

• If $(\alpha = 1)$ Then DMP is relaxed

Hierarchical limiter

•
$$v_h(x) = \overline{\partial_x u}_i^{n+1} + (x - x_i) \overline{\partial_{xx} u}_i^{n+1}$$

M. YANG and Z.J. WANG, A parameter-free generalized moment limiter for high-order methods on unstructured grids. AAMM., 2009.

D. KUZMIN, A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. of Comp. and Appl. Math., 2010.

Marked subcells

wi

- If a subcell mean value does not respect the PAD and NAD, the corresponding subcell is marked
- For all the marked subcells, as well as their first neighbors, we go back to time *tⁿ* to recompute the submean value

Corrected reconstructed flux

•
$$\widetilde{F}_m^i = \mathcal{F}(\overline{u}_m^{i,n}, \overline{u}_{m+1}^{i,n})$$
 if S_{m-1}^i or S_m^i is marked

th
$$\overline{u}_0^{i,n} = \overline{u}_{k+1}^{i-1,n}$$
 and $\overline{u}_{k+2}^{i,n} = \overline{u}_1^{i+1,n}$

• $\widetilde{F}_m^i = \widehat{F}_m^i$ otherwise

Modified submean values

•
$$\overline{u}_m^{i,n+1} = \overline{u}_m^{i,n} - \frac{\Delta t}{|S_m^i|} (\widetilde{F}_m^i - \widetilde{F}_{m-1}^i)$$

- Check if the modified submean values are now admissible
- By means of Π^{-1} , get the corrected moments $\left(u_1^{i,n+1},\ldots,u_{k+1}^{i,n+1}\right)^{L}$

Limited reconstructed flux

Figure : Correction of the reconstructed flux

François Vilar (IMAG)

Subcell limitation through flux recontruction

Flowchart

- Project $u_h^{i,n+1}$ to get the submean values $\overline{u}_m^{i,n+1}$
- 2 Check $\overline{u}_m^{i,n+1}$ through PAD and NAD
- If $\overline{u}_m^{i,n+1}$ is admissible go further in time, otherwise modify the corresponding reconstructed flux values

$$\widetilde{F}_{m-1}^{i} = \mathcal{F}(\overline{u}_{m-1}^{i,n}, \overline{u}_{m}^{i,n}) \text{ and } \widetilde{F}_{m}^{i} = \mathcal{F}(\overline{u}_{m}^{i,n}, \overline{u}_{m+1}^{i,n})$$

Through the corrected reconstructed flux, recompute the submean values for tagged subcells and their first neighbors

Return to point 2

Conclusion

- The limitation only affects the DG solution at the subcell scale
- The limited scheme is conservative at the subcell level
- In practice, few submean values need to be recomputed

Introduction

- 2 DG as a subcell finite volume
- 3 A posteriori subcell limitation
- 4 Numerical results

Initial solution on $x \in [0, 1]$

- $u_0(x) = \sin(2\pi x)$
- Periodic boundary conditions

Figure : Linear advection with a 9th DG scheme and 5 cells after 1 period

Convergence rates

	L ₁		L ₂	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$
$\frac{1}{20}$	8.07E-11	9.00	8.97E-11	9.00
$\frac{1}{40}$	1.58E-13	9.00	1.75E-13	9.00
$\frac{1}{80}$	3.08E-16	-	3.42E-16	-

Table: Convergence rates for the linear advection case for a 9th order DG scheme

Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period

Numerical results 1D scalar conservation laws

Linear advection of a square signal after 10 periods

François Vilar (IMAG)

Subcell limitation through flux recontruction

Numerical results 1D scalar conservation laws

Linear advection of a square signal after 50 periods

Linear advection of a composite signal after 4 periods

Linear advection of a composite signal after 4 periods

Burgers equation: $u_0(x) = \sin(2\pi x)$

Figure : 9th order limited DG on 10 cells for $t_f = 0.7$

François Vilar (IMAG)

Subcell limitation through flux recontruction

Burgers equation: expansion and shock waves collision

Figure : 9th order limited DG on 15 cells for $t_f = 1.2$

François Vilar (IMAG)

Subcell limitation through flux recontruction

2D grid and subgrid

Figure : 5x5 Cartesian grid and corresponding subgrid for a 6th order DG scheme

Initial solution on $(x, y) \in [0, 1]^2$

- $u_0(x, y) = \sin(2\pi(x+y))$
- Periodic boundary conditions

Convergence rates

	L ₁		L ₂	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$
$\frac{1}{5}$	2.10È-6	6.23	2.86Ē-6	6.24
$\frac{1}{10}$	2.79E-8	6.00	3.77E-8	6.00
$\frac{1}{20}$	3.36E-10	-	5.91E-10	-

Table: Convergence rates for the linear advection case for a 6th order DG scheme

Image: Image:

Rotation of a composite signal after 1 period

Image: Image:

Rotation of a composite signal after 1 period

Rotation of a composite signal after 1 period: x = 0.25

Figure : 6th order limited DG on a 15x15 Cartesian mesh

François Vilar (IMAG)

Subcell limitation through flux recontruction

May 24th, 2018 42/56

Burgers equation with $u_0(x, y) = \sin(2\pi (x + y))$

Burgers equation with $u_0(x, y) = \sin(2\pi (x + y))$

(m) Solution map

(n) Detected subcells

Figure : 6th order limited DG on a 10x10 Cartesian mesh until t = 0.5

Burgers equation with $u_0(x, y) = \sin(2\pi (x + y))$ at t = 0.5

Figure : 6th order limited DG density profile on a 10x10 Cartesian mesh

Burgers equation with composite signal

< D > < B > < B >

Initial solution on $x \in [0, 1]$ for $\overline{\gamma = 3}$

- $\rho_0(x) = 1 + 0.999999 \sin(\pi x), \quad u_0(x) = 0, \quad p_0(x) = (\rho_0(x))^{\gamma}$
- Periodic boundary conditions

Figure : Smooth flow problem with 5th DG scheme and 10 cells at t = 0.1

Convergence rates

	<i>L</i> ₁		L ₂	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$
$\frac{1}{20}$	1.48E-5	4.35	2.02E-5	4.18
$\frac{1}{40}$	9.09E-7	4.88	1.38E-6	4.87
$\frac{1}{80}$	3.09E-8	4.95	4.73E-8	4.86
$\frac{1}{160}$	1.00E-9	-	1.63E-9	-

Table: Convergence rates on the pressure for the Euler equation for a 5th order DG

Sod shock tube problem

Hell shock tube problem

Double rarefaction problem

Leblanc shock tube problem

Numerical results

1D Euler system

Shock acoustic-wave interaction problem

Shock acoustic-wave interaction problem

Numerical results 1D Euler system

Shock acoustic-wave interaction problem

Shock acoustic-wave interaction problem

