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The Objective

Develop a tool for practical evaluation of the Equation of State (EoS)
in hydrodynamic simulations based on consistent higher order
interpolation of the Helmholtz free energy

Outline of This Presentation

The Helmholiz free energy (HFE)
Thermodynamic consistency and other physical requirements on HFE

Thermodynamic interpolation of HFE
vs. Direct interpolation of pressure and internal energy

The HerEOS tool: Initialization, algorithm, properties
Numerical results, real applications
Practical issues with EoS libraries

CELIA /@J%‘ 5@\



The Euler Equations of Lagrangian Hydrodynamics

dp

—~ = _—pV -7,

dt py v

dv
Pd—:_v(pe‘Fpi)‘l‘v',Uﬂa

/

dge - — —
P = —peV-v—V -qg —V -qg,
dt

de; -
Py = (no —pil) : V3,

e The viscous extension: parabolic terms represented by viscosity .., symmetrized velocity
gradient 0 = % (V© + ¥V), and electron heat flux g given by the heat conduction

dTe — —
P CVe 17 = -V -qg, gy = —KeVTe.

e The term —V . g5 provides a general source of energy, e.g., laser energy deposition.

e The Equation of State provides the physical properties of plasma, i.e., the closure

pe(Teap)a pz(Tzap)7 Ee(TeaP)a 81:(Ti7p)a M(TeaTi7p)7 C%(Teap)a K'G(Teap)'
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The Equation of State

The Equation of State provides the physical properties of plasma, i.e., the closure

pe(Te,p), 86(T€7p)a

pu(Te, T;, p)), cve(Te, p), ke(Te, p)
pi(T5, p), ei(T3, p),

Primary variables of hydrodynamic equations is the set (p, U, ¢, ¢;)
= the inverse evaluations 7.(p,c¢), T;(p,c;) must also be provided.

All the thermodynamic quantities can be written as a function of free energy, that is,

pe(fe(T€7p))7 €€(f€<T€)p))7
pi(fi(T3, p)), ei(fi(Ti, p)),

which makes them inherently dependent =- resulting action of EoS is TD consistent.

p(fe(Te, p), fi(Ti, p)),  cve(fe(Te, p)),

We require correct relations to hold between the state variables and their derivatives.
All variables considered here in their specific form (= per mass) as functions of 7" and p.
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The Helmholtz Free Energy (HFE): f(T), p)

A fundamental thermodynamic quantity, used to express the basic TD quantities in hydro:
e specific entropy s(T, p) = — (g—%) ,
P
e _ _ of
e specific internal energy e(T,p)=f+Ts=f-T (8_T)

e pressure p(T,p)=p (8f)T.

Useful derived quantities include

2
e specific isochoric heat capacity ey (T, p) = (‘9—52) =T (3—3) — 794
P

e and the adiabatic speed of sound

T = (%), = & (B), = 25 (#5)
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The Helmholtz Free Energy - “Potentiality” of Quantities

The TD quantities originally arise from the HFE differential

df = —sdT + = dp (1st law of TD)
P
The Helmholtz free energy is a potential, which essentially means that

o2 o2 ) )

/ = / , or, equivalently, o _ —p2 —S,

OT 0p 0OpdT oT op

: op 5 Oe

resp. for pressure and internal energy p—T—=p" —.

oT op

NOTE: This also ensures that = is a potential.
Preserving this property of TD potentials in numerical calculations is important

In practice: Failure to obey all the strict relations — inconsistencies in hydro simulation
& physically incorrect results

(e.g.: Non-potential e — work done on the system w/o changing € — violation of TD laws)
¢ numerical difficulties

We seek to preserve important properties by using a sufficiently high order of interpolation

&) - CELIA /



Example: The EoS for Monoatomic Ideal Gas

NkpT NkpT k
» pressure p(T, p) = V(E;) = MB — "Nmg mfé T p,
P

3
» specific entropy  s(T,p) = £ = 7];_% <1n [”’;a (27T mgszT) 2] + %>,

e U _ SNkpT  skp
» specific internal energy e(T,p) =17 = N~ = 2my L
» specific isochoric heat capacity cy (T, p) = %s,b—%
. . T
» adiabatic speed of sound  ¢s(T,p) = /3L = %kga :

e All these expressions can be obtained from the specific HFE of monoatomic ideal gas
3
. k’B T m 2T mg kB T\ 2
f(T,p) = —=n2 (ln[pa( > ) —|—1>
e One can easily verify further crucial TD relations, e.g., that HFE the proof that is a potential:
o°f _ 9% dp 5 0e

_  resp. _ P _ 2 0¢
9T dp  0p0T b P TP 5,
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General Physical Requirements on EoS

e Requirements (obvious or resulting from the TD relations):
¢ Non-negative fluid pressure and heat capacities: p > 0, cyy > 0, ¢, > 0
o Real (non-complex) and non-negative speed of sound: ¢ € R™
¢ Non-negative entropy: s > 0 (to minimize HFE of the system for maximum entropy)
¢ Internal energy equals to HFE at zero temperature: (0, p) = (0, p).

e Translating this to Helmholtz free energy f:

o f is monotonically increasing in density to provide non-negative pressure, p > 0,
¢ f is monotonically decreasing in temperature, thus providing non-negative entropy, s > 0,

2
o f is concave in temperature, STJ; < 0, which ensures that
* heat capacity is non-negative: ¢y = 9% > 0,
* entropy is monotonically increasing in temperature: 3—% >0

o f satisfies a% <p2 %) > 0, that is, pressure is monot. increasing in density, g—g > 0,

in order to provide a positive speed of sound: ¢ € R™
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Implementation of EoS - Usual Approach

e EOS given by discrete values of TD vars (f, p, , ...) on a rectangular grid in the T-p space

e We want to get the values in a general point (7, p).

e First choice, most common approach: bilinear direct interpolation:

Reconstruct each TD variable by linear (dim. split) / bilinear interp. on each bin (7-p cell)

Direct = interpolation directly applied to discrete data of one given quantity, e.g. p.

Simple, numerically robust

Discontinuous derivatives on bin boundaries = numer. issues, phys. inconsistencies

TD quantities particularly difficult (phase transitions, steep gradients = oscillations.)

[Kerley et al., 1977]: nice review motivated by the work with SESAME EoS, some

improvement thanks to interpolation by rational functions

TD consistency and physical requirements still largely ignored, for example:

* ¢y can be calculated in various ways, equivalent theoretically but not numerically
(depending on interp. methods for ¢, s, f, on differentiation technique, ...)

* Direct interp. of the discrete values for p and € does not ensure the existence of HFE
satisfying their TD definitions at the same time.

o o DD o o

%

e From this viewpoint it seems reasonable to apply the thermodynamic interpolation
= Interpolate only one state variable, e.g. HFE, and derive the others in a consistent way.
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Consistent & Efficient Interpolation of a General EoS

e Consistent evaluation of a general EoS based on the Hermite thermodynamic interpolation
using discrete values of
Op Oe Op Oe

fa b, €, ap ) 8_Ta aT ’ a_p
and possibly also higher derivatives, depending on the order of interpolation constructed.

e Two basic situations: inline EoS and tabulated EoS.
o Tabulated EoS (given as discrete data):
* The TD interpolation approach provides some additional physical properties, which
are usually omitted in hydrodynamic simulations with the bilinear direct interpolation.
* TASK: evaluate the EoS while enforcing physical sanity and the physical
consistency inter-relations.
¢ Inline EoS library (based on analytical formulas):
* Interpolation serves mainly to accelerate the evaluation (assuming consistent quant.)
* However, many of the dependencies ensuring EoS consistency are ignored in
existing inline EoS implementations.
* TASK: substantially accelerate the evaluation of EoS while preserving the same
accuracy as with inline calculations, and moreover satisfy all the above physical and
thermodynamic constraints.
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Hermite Interpolation

e Our method is based on the idea from [Swesty & Timmes,1996,2000]: Reconstruct one basic
state variable (in our case HFE) by local Hermite-type interpolation of sufficient order.

e Hermite interpolation: approximate a general function ' by polynomial such, that its
values and derivatives up to a certain order at given points agree to those of F'.

<& Our use: Reconstruct the HFE on a bin (2D quad in 7-p space) solely from values and
derivatives of HFE at its four corners. (Hence “local Hermite-type interpolation”)
¢ That is, reconstruct f (7, p) from known values and derivatives at discrete points (7', p)

e To get these discrete input data:

¢ HFE directly from the provided EoS library (inline or discrete)
» either from HFE by finite differencing

» or from p, ¢, ...provided by EoS library + corresp. TD relations
The latter sounds best, but many consistency issues!

¢ Derivatives

e Order of interpolation:
o TD consistency requirements = at least bicubic interpolation
This also provides numerically useful properties (continuous derivatives p and €).
o [Swesty & Timmes,1996,2000] suggest biquintic (for further physical and numer. properties)
& The higher order of interpolation, the more sensitive to the consistency of input data.
= With some EoS libraries, one has to
* use lower order and/or direct interpolation (= give up some TD consistency),
* or try to automatically detect and correct inconsistencies by pre-processing EoS data

BBE A
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HerEOS - Part I: Initialization

Creation of interpolation tables (from which the actual interpolation will be constructed):
f, fT, fp, fTT, fpp, pr, ... at given T-p grld nodes.
» Case 1: Discrete EoS data
o Simply reuse this grid and load available variables
(Typically, the grid is logically rectangular with irregular spacing)
¢ In most cases, the values of HFE are given.
¢ Its derivatives either from the other provided variables (using TD relations) or by FD
o For higher order interpolations, combine both approches
¢ At this point, obvious nonphys. values and inconsistencies can be captured and fixed.

» Case 2: A set of inline functions
o Construct the T-p grid as needed (range, spacing, distribution).
(Typically a rectangular grid with linear or logarithmic spacing.)
o On it we generate the values of HFE and its derivatives up to the order needed.
< Derivatives again from derived variables or by finite differencing.
¢ Combining these two approaches, we can discover further inconsistencies.

e Done just once as preprocessing step for given EoS and expected 7-p range.

o Can be stored for reuse with future simulations =- next time, Part | is skipped.
=- even if costly (eval. of inline f., sanity checks, consistency repair), not a significant burden.
= even fine T-p grids can be used (EoS eval = search of bin + simple interp. formula)

BBS LA
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HerEOS - Part Il: Calculation of Quantities by Interpolation

= Evaluation of EoS in the actual simulation
e To get HFE at given (7', p):

» find the appropriate bin of the 7'-p grid (faster if grid rectangular)
» compute the interpolation function from the pre-calculated table.

e Values of the derived quantities:

¢ easily obtained by using corresponding derivatives of the interpolating formula.
¢ advantageous to calculate all desired quantities for given (7', p) at once.

Example: Bicubic interpolation on the bin [T;_,, T;] X [p;_1, p;]

e 16 values needed on input (4 per corner of the bin):

> 0= f(Tiq, pj-1), O = (1, p-1), fOU= 11y 1, p5), fM= £(T3, p)),
> f[oo 3%(Ti—1apj—1), f[10 8%:(Ti,pj_1), f[o1 Ce fr [11] _
> f[OO 6,];2(Tz‘ 1> Pj—1)s f[10 322(T7;a Pj—1)s f[01 Ce fp 1] _
> f[OO = 8p8T(T’L 1, Pj—1)s [10] apaT(Tz,Pg 1) [01]— e fr 11]
ReD2 L
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e On this interval, scale 7" and p to unit square

t;(T) = (T —

7, /aF, AT =1, -1 4, rj(p) = (p = pj_1)/A%,
and introduce local auxiliary functions (cubic Hermite base polynomials)
Go(t;(T)) = t; — 3t2 +21¢3, HO(Tj(p)):l—STJZ—FQT?,
G1(t;(T)) = t; — 27 + 3, Hy(rj(p)) =71 = 27% + 13,
Gt (T)) = —t + t:?, Ha(rj(p)) = =% + 13,
2 3 2 3

e The value of f (T, p) will now be approximated by fi,j(T, p) as

1% aq(ry Ho (o) + 1M @3(T) Ho (o) + £ Go(T) Hy(p) + 1Y G3(T) Hy (p)

fi,j(Ta p) =

+19% Gy () Ho (o) AT + 2% Gy () Ho(p) AT

+i0 Gy () Hy(0) AT + 1Y Gy (1) Hy(p) AT

w15 o) H1(0) A8+ 110 G () Hy(p) A

+f£ ! Go(T) Ha(p) Ap + f,[, 1] G3(T) Ha(p) A;.’

i) GUT) Hy(p) AT A7+ 110 Go(T) Hy () AT AF

+rpl @) o) AT A2+ 11 Go(r) Hy(0) AT A2,

P_ . _ .
Aj_p] pj—]_

(&) _cELIA g
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HerEOS Code - Selected Properties

For now works with (includes or uses) several EoS, namely
¢ ideal polytropic gas, ¢ FEOS [Faik, 2012, 2018],
¢ QEOS [More et al., 1988], ¢ BADGER [Heltemes & Moses, 2012],
o MPQeos [Kemp & Meyer-ter-Vehn, 1998], < SESAME [Lyon,Johnson et al., 1992].
Incorporation of further EoS is straightforward.

Particular regime (interp. order, ways to calculate derivatives) can be combined for each EoS

General interfaces for C/C++ and Fortran =- easy linking to various codes, e.g.

o PALE [Liska et al., 2008, 2011] - 2D ALE hydro + plasma code
¢ PETE [Holec, 2016] - Lagrangian code, nonlocal transport, high-order curvilinear MFEM

Currently used for comparing various EoS within the same code (seldom done before)
Sanity checks: fast convergence of interp. results to inline values, TD bicubic & biquintic

Speed-up:

¢ General inline EoS libraries: with TD interp. much faster than with direct inline calc.

¢ Evaluation of “realistic” EoS usually among the most expensive parts.

o Using denser EoS data interpolation tables (higher T-p resol.) does not cost much more.

o Higher order TD interp. only slightly more expensive than bilin. direct interp. & provides
more state variables = more complex models w/o additional (incompatible) methods.

o
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Numerical Results | - Convergence of HerEOS to Inline EoS

Density Temperature z-component of velocity

x 107
600 10 600 600 18
3500
16
500 . 500 w00 900
14
400 400 19500 400 119
— 71071 — —
§300 §300 12000 & 300 1
= o2 ® | iy ™ ////////5//////// 18
- - i ’//////////////////////// °
100 100 » 100 ;{'{l{%%%%%%%%w 2
0 104 0 0 0
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
r[pm] r[pm] r[pm]

e Laser-target interaction simulated by code PALE in -z regime

e 40 pm thick Al foil irradiated by a normally incident 100 J Nd laser pulse (A = 1053 nm)
Gaussian in time and space (tpwan = 300 ps, focal spot radius ¢ = 100 pm).

e To start with: very sparse computational mesh (130 x 140 cells)
e Situation at 100 ps after maximum intensity of the laser

R [
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Numerical Results | - Convergence of HerEOS to Inline EoS

e To check convergence of thermodynamic interpolation to the solution with inline EoS.
(Convergence w.r.t. size of the interp. tables / resolution of T"-p grid)

e Ideal gas EoS, v = 5/3. (Too simple, but we need consistent data and enough derivatives)
e Relative discrepancies at the location of maximum density:

Number of Bicubic Biquintic
T-p bins p | | T ] us p | o | T | u
20x20 1.10e-2 7.71e-2 8.90e-2 3.59e-2 9.87e-3 1.71e-2 7.34e-3 4.41e-3
80x 80 1.92e-3 3.44e-2 3.24e-2 2.36e-2 1.01e-5 2.23e-5 1.21e-5 6.83e-6
320x320 8.50e-6 2.02e-5 1.18e-5 4.13e-6 1.29e-6 2.49e-6 1.12e-6 7.11e-7

e Interpolation-based solution is close to the inline-based solution already with very sparse
T-p grids (low resolution of interp. tables) and quickly converges

e This is the case for biquintic as well as bicubic thermodynamic interpolation.

ELIA QL?Q( b e
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Numerical Results Il - LULI Prepulse

p and T profiles at certain times (T'-p) region of interest & No. of calls
0t 600 10
AN 106
100 1t
T 107 o T 10 o
‘ - - _
5 s B 10°
,. 72 bt , 72
-3 —
104 0 4 L |
_ 0 ‘ ‘ .M
o 200 1071 1 10 102 103
T [eV]

e To demonstrate the effect of various EoS and assess the efficiency of HerEOS
e Like [Fajardo et al., 2001], simulated an experiment for the pre-pulse of 100 TW LULI laser.

e Al target irradiated by a normally incident 600 ps long (FWHM) laser pulse Gaussian in time
as well as space, with peak intensity I;nax = 5x10° W - cm ™2,

e Code PETE run in 1D with I,,,,« (that is, with intensity as on the laser beam axis in the 2D case)
up to final time 1400 ps after the laser intensity maximum.

e Postprocessed data compared to measured values of partial ionization [Fajardo et al., 2001].

DB 5
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Numerical Results Il - LULI Prepulse

@ Comparison of EoS: p (left) and 7" (right), 500 ps after the laser intensity maximum

10!
—— QEOS

1004 — — FEOS

B —— SESAME
107 BADGER
1072,
1073,
1074 :

—50 0 50 100 150 200

—— QEOS
— — FEOS
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15 ~10
 [pm]

-5 0

200{ —— QEOS
— — FEOS
1501 —— SESAME
= BADGER
2. 100/
o
50
0 i
50 0 50 100 150 200
[pum]
—— QEOS
401 — — FROS
—— SESAME
= BADGER
= 20
e
0 4

~10

 [pim]
e All tested EoS behave similarly, except for BADGER (wave splits into two: irrelevant)

e Very good correspondence between QEOS and SESAME results.
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Numerical Results Il - LULI Prepulse
@ Assessment of the efficiency of HerEOS

Focus only on the part performing the actual evaluation of EoS:
10¢
1t ‘

“Net time”: each bin (rectangular cell) of the region
'»‘»,: 102
107 ‘ , A
107!

of T-p space visited throughout the simulation
times the number of visits (color map)
‘ e ()
1 10 10? 10°
T [eV]
([ J

Inline FEOS calls replaced by bicubic TD interpolation of HFE — net time reduced by 23%
Inline FEOS calls replaced by bilinear direct interp. of p and £ — net time reduced by 60%

As expected, an even better improvement can be obtained for more complicated EoS and
for simulations using more derived variables. (FEOS is still cheap compared to other E0S.)

In our case: replacing inline BADGER by interpolation of BADGER-generated discrete data
— cost reduced by 97% (bicubic thermodynamic interpolation), resp.

— cost reduced by 99% (bilinear direct interpolation)!
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Numerical Results lll - Shock Velocity in Foam at OMEGA

e Experiment OMEGA, University of Rochester [Falk, Holec et al., 2017, 2018, ...]
e Hydro shock in a polystyrene foam — warm dense matter conditions — analysis of EoS.

part of Au cap CH foam cylinder e Multi-layer target consisting of
ggg um f;?:; » 25 um plastic (CH) ablator
25 pum—>| e ‘ » 2-3 um Au coating to shield X-ray radiation
" / » 70 pm Al pusher
ISOO nm » 300 um of CgHg polystyrene foam (p = 0.14 g - cm ™)

25 um thick CH, .
2-3 um thick Au e 15 laser beams overlapped — planar square drive,

50w fe= 70 um thick Al 7 x 1014 W . cm ™2, duration 2 ns, A\ = 351 nm

e The laser-driven shock gradually propagates through target layers into the foam,
where the actual shock velocity is measured experimentally.

e TD conditions in the shock wave traveling through the CgHg foam studied with a number of
diagnostics developed for the platform including VISAR, SOP and XRTS

e Shock velocity measured by an interferometer VISAR system by detecting shock break-out
times across four 40 um steps manufactured on the back side of the target.

e Shock break-out times also measured independently by the SOP system

&) - CELIA /



Numerical Results lll - Shock Velocity in Foam at OMEGA

e Measured shock velocities at break-out: 57.8+3.8, 64.0%4.9, resp. 67.5+5.0 km - s 1
e Density colormap from the simulation:

| _ plg/em’] | 10
) 3rd step (as =61 km/s) 5 60
o Arrows in the foam layer: 4 2nd step (u, =66 km/s) — ™~ ‘

" 1st step (@, =70 km/s) 3.16
positions of steps on the back of target 3 11 78
o Simulated shock velocities in very good 9 XRTS 11.00
agreement with exper. measurements. 2 e 10.56
¢ Hugoniot jump condition analysis: - 0 0.32
simulated shock velocity in excellent 0.18
agreement with SESAME TD jump condi- ' 0.10
tions at every moment of propagation 2 0.05

0 100 200 300 400 ~0:01

z[pm]
e Sign of a finite preheat due to nonlocal electron transport seen in simulation and experiment

e Values of 7" and p extremely sensitive to the EoS model
= proper EoS (here SESAME) is absolutely essential for the hydrodynamic simulation

e SESAME tables suffer from serious inconsistency in provided TD quantities (esp. HFE),
=- consistent TD interpolation of HFE replaced by bilinear direct interpolation of p and ¢

Ce:] _CELIA _- /(‘%Z?( 5%@%5
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Issues with EoS Libraries - Monotonicity, Convexity

e Practical issues arising with popular EoS libraries (inline as well as discrete)

e Even simple tests reveal violations of TD consistency and physical relevance requirements

¢ e.g., check concavity of f in 7" to prevent negative cy .

g(Th)
/ //'/ — interpolating function
e - slope r
9(To) - /.‘/’ tangent g:(TO) 1 g(Ty) +
s — tangent ¢'(T})

. tangent ¢'(17)

— interpolating function
-~ slope 7
tangent g'(7Tp)

T 1
¢ Situation gets more complicated

* with higher-order thermodynamic interpolations

Ty

* when p and p are also taken into account

T

For a bicubic function:

check if
(¢"(To)—7) (¢'(T1)—r) <0,
where
r — 9(T1)=9(Tp)
=Ty -

e Same techniques detect places in discrete EoS where values of derived variables (p, ¢, ...)
are inconsistent with discrete values of actual HFE and consequently its derivatives

e Such inconsistencies thus generate spurious oscillations of the interpolating function

&) - CELIA



Issues with EoS Libraries - Inconsistent Variables

» physically relevant results
» stability of the simulation.

e HFE usually not explicitly used by codes, but holds the key to consistent EoS calculations
e ldea: check the consistency of the HFE values by integrating over its differential as

PLOf Ty af P1 p Ty
f(p1,Th) — f(po,To) = dp + — dT = —de_/T
0

PO ap Ty 0T ro P
(where p and s are provided by the EoS)  with the value of HFE provided by the EoS.

» calculated from p and ¢ provided by the EoS
» obtained by applying finite diff. on HFE provided by EoS
e Inconsistency found in many EoS libraries, both inline and discrete!

e Inline EoS library FEOS

e EOS library must obey TD and physical requirements for

s dT,

e Or: Compare derivatives of HFE

- %1012 x10'2
! - ' T . . ‘ —3

— ~«-inline, p = 1.0 g -cm™ -=-inline, p =1.0 g cm . T .
Tl D L 0 e L4 ED =10 m - o Directinline call:
@ i : nli -3 .

! ~«inline, p = 5.8 g - cm 3 . -x-inline, p = 5.8 g-cm ne anve
T 3 |—FD, p=58g-cm™3 i %D —FD,p=58g-cm™ g p

g 22 ; inA
S © ¢ TD interpolation:
=

SH

- / ; p almost OK,

e e X

but £ oscillates

1072 16*1 1 1‘0 1072 16*1 1 1‘0
T [eV] T [eV]
¢ Discrep. due to separate postprocess of p and €? < No interp. so far, just inline EoS and FD!

o
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Issues with EoS Libraries - Inconsistent Variables

e Employing bicubic TD interpolation on such inconsistent data produces oscillations:
x 1012
2=

-|---cubic int. from f, p and e

L
\ /A

~--inline p
—o—from f and its FD

—o—cubic int. from f and its FD
7\ N // \ 7\ \

~

¢ Blue dashed: Inline values of f constant, but inline values of p ~ af; negative = oscillations
¢ Depending on the density of (T", p) grid (spacing of EoS data)! -

x 102
2+

—EOS table 50x50
—EOS table 25x25

see right Fig.

¢ Blue solid: Using FD helps a bit, but we lose information (not use EoS pressure).
e Detail of the interpolation of HFE and consequently on corresponding p

CELIA

’ ><lO?2

—>tangent f'(p) from p
tangent f’(p) from FD

0.5|— f interpolated using p

- - - f interpolated using FD

[ lerg]

4xlU”

—p from f using p
2L{---p from f using FD

Po P1 ) P2

ol 4N,
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Issues with EoS Libraries - Inconsistent Variables

FEOS for electrons, Al, bicubic TD interpolation of f from inline EoS vals of f, p, ¢

Pressure

1 2 3 4 5
T [eV]

¢ Spurious oscillations appear on a wide region of (T", p) space, inherent to both p and ¢.

Internal energy

X 1013

¢ [erg]

\WW' Pponmn -
e

503 Te—3 le=2

TleV] 10 1o_3 3e=3
plg-cm™
le—2
3
Te—3 9
r5073 1
|
g 0
¢ 3e—3 _
) —_— 1
SY 2]
--- 2
=R
»
E -3
1 2 3 4 5 6 78910 x10¢
T [eV]

¢ Regions with g—g < 0 = complex speed of sound — fails if not treated

e Unfortunately, using FD to get p and < does not prevent all the oscillations!

Consistent Interpolation of the Equation of State in Hydro Simulations
Ce:j w' M. Zeman, M. Holec and P. Vachal / Pévoa de Varzim, May 25,2018
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Issues with EoS Libraries - Inconsistent Variables

Discrete EoS:

e SESAME, pressure for electrons and ions,
bicubic TD interpolation (red, purple)

vs. bilinear direct interpolation (blue, green)

e SESAME for electrons in Aluminum:
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Issues with EoS Libraries - HFE Not Being a Potential

%f _ 9%f
0T 0p ~— 0pdT

Must hold for any EoS (inline or discrete) at any (7', p) and can be checked explicitly by FD

i Op _ 2 0e
can be writtenas p — 7’57 = p 9

Requirement

e > Bicubic TD interp. on consistent data satisfies by definition, direct interp. of p and € do not

e FEOS: Discrepancy ErP°'=p 732 )2 ge.
Inline HFE values and ... inline p and « (default for FEOS users) (left)

. p and ¢ from bicubic TD interpolation of HFE (middle)
. p and e from finite differencing of inline HFE  (right)
0.5

0
-0.5

1
-1.5
)

-2.5
2 3 5 7 10 xlo”

NOTE: Typical pressure in the region =~ 1012 g/cm/s2
e Similar (but less serious) violation of “potentiality” is observed in the discrete SESAME EoS
e Suggests to use higher order TD interpolation + recover consistency in inconsistent data

Consistent Interpolation of the Equation of State in Hydro Simulations ﬂf&?}/‘ ﬁé\
QeSY \@‘ M. Zeman, M. Holec and P. Vachal / Pévoa de Varzim, May 25,2018 /\J‘ \/JE“ 08



Issues with EoS Libraries - Physical Irrelevance

» numerical artifacts on transitions
» misuse of model outside validity range
e Negative electron pressure given by inline FEOS: Blue: negative, Magenta: very negative

4elb
8eld

e Multiple models combined on the 7-p domain =

8el3
8el2
0

-8ell

-8.8ell

1072 107t 10 10! 10? 10° 1072 1071 1 10 102 10°
T [eV] T [eV]
e SESAME, ion pressure for Aluminum e FEOS, ion internal energy for CH

(negative values of pressure

1
10 ™ deld
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r'g 10-1 6el2
© | {6ell
601072
< 0
1073
-6e10
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10-2 10! 10° 10t 10% 10° 10° 10!
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(non-monot. € at phase transition = ¢y, < 0)
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Lesson Learned

e Sometimes data provided by library (inline FEOS, discrete SESAME) are too inconsistent
=- constructed TD interpolation of HFE too oscillatory
=- give up some consistency and use classical bilinear direct interpolation of p and <.

Summary

e HerEOS: a library for the evaluation of general EoS by Hermite-type interpolation

e Provides some very desirable TD properties

e Tested with various inline (analytical) and tabulated EoS

e Applied in two-temperature hydrodynamic simulations of laser heated plasma

e Tested and used in several multi-D hydro codes in Fortran and C++, Python planned

e Significant reduction of computational cost achieved and further reduction expected

e For EoS libraries providing inconsistent data, fallback to classical bilin. direct interpolation

Future Work

e Alternative approximation techniques such as surface fitting (suggested by J. Grove)
e Detection and automatic correction of obvious flaws in source EoS data (machine learning)
e HFE often inconsistent with p and e = Automatic construction of HFE / its values from p,
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