Aggregation equations

F. Delarue, B. Fabreges, H. Hivert, F. Lagoutiére, K. Lebalch, S. Martel,
N. Vauchelet

23th May 2018

B. Fabréges Aggregation equations 23/05/2018 1/27



Presentation

{ Aep = div (VW % p)p), t>0,xeR?
,0(0, ) — pini

W is an interaction potential. For example, one can think of W = ||x||.
p™ is a probability measure.
Possible Dirac masses creation.

The velocity is not Lipschitz continuous, the characteristic method cannot be
used.
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Fillipov's Theory

Definition

Let a = a(t, x) € R? be a vector field defined in [0, T] x R, T > 0. A Filippov's
characteristic X(t; x, s) stemmed from x € RY at time s is a continuous function
X(.;s,x) € C([0, T],RY) such that 9;X(t; s, x) exists a.e. t € [0, T] and satisfies

O X(t; s, x) € {Convess(a)(t,.)} (X(t;s,x)), a.e. te]0,T];

X(s;x,s) = x

Remarks :
o {Convess(a)(t,.)} (x) = Nr>0 N, u(nvy=o Conv [a(t, B(x, r)\N)]
o We write X(t,x) = X(t;0,x)
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Existence and uniqueness of a Filippov's characteristic

Theorem

Let T > 0 and assume that the vector field a € L} (R; L>°(RY)) satisfies a
one-sided Lipschitz continuity (OSL) estimate, i.e. for all x,y € R? and t € [0, T],

(a(t,x) = a(t,y)) - (x —y) S a(t)x = y[I?, @ € L, ([0, T))-

Then, there exists a unique Filippov characteristic X associated with that vector
field a.
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Application to the linear transport equation
Notations:
o M,(RY) is the set of finite signed measure on R?.

@ Co(R9) is the set of continuous functions on R? that tend to 0 at co.

Theorem (Poupaud & Rascle)

Let T >0 and a € L} (R; L(R?)) be a vector field satisfying an OSL estimate.
Then, for all ug € Mp(RY), there exists a unique measure u € C([0, T], Mp(R%))
solution to the conservative transport equation :

Oru + div(au) =0,
u(t=0,.) = uo,

such that u(t) = X(t)xuo, where X is the unique Filippov's characteristic, i.e. for
all ¢ in Co(RY):

B(x)u(t, dx) = / (X(t,x))uo(dx), te[0,T]

W
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Back to the aggregation equation

{ Oep = div (VW % p)p), t>0,xeR?
p(O,.)Zpini

o pitl € Py(RY), where

Po(RY) = {;L positive measure, u(RY) = 1,/|x|2u(dx) < oo} ,

endowed with the Wasserstein distance,

1/2
)= ot ([ = xPatoe)
RY xRI

vEr(p,v)

@ W satisfies the following properties:
(A0) W(x) = W(—x), and W(0) = 0;
(A1) W is A-convex, A € R, i.e. W(x) — %|x|2 is convex;
(A2) W e CHRN{0});
(A3) W is Lipschitz-continuous.
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Definition of the velocity field

For p € C([0, T], P»(R?)), we define the velocity field 4, with:

é\P(ta X) = - » VVV(X - y)p(t7 dy)
Y#X

We extend the kernel:

—— VW(x), 0,
VW(x) = X
0, x=0
so that:
ap(t,x) =— » VW(x — y)p(t,dy).
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Existence and uniqueness of a solution

Theorem (Carillo, James, Lagoutiére, Vauchelet)

Let W be a potential satisfying the conditions (AQ) - (A3) and p™ a measure in
Pa(RY). Then,

Q there exists a unique solution p € C([0, T], P2(RY)), satisfying, in the sense
of distribution, the aggregation equation:

p(o’ ) — pini.

@ This solution p may _be represented as the family of pushforward measures
(p(t) = Z,(t, . )pp™) o Where (Z,(t,.)),~ is the unique Filippov
characteristic flow associated to the velocity field &,.

{atp+div(§pp) =0, t>0,xeR?

@ If p1 et py are two solutions with respective initial conditions pi™* and pi* in
Pa2(RY), then:

dw (p1(t), pa(t)) < eMdw (pi™, p5), t>0.
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Existence: sketch of the proof

@ The velocity 4, satisfies an OSL estimate
» W is A-convex (condition Al):

(VW(x) = VW(y)) - (x = y) 2 Allx = yIP’,  x,y € R7\{0}

» VW is odd (condition AQ). Taking y = —x, the previous inequality holds for
VW :

(YW(x) = VW) - (x =) = Allx =yl x,y € R?
> By definition of the velocity, we have:
8,0~ aly) == | (FW(x—2) - SW(y - 2)) pla2)
R
» Therefore (p(R?) = 1):

(30(x) = 3() - (x —y) < =Alx = y|?
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Existence: sketch of the proof

@ The velocity 4, satisfies an OSL estimate
@ We consider the case of a finite sum of Dirac masses:
ini N N

> Let p N =3V mis, S omi=1

» We look for a solution given by p"(t,x) = Z,N:1 m;dy,(t)

» We compute the associated velocity 4,v. It satisfies an OSL estimate so that
the associated Filippov's characteristic X" exist and are unique. The Dirac
masses follow these characteristics.

» Next, we define gV = XV, p""N. By construction, this measure satisfies the
equation:

~N . ~ ~N
O:p" +div (apr ) =0.

» We proove that ;v = a,n
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Existence: sketch of the proof

@ The velocity 4, satisfies an OSL estimate
@ We consider the case of a finite sum of Dirac masses:

@ The result is extended to the general case by passing to the limit. We
consider an initial condition p™ that we approximate by a finite sum of Dirac
masses p""N such that dy (™, pini) — 0.
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Discretization with cartesian meshes

o We denote by At the time step and
by Ax; the space step along the i-th
direction, i =1,...,d.

e For J € Z9, we denote by x, the
center of the cell J.

e For piti € Po(RY), we define, for °
d L. " . .4
J € Z9, the initial condition in the /
following way: Cr
- Axy
0= [ o =0
G 1
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An upwind scheme

We consider the following upwind scheme:

d
At _ _
n+1 - pJ Z A_ iJ 3 + (af]) pg - (a?J+e,-) p.'}+e; - (al{?j—ei)+p7[—e,—)
=1

where,
(a)" = max{0, a}, (a)” = max{0, —a}
The discrete velocity is defined by:

n n —_—
a;; = — Z pK8X[W(XJ - XK)7
Kezd
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Properties of the scheme

@ Mass conservation.
@ Bounded velocity: |a};| < ws, where [VW| < wq.

@ Positivity: by induction, assuming the CFL w,, 27:1 AA—; < 1 and writing the
scheme as:

d
At
Pt =0 [1 -3 Ax l20]
i=1 !

@ Conservation of the center of mass.

d d
At _ At
+; AX,' p3+ef(a:(IJ+ei) J’_; AX,' pg—e;(alrjj—ei)jL
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Some examples

1.0e+00 1.0e+00
I:D‘a I:Dﬁ
—06 —06
£ £
—04 —04
—02 —02
B goer00 B goer00
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Convergence order of the scheme

Theorem (Delarue, Lagoutiére, Vauchelet)

For p™ € P»(R9), we denote by p = (p(t))e>0 the unique measure solution to
the aggregation equation.

Assume that W satisfies (A0)-(A3) and that the CFL condition,

Woo 2?21 AL <1, holds. Defining ((p}) jez+)nen with the upwind scheme and
PAy the associated measure,

PAx = Z P0x,5

Jezd

there exists a constant C > 0, depending only on \, ws, and d, such that, for all
neN,

dw (p(t"), pa,) < CelMFane (\/ tnAx + Ax) :
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Toy problem
We consider the following initial condition p'™i:

ini 1 1
p= §5x,(0) + §5><+(0)7

where x_(0) = —1/2 et x;(0) = 1/2. The exact solution is of the form:

1

1
p(t,x) = §§x_(t) + §5x+(t)7

for the pointy potential W = ||x||:

1 for the smooth potential W = 1||x||%:
x_(t) = x_(0) + St
1 {x_(t) =x_(0)e" ",

x-(t) = x+(0) — 5 x;.(t) = x4(0)e™",

for t < 1 and x_ and x; are glued| forall t > 0.
together at 0 for ¢t > 1.
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Convergence results - smooth potential

Convergence of the upwind scheme for a smooth potential
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Convergence results - pointy potential

Convergence of the upwind scheme for a pointy potential
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Schemes for non-cartesian meshes

We consider two different schemes that can both be written as:

At
pitt = i — K| > LN Klg(pk, o, vie)-
LeV(K)

@ Lax-Friedrichs:
1
g(pic pL,vie) = 5 (Pkak - viL + pial - viL + aco(pf = pk)) -

e Upwind:
g(pk, plvi) = pi(ak - vie)t — pl(al - vke) ™.

B. Fabréges Aggregation equations 23/05/2018 18 / 27



The toy problem in two dimensions

(=3:0) z=0 (3:0)

Computation of the Wasserstein distances for both schemes (Lax-Friedrichs
and upwind).

Convergence test for the smooth and the pointy potential.

Height of the domain is Ax, where Ax is the mesh step size.

The exact solutions are the same as in the one dimensional setting.
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Convergence results - non-cartesian meshes, smooth
potential

Convergence of upwind and Lax-Friedrichs schemes for a smooth potential
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Convergence results - non-cartesian meshes, pointy
potential

Convergence of upwind and Lax-Friedrichs schemes for a pointy potential
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Position of the left and right center of mass in time
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Toy problem with a horizontaly stretched mesh

o We use the potential W(x) = ||x||. ..

@ The evolution in time of the
position of the left and right center
of mass are represented

@ The mesh is streched horizontaly. o

— 1 —1 — 17
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Toy problem with a verticaly stretched mesh

@ Again, we use the potential
W(x) = [Ix].-
@ The mesh is streched verticaly.

05
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An order 2 Lax-Friedrichs type scheme

We reconstruct (ap); and p, in an affine way, on each cell, using a minmod.

n+l _ n AapJ+1

At [(,  Dap)
Py =PI T 5A% apy;+ —— 5 +apf1 —
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Order with smooth data

The domain is the interval [0, 1] and we choose:
° pini(x) — e—40(x—0.25)° + e—40(x—0.75)?

o W(x) = x|

o Mesh step sizes: Ax =27k ke {6,...,24}

o L error.
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Order for the one dimensional toy problem
Mesh step sizes: Ax =275 k € {6,...,19}

Convergence of an order 2 Lax-Friedrichs scheme with non-smooth initial data
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