Aggregation equations

F. Delarue, <u>B. Fabrèges</u>, H. Hivert, F. Lagoutière, K. Lebalch, S. Martel, N. Vauchelet

23th May 2018

Presentation

$$\begin{cases} \partial_t \rho = \operatorname{div} \left(\left(\nabla_x W * \rho \right) \rho \right), \quad t > 0, x \in \mathbb{R}^d \\ \rho(0, .) = \rho^{\operatorname{ini}} \end{cases}$$

- W is an interaction potential. For example, one can think of W = ||x||.
- ρ^{ini} is a probability measure.
- Possible Dirac masses creation.
- The velocity is not Lipschitz continuous, the characteristic method cannot be used.

Fillipov's Theory

Definition

Let $a = a(t, x) \in \mathbb{R}^d$ be a vector field defined in $[0, T] \times \mathbb{R}^d$, T > 0. A Filippov's characteristic X(t; x, s) stemmed from $x \in \mathbb{R}^d$ at time s is a continuous function $X(.; s, x) \in C([0, T], \mathbb{R}^d)$ such that $\partial_t X(t; s, x)$ exists a.e. $t \in [0, T]$ and satisfies : $\begin{array}{c} \partial_t X(t; s, x) \in \{\text{Convess}(a)(t, .)\} (X(t; s, x)), \quad a.e. \ t \in [0, T]; \\ X(s; x, s) = x \end{array}$

Remarks :

- {Convess(a)(t,.)} (x) = $\cap_{r>0} \cap_{N,\mu(N)=0} \operatorname{Conv} [a(t, B(x, r) \setminus N)]$
- We write X(t,x) = X(t;0,x)

Existence and uniqueness of a Filippov's characteristic

Theorem

Let T > 0 and assume that the vector field $a \in L^1_{loc}(\mathbb{R}; L^{\infty}(\mathbb{R}^d))$ satisfies a one-sided Lipschitz continuity (OSL) estimate, i.e. for all $x, y \in \mathbb{R}^d$ and $t \in [0, T]$,

$$(a(t,x)-a(t,y))\cdot(x-y)\leq \alpha(t)\|x-y\|^2, \quad \alpha\in L^1_{loc}([0,T]).$$

Then, there exists a unique Filippov characteristic X associated with that vector field a.

Application to the linear transport equation

Notations:

- $\mathcal{M}_b(\mathbb{R}^d)$ is the set of finite signed measure on \mathbb{R}^d .
- $C_0(\mathbb{R}^d)$ is the set of continuous functions on \mathbb{R}^d that tend to 0 at ∞ .

Theorem (Poupaud & Rascle)

Let T > 0 and $a \in L^1_{loc}(\mathbb{R}; L^{\infty}(\mathbb{R}^d))$ be a vector field satisfying an OSL estimate. Then, for all $u_0 \in \mathcal{M}_b(\mathbb{R}^d)$, there exists a unique measure $u \in C([0, T], \mathcal{M}_b(\mathbb{R}^d))$ solution to the conservative transport equation :

$$\partial_t u + div(au) = 0,$$

 $u(t = 0, .) = u_0,$

such that $u(t) = X(t)_{\#}u_0$, where X is the unique Filippov's characteristic, i.e. for all ϕ in $C_0(\mathbb{R}^d)$:

$$\int_{\mathbb{R}^d} \phi(x) u(t, dx) = \int_{\mathbb{R}^d} \phi(X(t, x)) u_0(dx), \quad t \in [0, T].$$

Back to the aggregation equation

$$\begin{cases} \partial_t \rho = \operatorname{div}\left(\left(\nabla_x W * \rho\right)\rho\right), \quad t > 0, x \in \mathbb{R}^d\\ \rho(0, .) = \rho^{\operatorname{ini}} \end{cases}$$

• $ho^{\mathrm{ini}} \in \mathcal{P}_2(\mathbb{R}^d)$, where

$$\mathcal{P}_2(\mathbb{R}^d) = \left\{ \mu \text{ positive measure}, \mu(\mathbb{R}^d) = 1, \int |x|^2 \mu(dx) < \infty
ight\},$$

endowed with the Wasserstein distance,

$$d_W(\mu,\nu) = \inf_{\gamma \in \Gamma(\mu,\nu)} \left(\int_{\mathbb{R}^d \times \mathbb{R}^d} |y-x|^2 \gamma(dx,dy) \right)^{1/2}$$

• W satisfies the following properties:

(A0)
$$W(x) = W(-x)$$
, and $W(0) = 0$;
(A1) W is λ -convex, $\lambda \in \mathbb{R}$, i.e. $W(x) - \frac{\lambda}{2}|x|^2$ is convex;
(A2) $W \in C^1(\mathbb{R}^d \setminus \{0\})$;
(A3) W is Lipschitz-continuous.

Definition of the velocity field

For $\rho \in C([0, T], \mathcal{P}_2(\mathbb{R}^d))$, we define the velocity field \hat{a}_{ρ} with:

$$\hat{a}_{\rho}(t,x) = -\int_{y\neq x} \nabla W(x-y)\rho(t,dy).$$

We extend the kernel:

$$\widehat{\nabla W}(x) = \begin{cases} \nabla W(x), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

so that:

$$\hat{a}_{
ho}(t,x) = -\int_{\mathbb{R}^d}\widehat{
abla W}(x-y)
ho(t,dy).$$

Existence and uniqueness of a solution

Theorem (Carillo, James, Lagoutière, Vauchelet)

Let W be a potential satisfying the conditions (A0) - (A3) and ρ^{ini} a measure in $\mathcal{P}_2(\mathbb{R}^d)$. Then,

• there exists a unique solution $\rho \in C([0, T], \mathcal{P}_2(\mathbb{R}^d))$, satisfying, in the sense of distribution, the aggregation equation:

$$\left\{ egin{array}{l} \partial_t
ho + {
m div} \left(\hat{a}_
ho
ho
ight) = 0, \quad t > 0, x \in \mathbb{R}^d \
ho(0,.) =
ho^{{
m ini}}. \end{array}
ight.$$

2 This solution ρ may be represented as the family of pushforward measures $(\rho(t) = Z_{\rho}(t, .)_{\#}\rho^{ini})_{t\geq 0}$, where $(Z_{\rho}(t, .))_{t\geq 0}$ is the unique Filippov characteristic flow associated to the velocity field \hat{a}_{ρ} .

• If ρ_1 et ρ_2 are two solutions with respective initial conditions ρ_1^{ini} and ρ_2^{ini} in $\mathcal{P}_2(\mathbb{R}^d)$, then:

$$d_W(
ho_1(t),
ho_2(t))\leq e^{|\lambda|t}d_W(
ho_1^{ini},
ho_2^{ini}),\quad t\geq 0.$$

Existence: sketch of the proof

- The velocity \hat{a}_{ρ} satisfies an OSL estimate
 - *W* is λ -convex (condition **A1**):

$$(
abla W(x) -
abla W(y)) \cdot (x - y) \geq \lambda \|x - y\|^2, \quad x, y \in \mathbb{R}^d \setminus \{0\}$$

▶ ∇W is odd (condition **A0**). Taking y = -x, the previous inequality holds for $\widehat{\nabla W}$:

$$\left(\widehat{
abla W}(x) - \widehat{
abla W}(y)
ight) \cdot (x-y) \geq \lambda \|x-y\|^2, \quad x,y \in \mathbb{R}^d$$

By definition of the velocity, we have:

$$\hat{a}_{
ho}(x) - \hat{a}_{
ho}(y) = -\int_{\mathbb{R}^d} \left(\widehat{
abla W}(x-z) - \widehat{
abla W}(y-z)\right)
ho(dz)$$

• Therefore $(\rho(\mathbb{R}^d) = 1)$:

$$(\hat{a}_
ho(x)-\hat{a}_
ho(y))\cdot(x-y)\leq -\lambda\|x-y\|^2$$

Existence: sketch of the proof

- The velocity $\hat{a}_{
 ho}$ satisfies an OSL estimate
- We consider the case of a finite sum of Dirac masses:
 - Let $\rho^{\text{ini},N} = \sum_{i=1}^{N} m_i \delta_{x_i}, \quad \sum_{i=1}^{N} m_i = 1$
 - We look for a solution given by $\rho^{N}(t,x) = \sum_{i=1}^{N} m_i \delta_{x_i(t)}$
 - We compute the associated velocity â_{ρN}. It satisfies an OSL estimate so that the associated Filippov's characteristic X^N exist and are unique. The Dirac masses follow these characteristics.
 - Next, we define $\tilde{\rho}^N = \hat{X}^N{}_{\#}\rho^{\text{ini},N}$. By construction, this measure satisfies the equation:

$$\partial_t \tilde{\rho}^N + \operatorname{div}\left(\hat{a}_{\rho^N} \tilde{\rho}^N\right) = 0.$$

• We proove that $\hat{a}_{\tilde{
ho}^N} = \hat{a}_{
ho^N}$

Existence: sketch of the proof

- The velocity \hat{a}_{ρ} satisfies an OSL estimate
- We consider the case of a finite sum of Dirac masses:
- The result is extended to the general case by passing to the limit. We consider an initial condition ρⁱⁿⁱ that we approximate by a finite sum of Dirac masses ρ^{ini,N} such that d_W(ρ^{ini,N}, ρⁱⁿⁱ) → 0.

Discretization with cartesian meshes

- We denote by Δt the time step and by Δx_i the space step along the i-th direction, i = 1,..., d.
- For *J* ∈ ℤ^{*d*}, we denote by *x_J* the center of the cell *J*.
- For $\rho^{\text{ini}} \in \mathcal{P}_2(\mathbb{R}^d)$, we define, for $J \in \mathbb{Z}^d$, the initial condition in the following way:

$$\rho_J^0 = \int_{C_J} \rho^{\rm ini}(dx) \ge 0.$$



An upwind scheme

We consider the following upwind scheme:

$$\rho_J^{n+1} = \rho_J^n - \sum_{i=1}^d \frac{\Delta t}{\Delta x_i} \left((a_{iJ}^n)^+ \rho_J^n + (a_{iJ}^n)^- \rho_J^n - (a_{iJ+e_i}^n)^- \rho_{J+e_i}^n - (a_{iJ-e_i}^n)^+ \rho_{J-e_i}^n \right)$$

where,

$$(a)^+ = \max\{0, a\}, \qquad (a)^- = \max\{0, -a\}$$

The discrete velocity is defined by:

$$a_{iJ}^n = -\sum_{K\in\mathbb{Z}^d}
ho_K^n\widehat{\partial_{x_i}W}(x_J-x_K),$$

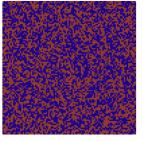
Properties of the scheme

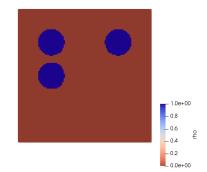
- Mass conservation.
- Bounded velocity: $|a_{iJ}^n| \leq w_{\infty}$, where $|\widehat{\nabla W}| \leq w_{\infty}$.
- Positivity: by induction, assuming the CFL w_∞ ∑^d_{i=1} Δt/Δx_i ≤ 1 and writing the scheme as:

$$\rho_J^{n+1} = \rho_J^n \left[1 - \sum_{i=1}^d \frac{\Delta t}{\Delta x_i} |a_{iJ}^n| \right] + \sum_{i=1}^d \frac{\Delta t}{\Delta x_i} \rho_{J+e_i}^n (a_{iJ+e_i}^n)^- + \sum_{i=1}^d \frac{\Delta t}{\Delta x_i} \rho_{J-e_i}^n (a_{iJ-e_i}^n)^+$$

• Conservation of the center of mass.

Some examples





Convergence order of the scheme

Theorem (Delarue, Lagoutière, Vauchelet)

For $\rho^{ini} \in \mathcal{P}_2(\mathbb{R}^d)$, we denote by $\rho = (\rho(t))_{t\geq 0}$ the unique measure solution to the aggregation equation. Assume that W satisfies **(A0)-(A3)** and that the CFL condition, $w_{\infty} \sum_{i=1}^{d} \frac{\Delta t}{\Delta x_i} \leq 1$, holds. Defining $((\rho_J^n)_{J\in\mathbb{R}^d})_{n\in\mathbb{N}}$ with the upwind scheme and

 $\rho_{\Delta x}^{n}$ the associated measure,

$$\rho_{\Delta x}^n = \sum_{J \in \mathbb{Z}^d} \rho_J^n \delta_{x_J},$$

there exists a constant C > 0, depending only on λ , w_{∞} and d, such that, for all $n \in \mathbb{N}$,

$$d_W(\rho(t^n), \rho_{\Delta x}^n) \leq C e^{|\lambda|(1+\Delta t)t^n} \left(\sqrt{t^n \Delta x} + \Delta x\right).$$

Toy problem

We consider the following initial condition ρ^{ini} :

$$\rho^{\text{ini}} = \frac{1}{2}\delta_{x_{-}(0)} + \frac{1}{2}\delta_{x_{+}(0)},$$

where $x_{-}(0) = -1/2$ et $x_{+}(0) = 1/2$. The exact solution is of the form:

$$\rho(t,x) = \frac{1}{2}\delta_{x_{-}(t)} + \frac{1}{2}\delta_{x_{+}(t)},$$

for the pointy potential W = ||x||:

$$\begin{cases} x_{-}(t) = x_{-}(0) + \frac{1}{2}t, \\ x_{+}(t) = x_{+}(0) - \frac{1}{2}t, \end{cases}$$

for t < 1 and x_{-} and x_{+} are glued together at 0 for $t \ge 1$.

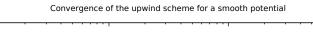
for the smooth potential $W = \frac{1}{2} ||x||^2$:

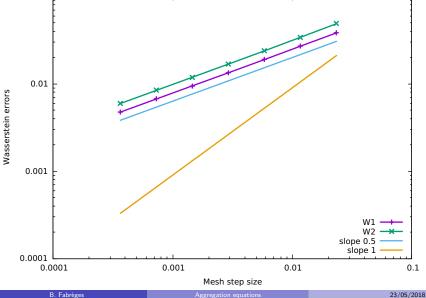
$$\begin{cases} x_{-}(t) = x_{-}(0)e^{-t}, \\ x_{+}(t) = x_{+}(0)e^{-t}, \end{cases}$$

for all t > 0.

Convergence results - smooth potential

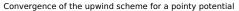
0.1

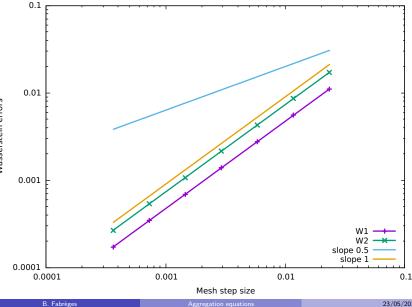




05/2018 16 / 27

Convergence results - pointy potential





Wasserstein errors

Schemes for non-cartesian meshes

We consider two different schemes that can both be written as:

$$\rho_{K}^{n+1} = \rho_{K}^{n} - \frac{\Delta t}{|\mathcal{K}|} \sum_{L \in \mathcal{V}(\mathcal{K})} |L \cap \mathcal{K}| g(\rho_{K}^{n}, \rho_{L}^{n}, \nu_{\mathcal{K}L}).$$

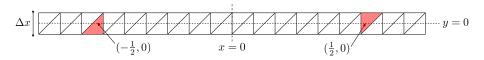
• Lax-Friedrichs:

$$g(\rho_K^n,\rho_L^n,\nu_{KL})=\frac{1}{2}\left(\rho_K^n a_K^n\cdot\nu_{KL}+\rho_L^n a_L^n\cdot\nu_{KL}+a_\infty(\rho_L^n-\rho_K^n)\right).$$

• Upwind:

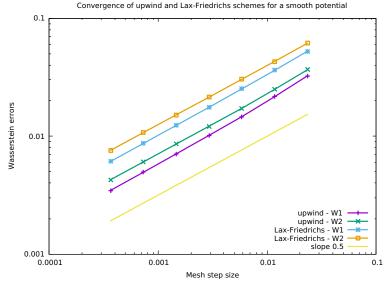
$$g(\rho_K^n, \rho_L^n, \nu_{KL}) = \rho_K^n (a_K^n \cdot \nu_{KL})^+ - \rho_L^n (a_L^n \cdot \nu_{KL})^-.$$

The toy problem in two dimensions



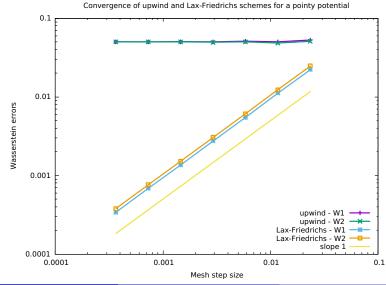
- Computation of the Wasserstein distances for both schemes (Lax-Friedrichs and upwind).
- Convergence test for the smooth and the pointy potential.
- Height of the domain is Δx , where Δx is the mesh step size.
- The exact solutions are the same as in the one dimensional setting.

Convergence results - non-cartesian meshes, smooth potential



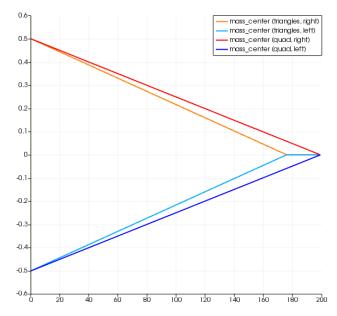
B. Fabrèges

Convergence results - non-cartesian meshes, pointy potential



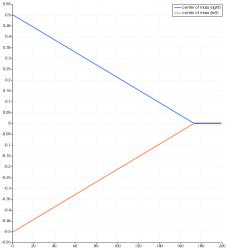
B. Fabrèges

Position of the left and right center of mass in time



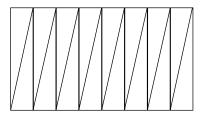
Toy problem with a horizontaly stretched mesh

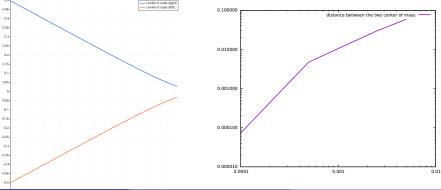
- We use the potential W(x) = ||x||.
- The evolution in time of the position of the left and right center of mass are represented
- The mesh is streched horizontaly.



Toy problem with a verticaly stretched mesh

- Again, we use the potential W(x) = ||x||.
- The mesh is streched verticaly.



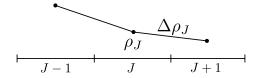


B. Fabrèges

An order 2 Lax-Friedrichs type scheme

We reconstruct $(a\rho)_J$ and ρ_J in an affine way, on each cell, using a minmod.

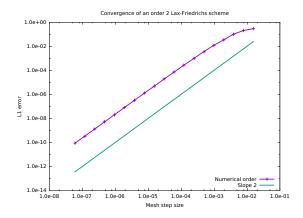
$$\begin{split} \rho_{J}^{n+1} &= \rho_{J}^{n} - \frac{\Delta t}{2\Delta x} \left[\left(a\rho_{J}^{n} + \frac{\Delta a\rho_{J}^{n}}{2} + a\rho_{J+1}^{n} - \frac{\Delta a\rho_{J+1}^{n}}{2} \right) \\ &- \left(a\rho_{J-1}^{n} + \frac{\Delta a\rho_{J-1}^{n}}{2} + a\rho_{J}^{n} - \frac{\Delta a\rho_{J}^{n}}{2} \right) \right] \\ &+ \frac{c\Delta t}{2\Delta x} \left[\left(\rho_{J+1}^{n} - \frac{\Delta \rho_{J+1}^{n}}{2} - \left(\rho_{J}^{n} + \frac{\Delta \rho_{J}^{n}}{2} \right) \right) \\ &- \left(\rho_{J}^{n} - \frac{\Delta \rho_{J}^{n}}{2} - \left(\rho_{J-1}^{n} + \frac{\Delta \rho_{J-1}^{n}}{2} \right) \right) \right] \end{split}$$



Order with smooth data

The domain is the interval [0,1] and we choose:

- $\rho^{\text{ini}}(x) = e^{-40(x-0.25)^2} + e^{-40(x-0.75)^2}$ • $W(x) = ||x||^2$
- Mesh step sizes: $\Delta x = 2^{-k}, k \in \{6, \dots, 24\}$
- L^1 error.



Order for the one dimensional toy problem Mesh step sizes: $\Delta x = 2^{-k}, k \in \{6, ..., 19\}$

