

The Silver SHARK workshop

Limiting-Free Discontinuity Capturing Schemes for Compressible Multi-components Flow

Xi DENG, Bin Xie, Raphael Loubere, Feng Xiao

Department of Energy Sciences Interdisciplinary Graduate School of Science and Engineering

Outlines

Section I. Introduction and Research Purpose

Section II. Formulation of Boundary Variation Diminishing Algorithm

Section III. Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

Section IV. Implementation on Compressiblemultiphase flow

Section V. Works in progress

1.1Rearch Background Flow Structures in Compressible Wiulti-components Flows

Smooth Solutions

- 1. Acoustic Waves
- 2. Turbulence
- 3. Vortex Dominated Flow
- 4. **Rarefaction Fan**

Vortex-dominated flow near helicopter (Advanced Dynamics Inc.)

Discontinuous Solutions

- 1. Shock Waves
- 2. Contact Discontinuities
- **3.** Material Interface
- 4. Detonation Front

Numerical schemes should be able to solve both smooth and discontinuous solutions

F/A18-F in transonic flight (NASA Gallery)

Section I Section II Section III Section IV Section V

The so-called high order schemes fail in some cases

2D Riemann Problem: Kelvin-Helmholtz instability

1.1 Research Background

The so-called high order schemes fail in some cases

Stiff *C-J* detonation waves

6

1.2 Research Purpose

New Schemes are Necessary

1. How to reduce numerical dissipation besides using high order schemes?

-Boundary variation diminishing (BVD) algorithm

2. How to deal with discontinuous solutions?

-Non-polynomial based reconstruction

Section II. Formulation of Boundary Variation Diminishing Algorithm

2.1 Formulation of Boundary Variation Diminishing Algorithm

Finite Volume Method

$$\frac{\partial q}{\partial t} + \frac{\partial f(q)}{\partial x} = 0$$

$$\bar{q}_i(t) \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} q(x,t) \, dx$$

$$\frac{\partial \bar{q}(t)}{\partial t} = -\frac{1}{\Delta x} (\tilde{f}_{i+1/2} - \tilde{f}_{i-1/2}),$$

 $\tilde{f}_{i+1/2} = f_{i+1/2}^{\text{Riemann}}(q_{i+1/2}^L, q_{i+1/2}^R)$ Lots of schemes have been made so far to reconstruct values at cell faces

$$f_{i+1/2}^{\text{Riemann}}(q_{i+1/2}^L, q_{i+1/2}^R) = \frac{1}{2} \left(f(q_{i+1/2}^L) + f(q_{i+1/2}^R) \right) - \frac{|a_{i+1/2}|}{2} \left(q_{i+1/2}^R - q_{i+1/2}^L \right),$$

Numerical dissipation term

Section I Section II Section V

2.1 Formulation of Boundary Variation Diminishing Algorithm

Reconstruction Processes

$$f_{i+1/2}^{\text{Riemann}}(q_{i+1/2}^L, q_{i+1/2}^R) = \frac{1}{2} \left(f(q_{i+1/2}^L) + f(q_{i+1/2}^R) \right) - \frac{|a_{i+1/2}|}{2} \left(q_{i+1/2}^R - q_{i+1/2}^L \right) \right),$$

MUSCL/Piecewise Constant (PC)

High order reconstruction

 $q_{i+1/2}^{R}$

Higher order solution can minimize the variations at cell boundaries if solution is smooth

However, this may not be true for discontinuities.

A non-polynomial reconstruction function will be considered to represent discontinuities

THINC Reconstruction

$$\tilde{q}_i(x)^{\text{THINC}} = q_{min} + \frac{q_{max}}{2} \left(1 + \theta \tanh\left(\beta \left(\frac{x - x_{i-1/2}}{x_{i+1/2} - x_{i-1/2}} - \tilde{x}_i\right)\right) \right)$$

where $q_{max} = max(q_{i-1}, q_{i+1}) - q_{min}$ and $\theta = sgn(q_{i+1} - q_{i-1})$. The jump thickness is controlled by the parameter β .

Section I Section II Section V

2.1 Formulation of Boundary Variation Diminishing Algorithm

BVD algorithm

The reconstruction function (high order or jump-like THINC function) is determined through minimizing boundary variations. Thus numerical dissipation can be reduced.

$$f_{i+1/2}^{\text{Riemann}}(q_{i+1/2}^L, q_{i+1/2}^R) = \frac{1}{2} \left(f(q_{i+1/2}^L) + f(q_{i+1/2}^R) \right) - \frac{|a_{i+1/2}|}{2} \left(q_{i+1/2}^R - q_{i+1/2}^L \right) \right),$$

Section I Section II Section III

2.1 Formulation of Boundary Variation Diminishing Algorithm

Examples of BVD algorithms

Using polynomial-based schemes (like TVD, or WENO) and THINC as two candidate reconstructions

1. Compute the TBVs of the target cell i using WENO and THINC and its two neighboring cells respectively,

$$TBV_{i}^{W} = |q_{i-1}^{W}(x_{i-\frac{1}{2}}) - q_{i}^{W}(x_{i-\frac{1}{2}})| + |q_{i}^{W}(x_{i+\frac{1}{2}}) - q_{i+1}^{W}(x_{i+\frac{1}{2}})|$$
$$TBV_{i}^{T} = |q_{i-1}^{T}(x_{i-\frac{1}{2}}) - q_{i}^{T}(x_{i-\frac{1}{2}})| + |q_{i}^{T}(x_{i+\frac{1}{2}}) - q_{i+1}^{T}(x_{i+\frac{1}{2}})|.$$

2. Choose the reconstruction function for cell i by

$$q_i(x) = \begin{cases} q_i^T & \text{if } TBV_i^T < TBV_i^W, \\ q_i^W & \text{otherwise} \end{cases}$$

2.1 Formulation of Boundary Variation Diminishing Algorithm

The proposed scheme achieves that for smooth solution high order reconstruction will be used while for discontinuities THINC function will be applied.

Section III. Limiting-Free Discontinuitycapturing schemes: Adaptive THINC-BVD

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

Adaptive THINC-BVD scheme

$$TBV_{i}^{s} = |q_{i-1/2}^{L,s} - q_{i-1/2}^{R,s}| + |q_{i+1/2}^{L,s} - q_{i+1/2}^{R,s}|,$$

$$TBV_{i}^{l} = |q_{i-1/2}^{L,l} - q_{i-1/2}^{R,l}| + |q_{i+1/2}^{L,l} - q_{i+1/2}^{R,l}|.$$

$$\tilde{q}_{i}^{f}(x) = \begin{cases} \tilde{q}_{i}^{s}(x) & \text{if } TBV_{i}^{s} < TBV_{i}^{l} \\ \tilde{q}_{i}^{l}(x) & \text{otherwise} \end{cases}$$

$$x_{i-\frac{1}{2}}$$

Very simple scheme

L I

a (v)THINCL

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

What's the performance of the new scheme

Schemes	Mesh	L_1 errors	L_1 order	L_{∞} errors	L_{∞} order
Minmod	40	4.547×10^{-2}		1.025×10^{-1}	
	80	1.337×10^{-2}	1.77	4.347×10^{-2}	1.23
	160	3.812×10^{-3}	1.81	1.795×10^{-2}	1.27
	320	1.031×10^{-3}	1.89	7.298×10^{-3}	1.30
Van Leer	40	2.101×10^{-2}		5.151×10^{-2}	
	80	5.568×10^{-3}	1.92	1.952×10^{-2}	1.40
	160	1.408×10^{-3}	1.98	7.302×10^{-3}	1.42
	320	3.423×10^{-4}	2.04	2.715×10^{-3}	1.43
Superbee	40	2.134×10^{-2}		6.087×10^{-2}	
	80	9.024×10^{-3}	1.24	3.443×10^{-2}	0.82
	160	2.642×10^{-3}	1.77	1.487×10^{-2}	1.21
	320	7.159×10^{-4}	1.88	6.651×10^{-3}	1.16
THINC-BVD	40	1.518×10^{-2}		4.721×10^{-2}	
	80	3.766×10^{-3}	2.01	1.821×10^{-2}	1.37
	160	8.969×10^{-4}	2.07	6.866×10^{-3}	1.41
	320	2.198×10^{-4}	2.03	2.545×10^{-3}	1.43
WENO	40	4.473×10^{-5}		8.799×10^{-5}	
	80	1.396×10^{-6}	5.00	2.822×10^{-6}	4.96
	160	4.361×10^{-8}	5.00	$8.487 imes 10^{-8}$	5.06
	320	1.361×10^{-9}	5.00	2.544×10^{-9}	5.06

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

What's the performance of the new scheme

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

21

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

What's the performance of the new scheme

Numerical results: 600x600

Adaptive THINC-BVD

 $5^{\text{th}} WENO$

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

What's the performance of the new scheme

(Jung, Adv Comput Math, 2017)

1200 x 1200

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

What's the performance of the new scheme

THINC-BVD

$5^{\text{th}}\,WENO$

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

What's the performance of the new scheme

 5^{th} WENO

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

A strong detonation

27

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD Interaction between a detonation wave and an oscillatory profile

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

2D detonation waves

CPU time

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

Extension to unstructured grids

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

3.1 Limiting-Free Discontinuity-capturing schemes: Adaptive THINC-BVD

Extension to unstructured grids 1.0 Triangular Mesh: h=1/160 3nd WENO (C. Hu, *JCP*, 1999)^{0.5} Mesh is fined to h=1/160 around corner 0.0 0.5 2.5 1 0.8 0.6 THINC 0.4 0.2 ⁰ò 0.5 1.5 2.5 2 3

34

Section IV. Implementation on Compressiblemultiphase flow

4.1 Simulations of Compressible Multiphase Flow

Background

Single-Equivalent-Fluid (SEF) Model

e.g. Five equations model (Allaire, *JCP*, 2002)

$$\frac{\partial}{\partial t} (\alpha_1 \rho_1) + \nabla \cdot (\alpha_1 \rho_1 \mathbf{u}) = 0,$$

$$\frac{\partial}{\partial t} (\alpha_2 \rho_2) + \nabla \cdot (\alpha_2 \rho_2 \mathbf{u}) = 0,$$

$$\frac{\partial}{\partial t} (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p = 0,$$

$$\frac{\partial E}{\partial t} + \nabla \cdot (E \mathbf{u} + p \mathbf{u}) = 0,$$

$$\frac{\partial \alpha_1}{\partial t} + \mathbf{u} \cdot \nabla \alpha_1 = 0,$$
Can be discretized as single phase flow

4.1 Simulations of Compressible Multiphase Flow

Background

1. High Order Shock Capturing Scheme

High order WENO scheme, e.g. (Johnsen, JCP, 2006), (Coralic, JCP, 2014)

Numerical oscillation may lead to unstable and unbounded. (Coralic, *JCP*, 2014) Complicated characteristic decomposition to deal with complicated EOS. (He, *JCP*, 2017)

3. Contact discontinuities are still diffusive for long time evolution

2. Interface sharpening Scheme

Artificial compression

(Shukla, JCP, 2010), (Shukla, JCP, 2014)

Anti-diffusion

(Kokh, JCP, 2010), (So, JCP, 2012)

4.1 Simulations of Compressible Multiphase Flow

The benefits from BVD algorithm

BVD can be applied to all statevariables, which leads to aconsistentreconstructionscheme

Numerical results will be shown with MUSCL-THINC-BVD scheme

4.1 Simulations of Compressible Multiphase Flow

Gas-Liquid advection

Passive advection of a square liquid column with constant pressure and velocity while there is a jump about volume fraction and density

Copper explosive

Right-moving copper plate interact with a solid explosive. Involving Complex equation of state

Shock Bubble Interaction

Shock Bubble Interaction

Shock Bubble Interaction

Anti-diffusion (So,*JCP*,2012)

Same Grids Resolution

MUSCL-THINC-BVD

Multi-scale (Luo,*JCP*,2016) **1150 along diameters**

400 along diameters MUSCL-THINC-BVD

Under water explosion

Under Water Explosion

Under Water Explosion

Shock Water Interaction

Shock Water Interaction

Top: MUSCL-THINC-BVD

Under the same grids number

Bottom: 5th WENO + artificial interface compression (Shukla, JCP, 2010)

3D Shock Helium Interaction

Higher order scheme is still necessary to resolve widespectral waves including turbulence

Future work: combine high order polynomials interpolation with **BVD** algorithm

51

Higher order scheme is still necessary to resolve widespectral waves including turbulence

Future work: combine linear high order polynomials interpolation with BVD algorithm

Thank you for your time and advices