A domain decomposition strategy for a very high-order finite volumes scheme applied to cardiac electrophysiology

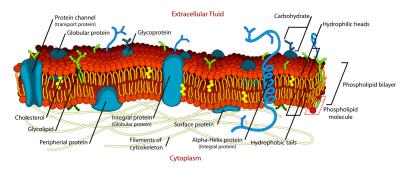
Y. Coudière - Rodolphe Turpault

Institut de Mathématiques de Bordeaux, Bordeaux-INP

・ 同 ト ・ ヨ ト ・ ヨ ト

The monodomain model An high-order scheme for the monodomain model Domain decomposition Conclusion and perspectives

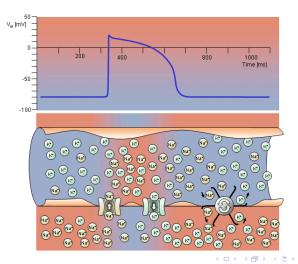
3 An high-order scheme for the monodomain model



3.1

The monodomain model An high-order scheme for the monodomain model Domain decomposition Conclusion and perspectives

Cell level - membrane

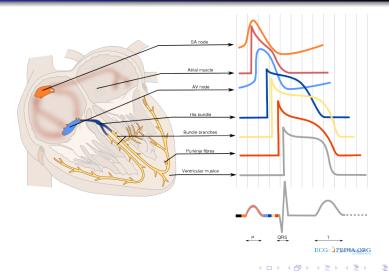

The cell membrane

(a)

э

The monodomain model An high-order scheme for the monodomain model Domain decomposition Conclusion and perspectives

Cell level - action potential



э

э

The monodomain model An high-order scheme for the monodomain model Domain decomposition Conclusion and perspectives

Macroscopic level

The monodomain model

$$\partial_t V + I_{ion}(V, w) = \operatorname{div}(D\nabla V),$$

 $\partial_t w = G(V, w),$

where :

- V[mV] is the transmembrane voltage,
- *I_{ion}* = *I_{ion}*(*V*, *w*) [*A*.*F*⁻¹.*cm*⁻²] is the normalized ioinc current par unit surface,

•
$$D = \frac{G}{A_m C_m} [mS.\mu F^{-1}]$$
 is the normalized diffusion tensor,

• w contains all auxiliary variables.

伺 ト く ヨ ト く ヨ ト

lonic models

The ionic current I_{ion} and G are given by a so-called *ionic model* which approximates all ionic processes in the cardiac cells :

- Phenomenological models (Fitzugh-Nagumo, Aliev-Panfilov, Mitchell-Schaeffer,...) are simple,
- Hodgkin-Huxley type models (Beeler-Reuter, Ten Tusscher et al, Luo-Rudy,..) are more complex. Markov chains variants (Iyer et al...) are nowadays widely used by biologists.

(人間) とうり くうり

Hodgkin-Huxley formalism

Mimics the behavior of proteins in the cell membrane :

 $I_{ion}(V, w) = \sum_{i} I_{i}$ where the I_{i} s are expressed as functions of gating variables.

Example : $I_{Na} = g_{Na}m^3hj(V - E_{Na})$ where :

•
$$E_{Na} = \frac{RT}{F} \ln\left(\frac{[Na^+]_e}{[Na^+]_i}\right)$$
 is Nernst's potential,

• m, h, j are gating variables $\in [0, 1]$ given by :

$$\frac{d}{dt}m=\frac{m_{\infty}-m}{\tau_m},$$

 $w \in \mathbb{R}^N$ also contains other variables (concentrations,...) and N ranges from 8 to 100+.

イロト イポト イラト イラト

Main numerical difficulties

- Stiffness
 - in time due to physiological processes (e.g. fast Na⁺ channels),
 - in time due to ODEs,
 - in space due to depolarization fronts,
- propagation failure
 - No propagation when the mesh is too coarse,
 - Wrong propagation speed,
- Anisotropy

Most codes use P_1 or equivalent methods with a mesh length $\simeq 100 \mu m$ (which is too coarse!) and adapt A_m .

・ 同 ト ・ ヨ ト ・ ヨ ト

Semi-discrete scheme

Finite volumes scheme : unknowns are mean values of V and w in each cell K :

$$\frac{d}{dt}V_{K} + I_{K} = \frac{1}{|K|}\sum_{e_{i}\in\mathcal{E}_{K}}F_{i}\cdot n_{i},$$
$$\frac{d}{dt}w_{K} = G_{K},$$

The scheme is determined by the choices of I_K , G_K and $F_i \cdot n_i$. Our choice : scheme based on the ideas of Clain, Machado, Nobrega and Pereira (CMAME '13).

(4月) イヨト イヨト

The scheme at a glance

- Polynomial reconstruction on cell interfaces for V (diffusion),
- Polynomial reconstruction on cells for V and W (reaction),
- Both are weighted least-squares polynomials inside given stencils,
- Coefficients satisfy :

$$(X^{\top}\Omega X)\Gamma = X^{\top}\Omega \mathbb{V},$$

• Preservation of admissibility : MOOD procedure.

- 同 ト - ヨ ト - - ヨ ト

Time integration

- Explicit schemes : ionic model → small Δt, "reasonable" mesh, preservation of admissibility,...
- If $\Delta t = \mathcal{O}(\Delta x^2)$ then time order = (space order)/2
- Preservation of admissibility : SSP-RK.

- 同 ト - ヨ ト - - ヨ ト

Order of convergence

Ad hoc choice of I_{ion} in order to have an analytical solution.

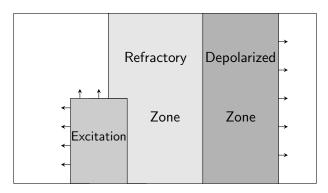

h	p=2	ord.	p=3	ord.	p=4	ord.	p=5	ord.
1.2E-2	2.4E-5	n/a	6.8E-6	n/a	2.9E-6	n/a	9.5E-7	n/a
6.1E-3	5.6E-6	2.09	5.1E-7	3.75	1.3E-7	4.51	2.1E-8	5.52
3.1E-3	1.3E-6	2.09	3.2E-8	3.97	5.2E-9	4.60	3.7E-10	5.80
1.5E-3	3.2E-7	2.03	2.0E-9	4.04	2.4E-10	4.46	6.3E-11	2.57

TABLE – L^2 errors for the analytical test case

- 4 回 ト 4 ヨト 4 ヨト

Spiral waves

Setup :

< 4 P > < E

э

Spiral waves

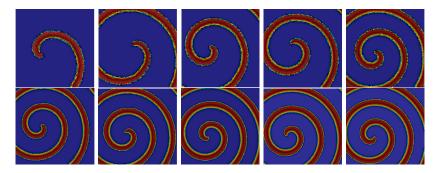


FIGURE – Spiral wave (AP model) obtained on two moderately coarse meshes with the schemes from order 2 (left) to 6 (right), t = 150ms.

< 日 > < 同 > < 三 > < 三 >

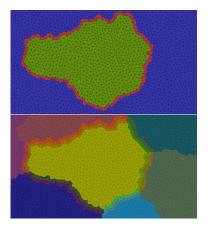
Summary so far

- 4th and 6th order schemes allow to use reasonable meshes,
- Efficiency : 4th order is way better than 1st and 2nd order / 6th order (?),
- Efficiency : way better than implicit + P1,
- Still not fast enough for long-time realistic simulations.

- 同 ト - ヨ ト - - ヨ ト

Idea and questions

Basic idea : BC work fine.


Domain decomposition therefore seems a good idea.

But :

- 2 reconstructions?
- accuracy?
- avoid subdomains B.C.?

A 10

Strategy

 $\ensuremath{\mathrm{Figure}}$ – Domains and halos

- One thread computes one subdomain,
- Stencils are built inside extended subdomain (subdomain+halo),
- Halos = 1 layer of neighbors (1 node shared), eventually extended if necessary.

Implementation

- \bullet Domain decomposition \rightarrow Scotch,
- Balance cells/interfaces,
- (Real) OpenMP,
- Renumbering,
- Vectorization \rightarrow Xeon Phi,
- Reasonable modification of a (flexible) code.

伺 ト イ ヨ ト イ ヨ ト

Numerical results - accuracy

Ad hoc choice of I_{ion} in order to have an analytical solution.

h	p=2	ord.	p=3	ord.	p=4	ord.	p=5	ord.
1.2E-2	2.4E-5	n/a	6.8E-6	n/a	2.9E-6	n/a	9.5E-7	n/a
6.1E-3	5.6E-6	2.09	5.1E-7	3.75	1.3E-7	4.51	2.1E-8	5.52
3.1E-3	1.3E-6	2.09	3.2E-8	3.97	5.2E-9	4.60	3.7E-10	5.80
1.5E-3	3.2E-7	2.03	2.0E-9	4.04	2.4E-10	4.46	6.3E-11	2.57

TABLE – L^2 errors for the analytical test case - 24 subdomains

The relative error between 1 and 24 subdomains is less than 1%.

・ロト ・同ト ・ヨト ・ヨト

Numerical results - scalability

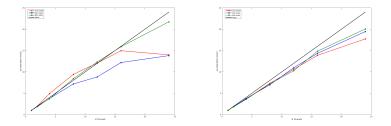
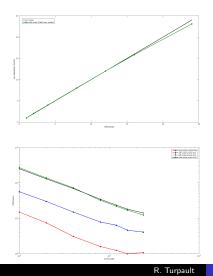



FIGURE – Scalability (AP model) - mesh #4 (I) and #5 (r)

Numerical results - scalability

 Scalability (TNNP model on mesh #4)

• CPU time (Order 2, 4 and 6 on mesh #4 and order 2 on mesh #5)

A domain decomposition strategy for a very high-order finite volu

- 4 同 ト 4 ヨ ト 4 ヨ ト

Numerical results - spiral wave

FIGURE – Spiral wave (AP model), t = 150ms order 6 with 1, 4, 24 and 128 subdomains.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion and perspectives

- High-order is very interesting in this context,
- The code is scalable as long as subdomains are reasonable,
- A priori extendable to MPI/hybrid/... (has to be tested),

伺下 イヨト イヨト

Thanks for your attention !

< ロ > < 同 > < 回 > < 回 >

э