Consistent Interpolation of the Equation of State in Hydrodynamic Simulations

Michal Zeman, Pavel Váchal Czech Technical University in Prague, Czech Republic Faculty of Nuclear Sciences and Physical Engineering

Milan Holec

Université de Bordeaux - CNRS - CEA Centre d'Etudes Lasers Intenses et Applications (CELIA)

This research was partly supported by the Czech Science Foundation project 18-20962S, Czech Ministry of Education project RVO 68407700 and Czech Technical University project SGS16/247/OHK4/3T/14.

The Objective

Develop a tool for practical evaluation of the Equation of State (EoS) in hydrodynamic simulations based on consistent higher order interpolation of the Helmholtz free energy

Outline of This Presentation

- The Helmholtz free energy (HFE)
- Thermodynamic consistency and other physical requirements on HFE
- Thermodynamic interpolation of HFE vs. Direct interpolation of pressure and internal energy
- The HerEOS tool: Initialization, algorithm, properties
- Numerical results, real applications
- Practical issues with EoS libraries

The Euler Equations of Lagrangian Hydrodynamics

$$\begin{split} \frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} &= -\rho\,\nabla\cdot\vec{\boldsymbol{v}},\\ \rho\,\frac{\mathrm{d}\,\vec{\boldsymbol{v}}}{\mathrm{d}\,t} &= -\nabla\left(p_e + p_i\right) + \nabla\cdot\mu\sigma,\\ \rho\,\frac{\mathrm{d}\,\varepsilon_e}{\mathrm{d}\,t} &= -p_e\nabla\cdot\vec{\boldsymbol{v}} - \nabla\cdot\vec{\boldsymbol{q}}_H - \nabla\cdot\vec{\boldsymbol{q}}_S,\\ \rho\,\frac{\mathrm{d}\,\varepsilon_i}{\mathrm{d}\,t} &= (\mu\sigma - p_i\mathbf{I}):\nabla\vec{\boldsymbol{v}}, \end{split}$$

• The viscous extension: parabolic terms represented by viscosity μ_1 , symmetrized velocity gradient $\sigma = \frac{1}{2} (\nabla \vec{v} + \vec{v} \nabla)$, and electron heat flux \vec{q}_H given by the heat conduction

$$\rho c_{Ve} \frac{\mathrm{d} T_e}{\mathrm{d} t} = -\nabla \cdot \vec{q}_H, \qquad \qquad \vec{q}_H = -\kappa_e \nabla T_e.$$

- The term $-\nabla \cdot \vec{q}_S$ provides a general source of energy, e.g., laser energy deposition.
- The Equation of State provides the physical properties of plasma, i.e., the closure

 $p_e(T_e, \rho), \quad p_i(T_i, \rho), \quad \varepsilon_e(T_e, \rho), \quad \varepsilon_i(T_i, \rho), \quad \mu(T_e, T_i, \rho), \quad c_{Ve}(T_e, \rho), \quad \kappa_e(T_e, \rho).$

Consistent Interpolation of the Equation of State in Hydro Simulations M. Zeman, M. Holec and P. Váchal / Póvoa de Varzim, May 25, 2018

The Equation of State

• The Equation of State provides the physical properties of plasma, i.e., the closure

 $\begin{array}{ll} p_e(T_e,\rho), & \varepsilon_e(T_e,\rho), \\ p_i(T_i,\rho), & \varepsilon_i(T_i,\rho), \end{array} & \mu(T_e,T_i,\rho)), & c_{Ve}(T_e,\rho), & \kappa_e(T_e,\rho) \end{array}$

- Primary variables of hydrodynamic equations is the set $(\rho, \vec{v}, \varepsilon_e, \varepsilon_i)$ \Rightarrow the inverse evaluations $T_e(\rho, \varepsilon_e)$, $T_i(\rho, \varepsilon_i)$ must also be provided.
- All the thermodynamic quantities can be written as a function of free energy, that is,

 $\begin{array}{ll} p_e(f_e(T_e,\rho)), & \varepsilon_e(f_e(T_e,\rho)), \\ p_i(f_i(T_i,\rho)), & \varepsilon_i(f_i(T_i,\rho)), \end{array} & \mu(f_e(T_e,\rho), f_i(T_i,\rho)), \quad c_{Ve}(f_e(T_e,\rho)), \end{array}$

which makes them inherently dependent \Rightarrow resulting action of EoS is TD consistent.

- We require correct relations to hold between the state variables and their derivatives.
- All variables considered here in their specific form (= per mass) as functions of T and ρ .

The Helmholtz Free Energy (HFE): $f(T, \rho)$

A fundamental thermodynamic quantity, used to express the basic TD quantities in hydro:

- specific entropy $s(T, \rho) = -\left(\frac{\partial f}{\partial T}\right)_{\rho}$,
- specific internal energy $\varepsilon(T, \rho) = f + T s = f T \left(\frac{\partial f}{\partial T}\right)_{\rho}$
- pressure $p(T, \rho) = \rho^2 \left(\frac{\partial f}{\partial \rho}\right)_T$.

Useful derived quantities include

- specific isochoric heat capacity $c_V(T,\rho) = \left(\frac{\partial \varepsilon}{\partial T}\right)_{\rho} = T\left(\frac{\partial s}{\partial T}\right)_{\rho} = -T\frac{\partial^2 f}{\partial T^2}$
- and the adiabatic speed of sound

$$c_{s}(T,\rho) = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{s}} = \sqrt{\frac{c_{p}}{c_{V}} \left(\frac{\partial p}{\partial \rho}\right)_{T}} = \sqrt{\frac{c_{p}}{c_{V}} \frac{\partial}{\partial \rho} \left(\rho^{2} \frac{\partial f}{\partial \rho}\right)}$$
$$= \sqrt{2\rho \left(\frac{\partial f}{\partial \rho}\right)_{T} + \rho^{2} \left(\frac{\partial^{2} f}{\partial \rho^{2}}\right)_{T} - \rho^{2} \left(\frac{\partial^{2} f}{\partial T^{2}}\right)_{\rho}^{-1} \left(\frac{\partial^{2} f}{\partial T \partial \rho}\right)^{2}}.$$

Consistent Interpolation of the Equation of State in Hydro Simulations M. Zeman, M. Holec and P. Váchal / Póvoa de Varzim, May 25, 2018

The Helmholtz Free Energy - "Potentiality" of Quantities

• The TD quantities originally arise from the HFE differential

$$df = -s dT + \frac{p}{\rho^2} d\rho$$
 (1st law of TD)

• The Helmholtz free energy is a potential, which essentially means that

$$\frac{\partial^2 f}{\partial T \partial \rho} = \frac{\partial^2 f}{\partial \rho \partial T}, \quad \text{or, equivalently,} \quad \frac{\partial p}{\partial T} = -\rho^2 \frac{\partial s}{\partial \rho},$$

resp. for pressure and internal energy

$$p - T\frac{\partial p}{\partial T} = \rho^2 \frac{\partial \varepsilon}{\partial \rho}.$$

- NOTE: This also ensures that ε is a potential.
- Preserving this property of TD potentials in numerical calculations is important
- In practice: Failure to obey all the strict relations \rightarrow inconsistencies in hydro simulation
 - ◊ physically incorrect results
 - (e.g.: Non-potential $\varepsilon \to \text{work}$ done on the system w/o changing $\varepsilon \to \text{violation}$ of TD laws)
 - ◊ numerical difficulties
- We seek to preserve important properties by using a sufficiently high order of interpolation

Example: The EoS for Monoatomic Ideal Gas

► pressure
$$p(T, \rho) = \frac{N k_B T}{V(\rho)} = \frac{N k_B T}{\frac{M}{\rho}} = \frac{N k_B T \rho}{N m_a} = \frac{k_B}{m_a} T \rho$$
,

• specific entropy
$$s(T, \rho) = \frac{S}{M} = \frac{k_B}{m_a} \left(\ln \left[\frac{m_a k_B T}{\rho} \left(\frac{2\pi m_a k_B T}{h^2} \right)^{\frac{3}{2}} \right] + \frac{5}{2} \right),$$

► specific internal energy $\varepsilon(T, \rho) = \frac{U}{M} = \frac{\frac{3}{2}N k_B T}{N m_a} = \frac{3}{2} \frac{k_B}{m_a} T$,

► specific isochoric heat capacity
$$c_V(T, \rho) = \frac{3}{2} \frac{k_B}{m_a}$$

- adiabatic speed of sound $c_s(T,\rho) = \sqrt{\frac{5}{3}\frac{p}{\rho}} = \sqrt{\frac{5}{3}\frac{k_B T}{m_a}}.$
- All these expressions can be obtained from the specific HFE of monoatomic ideal gas

$$f(T,\rho) = -\frac{k_B T}{m_a} \left(\ln \left[\frac{m_a}{\rho} \left(\frac{2\pi m_a k_B T}{h^2} \right)^{\frac{3}{2}} \right] + 1 \right)$$

• One can easily verify further crucial TD relations, e.g., that HFE the proof that is a potential:

$$\frac{\partial^2 f}{\partial T \,\partial \rho} = \frac{\partial^2 f}{\partial \rho \,\partial T}, \qquad \text{resp.} \qquad p - T \frac{\partial p}{\partial T} = \rho^2 \frac{\partial \varepsilon}{\partial \rho}.$$

General Physical Requirements on EoS

- Requirements (obvious or resulting from the TD relations):
 - \diamond Non-negative fluid pressure and heat capacities: $p \ge 0, \ c_V \ge 0, \ c_p \ge 0$
 - \diamond Real (non-complex) and non-negative speed of sound: $c_s \in \mathbb{R}^+$
 - ♦ **Non-negative entropy:** $s \ge 0$ (to minimize HFE of the system for maximum entropy)
 - ♦ Internal energy equals to HFE at zero temperature: $\varepsilon(0, \rho) = f(0, \rho)$.
- Translating this to Helmholtz free energy *f*:
 - ♦ f is monotonically increasing in density to provide non-negative pressure, $p \ge 0$,
 - ♦ f is monotonically decreasing in temperature, thus providing non-negative entropy, $s \ge 0$,
 - ♦ *f* is concave in temperature, $\frac{\partial^2 f}{\partial T^2} \le 0$, which ensures that
 - * heat capacity is non-negative: $c_V = \frac{\partial \varepsilon}{\partial T} \ge 0$,
 - * entropy is monotonically increasing in temperature: $\frac{\partial s}{\partial T} \ge 0$
 - ♦ f satisfies $\frac{\partial}{\partial \rho} \left(\rho^2 \frac{\partial f}{\partial \rho} \right) \ge 0$, that is, pressure is monot. increasing in density, $\frac{\partial p}{\partial \rho} \ge 0$, in order to provide a positive speed of sound: $c_s \in \mathbb{R}^+$

Implementation of EoS - Usual Approach

- EoS given by discrete values of TD vars ($f, p, \varepsilon, ...$) on a rectangular grid in the T- ρ space
- We want to get the values in a general point (T, ρ) .
- First choice, most common approach: bilinear direct interpolation:
 - \diamond Reconstruct each TD variable by linear (dim. split) / bilinear interp. on each bin (*T*- ρ cell)
 - \diamond Direct \equiv interpolation directly applied to discrete data of one given quantity, e.g. p.
 - \oplus Simple, numerically robust
 - \ominus Discontinuous derivatives on bin boundaries \Rightarrow numer. issues, phys. inconsistencies
 - \diamond **TD quantities particularly difficult** (phase transitions, steep gradients \Rightarrow oscillations.)
 - [Kerley et al., 1977]: nice review motivated by the work with SESAME EoS, some improvement thanks to interpolation by rational functions
 - ◊ TD consistency and physical requirements still largely ignored, for example:
 - * c_V can be calculated in various ways, equivalent theoretically but not numerically (depending on interp. methods for ε , s, f, on differentiation technique, ...)
 - * Direct interp. of the discrete values for p and ε does not ensure the existence of HFE satisfying their TD definitions at the same time.
- From this viewpoint it seems reasonable to apply the thermodynamic interpolation
 - \equiv Interpolate only one state variable, e.g. HFE, and derive the others in a consistent way.

Consistent & Efficient Interpolation of a General EoS

• Consistent evaluation of a general EoS based on the Hermite *thermodynamic interpolation* using discrete values of

$$f, \quad p, \quad \varepsilon, \quad \frac{\partial p}{\partial \rho}, \quad \frac{\partial \varepsilon}{\partial T}, \quad \frac{\partial p}{\partial T}, \quad \frac{\partial \varepsilon}{\partial \rho}$$

and possibly also higher derivatives, depending on the order of interpolation constructed.

- Two basic situations: inline EoS and tabulated EoS.
 - ♦ Tabulated EoS (given as discrete data):
 - * The *TD interpolation* approach provides some additional physical properties, which are usually omitted in hydrodynamic simulations with the bilinear *direct interpolation*.
 - * TASK: evaluate the EoS while enforcing physical sanity and the physical consistency inter-relations.
 - ◊ Inline EoS library (based on analytical formulas):
 - * Interpolation serves mainly to accelerate the evaluation (assuming consistent quant.)
 - * However, many of the dependencies ensuring EoS consistency are ignored in existing inline EoS implementations.
 - * TASK: substantially accelerate the evaluation of EoS while preserving the same accuracy as with inline calculations, and moreover satisfy all the above physical and thermodynamic constraints.

Hermite Interpolation

- Our method is based on the idea from [Swesty & Timmes, 1996, 2000]: Reconstruct one basic state variable (in our case HFE) by local Hermite-type interpolation of sufficient order.
- Hermite interpolation: approximate a general function F by polynomial such, that its values and derivatives up to a certain order at given points agree to those of F.
 - Our use: Reconstruct the HFE on a bin (2D quad in *T*-ρ space) solely from values and derivatives of HFE at its four corners. (Hence "local Hermite-type interpolation")
 - ♦ That is, reconstruct $f(T, \rho)$ from known values and derivatives at discrete points (T, ρ)
- To get these discrete input data:
 - ♦ HFE directly from the provided EoS library (inline or discrete)
 - ► either from HFE by finite differencing
 - Derivatives \blacktriangleright or from p, ε, \dots provided by EoS library + corresp. TD relations

The latter sounds best, but many consistency issues!

• Order of interpolation:

 \diamond

- ♦ **TD consistency requirements** \Rightarrow **at least bicubic interpolation** This also provides numerically useful properties (continuous derivatives p and ε).
- ◊ [Swesty & Timmes, 1996, 2000] suggest biquintic (for further physical and numer. properties)
- \ominus The higher order of interpolation, the more sensitive to the consistency of input data.
- \Rightarrow With some EoS libraries, one has to
 - * use lower order and/or direct interpolation (= give up some TD consistency),
 - * or try to automatically detect and correct inconsistencies by pre-processing EoS data

HerEOS - Part I: Initialization

- E Creation of interpolation tables (from which the actual interpolation will be constructed): $f, f_T, f_{\rho}, f_{TT}, f_{\rho\rho}, f_{T\rho}, \dots$ at given T- ρ grid nodes.
- ► Case 1: Discrete EoS data
 - Simply reuse this grid and load available variables
 (Typically, the grid is logically rectangular with irregular spacing)
 - ◊ In most cases, the values of HFE are given.
 - ♦ Its derivatives either from the other provided variables (using TD relations) or by FD
 - ◊ For higher order interpolations, combine both approches
 - ♦ At this point, obvious nonphys. values and inconsistencies can be captured and fixed.
- ► Case 2: A set of inline functions
 - ♦ Construct the T- ρ grid as needed (range, spacing, distribution). (Typically a rectangular grid with linear or logarithmic spacing.)
 - ♦ On it we generate the values of HFE and its derivatives up to the order needed.
 - ◊ Derivatives again from derived variables or by finite differencing.
 - ◊ Combining these two approaches, we can discover further inconsistencies.
- Done just once as preprocessing step for given EoS and expected T- ρ range.
 - $\diamond~$ Can be stored for reuse with future simulations $\Rightarrow~$ next time, Part I is skipped.
 - ⇒ even if costly (eval. of inline f., sanity checks, consistency repair), not a significant burden.
 - \Rightarrow even fine *T*- ρ grids can be used (EoS eval = search of bin + simple interp. formula)

HerEOS - Part II: Calculation of Quantities by Interpolation

- \equiv Evaluation of EoS in the actual simulation
- To get HFE at given (T, ρ) :
 - ▶ find the appropriate bin of the T- ρ grid

(faster if grid rectangular)

- ► compute the interpolation function from the pre-calculated table.
- Values of the derived quantities:
 - ◊ easily obtained by using corresponding derivatives of the interpolating formula.
 - \diamond advantageous to calculate all desired quantities for given (T, ρ) at once.

Example: Bicubic interpolation on the bin $[T_{i-1}, T_i] \times [\rho_{j-1}, \rho_j]$

• 16 values needed on input (4 per corner of the bin):

Consistent Interpolation of the Equation of State in Hydro Simulations M. Zeman, M. Holec and P. Váchal / Póvoa de Varzim, May 25, 2018

• On this interval, scale T and ρ to unit square

 $t_i(T) = (T - T_{i-1})/\Delta_i^T, \quad \Delta_i^T = T_i - T_{i-1}, \qquad r_j(\rho) = (\rho - \rho_{j-1})/\Delta_j^\rho, \quad \Delta_j^\rho = \rho_j - \rho_{j-1}$ and introduce local auxiliary functions (cubic Hermite base polynomials)

$$\begin{split} G_0(t_i(T)) &= t_i - 3\,t_i^2 + 2\,t_i^3, & H_0(r_j(\rho)) = 1 - 3\,r_j^2 + 2\,r_j^3, \\ G_1(t_i(T)) &= t_i - 2\,t_i^2 + t_i^3, & H_1(r_j(\rho)) = r_j - 2\,r_j^2 + r_j^3, \\ G_2(t_i(T)) &= -t_i^2 + t_i^3, & H_2(r_j(\rho)) = -r_j^2 + r_j^3, \\ G_3(t_i(T)) &= 3\,t_i^2 - 2\,t_i^3, & H_3(r_j(\rho)) = 3\,r_j^2 - 2\,r_j^3. \end{split}$$

• The value of $f(T, \rho)$ will now be approximated by $\tilde{f}_{i,j}(T, \rho)$ as

$$\begin{split} \tilde{f}_{i,j}(T,\rho) &= \int_{T}^{[00]} G_0(T) H_0(\rho) + f^{[10]} G_3(T) H_0(\rho) + f^{[01]} G_0(T) H_3(\rho) + f^{[11]} G_3(T) H_3(\rho) \\ &+ f_T^{[00]} G_1(T) H_0(\rho) \Delta_i^T + f_T^{[10]} G_2(T) H_0(\rho) \Delta_i^T \\ &+ f_T^{[01]} G_1(T) H_3(\rho) \Delta_i^T + f_T^{[11]} G_2(T) H_3(\rho) \Delta_i^T \\ &+ f_{\rho}^{[00]} G_0(T) H_1(\rho) \Delta_j^{\rho} + f_{\rho}^{[10]} G_3(T) H_1(\rho) \Delta_j^{\rho} \\ &+ f_{\rho}^{[01]} G_0(T) H_2(\rho) \Delta_j^{\rho} + f_{\rho}^{[11]} G_3(T) H_2(\rho) \Delta_j^{\rho} \\ &+ f_{T\rho}^{[00]} G_1(T) H_1(\rho) \Delta_i^T \Delta_j^{\rho} + f_{T\rho}^{[10]} G_2(T) H_1(\rho) \Delta_i^T \Delta_j^{\rho} \\ &+ f_{T\rho}^{[01]} G_1(T) H_2(\rho) \Delta_i^T \Delta_j^{\rho} + f_{T\rho}^{[11]} G_2(T) H_2(\rho) \Delta_i^T \Delta_j^{\rho}. \end{split}$$

HerEOS Code - Selected Properties

- For now works with (includes or uses) several EoS, namely
 - ◊ ideal polytropic gas,
 - ♦ QEOS [More et al., 1988],

- ♦ FEOS [Faik, 2012, 2018],
- ♦ BADGER [Heltemes & Moses, 2012],

◇ MPQeos [Kemp & Meyer-ter-Vehn, 1998],
 ◇ SESAME [Lyon, Johnson et al., 1992].
 Incorporation of further EoS is straightforward.

- Particular regime (interp. order, ways to calculate derivatives) can be combined for each EoS
- General interfaces for C/C++ and Fortran \Rightarrow easy linking to various codes, e.g.
 - ◇ PALE [Liska et al., 2008, 2011] 2D ALE hydro + plasma code
 - ◇ PETE [Holec, 2016] Lagrangian code, nonlocal transport, high-order curvilinear MFEM
- Currently used for comparing various EoS within the same code (seldom done before)
- Sanity checks: fast convergence of interp. results to inline values, TD bicubic & biquintic
- Speed-up:
 - ♦ General inline EoS libraries: with TD interp. much faster than with direct inline calc.
 - ♦ Evaluation of "realistic" EoS usually among the most expensive parts.
 - ♦ Using denser EoS data interpolation tables (higher T- ρ resol.) does not cost much more.
 - ♦ Higher order *TD interp.* only slightly more expensive than bilin. *direct interp.* & provides more state variables \Rightarrow more complex models w/o additional (incompatible) methods.

- Laser-target interaction simulated by code PALE in r-z regime
- $40 \,\mu\text{m}$ thick Al foil irradiated by a normally incident $100 \,\text{J}$ Nd laser pulse ($\lambda = 1053 \,\text{nm}$) Gaussian in time and space ($t_{\text{FWHM}} = 300 \,\text{ps}$, focal spot radius $r_f = 100 \,\mu\text{m}$).
- To start with: very sparse computational mesh (130×140 cells)
- Situation at $100 \ ps$ after maximum intensity of the laser

Numerical Results I - Convergence of HerEOS to Inline EoS

- To check convergence of *thermodynamic interpolation* to the solution with inline EoS. (Convergence w.r.t. size of the interp. tables / resolution of T- ρ grid)
- Ideal gas EoS, $\gamma = 5/3$. (Too simple, but we need consistent data and enough derivatives)
- Relative discrepancies at the location of maximum density:

Number of	Bicubic				Biquintic			
T- $ ho$ bins	ρ	p	T	u_z	ρ	p		$u_{\mathcal{Z}}$
20×20	1.10e-2	7.71e-2	8.90e-2	3.59e-2	9.87e-3	1.71e-2	7.34e-3	4.41e-3
80×80	1.92e-3	3.44e-2	3.24e-2	2.36e-2	1.01e-5	2.23e-5	1.21e-5	6.83e-6
320×320	8.50e-6	2.02e-5	1.18e-5	4.13e-6	1.29e-6	2.49e-6	1.12e-6	7.11e-7

- Interpolation-based solution is close to the inline-based solution already with very sparse T- ρ grids (low resolution of interp. tables) and quickly converges
- This is the case for biquintic as well as bicubic *thermodynamic interpolation*.

Numerical Results II - LULI Prepulse

- To demonstrate the effect of various EoS and assess the efficiency of HerEOS
- Like [Fajardo et al., 2001], simulated an experiment for the pre-pulse of $100 \, \mathrm{TW}$ LULI laser.
- Al target irradiated by a normally incident 600 ps long (FWHM) laser pulse Gaussian in time as well as space, with peak intensity $I_{\text{max}} = 5 \times 10^{13} \text{ W} \cdot \text{cm}^{-2}$.
- Code PETE run in 1D with I_{max} (that is, with intensity as on the laser beam axis in the 2D case) up to final time 1400 ps after the laser intensity maximum.
- Postprocessed data compared to measured values of partial ionization [Fajardo et al., 2001].

Numerical Results II - LULI Prepulse

(1) Comparison of EoS: ho (left) and T (right), $500 \, \mathrm{ps}$ after the laser intensity maximum

- All tested EoS behave similarly, except for BADGER (wave splits into two: irrelevant)
- Very good correspondence between QEOS and SESAME results.

 \hat{A}

Numerical Results II - LULI Prepulse

2 Assessment of the efficiency of HerEOS

• Focus only on the part performing the actual evaluation of EoS:

"Net time": each bin (rectangular cell) of the region of T- ρ space visited throughout the simulation times the number of visits (color map)

- Inline FEOS calls replaced by bicubic *TD interpolation* of HFE \rightarrow net time reduced by 23%
- Inline FEOS calls replaced by bilinear *direct interp.* of p and $\varepsilon \rightarrow$ net time reduced by 60%
- As expected, an even better improvement can be obtained for more complicated EoS and for simulations using more derived variables. (FEOS is still cheap compared to other EoS.)
 In our case: replacing inline BADGER by interpolation of BADGER-generated discrete data
 - \rightarrow cost reduced by 97% (bicubic *thermodynamic interpolation*), resp.
 - \rightarrow cost reduced by 99% (bilinear *direct interpolation*)!

Numerical Results III - Shock Velocity in Foam at OMEGA

- Experiment OMEGA, University of Rochester [Falk, Holec et al., 2017, 2018, ...]
- Hydro shock in a polystyrene foam \rightarrow warm dense matter conditions \rightarrow analysis of EoS.

- The laser-driven shock gradually propagates through target layers into the foam, where the actual shock velocity is measured experimentally.
- TD conditions in the shock wave traveling through the C₈H₈ foam studied with a number of diagnostics developed for the platform including VISAR, SOP and XRTS
- Shock velocity measured by an interferometer VISAR system by detecting shock break-out times across four $40 \,\mu m$ steps manufactured on the back side of the target.
- Shock break-out times also measured independently by the SOP system

Numerical Results III - Shock Velocity in Foam at OMEGA

- Measured shock velocities at break-out: 57.8 ± 3.8 , 64.0 ± 4.9 , resp. 67.5 ± 5.0 km \cdot s⁻¹
- Density colormap from the simulation:
 - Arrows in the foam layer: positions of steps on the back of target
 - Simulated shock velocities in very good agreement with exper. measurements.
 - Hugoniot jump condition analysis: simulated shock velocity in excellent agreement with SESAME TD jump conditions at every moment of propagation

- Sign of a finite preheat due to nonlocal electron transport seen in simulation and experiment
- Values of T and ρ extremely sensitive to the EoS model
 - \Rightarrow proper EoS (here SESAME) is absolutely essential for the hydrodynamic simulation
- SESAME tables suffer from serious inconsistency in provided TD quantities (esp. HFE),
 - \Rightarrow consistent *TD interpolation* of HFE replaced by bilinear *direct interpolation* of p and ε

Issues with EoS Libraries - Monotonicity, Convexity

- Practical issues arising with popular EoS libraries (inline as well as discrete)
- Even simple tests reveal violations of TD consistency and physical relevance requirements

- ♦ Situation gets more complicated
 - * with higher-order thermodynamic interpolations
 - * when ρ and p are also taken into account
- Same techniques detect places in discrete EoS where values of derived variables ($p, \varepsilon, ...$) are inconsistent with discrete values of actual HFE and consequently its derivatives
- Such inconsistencies thus generate spurious oscillations of the interpolating function

Issues with EoS Libraries - Inconsistent Variables

- physically relevant results EoS library must obey TD and physical requirements for • stability of the simulation.
- HFE usually not explicitly used by codes, but holds the key to consistent EoS calculations •
- Idea: check the consistency of the HFE values by integrating over its differential as

$$f(\rho_1, T_1) - f(\rho_0, T_0) = \int_{\rho_0}^{\rho_1} \frac{\partial f}{\partial \rho} \,\mathrm{d}\rho + \int_{T_0}^{T_1} \frac{\partial f}{\partial T} \,\mathrm{d}T = \int_{\rho_0}^{\rho_1} \frac{p}{\rho^2} \,\mathrm{d}\rho - \int_{T_0}^{T_1} s \,\mathrm{d}T,$$

with the value of HFE provided by the EoS. (where p and s are provided by the EoS)

- \blacktriangleright calculated from p and ε provided by the EoS Or: Compare derivatives of HFE • obtained by applying finite diff. on HFE provided by EoS
- Inconsistency found in many EoS libraries, both inline and discrete! •
- **Inline EoS library FEOS** •

◊ No interp. so far, just inline EoS and FD! Discrep. due to separate postprocess of p and ε ? \diamond

Consistent Interpolation of the Equation of State in Hydro Simulations M. Zeman, M. Holec and P. Váchal / Póvoa de Varzim, May 25, 2018

Issues with EoS Libraries - Inconsistent Variables

• Employing bicubic *TD interpolation* on such inconsistent data produces oscillations:

- ♦ Blue dashed: Inline values of f constant, but inline values of $p \sim \frac{\partial f}{\partial \rho}$ negative ⇒ oscillations
- \diamond Depending on the density of (T, ρ) grid (spacing of EoS data)! see right Fig.
- ◇ Blue solid: Using FD helps a bit, but we lose information (not use EoS pressure).
- Detail of the interpolation of HFE and consequently on corresponding p

Consistent Interpolation of the Equation of State in Hydro Simulations M. Zeman, M. Holec and P. Váchal / Póvoa de Varzim, May 25, 2018

Issues with EoS Libraries - Inconsistent Variables

FEOS for electrons, AI, bicubic *TD interpolation* of f from inline EoS vals of f, p, ε

- \diamond Spurious oscillations appear on a wide region of (T, ρ) space, inherent to both p and ε .
- ♦ Regions with $\frac{\partial p}{\partial \rho} < 0 \Rightarrow$ complex speed of sound → fails if not treated
- Unfortunately, using FD to get p and ε does not prevent all the oscillations!

Issues with EoS Libraries - Inconsistent Variables $20 \stackrel{\times}{-} 10^{11}$

Discrete EoS:

Consistent Interpolation of the Equation of State in Hydro Simulations M. Zeman, M. Holec and P. Váchal / Póvoa de Varzim, May 25, 2018

Issues with EoS Libraries - HFE Not Being a Potential

- Requirement $\frac{\partial^2 f}{\partial T \partial \rho} = \frac{\partial^2 f}{\partial \rho \partial T}$ can be written as $p T \frac{\partial p}{\partial T} = \rho^2 \frac{\partial \varepsilon}{\partial \rho}$
- Must hold for any EoS (inline or discrete) at any (T, ρ) and can be checked explicitly by FD
- > Bicubic TD interp. on consistent data satisfies by definition, direct interp. of p and ε do not
- **FEOS:** Discrepancy $\operatorname{Err}^{\operatorname{pot}} = p T \frac{\partial p}{\partial T} \rho^2 \frac{\partial \varepsilon}{\partial \rho}$. •

NOTE: Typical pressure in the region $\approx 10^{12}\,{\rm g/cm/s^2}$

- Similar (but less serious) violation of "potentiality" is observed in the discrete SESAME EoS •
- Suggests to use higher order TD interpolation + recover consistency in inconsistent data •

Issues with EoS Libraries - Physical Irrelevance

- Multiple models combined on the T- ρ domain \Rightarrow
- Negative electron pressure given by inline FEOS:

• SESAME, ion pressure for Aluminum (negative values of pressure)

- numerical artifacts on transitions
- ► misuse of model outside validity range

• FEOS, ion internal energy for CH (non-monot. ε at phase transition $\Rightarrow c_V < 0$)

Consistent Interpolation of the Equation of State in Hydro Simulations M. Zeman, M. Holec and P. Váchal / Póvoa de Varzim, May 25, 2018

Lesson Learned

- Sometimes data provided by library (inline FEOS, discrete SESAME) are too inconsistent
 - \Rightarrow constructed *TD interpolation* of HFE too oscillatory
 - \Rightarrow give up some consistency and use classical bilinear *direct interpolation* of p and ε .

Summary

- HerEOS: a library for the evaluation of general EoS by Hermite-type interpolation
- Provides some very desirable TD properties
- Tested with various inline (analytical) and tabulated EoS
- Applied in two-temperature hydrodynamic simulations of laser heated plasma
- Tested and used in several multi-D hydro codes in Fortran and C++, Python planned
- Significant reduction of computational cost achieved and further reduction expected
- For EoS libraries providing inconsistent data, fallback to classical bilin. *direct interpolation*

Future Work

- Alternative approximation techniques such as surface fitting (suggested by J. Grove)
- Detection and automatic correction of obvious flaws in source EoS data (machine learning)
- HFE often inconsistent with p and $\varepsilon \Rightarrow$ Automatic construction of HFE / its values from p, ε

Acknowledgments

- Pierre-Henri Maire
- fruitful discussions and very helpful comments
- Jiří Limpouch
- John Grove
- sharing his expertise on EoS, especially SESAME

- Jan Nikl
- collaboration on the PETE code

This research was partly supported by the Czech Science Foundation project 18-20962S, Czech Ministry of Education project RVO 68407700 and Czech Technical University project SGS16/247/OHK4/3T/14.

