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A Flow Geometry



A Compressible Flow



Another Compressible Flow



Boundary Conditions Determine the Flow!

Yet:
• Hardly discussed except in passing 
• Often dealt with in ad-hoc manner 
• Published proposals not stable 



We study…
• Conditions under which DGSEMs are stable 
• Examples of stable BC implementations 
• General Analysis 

• 3D 
• Curved Elements 
• Linear and nonlinear equations



Compressible Flow Model
Navier-Stokes Equations: Conservative form

THE BR1 SCHEME IS STABLE FOR THE COMPRESSIBLE NAVIER-STOKES

EQUATIONS

G.J. GASSNER, A. R. WINTERS, F. HINDENLANG AND D.A. KOPRIVA

1. Introduction

2. The DGSEM for Compressible Viscous Flows

Compressible viscous flows are modeled by the Navier-Stokes equations,
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In standard form, the components of the advective flux are
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(4) H = E +
p

⇢
E = e+

1

2
|~v|2 e =

1

� � 1

p

⇢
.

The equations have been scaled with respect to free stream reference values so that the Reynolds
number is

(5) Re =
⇢1V1L

µ1
,

where L is the length scale and V1 is the free-stream velocity. Additionally, the Mach number and
Prandtl numbers are

(6) M1 =
V1p
�RT1

, Pr =
µ1Cp

1
.
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Conservative Variables



Compact Version
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For a compact notation that will simplify the analysis, we define block vectors (with the double
arrow)

(8) |
$
f =

2

4
f1
f2
f3

3

5|

and the spatial gradient of a state as

(9) ~rxu =

2

4
ux

uy

uz

3

5 .

The dot product of two block vectors is defined by

(10)
$
f · $

g =
3X

i=1

fi
Tgi.

Finally, the dot product of a block vector with a vector is a state vector,

(11) ~g ·
$
f =

3X

i=1

gifi.

With this notation the divergence of a flux is defined as

(12) ~rx ·
$
f =

3X

i=1

@fi
@xi

,

which allows us to write the Navier-Stokes equations compactly as

(13) ut + ~rx ·
$
f =

1

Re
~rx ·

$
fv
⇣
u, ~rxu

⌘
.

As part of the approximation procedure, it is customary to represent the solution gradients as a
new variable to get a first order system of equations

(14)
ut + ~rx ·

$
f =

1

Re
~rx ·

$
fv (u,

$
q)

$
q = ~rxu.

To set up the standard spectral element approximation, one subdivides the physical domain, ⌦,
into K non-overlapping and conforming hexahedral elements, ek, k = 1, 2, . . . ,K. These elements
can have curved faces if necessary to accurately approximate the geometry.

So that the equations can be approximated by a Legendre spectral element method, they are
re-written in computational space on the reference element E = [�1, 1]3. Each element is mapped

from the reference element with a mapping ~x = ~X

⇣
~⇠

⌘
, where ~X = Xx̂ + Y ŷ + Zx̂ and the hats

represent unit vectors. Similarly, the reference element space is represented by ~⇠ = ⇠⇠̂ + ⌘⌘̂ + ⇣⇣̂.
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From the transformation, we define the three covariant basis vectors

(14) ~ai =
@ ~X

@⇠i
i = 1, 2, 3,

and (volume weighted) contravariant vectors, formally written as

(15) J~a
i = ~aj ⇥ ~aj , (i, j, k) cyclic,

Vector of Vectors:
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Transformation of Operators
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so for a block vector
$
g,

(24) |~rx · $
g =

1

J
~r⇠ ·

�
MT $

g
�
|.

Finally, if we define the contravariant block vector

(25)
$

f̃ = MT
$
f ,

the Navier-Stokes equations are compactly written as

(26)
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fv (u,
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q)

J $
q = M~r⇠u

on the reference element.

The spectral element approximation is derived from weak forms of the equations (26). Let us
define the inner product on the reference element for state vectors

(27) hv,wiE =
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�1
uTvd⇠d⌘d⇣.

Similarly, for block vectors,

(28)
D$
f ,

$
g
E

E
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fTi gid⇠d⌘d⇣.

Since there should be no confusion in context, we will usually leave o↵ the subscript E. The weak
forms that serve as the starting point of the approximation are created by multiplying each equation
by an appropriate test function and integrating over the element. After integration by parts, the
weak form of (26) reads as
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2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
can be written in terms of the Legendre basis functions, or equivalently in terms of the Lagrange
basis with nodes at the Legendre Gauss or Gauss-Lobatto points with nodal values Unml, n,m, l =
0, 1, . . . , N . We write the interpolation of a function g through those nodes as G = IN (g). Fluxes
are also approximated with polynomials of degree N , represented nodally, and computed from
the nodal values of the state and gradients. Derivatives are approximated by exact di↵erentiation
of the polynomial interpolants. Di↵erentiation and interpolation do not commute, however, so�
IN (g)

�0 6= IN (g0)[?],[?].
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represent unit vectors. Similarly, the reference element space is represented by ~⇠ = ⇠⇠̂ + ⌘⌘̂ + ⇣⇣̂.

From the transformation, we define the three covariant basis vectors

(14) |~ai =
@ ~X

@⇠i
i = 1, 2, 3|,

and (volume weighted) contravariant vectors, formally written as

(15) |J~a
i = ~aj ⇥ ~aj , (i, j, k) cyclic|,

2 G.J. GASSNER, A. R. WINTERS, F. HINDENLANG AND D.A. KOPRIVA

For a compact notation that will simplify the analysis, we define block vectors (with the double
arrow) and the spatial gradient of a state as

(8) ~rxu =

2

4
ux

uy

uz

3

5 .

The dot product of two block vectors is defined by

(9)
$
f · $

g =
3X

i=1

fi
Tgi.

Finally, the dot product of a block vector with a vector is a state vector,

(10) ~g ·
$
f =

3X

i=1

gifi.

With this notation the divergence of a flux is defined as

(11) ~rx ·
$
f =

3X

i=1

@fi
@xi

,

which allows us to write the Navier-Stokes equations compactly as

(12) |ut + ~rx ·
$
f =

1

Re
~rx ·

$
fv
⇣
u, ~rxu

⌘
|.

As part of the approximation procedure, it is customary to represent the solution gradients as a
new variable to get a first order system of equations

(13)
ut + ~rx ·

$
f =

1

Re
~rx ·

$
fv (u,

$
q)

|$q = ~rxu|.

To set up the standard spectral element approximation, one subdivides the physical domain, ⌦,
into K non-overlapping and conforming hexahedral elements, ek, k = 1, 2, . . . ,K. These elements
can have curved faces if necessary to accurately approximate the geometry.

So that the equations can be approximated by a Legendre spectral element method, they are
re-written in computational space on the reference element E = [�1, 1]3. Each element is mapped

from the reference element with a mapping ~x = ~X

⇣
~⇠

⌘
, where ~X = Xx̂ + Y ŷ + Zx̂ and the hats
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so for a block vector
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The spectral element approximation is derived from weak forms of the equations (26). Let us
define the inner product on the reference element for state vectors
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Since there should be no confusion in context, we will usually leave o↵ the subscript E. The weak
forms that serve as the starting point of the approximation are created by multiplying each equation
by an appropriate test function and integrating over the element. After integration by parts, the
weak form of (26) reads as
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2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
can be written in terms of the Legendre basis functions, or equivalently in terms of the Lagrange
basis with nodes at the Legendre Gauss or Gauss-Lobatto points with nodal values Unml, n,m, l =
0, 1, . . . , N . We write the interpolation of a function g through those nodes as G = IN (g). Fluxes
are also approximated with polynomials of degree N , represented nodally, and computed from
the nodal values of the state and gradients. Derivatives are approximated by exact di↵erentiation
of the polynomial interpolants. Di↵erentiation and interpolation do not commute, however, so�
IN (g)

�0 6= IN (g0)[?],[?].

Define Contravariant fluxes:
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For a compact notation that will simplify the analysis, we define block vectors (with the double
arrow) and the spatial gradient of a state as

(8) ~rxu =

2

4
ux

uy

uz

3

5 .

The dot product of two block vectors is defined by

(9)
$
f · $

g =
3X

i=1

fi
Tgi.

Finally, the dot product of a block vector with a vector is a state vector,

(10) ~g ·
$
f =

3X

i=1

gifi.

With this notation the divergence of a flux is defined as

(11) ~rx ·
$
f =

3X

i=1

@fi
@xi

,

which allows us to write the Navier-Stokes equations compactly as

(12) |ut + ~rx ·
$
f =

1

Re
~rx ·

$
fv
⇣
u, ~rxu

⌘
|.

As part of the approximation procedure, it is customary to represent the solution gradients as a
new variable to get a first order system of equations

(13)
ut + ~rx ·

$
f =

1

Re
~rx ·

$
fv (u,

$
q)

$
q = ~rxu.

To set up the standard spectral element approximation, one subdivides the physical domain, ⌦,
into K non-overlapping and conforming hexahedral elements, ek, k = 1, 2, . . . ,K. These elements
can have curved faces if necessary to accurately approximate the geometry.

So that the equations can be approximated by a Legendre spectral element method, they are
re-written in computational space on the reference element E = [�1, 1]3. Each element is mapped

from the reference element with a mapping ~x = ~X

⇣
~⇠

⌘
, where ~X = Xx̂ + Y ŷ + Zx̂ and the hats

represent unit vectors. Similarly, the reference element space is represented by ~⇠ = ⇠⇠̂ + ⌘⌘̂ + ⇣⇣̂.

From the transformation, we define the three covariant basis vectors

(14) ~ai =
@ ~X

@⇠i
i = 1, 2, 3,

and (volume weighted) contravariant vectors, formally written as

(15) J~a
i = ~aj ⇥ ~aj , (i, j, k) cyclic,
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so for a block vector
$
g,

(24) |~rx · $
g =

1

J
~r⇠ ·

�
MT $

g
�
|.

Finally, if we define the contravariant block vector

(25)
$

f̃ = MT
$
f ,

the Navier-Stokes equations are compactly written as

(26)
|Jut + ~r⇠ ·

$
f =

1

Re
~r⇠ ·

$
fv (u,

$
q)|

|J $
q = M~r⇠u|

on the reference element.

The spectral element approximation is derived from weak forms of the equations (26). Let us
define the inner product on the reference element for state vectors

(27) hv,wiE =

Z 1

�1
uTvd⇠d⌘d⇣.

Similarly, for block vectors,

(28)
D$
f ,

$
g
E

E
=

Z 1

�1

3X

i=1

fTi gid⇠d⌘d⇣.

Since there should be no confusion in context, we will usually leave o↵ the subscript E. The weak
forms that serve as the starting point of the approximation are created by multiplying each equation
by an appropriate test function and integrating over the element. After integration by parts, the
weak form of (26) reads as

(29)

hJu,�i+
Z

@E
�T

⇢
$

f̃ � 1

Re

$

f̃v

�
· n̂ dS�

D$

f̃ , ~r⇠�
E
= � 1

Re

D$

f̃v, ~r�
E

D
J $
q,

$
 
E
=

Z

@E
uT

n
MT

$
 
o
· n̂ dS�

D
u, ~r ·

⇣
MT

$
 
⌘E

2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
can be written in terms of the Legendre basis functions, or equivalently in terms of the Lagrange
basis with nodes at the Legendre Gauss or Gauss-Lobatto points with nodal values Unml, n,m, l =
0, 1, . . . , N . We write the interpolation of a function g through those nodes as G = IN (g). Fluxes
are also approximated with polynomials of degree N , represented nodally, and computed from
the nodal values of the state and gradients. Derivatives are approximated by exact di↵erentiation
of the polynomial interpolants. Di↵erentiation and interpolation do not commute, however, so�
IN (g)

�0 6= IN (g0)[?],[?].
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2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
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hu, vi =
Z

E
uvdE
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2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
can be written in terms of the Legendre basis functions, or equivalently in terms of the Lagrange
basis with nodes at the Legendre Gauss or Gauss-Lobatto points with nodal values Unml, n,m, l =
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Continuous Function 
Approximation

Approximation by Polynomial 
Interpolant

`j(x) =
NY

i=0;i 6=j

x� xi

x� xj
= Lagrange Interpolating Polynomial of degree N

xj = Gauss Lobatto points

`j (xi) = �ij

U
⇣
~⇠
⌘
= IN (u) =

NX

i,j,k=0

u (⇠i, ⌘j , ⇣k) `i (⇠) `j (⌘) `k (⇣)

1

1

0

e

E

-1



Arbitrary High Order

74th Order

Acoustic Scattering from a Cylinder



Differentiation

@U

@⇠

����
nml

=
NX

i,j,k=0

uijk`
0
i (⇠n) `j (⌘m) `k (⇣l)

Differentiate interpolant, evaluate at quadrature points

=
NX

i=0

uijk`
0
i (⇠n) =

NX

i=0

uijkDni



Differentiation
Gradient

Divergence

rUijk =
NX

n=0

UnjkDin⇠̂ +
NX

n=0

UinkDjn⌘̂ +
NX

n=0

UijnDkn⇣̂

r · ~Fijk =
NX

n=0

F (⇠)
njkDin⇠ +

NX

n=0

F (⌘)
inkDjn +

NX

n=0

F (⇣)
ijnDkn



Integral Approximation

Z

E,N
gd⇠d⌘d⇣ ⌘

NX

i,j,k=0

gijkwijk,
(wijk = wiwjwk)

Integration over Volume
1

1

0

e

E

-1

Defines discrete inner product/Norm

hU, V iN ⌘
Z

E,N
UV d⇠d⌘d⇣ =

NX

i,j,k=0

UijkVijkwijk

Gauss-Lobatto Quadrature



Summation-By-Parts

+

Summation by Parts

Integration By Parts

(u, v⇠) =

Z

@E
UV |1⇠=�1 d⌘d⇣ � (u⇠, v)

(U, V⇠)N =

Z

@E,N
UV |1⇠=�1 d⌘d⇣ � (U⇠, V )N

Exactness of Gauss Quadrature implies



Summation by Parts
works in each direction

F1

F2

F3

hU⇠, V iN =

Z

N
UV |1⇠=�1 d⌘d⇣ � hU, V⇠iN

hU⌘, V iN =

Z

N
UV |1⌘=�1 d⇠d⇣ � hU, V⌘iN

hU⇣ , V iN =

Z

N
UV |1⇣=�1 d⇠d⇣ � hU, V⇣iN



Discrete Gauss Law
⇣
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⌘

N
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Z
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⌘
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Discrete Integral Calculus
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Z
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�
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Z

@E,N
r� · n̂V dS

�
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�
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�

�
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�
N
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Coupling-Advective
Riemann Solver
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Coupling - Diffusive
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where n̂ is the unit outward normal at the faces of E and

Z

@E,N

~F · n̂ dS =
NX

j,k=0

!jkF1 (⇠, ⌘j , ⇣k)|1⇠=�1 +
NX

i,k=0

!ikF2 (⇠i, ⌘, ⇣k)|1⌘=�1 +
NX

i,j=0

!ijF3 (⇠i, ⌘j , ⇣)|1⇣=�1

⌘
Z

N
F1d⌘d⇣|1⇠=�1 +

Z

N
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where the test functions are taken to be polynomials in PN .

Elements are coupled through the boundary terms by way of “numerical fluxes”, which we
represent as F⇤, F⇤
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Applying the discrete extended Gauss Law to equation for
$
Q gives the final weak form for the

DGSEM for the compressible Navier-Stokes equations
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The numerical advective flux F⇤ is usually computed with an approximate Riemann solver such
as the Lax-Friedrichs or Roe solvers. The coupling functions for the viscous terms include the
Bassi-Rebay (BR1), Bassi-Rebay-2 (BR2), Interior Penalty (IP), and others. The simplest is the
BR1 scheme, which chooses
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The approximation with an upwind Riemann solver for the advective flux and the BR1 scheme
for the viscous terms is usually stable in practice, at least for well-resolved flows. Examples include
two and three dimensional computations, e.g. [?],[?],[?]. Often, however, some kind of filtering
is applied to ensure stability [?] or the volume integrals are “overintegrated”, i.e., evaluated with
quadratures M > N [?],[?].
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The numerical advective flux F⇤ is usually computed with an approximate Riemann solver such
as the Lax-Friedrichs or Roe solvers. The coupling functions for the viscous terms include the
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for the viscous terms is usually stable in practice, at least for well-resolved flows. Examples include
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The spectral element approximation is derived from weak forms of the equations (26). Let us
define the inner product on the reference element for state vectors
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Since there should be no confusion in context, we will usually leave o↵ the subscript E. The weak
forms that serve as the starting point of the approximation are created by multiplying each equation
by an appropriate test function and integrating over the element. After integration by parts, the
weak form of (26) reads as
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2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
can be written in terms of the Legendre basis functions, or equivalently in terms of the Lagrange
basis with nodes at the Legendre Gauss or Gauss-Lobatto points with nodal values Unml, n,m, l =
0, 1, . . . , N . We write the interpolation of a function g through those nodes as G = IN (g). Fluxes
are also approximated with polynomials of degree N , represented nodally, and computed from
the nodal values of the state and gradients. Derivatives are approximated by exact di↵erentiation
of the polynomial interpolants. Di↵erentiation and interpolation do not commute, however, so�
IN (g)

�0 6= IN (g0)[?],[?].
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2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
can be written in terms of the Legendre basis functions, or equivalently in terms of the Lagrange
basis with nodes at the Legendre Gauss or Gauss-Lobatto points with nodal values Unml, n,m, l =
0, 1, . . . , N . We write the interpolation of a function g through those nodes as G = IN (g). Fluxes
are also approximated with polynomials of degree N , represented nodally, and computed from
the nodal values of the state and gradients. Derivatives are approximated by exact di↵erentiation
of the polynomial interpolants. Di↵erentiation and interpolation do not commute, however, so�
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Finally, if we define the contravariant block vector
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on the reference element.

The spectral element approximation is derived from weak forms of the equations (26). Let us
define the inner product on the reference element for state vectors
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Since there should be no confusion in context, we will usually leave o↵ the subscript E. The weak
forms that serve as the starting point of the approximation are created by multiplying each equation
by an appropriate test function and integrating over the element. After integration by parts, the
weak form of (26) reads as
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2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
can be written in terms of the Legendre basis functions, or equivalently in terms of the Lagrange
basis with nodes at the Legendre Gauss or Gauss-Lobatto points with nodal values Unml, n,m, l =
0, 1, . . . , N . We write the interpolation of a function g through those nodes as G = IN (g). Fluxes
are also approximated with polynomials of degree N , represented nodally, and computed from
the nodal values of the state and gradients. Derivatives are approximated by exact di↵erentiation
of the polynomial interpolants. Di↵erentiation and interpolation do not commute, however, so�
IN (g)

�0 6= IN (g0)[?],[?].
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2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
can be written in terms of the Legendre basis functions, or equivalently in terms of the Lagrange
basis with nodes at the Legendre Gauss or Gauss-Lobatto points with nodal values Unml, n,m, l =
0, 1, . . . , N . We write the interpolation of a function g through those nodes as G = IN (g). Fluxes
are also approximated with polynomials of degree N , represented nodally, and computed from
the nodal values of the state and gradients. Derivatives are approximated by exact di↵erentiation
of the polynomial interpolants. Di↵erentiation and interpolation do not commute, however, so�
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�0 6= IN (g0)[?],[?].
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2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
can be written in terms of the Legendre basis functions, or equivalently in terms of the Lagrange
basis with nodes at the Legendre Gauss or Gauss-Lobatto points with nodal values Unml, n,m, l =
0, 1, . . . , N . We write the interpolation of a function g through those nodes as G = IN (g). Fluxes
are also approximated with polynomials of degree N , represented nodally, and computed from
the nodal values of the state and gradients. Derivatives are approximated by exact di↵erentiation
of the polynomial interpolants. Di↵erentiation and interpolation do not commute, however, so�
IN (g)

�0 6= IN (g0)[?],[?].
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Finally, if we define the contravariant block vector
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The spectral element approximation is derived from weak forms of the equations (26). Let us
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2.1. The Spectral Element Approximation. To get spectral accuracy, we approximate the
state vector by polynomials of degree N , which we represent as U 2 PN (E). The polynomials
can be written in terms of the Legendre basis functions, or equivalently in terms of the Lagrange
basis with nodes at the Legendre Gauss or Gauss-Lobatto points with nodal values Unml, n,m, l =
0, 1, . . . , N . We write the interpolation of a function g through those nodes as G = IN (g). Fluxes
are also approximated with polynomials of degree N , represented nodally, and computed from
the nodal values of the state and gradients. Derivatives are approximated by exact di↵erentiation
of the polynomial interpolants. Di↵erentiation and interpolation do not commute, however, so�
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�0 6= IN (g0)[?],[?].

φ = S−1( )T S−1U

ψ ←BQ



Linear Energy Bound

Sufficient Condition for Stability:
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• 3D 
• Curved Hex Elements 
• Any Polynomial Order



BC Implementation

Dirichlet-Type Neumann-Type
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Typical Implementation
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≥0 Euler Part

Navier-Stokes Part≤0

Sufficient, but not necessary

(E)

(D)
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Examples
• Euler Inflow/Outlfow 
• Euler Free-Slip Wall 
• Navier-Stokes Inflow-Outflow 
• Navier-Stokes Wall



Linear-Symmetric Equations

U=

ρ
U
V
W
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⎢
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! = U ,V ,W( )⋅n̂

a2 +b2 = c2



Euler Inflow-Outflow
Free  

Stream
Free  

Stream
U=0 U=0

Specify Free Stream in Upwind Riemann Solver

!F* UL ,UR( )= !A⋅n̂U{ }{ }−
!A⋅n̂
2 U⎡⎣ ⎤⎦⎡⎣ ⎤⎦ = A

+UL + A−UR
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Euler Free-Slip Wall
Specify No 

Normal Velocity

(E)

! = (U ,V ,W )⋅n̂=0

UT F* − 12F ⋅n̂
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Euler Free-Slip Wall
v ⋅n̂( )ext ≡!ext = − v ⋅n̂( )int ≡ −!int
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Equal & Opposite in 
Upwind Riemann 

Solver

!F* UL ,UR( )= !A⋅n̂U{ }{ }−
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(E) c



Navier-Stokes Inflow
Free  

Stream
U=0

Specify Ext State
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Navier-Stokes Inflow
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Specify Solution
U* =0

Compute Flux  
from Interior
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Navier-Stokes Outflow
Free  

Stream
U=0
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Navier-Stokes Wall
Satisfy (E) through Riemann Solver
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Re-Write (D)
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Written out…



Navier-Stokes Wall
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Vanishes if

Isothermal Adiabatic

τ i
* = τ i U * =V * =W * =0

+

P* =0
∂P*

∂n
= ∂P
∂n

P* = P
∂P*
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=0



Not so fast…
A Guide to the Implementation of Boundary Conditions… AIAA 2014 

Use interior Solution
Viscous Flux from Interior:

???≥0
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Nonlinear: Entropy Bound
2 THE AUTHOR
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Sufficient Condition for Stability



TO DO
• Robin Conditions 
• Entropy BCs

Issues: Linear theory well understood

Linear Stability         Nonlinear Stability⇔
Entropy function not unique
A stable procedure with one entropy 
function may not be stable with another.



Summary
Have linear and entropy stability bounds to 

establish stability of DGSEM Approximations for

• Arbitrary 3D geometries 
• Curved elements 
• Any polynomial order

Bounds establish stable boundary procedures

Approach extends to, Shallow water,  MHD eqns., …

See Andrew’s talk


