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Context



Typical problem

Consider Ωf as the �uid domain and Ωs as the solid one. De�ne Γ as the border
between both domains. Denote uf the �uid velocity, us the solid one and also σf and σs
the �uid and solid constraints tensors. Let nΓ be the normal outward Γ.

Boundary conditions on the border Γ writes

uf · nΓ = us · nΓ, σf · nΓ = σs · nΓ, sur Γ. (1)
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Euler system

Inside Ωf ⊂ R2, consider the Euler system of equations1 which writes
∂tρ+∇.(ρu) = 0,
∂t(ρu) +∇.(ρu⊗ u + pI) = 0,
∂t(ρe) +∇.(ρeu + pu) = 0,
p = EOS(ρ, u, e)

(2)

with variables ρ, p, u, e for the density, the pressure, the velocity, and the total energy.
System is closed using the equation of state EOS.

The schemes used usually inside the laboratory are very high-order accurate �nite volume

Lagrange remap schemes based on cartesian grids234.

1E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws.
Vol. 118. Springer Science & Business Media, 2013.

2F. Duboc et al. �High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics�.
C. R. Acad. Sci. Paris, Ser. I 348 (2010), pp. 105�110.

3M. Wol�. �Mathematical and numerical analysis of the resistive magnetohydrodynamics system with
self-generated magnetic �eld terms�. PhD thesis. Université de Strasbourg, 2011.

4G. Dakin and H. Jourdren. �High-order accurate Lagrange-remap hydrodynamic schemes on staggered
Cartesian grids�. Comptes Rendus Mathematique (2016).
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Fictitious domain methods

One has to de�ne values of U inside the domain Ω− denoted U− using data provided on
the border Γ and values inside the interior domain U+. Then, one builds an operator R
such that

R(U+) = U−
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High-order accuracy interest

Here, a piston (which lies originally near x = −1) with in�nite mass is oscillating in a gas
initially at rest5.

(a) High order reconstruction (b) Second order reconstruction

Figure : 10 cells per wavelength at T = 9, for order 3, 4 and 6 schemes.

5G. Dakin, B. Després, and S. Jaouen. �Inverse Lax-Wendro� boundary treatment for compressible
Lagrange-remap hydrodynamics on Cartesian grids�. Journal of Computational Physics (2017), pp. -.
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Boundary conditions discretization for
linear hyperbolic systems



The advection case

Problem with initial and boundary conditions writes, for a > 0, xs = σ∆x
∂tu+ a∂xu = 0, t > 0, x > xs,
u(xs, t) = g(t), t > 0,
u(x, 0) = u0(x), x > xs.

(3)

Figure : Picture of the border and �uid and �ctitious domain decomposition.
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Inverse Lax�Wendro� procedure

The main of the inverse Lax�Wendro� procedure67 is to use the following equation

∂xu = (−a)−1∂tu, a > 0 (4)

in order to transform spatial derivatives of u in Taylor series into time derivatives of u.
Denote ∆x the mesh size. The average value of u at point x in a neighborhood of xs
writes

u(x, t) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

u(y, t)dy =
1

∆x

∫ x+ ∆x
2

x−∆x
2

∑
k≥0

∂kxu(xs, t)
(y − xs)k

k!
dy. (5)

It yields

u(x, t) =
1

∆x

∑
k≥0

∂kxu(xs, t)

 (x+
∆x

2
− xs)k+1

k + 1!
−

(x− ∆x

2
− xs)k+1

k + 1!

 . (6)

6S. Tan and C.-W. Shu. �Inverse Lax-Wendro� procedure for numerical boundary conditions of
conservation laws�. Journal of Computational Physics 229.21 (2010), pp. 8144�8166.

7S. Tan and C.-W. Shu. �A high order moving boundary treatment for compressible inviscid �ows�.
Journal of Computational Physics 230.15 (2011), pp. 6023�6036.
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Inverse Lax�Wendro� procedure

In order to simplify the notations, the following numerical coe�cients are introduced

ψk(x) =

 (x+
∆x

2
− xs)k+1

k + 1!
−

(x− ∆x

2
− xs)k+1

k + 1!

 .

We introduce also two parameters m and n and we write

u(x, t) =
1

∆x

∑
k≥0

∂kxu(xs, t)ψk(x)

=
1

∆x

 ∑
0≤k≤n

(−a)−k∂kt u(xs, t)ψk(x) +
∑

k≥n+1

∂kxu(xs, t)ψk(x)


=

1

∆x

 ∑
0≤k≤n

(−a)−k∂kt u(xs, t)ψk(x) +
∑

n+1≤k<m

∂kxu(xs, t)ψk(x)

+ O(∆xm).
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Inverse Lax�Wendro� procedure

Using the fact that u(xs, t) = g(t), then we write

u(x, t) =
1

∆x

 ∑
0≤k≤n

(−a)−k∂kt g(t)ψk(x) +
∑

n+1≤k<m

∂kxu(xs, t)ψk(x)

+ O(∆xm).

Consider a third oder scheme needing two ghost cells values, then dropping the O and
taking m = 3, n = 1 it yields for g = 0

u(x, t) =
1

∆x
∂2
xu(xs, t)

 (x+
∆x

2
− xs)3

3!
−

(x− ∆x

2
− xs)3

3!


= ∂2

xu(xs, t)

(
12x2 − 24xσ∆x+ 12∆x2σ2 + ∆x2

24

)
. (7)

Then, taking x = x1 = ∆x, it yields

∂2
xu(xs, t) =

(
24

12∆x2σ2 − 24σ∆x2 + 13∆x2

)
u1. (8)
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Ghost cells values computation

We can �nally deduce values for u0 and u−1 which write
u0 =

(
12∆x2σ2+∆x2

24

)
∂2
xu(xs, t),

u−1 =
(

12∆x2σ2+24σ∆x2+13∆x2

24

)
∂2
xu(xs, t).

(9)

We can straightforwardly rewrite those values as function of u1. It yields
u0 = 12σ2+1

12σ2−24σ+13
u1,

u−1 = 12σ2+24σ+13
12σ2−24σ+13

u1.

(10)
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High order generalization with g 6= 0

We generalize the reconstruction for any order m taking into account n time derivatives
of g. We write the Taylor series under the matrix form{

U− = Sn− + Ym,n− ·Θ,

U+ = Sn+ + Ym,n
+
·Θ.

(11)

where Sn− and Sn+ only depends on the boundary condition g. We show that the matrix
Ym,n

+
is invertible for 0 ≤ n < m and then it yields

U− = Sn− + Ym,n− · (Ym,n
+

)−1 · (U+ − Sn+). (12)

Last, we de�ne the reconstruction operator Rm,n at the boundary as

Rm,n = Ym,n− · (Ym,n
+

)−1. (13)

Nx R3,0 R3,1 R3,2

20 3.1e-2 · 2.8e-2 · 2.9e-2 ·
40 5.9e-3 2.39 5.6e-3 2.32 5.6e-3 2.35

80 8.0e-4 2.88 7.7e-4 2.86 7.7e-4 2.86

160 1.0e-4 2.93 1.0e-4 2.92 1.0e-4 2.92
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Schemes stability

Denote Z the interior numerical scheme which satis�es

Uk+1 = ZUk.

Let R be the reconstruction operator which writes

U− = RU+.

Then the scheme writes(
U+

U−

)k+1

=

(
Z1,1 Z1,2

Z2,1 Z2,2

)
·
(
U+

U−

)k
=

((
Z1,1 + Z1,2R

)
Uk+(

Z2,1 + Z2,2R
)
Uk+

)
. (14)

Which can be rewritten under the following form

Uk+1
+ =

(
Z1,1 + Z1,2R

)
Uk+ = NUk+, (15)

where N =
(
Z1,1 + Z1,2R

)
is called the e�ective operator.
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Reduced stability de�nition

Denote Nnc ∈ Rn
2
c , Nnc = PncNPtnc where Pnc is the projection satisfying X ∈ l2,

PncX = (X1, ..., Xnc) ∈ Rnc . In order to avoid heavy computations introduced in GKS
analysis8, the reduced stability de�nition is proposed.

De�nition (Reduced stability)

Let Z be the interior scheme and R be the reconstruction operator. Operator
N = (Z1,1 + Z1,2R) is stable in a reduced sense if

1 Z is proved stable for the Cauchy problem,

2 There exists nc ∈ N∗ such that ρ(Nnc) ≤ 1.

In practice, we check numerically the interior scheme stability, function of ν using von
Neumann analysis910 then we compute numerically the spectral radius of Nnc , function
of m, n, σ et ν.

8B. Gustafsson, H.-O. Kreiss, and A. Sundström. �Stability theory of di�erence approximations for mixed
initial boundary value problems. II�. . Mathematics of Computation (1972), pp. 649�686.

9J. G. Charney, R. Fjörtoft, and J. v. Neumann. �Numerical integration of the barotropic vorticity
equation�. Tellus 2.4 (1950), pp. 237�254.

10G. Allaire. Numerical analysis and optimization: an introduction to mathematical modelling and numerical
simulation. Oxford University Press, 2007.
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Reduced stability for the O3 scheme

An instability area is observed for high values of (ν, σ) for the reconstruction operator
R3,0.

R3,0 : m = 3, n = 0 R3,1 : m = 3, n = 1

Figure : Reduced stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the third order Strang
scheme with nc = 20 for the reconstruction operator R3,0 and R3,1.
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Reduced stability for the P4 scheme

An additionnal behavior is observed here. The instability domain for R4,0 contains an
instability area for very small values of ν.

R4,0 : m = 4, n = 0 R4,1 : m = 4, n = 1

Figure : Reduced stability area {(ν, σ) / ρ(Nnc) ≤ 1} (in white) for the fourth order Strang
scheme with nc = 30 for the reconstruction operator R4,0 and R4,1.
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Instability for the O3 scheme

Here, comparisons are drawn between theoretical results and numerical ones about third
order scheme using operator R3,0 with parameters ν = 0.8, σ = 0.45 and with nc = 200.
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The predicted instabily in the sense of reduced stability is observed.
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Instability for the P4 scheme

Here, comparisons are drawn between theoretical stability results and numerical ones
about fourth order scheme using operator R4,0 with parameters ν = 0.01, σ = −0.49
and with nc = 30.
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Boundary conditions discretization for
compressible hydrodynamocs



Euler equations

Let σ ∈ [−1
2 : 1

2 [, ∆X the grid step and Xs = σ∆X a point which does not coincide
with the mesh. Consider the following system

∂tρ+ ∂x (ρu) = 0,
∂t (ρu) + ∂x

(
ρu2 + p

)
= 0,

∂t (ρe) + ∂x (ρue+ pu)= 0,
p =EOS(τ = 1/ρ, e, u),

u(xs(t), t) = g(t).

(16)

Using lagrangian coordinates, it yields
Dt (ρ0τ)− ∂Xu= 0
Dt (ρ0u) + ∂Xp= 0
Dt (ρ0e) + ∂Xpu= 0

p =EOS(τ = 1/ρ, e, u)
u(Xs, t) = g(t)

(17)
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Non-invertibility of the matrix A = ∇UF

Matrix A = ∇UF (U) writes for lagrangian system (17)

A =


0 − 1

ρ0
0

∂p
∂ρ0τ

∂p
∂ρ0u

∂p
∂ρ0e

u
∂p
∂ρ0τ

p
ρ0

+ u
∂p
∂ρ0u

u
∂p
∂ρ0e

 . (18)

Obviously, matrix A is not invertible. Indeed, A has three eigenvalues
λ1 > 0, λ2 = 0, λ3 = −λ1. This is an additional di�culty as in the linear analysis,
hypothesis on the invertibility of A has been made.

Focus on a simple case, just to get an idea of the kind of solution we are looking for.
Consider that

ρ0 = 1,

m = 2, n = 1,

p = EOS(τ, e, u) = (γ − 1)
e− 1

2
u2

τ
.
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Building the system for ρ0 = 1, m = 2, n = 1


τ(Xs) + ∂Xτ(Xs)(X −Xs) = τ(X),
u(Xs) + ∂Xu(Xs)(X −Xs) = u(X),
e(Xs) + ∂Xe(Xs)(X −Xs) = e(X),

u(Xs) = g,
∂Xτ(Xs)∂τp(Xs)− ∂Xe(Xs)∂ep(Xs)− ∂Xu(Xs)∂up(Xs) = −Dtg,

(19)

whose unknowns are τ(Xs), ∂Xτ(Xs), u(Xs), ∂Xu(Xs), e(Xs), ∂Xe(Xs).

We lack an equation to close the system. Hence, let us add another Taylor development
of τ at point X2 6= X1



τ(Xs) + ∂Xτ(Xs)(X1 −Xs) = τ(X1),
τ(Xs) + ∂Xτ(Xs)(X2 −Xs) = τ(X2),
u(Xs) + ∂Xu(Xs)(X1 −Xs) = u(X1),
e(Xs) + ∂Xe(Xs)(X1 −Xs) = e(X1),

u(Xs) = g,
∂Xτ(Xs)∂τp(Xs)− ∂Xe(Xs)∂ep(Xs)− ∂Xu(Xs)∂up(Xs) = −Dtg.

(20)
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System solving at the boundary

Hence, we can write

τs =
τ1(X2 −Xs)− τ2(X1 −Xs)

X2 −X1
,

∂Xτs = τ2 − τ1
X2 −X1

,

us = g,

∂Xus =
u1 − g
X1 −Xs ,

es = (e1 − (X1 −Xs)(g∂Xus − τs
γ − 1Dtg +

−g2

2τs
∂Xτs))(1 + (X1 −Xs)∂Xτsτs )−1,

∂Xes = g∂Xus − τs
γ − 1Dtg +

es −
g2

2
τs ∂Xτs.

The system is linear. We have existence and uniqueness of the solution as far as
X1 6= Xs, X1 6= X2, τ1 6= 0.

−→ Can we generalize this solution for any ρ0, m and p ? For simplicity sake, we only
focus on n = 1 reconstruction operator.
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Existence and uniqueness of the system

The following Lemma gives results concerning existence and uniqueness of the
reconstruction in the �ctitious domain11.

Lemma (ε-a�ne EOS)

Let m > 1, let any ρ0, let an ε-a�ne EOS: p(ε, τ) = a(τ)ε+ b(τ). Then the system is

linear. It is invertible under the condition a(τs) 6= 0.

Examples of ε-a�ne EOS:

Perfect gaz: p(ε, τ) = (γ − 1) ε
τ
,

Sti�ened gas: p(ε, τ) = (γ − 1) ε
τ
− p?,

Mie-Grüneisen EOS12: p(ε, τ) = p?(τ) + Γ(τ)
τ

(ε− ε?(τ)).

11G. Dakin, B. Després, and S. Jaouen. �Inverse Lax-Wendro� boundary treatment for compressible
Lagrange-remap hydrodynamics on Cartesian grids�. Journal of Computational Physics (2017), pp. -.

12W. B. Holzapfel. �Equations of state and thermophysical properties of solids under pressure�.
High-Pressure Crystallography. Springer, 2004, pp. 217�236.
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Kidder isentropic compression

Boundary condition discretizatio is used for the GoHy schemes13, which are colocated
high-order one-step schemes for the Euler equations.

The �rst test case is the Kidder isentropic compression14 where we prescribe analytically
the speed of the both side of the domain using the exact solution.

Nx GoHy-1 GoHy-2 GoHy-3 GoHy-4 GoHy-5

25 9.1e-4 · 3.0e-4 · 1.5e-5 · 2.0e-5 · 7.5e-6 ·
50 4.5e-4 1.0 3.6e-5 3.0 5.0e-7 4.9 3.7e-7 5.7 2.9e-8 8.0
100 2.2e-4 1.0 3.0e-5 0.2 2.7e-7 0.9 1.5e-8 4.6 4.1e-10 6.1
200 1.2e-4 0.9 7.9e-6 2.0 3.0e-8 3.2 2.7e-10 5.8 2.3e-12 7.5
400 6.2e-5 0.9 2.0e-6 2.0 3.4e-9 3.2 8.5e-12 5.0 5.3e-14 5.5

Table : l1 error in both time and space as well as experimental order of convergence for the
GoHy schemes GoHy until T=0.01, with CFL=0.9. The expected order of accuracy is reached.
For stability issues (predicted in the linear case), a least square method is developed for order 4
and 5.

13M. Wol�. �Mathematical and numerical analysis of the resistive magnetohydrodynamics system with
self-generated magnetic �eld terms�. PhD thesis. Université de Strasbourg, 2011.

14R. E. Kidder. The Theory of Homogeneous Isentropic Compression and its Application to Laser Fusion.
Springer. Vol. 3B. 1974, pp. 449�464.
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The Sod shock tube

The Sod test-case15 is modi�ed here. We consider only the right state of the initial Sod
problem, with a moving wall whose speed is equal to the one of the contact discontinuity
in the original problem. Thus, initial data are

ρ(x) = 0.125
u(x) = 0
p(x) = 0.1
xl(0) = 0.5
u(xl(t))=0.927452624

(21)
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(a) Order 2
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(b) Order 3
15G. A. Sod. �A Survey of Several Finite Di�erence Methods for Systems of Nonlinear Hyperbolic

Conservation Laws�. J. Comput. Physics 27 (1978), pp. 1�31.
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From 1D to 2D

The border Γ is discretized using a necklace of pearls, that are represented by red crosses
on the �gure.

For every pearl Ps on Γ :
1 A stencil of points Pf in a

neighborhood of Ps is built inside the
�uid domain Ω+,

2 Using the boundary condition on Ps,
the reconstruction operator is built.

For every cell in the �ctitious domain
Ω− :

1 Find the nearest pearl Ps0 from the
cell center,

2 Apply the reconstruction operator.
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Numerical results in 2D

We assess stability of the proposed reconstruction as well as their accuracy on a C∞

test-case. In this scenario, the solid domain completely circles the �uid domain.


ρ0 =

(
1− (γ−1)β2

8γπ2 e1−r2
) 1
γ−1

u0 = β
2π
e

1−r2
2 · (−y, x)t

p0 = ργ0
u · nΓ= 0

Nx GoHy-1 GoHy-2 GoHy-3

50 4.96e-1 · 35% 5.33e-2 · 47% 9.93e-2 · 49%

100 2.52e-1 0.97 23% 1.40e-2 1.93 42% 2.04e-2 2.28 45%

200 1.20e-1 1.07 12% 4.50e-3 1.63 27% 3.46e-3 2.56 35%

400 5.66e-2 1.08 7% 1.28e-3 1.81 16% 6.43e-4 2.43 22%

800 2.74e-2 1.05 3.7% 3.23e-4 1.99 9.7% 9.31e-5 2.79 14%

Table : l1 in both time and space on the density as well as experimental order of convergence.
The cost of the inverse Lax�Wendro� procedure is given in % w.r.t the total cost of the GoHy
schemes. 26 / 36



Aeroacoustic di�raction around a cylinder

A incident plane wave impacts a motionless cylinder and then is scattered by the
obstacle16.

 0  5e-09  1e-08  1.5e-08  2e-08

Harmonic solution
GoHy3/1
GoHy3/2
GoHy3/3

 0  5e-09  1e-08  1.5e-08  2e-08

Harmonic solution
GoHy3/1
GoHy3/2
GoHy3/3

Figure : Polar plot of the pressure pertubations ∆p(θ) on the cylinder border with respectively
20 cells per wavelength on the left and 40 cells on the right for a third order scheme, with
recontructions of order 1, 2 and 3.

16J. J. Bowman, T. B. Senior, and P. L. Uslenghi. �Electromagnetic and acoustic scattering by simple
shapes (Revised edition)�. New York, Hemisphere Publishing Corp., 1987, 747 p. 1 (1987).
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Double Mach re�ection

A solid wall is positionned at (0, 0) and has a 30◦ angle with respect to the horizontal
axis.1718. A Mach 10 shock is initialized in {(x, y) ∈ Ω, x < −0.5}.

(a) Discrétisation (b) Ordre 3

17P. Woodward and P. Colella. �The Numerical Simulation of Two-Dimensional Fluid Flow with Strong
Shocks�. J. Comput. Physics 54 (1984), pp. 115�173.

18S. Tan and C.-W. Shu. �Inverse Lax-Wendro� procedure for numerical boundary conditions of
conservation laws�. Journal of Computational Physics 229.21 (2010), pp. 8144�8166.
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Fluid - rigid body coupling



Immersed rigid body dynamics in an inviscid �uid

We de�ne the following 

Ms =

∫
Ωs

ρs(x)dx

xs =
1

Ms

∫
Ωs

ρs(x)xdx

Js =

∫
Ωs

ρs(x)‖x− xs‖2dx.

(22)

Rigid body dynamics writes then

MsDtus = −
∫
∂Ωs

pndS,

JsDtω = −
∫
∂Ωs

pn ·
(
−y + ys
x− xs

)
dS,

Dtx = us + ω

(
−y + ys
x− xs

)
.

(23)
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Iso-∆s spatial discretization

Γ is parametrized by γ : [0 : 1] −→ R2. Denote s the curvilinear coordinate. We have

Γ = {x, ∃s ∈ [0, 1] , γ(s) = x}.

Consider a discretization with N elements Γi+ 1
2
such that

s0 = 0,
sN = 1,
si+1 − si = ∆s, ∀i ∈ {0, ..., N − 1},
Γi+ 1

2
= {x, ∃s ∈ [si, si+1] , γ(s) = x} ∀i ∈ {0, ..., N − 1}.

(24)
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Resulting forces and torques computation

The iso-∆s discretization yields spectral precision19 for the integral of forces and torques
computation on Γ. It writes∫

Γ

φ(x)dx =

N−1∑
i=0

∫
Γ
i+ 1

2

φ(x)dx = ∆s

N−1∑
i=0

1

∆s

∫ si+1

si

φ(γ(s))‖γ′(s)‖ds

Lemma

Let Γ a closed curve smooth enough, φ ∈ C∞, and φγ
i+ 1

2

= φ(γ(si+ 1
2
))‖γ′(si+ 1

2
)‖.

Then

∀m > 0,

∫
Γ

φ(x)dx = ∆s

N−1∑
i=0

φγ
i+ 1

2

+ O(∆sm).

This peculiar result has been found using traditionnal polynomial interpolation
coe�cients used routinely on Cartesian grids.

19A. Kurganov and J. Rauch. �The order of accuracy of quadrature formulae for periodic functions�.
Progress in nonlinear di�erential equations and their applications 78 (2009), pp. 155�159.
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Coupling algorithm between �uid and structure

Fluid

Rigid body

Fn

S n

Fn,Ghost

S n,Ghost

Fn+1

S n+1

Inverse Lax�Wendro� treatment

Un+

Un
s

Un−

p
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Fluid - rigid body interaction

Figure : 60 pressure contours (top) from 0 to 28 and density contours (bottom) from 0 to 12 at
time t=0.14 for the third order GoHy scheme with ∆x = ∆y = 6.25× 10−4.
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Fluid - rigid body interaction

Figure : 60 pressure contours (top) from 0 to 28 and density contours (bottom) from 0 to 12 at
time t=0.255 for the third order GoHy scheme with ∆x = ∆y = 6.25× 10−4.
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Conservation error

We present in Table 3, absolute errors made on conservation of mass and total energy
which seem to converge with a slope of 0.7− 0.8 for the �rst order scheme, and near
unity for the second and third order ones.

∆x = ∆y GoHy-1 GoHy-2 GoHy-3
|∆m| |∆e| |∆m| |∆e| |∆m| |∆e|

2.5× 10−3 1.55e-2 4.24e-2 8.07e-3 1.71e-2 1.1e-2 2.5e-2

1.25× 10−3 9.41e-3 2.62e-2 4.12e-3 8.89e-3 5.58e-3 1.29e-2

6.25× 10−4 5.36e-3 1.54e-2 2.16e-3 4.58e-3 2.81e-3 6.47e-3

3.125× 10−4 2.96e-3 8.59e-3 1.11e-3 2.38e-3 1.41e-3 3.24e-3

Table : Conservation on mass and total energy at t = 0.255 for the lift-o� cylinder test-case.
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Conclusion and perspectives

Main results

New method for boundary conditions discretization.

Development of a stability criterion for boundary conditions called "reduced
stability".

Straightforward coupling algorithm for �uid - rigid body interaction.

Perspectives

3D formulation of the boundary conditions discretization,

Coupling between a compressible �uid and an elastic structure.

Strong coupling using iterative method to determine both displacement and pressure
forces.
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