DE LA RECHERCHE À L'INDUSTRIE

High-order fluid-structure coupling for 2D Finite Volume Lagrange-Remap schemes

¹CEA, DAM, DIF, F-91297 Arpajon, France

 2 Université Pierre et Marie Curie, LJLL, Paris, France

Porto, Portugal May 21-25, 2018

www.cea.fr

1 Context

- Boundary conditions discretization for linear hyperbolic systems
 - Inverse Lax–Wendroff procedure
 - Scheme stability with boundary conditions discretization
- Boundary conditions discretization for compressible hydrodynamocs
 - Inverse Lax–Wendroff for $\rho_0 = 1$, m = 2, n = 1
 - Existence and uniqueness of the reconstruction in the general case
- 4 Fluid rigid body coupling
 - Properties and spatial discretization of rigid bodies
 - Fluid structure coupling scheme

Context

Consider Ω_f as the fluid domain and Ω_s as the solid one. Define Γ as the border between both domains. Denote \mathbf{u}_f the fluid velocity, \mathbf{u}_s the solid one and also $\underline{\sigma}_f$ and $\underline{\sigma}_s$ the fluid and solid constraints tensors. Let \mathbf{n}_{Γ} be the normal outward Γ .

Boundary conditions on the border Γ writes

$$\mathbf{u_f} \cdot \mathbf{n}_{\Gamma} = \mathbf{u_s} \cdot \mathbf{n}_{\Gamma}, \quad \underline{\sigma}_f \cdot \mathbf{n}_{\Gamma} = \underline{\sigma}_s \cdot \mathbf{n}_{\Gamma}, \quad \text{sur} \quad \Gamma$$

(1)

Inside $\Omega_f \subset \mathbb{R}^2$, consider the Euler system of equations¹ which writes

$$\begin{cases}
\partial_t \rho + \nabla .(\rho \mathbf{u}) = 0, \\
\partial_t (\rho \mathbf{u}) + \nabla .(\rho \mathbf{u} \otimes \mathbf{u} + p \mathbf{I}) = 0, \\
\partial_t (\rho e) + \nabla .(\rho e \mathbf{u} + p \mathbf{u}) = 0, \\
p = EOS(\rho, u, e)
\end{cases}$$
(2)

with variables ρ , p, u, e for the density, the pressure, the velocity, and the total energy. System is closed using the equation of state EOS.

The schemes used usually inside the laboratory are very <u>high-order accurate</u> <u>finite volume</u> Lagrange remap schemes based on <u>cartesian</u> grids²³⁴.

¹E. Godlewski and P.-A. Raviart. *Numerical approximation of hyperbolic systems of conservation laws.* Vol. 118. Springer Science & Business Media, 2013.

²F. Duboc et al. "High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics". C. R. Acad. Sci. Paris, Ser. 1348 (2010), pp. 105–110.

³M. Wolff. "Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic field terms". PhD thesis. Université de Strasbourg, 2011.

⁴G. Dakin and H. Jourdren. "High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids". *Comptes Rendus Mathematique* (2016).

Fictitious domain methods

One has to define values of \mathcal{U} inside the domain Ω_- denoted \mathcal{U}_- using data provided on the border Γ and values inside the interior domain \mathcal{U}_+ . Then, one builds an operator \mathcal{R} such that

$$\mathcal{R}(\mathcal{U}^+)=\mathcal{U}_-$$

High-order accuracy interest

Here, a piston (which lies originally near x = -1) with infinite mass is oscillating in a gas initially at rest⁵.

⁵G. Dakin, B. Després, and S. Jaouen. "Inverse Lax-Wendroff boundary treatment for compressible Lagrange-remap hydrodynamics on Cartesian grids". *Journal of Computational Physics* (2017), pp. -.

Boundary conditions discretization for linear hyperbolic systems

Problem with initial and boundary conditions writes, for $a>0, \, x_s=\sigma\Delta x$

$$\begin{cases} \partial_t u + a \partial_x u = 0, & t > 0, \ x > x_s, \\ u(x_s, t) &= g(t), & t > 0, \\ u(x, 0) &= u_0(x), \ x > x_s. \end{cases}$$
(3)

The main of the inverse Lax-Wendroff procedure⁶⁷ is to use the following equation

$$\partial_x u = (-a)^{-1} \partial_t u, a > 0 \tag{4}$$

in order to transform spatial derivatives of u in Taylor series into time derivatives of u. Denote Δx the mesh size. The average value of u at point x in a neighborhood of x_s writes

$$\overline{u}(x,t) = \frac{1}{\Delta x} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} u(y,t) \mathrm{d}y = \frac{1}{\Delta x} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} \sum_{k\geq 0} \partial_x^k u(x_s,t) \frac{(y-x_s)^k}{k!} \mathrm{d}y.$$
(5)

It yields

$$\overline{u}(x,t) = \frac{1}{\Delta x} \sum_{k \ge 0} \partial_x^k u(x_s,t) \left(\frac{(x + \frac{\Delta x}{2} - x_s)^{k+1}}{k+1!} - \frac{(x - \frac{\Delta x}{2} - x_s)^{k+1}}{k+1!} \right).$$
(6)

⁶S. Tan and C.-W. Shu. "Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws". *Journal of Computational Physics* 229.21 (2010), pp. 8144–8166.

⁷S. Tan and C.-W. Shu. "A high order moving boundary treatment for compressible inviscid flows". *Journal of Computational Physics* 230.15 (2011), pp. 6023–6036.

In order to simplify the notations, the following numerical coefficients are introduced

$$\psi_k(x) = \left(\frac{(x + \frac{\Delta x}{2} - x_s)^{k+1}}{k+1!} - \frac{(x - \frac{\Delta x}{2} - x_s)^{k+1}}{k+1!}\right).$$

We introduce also two parameters m and n and we write

$$\begin{split} \overline{u}(x,t) &= \frac{1}{\Delta x} \sum_{k \ge 0} \partial_x^k u(x_s,t) \psi_k(x) \\ &= \frac{1}{\Delta x} \left(\sum_{0 \le k \le n} (-a)^{-k} \partial_t^k u(x_s,t) \psi_k(x) + \sum_{k \ge n+1} \partial_x^k u(x_s,t) \psi_k(x) \right) \\ &= \frac{1}{\Delta x} \left(\sum_{0 \le k \le n} (-a)^{-k} \partial_t^k u(x_s,t) \psi_k(x) + \sum_{n+1 \le k < m} \partial_x^k u(x_s,t) \psi_k(x) \right) + \mathscr{O}(\Delta x^m). \end{split}$$

Using the fact that $u(x_s,t) = g(t)$, then we write

$$\overline{u}(x,t) = \frac{1}{\Delta x} \left(\sum_{0 \le k \le n} (-a)^{-k} \partial_t^k g(t) \psi_k(x) + \sum_{n+1 \le k < m} \partial_x^k u(x_s,t) \psi_k(x) \right) + \mathcal{O}(\Delta x^m).$$

Consider a third oder scheme needing two ghost cells values, then dropping the $\mathscr O$ and taking $m=3,\ n=1$ it yields for g=0

$$\overline{u}(x,t) = \frac{1}{\Delta x} \partial_x^2 u(x_s,t) \left(\frac{(x + \frac{\Delta x}{2} - x_s)^3}{3!} - \frac{(x - \frac{\Delta x}{2} - x_s)^3}{3!} \right) \\ = \partial_x^2 u(x_s,t) \left(\frac{12x^2 - 24x\sigma\Delta x + 12\Delta x^2\sigma^2 + \Delta x^2}{24} \right).$$
(7)

Then, taking $x = x_1 = \Delta x$, it yields

$$\partial_x^2 u(x_s, t) = \left(\frac{24}{12\Delta x^2 \sigma^2 - 24\sigma \Delta x^2 + 13\Delta x^2}\right) \overline{u}_1.$$
(8)

We can finally deduce values for \overline{u}_0 and \overline{u}_{-1} which write

$$\begin{cases} \overline{u}_0 = \left(\frac{12\Delta x^2 \sigma^2 + \Delta x^2}{24}\right) \partial_x^2 u(x_s, t), \\ \overline{u}_{-1} = \left(\frac{12\Delta x^2 \sigma^2 + 24\sigma \Delta x^2 + 13\Delta x^2}{24}\right) \partial_x^2 u(x_s, t). \end{cases}$$
(9)

We can straightforwardly rewrite those values as function of $\overline{u}_1.$ It yields

$$\begin{cases} \overline{u}_{0} = \frac{12\sigma^{2}+1}{12\sigma^{2}-24\sigma+13}\overline{u}_{1}, \\ \overline{u}_{-1} = \frac{12\sigma^{2}+24\sigma+13}{12\sigma^{2}-24\sigma+13}\overline{u}_{1}. \end{cases}$$
(10)

We generalize the reconstruction for any order m taking into account n time derivatives of g. We write the Taylor series under the matrix form

$$\begin{cases}
\mathcal{U}_{-} = \mathcal{S}_{-}^{n} + \underline{\mathcal{Y}}_{-}^{m,n} \cdot \mathbf{\Theta}, \\
\mathcal{U}_{+} = \mathcal{S}_{+}^{n} + \underline{\mathcal{Y}}_{+}^{m,n} \cdot \mathbf{\Theta}.
\end{cases}$$
(11)

where S_{-}^{n} and S_{+}^{n} only depends on the boundary condition g. We show that the matrix $\mathcal{Y}_{+}^{m,n}$ is invertible for $0 \leq n < m$ and then it yields

$$\mathcal{U}_{-} = \mathcal{S}_{-}^{n} + \underline{\mathcal{Y}}_{-}^{m,n} \cdot (\underline{\mathcal{Y}}_{+}^{m,n})^{-1} \cdot (\mathcal{U}_{+} - \mathcal{S}_{+}^{n}).$$
(12)

Last, we define the reconstruction operator $\underline{\mathcal{R}}^{m,n}$ at the boundary as

$$\underline{\mathcal{R}}^{m,n} = \underline{\mathcal{Y}}^{m,n}_{-} \cdot (\underline{\mathcal{Y}}^{m,n}_{+})^{-1}.$$
(13)

N_x	$\underline{\mathcal{R}}^3$,0	$\underline{\mathcal{R}}^3$,1	$\underline{\mathcal{R}}^{3,2}$		
20	3.1e-2	•	2.8e-2	•	2.9e-2	•	
40	5.9e-3	2.39	5.6e-3	2.32	5.6e-3	2.35	
80	8.0e-4	2.88	7.7e-4	2.86	7.7e-4	2.86	
160	1.0e-4	2.93	1.0e-4	2.92	1.0e-4	2.92	

Denote $\underline{\mathcal{Z}}$ the interior numerical scheme which satisfies

$$\mathcal{U}^{k+1} = \underline{\mathcal{Z}}\mathcal{U}^k.$$

Let $\underline{\mathcal{R}}$ be the reconstruction operator which writes

$$\mathcal{U}_{-} = \underline{\mathcal{R}}\mathcal{U}_{+}.$$

Then the scheme writes

$$\begin{pmatrix} \mathcal{U}_+\\ \mathcal{U}_- \end{pmatrix}^{k+1} = \begin{pmatrix} \underline{\mathcal{Z}}_{1,1} & \underline{\mathcal{Z}}_{1,2}\\ \underline{\mathcal{Z}}_{2,1} & \underline{\mathcal{Z}}_{2,2} \end{pmatrix} \cdot \begin{pmatrix} \mathcal{U}_+\\ \mathcal{U}_- \end{pmatrix}^k = \begin{pmatrix} (\underline{\mathcal{Z}}_{1,1} + \underline{\mathcal{Z}}_{1,2}\underline{\mathcal{R}}) \, \mathcal{U}_+^k\\ (\underline{\mathcal{Z}}_{2,1} + \underline{\mathcal{Z}}_{2,2}\underline{\mathcal{R}}) \, \mathcal{U}_+^k \end{pmatrix}.$$
(14)

Which can be rewritten under the following form

$$\mathcal{U}_{+}^{k+1} = \left(\underline{\mathcal{Z}}_{1,1} + \underline{\mathcal{Z}}_{1,2}\underline{\mathcal{R}}\right)\mathcal{U}_{+}^{k} = \underline{\mathcal{N}}\mathcal{U}_{+}^{k},$$
(15)

where $\underline{\mathcal{N}} = \left(\underline{\mathcal{Z}}_{1,1} + \underline{\mathcal{Z}}_{1,2}\underline{\mathcal{R}}\right)$ is called the effective operator.

Denote $N_{n_c} \in \mathbb{R}^{n_c^2}, N_{n_c} = \mathcal{P}_{n_c} \mathcal{N} \mathcal{P}_{n_c}^t$ where \mathcal{P}_{n_c} is the projection satisfying $\mathcal{X} \in l^2$, $\mathcal{P}_{n_c} \mathcal{X} = (X_1, ..., X_{n_c}) \in \mathbb{R}^{n_c}$. In order to avoid heavy computations introduced in GKS analysis⁸, the reduced stability definition is proposed.

Definition (Reduced stability)

Let Z be the interior scheme and \mathcal{R} be the reconstruction operator. Operator $\mathcal{N} = (Z_{1,1} + Z_{1,2}\mathcal{R})$ is stable in a reduced sense if

1 \mathcal{Z} is proved stable for the Cauchy problem,

2 There exists $n_c \in \mathbb{N}^*$ such that $\rho(N_{n_c}) \leq 1$.

In practice, we check numerically the interior scheme stability, function of ν using von Neumann analysis⁹¹⁰ then we compute numerically the spectral radius of N_{n_c} , function of m, n, σ et ν .

⁸B. Gustafsson, H.-O. Kreiss, and A. Sundström. "Stability theory of difference approximations for mixed initial boundary value problems. II". . *Mathematics of Computation* (1972), pp. 649–686.

⁹J. G. Charney, R. Fjörtoft, and J. v. Neumann. "Numerical integration of the barotropic vorticity equation". *Tellus* 2.4 (1950), pp. 237–254.

 $^{^{10}}$ G. Allaire. Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation. Oxford University Press, 2007.

An instability area is observed for high values of $(
u,\sigma)$ for the reconstruction operator $\mathcal{R}^{3,0}_{-}.$

Figure : Reduced stability area $\{(\nu, \sigma) / \rho(N_{nc}) \leq 1\}$ (in white) for the third order Strang scheme with $n_c = 20$ for the reconstruction operator $\underline{\mathcal{R}}^{3,0}$ and $\underline{\mathcal{R}}^{3,1}$.

An additionnal behavior is observed here. The instability domain for $\underline{\mathcal{R}}^{4,0}$ contains an instability area for very small values of ν .

Figure : Reduced stability area $\{(\nu, \sigma) / \rho(N_{nc}) \leq 1\}$ (in white) for the fourth order Strang scheme with $n_c = 30$ for the reconstruction operator $\underline{\mathcal{R}}^{4,0}$ and $\underline{\mathcal{R}}^{4,1}$.

Here, comparisons are drawn between theoretical results and numerical ones about third order scheme using operator $\underline{\mathcal{R}}^{3,0}$ with parameters $\nu = 0.8$, $\sigma = 0.45$ and with $n_c = 200$.

The predicted instabily in the sense of reduced stability is observed.

Cea

Here, comparisons are drawn between theoretical stability results and numerical ones about fourth order scheme using operator $\underline{\mathcal{R}}^{4,0}$ with parameters $\nu = 0.01$, $\sigma = -0.49$ and with $n_c = 30$.

The predicted instabily in the sense of reduced stability is observed.

Boundary conditions discretization for compressible hydrodynamocs

Let $\sigma \in [-\frac{1}{2}:\frac{1}{2}[$, ΔX the grid step and $X_s = \sigma \Delta X$ a point which does not coincide with the mesh. Consider the following system

Using lagrangian coordinates, it yields

$$\begin{cases} D_{t} (\rho_{0}\tau) - \partial_{X} u = 0 \\ D_{t} (\rho_{0}u) + \partial_{X} p = 0 \\ D_{t} (\rho_{0}e) + \partial_{X} p u = 0 \\ p = EOS(\tau = 1/\rho, e, u) \\ u(X_{s}, t) = g(t) \end{cases}$$
(17)

Matrix $\underline{\mathbf{A}} = \nabla_U F(U)$ writes for lagrangian system (17)

$$\underline{\mathbf{A}} = \begin{pmatrix} 0 & -\frac{1}{\rho_0} & 0\\ \frac{\partial p}{\partial \rho_0 \tau} & \frac{\partial p}{\partial \rho_0 u} & \frac{\partial p}{\partial \rho_0 e}\\ u \frac{\partial p}{\partial \rho_0 \tau} & \frac{p}{\rho_0} + u \frac{\partial p}{\partial \rho_0 u} & u \frac{\partial p}{\partial \rho_0 e} \end{pmatrix}.$$
(18)

Obviously, matrix <u>A</u> is not invertible. Indeed, <u>A</u> has three eigenvalues $\lambda_1 > 0, \lambda_2 = 0, \lambda_3 = -\lambda_1$. This is an additional difficulty as in the linear analysis, hypothesis on the invertibility of A has been made.

Focus on a simple case, just to get an idea of the kind of solution we are looking for. Consider that

•
$$\rho_0 = 1$$
,
• $m = 2, n = 1$,
• $p = EOS(\tau, e, u) = (\gamma - 1)\frac{e - \frac{1}{2}u^2}{\tau}$.

$$\begin{pmatrix}
\tau(X_s) + \partial_X \tau(X_s)(X - X_s) &= \tau(X), \\
u(X_s) + \partial_X u(X_s)(X - X_s) &= u(X), \\
e(X_s) + \partial_X e(X_s)(X - X_s) &= e(X), \\
u(X_s) &= g, \\
\partial_X \tau(X_s) \partial_\tau p(X_s) - \partial_X e(X_s) \partial_e p(X_s) - \partial_X u(X_s) \partial_u p(X_s) &= -D_t g,
\end{cases}$$
(19)

whose unknowns are $\tau(X_s), \partial_X \tau(X_s), u(X_s), \partial_X u(X_s), e(X_s), \partial_X e(X_s)$.

We lack an equation to close the system. Hence, let us add another Taylor development of au at point $X_2
eq X_1$

$$\tau(X_s) + \partial_X \tau(X_s)(X_1 - X_s) = \tau(X_1),$$

$$\tau(X_s) + \partial_X \tau(X_s)(X_2 - X_s) = \tau(X_2),$$

$$u(X_s) + \partial_X u(X_s)(X_1 - X_s) = u(X_1),$$

$$e(X_s) + \partial_X e(X_s)(X_1 - X_s) = e(X_1),$$

$$u(X_s) = g,$$

$$\partial_X \tau(X_s) \partial_\tau p(X_s) - \partial_X e(X_s) \partial_e p(X_s) - \partial_X u(X_s) \partial_u p(X_s) = -D_t g.$$
(20)

Hence, we can write

$$\begin{cases} \tau_{s} = \frac{\tau_{1}(X_{2} - X_{s}) - \tau_{2}(X_{1} - X_{s})}{X_{2} - X_{1}}, \\ \partial_{X}\tau_{s} = \frac{\tau_{2} - \tau_{1}}{X_{2} - X_{1}}, \\ u_{s} = g, \\ \partial_{X}u_{s} = \frac{u_{1} - g}{X_{1} - X_{s}}, \\ e_{s} = (e_{1} - (X_{1} - X_{s})(g\partial_{X}u_{s} - \frac{\tau_{s}}{\gamma - 1}D_{t}g + \frac{-g^{2}}{2\tau_{s}}\partial_{X}\tau_{s}))(1 + (X_{1} - X_{s})\frac{\partial_{X}\tau_{s}}{\tau_{s}})^{-1} \\ \partial_{X}e_{s} = g\partial_{X}u_{s} - \frac{\tau_{s}}{\gamma - 1}D_{t}g + \frac{e_{s} - \frac{g^{2}}{2}}{\tau_{s}}\partial_{X}\tau_{s}. \end{cases}$$

The system is linear. We have existence and uniqueness of the solution as far as $X_1 \neq X_s$, $X_1 \neq X_2$, $\tau_1 \neq 0$.

 \longrightarrow Can we generalize this solution for any ρ_0 , m and p? For simplicity sake, we only focus on n = 1 reconstruction operator.

The following Lemma gives results concerning existence and uniqueness of the reconstruction in the fictitious domain¹¹.

Lemma (ϵ -affine EOS)

Let m > 1, let any ρ_0 , let an ϵ -affine EOS: $p(\epsilon, \tau) = a(\tau)\epsilon + b(\tau)$. Then the system is linear. It is invertible under the condition $a(\tau_s) \neq 0$.

Examples of ϵ -affine EOS:

- Perfect gaz: $p(\epsilon, \tau) = (\gamma 1) \frac{\epsilon}{\tau}$,
- $\blacksquare \ {\rm Stiffened} \ {\rm gas:} \ p(\epsilon,\tau)=(\gamma-1)\frac{\epsilon}{\tau}-p^{\star},$
- Mie-Grüneisen EOS^{12} : $p(\epsilon, \tau) = p^{\star}(\tau) + \frac{\Gamma(\tau)}{\tau}(\epsilon \epsilon^{\star}(\tau))$.

¹¹G. Dakin, B. Després, and S. Jaouen. "Inverse Lax-Wendroff boundary treatment for compressible Lagrange-remap hydrodynamics on Cartesian grids". *Journal of Computational Physics* (2017), pp. -.

¹²W. B. Holzapfel. "Equations of state and thermophysical properties of solids under pressure". *High-Pressure Crystallography*. Springer, 2004, pp. 217–236.

Boundary condition discretizatio is used for the GoHy schemes¹³, which are colocated high-order one-step schemes for the Euler equations.

The first test case is the Kidder isentropic compression¹⁴ where we prescribe analytically the speed of the both side of the domain using the exact solution.

N_x	GoHy-1		GoHy-2		GoHy-3		GoHy-4		GoHy-5	
25	9.1e-4	•	3.0e-4	•	1.5e-5	•	2.0e-5	•	7.5e-6	•
50	4.5e-4	1.0	3.6e-5	3.0	5.0e-7	4.9	3.7e-7	5.7	2.9e-8	8.0
100	2.2e-4	1.0	3.0e-5	0.2	2.7e-7	0.9	1.5e-8	4.6	4.1e-10	6.1
200	1.2e-4	0.9	7.9e-6	2.0	3.0e-8	3.2	2.7e-10	5.8	2.3e-12	7.5
400	6.2e-5	0.9	2.0e-6	2.0	3.4e-9	3.2	8.5e-12	5.0	5.3e-14	5.5

Table : l^1 error in both time and space as well as experimental order of convergence for the GoHy schemes GoHy until T=0.01, with CFL=0.9. The expected order of accuracy is reached. For stability issues (predicted in the linear case), a least square method is developed for order 4 and 5.

¹³M. Wolff. "Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic field terms". PhD thesis. Université de Strasbourg, 2011.

¹⁴R. E. Kidder. The Theory of Homogeneous Isentropic Compression and its Application to Laser Fusion. Springer. Vol. 3B. 1974, pp. 449–464.

The Sod shock tube

0.25

The Sod test-case¹⁵ is modified here. We consider only the right state of the initial Sod problem, with a moving wall whose speed is equal to the one of the contact discontinuity in the original problem. Thus, initial data are

$$\begin{cases} \rho(x) = 0.125\\ u(x) = 0\\ p(x) = 0.1\\ x_l(0) = 0.5\\ u(x_l(t)) = 0.927452624 \end{cases}$$
(21)

¹⁵G. A. Sod. "A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws". J. Comput. Physics 27 (1978), pp. 1–31.

The border Γ is discretized using a necklace of pearls, that are represented by red crosses on the figure.

- **E** For every pearl P_s on Γ :
 - 1 A stencil of points P_f in a neighborhood of P_s is built inside the fluid domain Ω_+ ,
 - 2 Using the boundary condition on P_s , the reconstruction operator is built.
- For every cell in the fictitious domain Ω_- :
 -] Find the nearest pear P_{s_0} from the cell center,
 - 2 Apply the reconstruction operator.

Numerical results in 2D

We assess stability of the proposed reconstruction as well as their accuracy on a C^{∞} test-case. In this scenario, the solid domain completely circles the fluid domain.

$$\begin{cases} \rho_0 = \left(1 - \frac{(\gamma - 1)\beta^2}{8\gamma\pi^2}e^{1 - r^2}\right)^{\frac{1}{\gamma - 1}}\\ \mathbf{u}_0 = \frac{\beta}{2\pi}e^{\frac{1 - r^2}{2}} \cdot (-y, x)^t\\ p_0 = \rho_0^\gamma\\ \mathbf{u} \cdot \mathbf{n}_{\Gamma} = 0 \end{cases}$$

N_x	GoHy-1			GoHy-2			GoHy-3		
50	4.96e-1	•	35%	5.33e-2	•	47%	9.93e-2	•	49%
100	2.52e-1	0.97	23%	1.40e-2	1.93	42%	2.04e-2	2.28	45%
200	1.20e-1	1.07	12%	4.50e-3	1.63	27%	3.46e-3	2.56	35%
400	5.66e-2	1.08	7%	1.28e-3	1.81	16%	6.43e-4	2.43	22%
800	2.74e-2	1.05	3.7%	3.23e-4	1.99	9.7%	9.31e-5	2.79	14%

Table : l^1 in both time and space on the density as well as experimental order of convergence. The cost of the inverse Lax–Wendroff procedure is given in % w.r.t the total cost of the GoHy schemes. $^{26/36}$

A incident plane wave impacts a motionless cylinder and then is scattered by the $obstacle^{16}$.

Figure : Polar plot of the pressure pertubations $\Delta p(\theta)$ on the cylinder border with respectively 20 cells per wavelength on the left and 40 cells on the right for a third order scheme, with recontructions of order 1, 2 and 3.

¹⁶J. J. Bowman, T. B. Senior, and P. L. Uslenghi. "Electromagnetic and acoustic scattering by simple shapes (Revised edition)". *New York, Hemisphere Publishing Corp.*, 1987, 747 p. 1 (1987).

Double Mach reflection

A solid wall is positionned at (0,0) and has a 30° angle with respect to the horizontal axis.¹⁷¹⁸. A Mach 10 shock is initialized in $\{(x,y) \in \Omega, x < -0.5\}$.

¹⁷P. Woodward and P. Colella. "The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks". J. Comput. Physics 54 (1984), pp. 115–173.

¹⁸S. Tan and C.-W. Shu. "Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws". *Journal of Computational Physics* 229.21 (2010), pp. 8144–8166.

Fluid - rigid body coupling

We define the following

$$\begin{cases} M_s = \int_{\Omega_s} \rho_s(\mathbf{x}) d\mathbf{x} \\ \mathbf{x}_s = \frac{1}{M_s} \int_{\Omega_s} \rho_s(\mathbf{x}) \mathbf{x} d\mathbf{x} \\ J_s = \int_{\Omega_s} \rho_s(\mathbf{x}) \|\mathbf{x} - \mathbf{x}_s\|^2 d\mathbf{x}. \end{cases}$$
(22)

Rigid body dynamics writes then

$$\begin{cases} M_s D_t \mathbf{u}_s = -\int_{\partial \Omega_s} \mathbf{p} \mathbf{n} dS, \\ J_s D_t \omega = -\int_{\partial \Omega_s} \mathbf{p} \mathbf{n} \cdot \begin{pmatrix} -y + y_s \\ x - x_s \end{pmatrix} dS, \\ D_t \mathbf{x} = \mathbf{u}_s + \omega \begin{pmatrix} -y + y_s \\ x - x_s \end{pmatrix}. \end{cases}$$
(23)

 Γ is parametrized by $\gamma:[0:1]\longrightarrow \mathbb{R}^2.$ Denote s the curvilinear coordinate. We have

$$\Gamma = \{\mathbf{x}, \exists s \in [0,1], \gamma(s) = \mathbf{x}\}.$$

Consider a discretization with N elements $\Gamma_{i+\frac{1}{2}}$ such that

4

$$\begin{cases} s_0 = 0, \\ s_N = 1, \\ s_{i+1} - s_i = \Delta s, \\ \Gamma_{i+\frac{1}{2}} = \{\mathbf{x}, \exists s \in [s_i, s_{i+1}], \gamma(s) = \mathbf{x}\} \quad \forall i \in \{0, ..., N-1\}, \\ \forall i \in \{0, ..., N-1\}. \end{cases}$$
(24)

The iso- Δs discretization yields spectral precision¹⁹ for the integral of forces and torques computation on Γ . It writes

$$\int_{\Gamma} \phi(\mathbf{x}) \mathrm{d}\mathbf{x} = \sum_{i=0}^{N-1} \int_{\Gamma_{i+\frac{1}{2}}} \phi(\mathbf{x}) \mathrm{d}\mathbf{x} = \Delta s \sum_{i=0}^{N-1} \frac{1}{\Delta s} \int_{s_i}^{s_{i+1}} \phi(\gamma(s)) \|\gamma'(s)\| ds$$

Lemma

Let Γ a closed curve smooth enough, $\phi \in \mathscr{C}^{\infty}$, and $\phi_{i+\frac{1}{2}}^{\gamma} = \phi(\gamma(s_{i+\frac{1}{2}})) \| \gamma \prime(s_{i+\frac{1}{2}}) \|$. Then

$$\forall m > 0, \int_{\Gamma} \phi(\mathbf{x}) \mathrm{d}\mathbf{x} = \Delta s \sum_{i=0}^{N-1} \phi_{i+\frac{1}{2}}^{\gamma} + \mathscr{O}(\Delta s^m).$$

This peculiar result has been found using traditionnal polynomial interpolation coefficients used routinely on Cartesian grids.

¹⁹A. Kurganov and J. Rauch. "The order of accuracy of quadrature formulae for periodic functions". Progress in nonlinear differential equations and their applications 78 (2009), pp. 155–159.

Fluid - rigid body interaction

Figure : 60 pressure contours (top) from 0 to 28 and density contours (bottom) from 0 to 12 at time t=0.14 for the third order GoHy scheme with $\Delta x = \Delta y = 6.25 \times 10^{-4}$.

Fluid - rigid body interaction

Figure : 60 pressure contours (top) from 0 to 28 and density contours (bottom) from 0 to 12 at time t=0.255 for the third order GoHy scheme with $\Delta x = \Delta y = 6.25 \times 10^{-4}$.

We present in Table 3, absolute errors made on conservation of mass and total energy which seem to converge with a slope of 0.7 - 0.8 for the first order scheme, and near unity for the second and third order ones.

$\Delta x = \Delta y$	Gol	ly-1	Gol	ly-2	GoHy-3		
	$ \Delta m $	$ \Delta e $	$ \Delta m $	$ \Delta e $	$ \Delta m $	$ \Delta e $	
2.5×10^{-3}	1.55e-2	4.24e-2	8.07e-3	1.71e-2	1.1e-2	2.5e-2	
1.25×10^{-3}	9.41e-3	2.62e-2	4.12e-3	8.89e-3	5.58e-3	1.29e-2	
6.25×10^{-4}	5.36e-3	1.54e-2	2.16e-3	4.58e-3	2.81e-3	6.47e-3	
3.125×10^{-4}	2.96e-3	8.59e-3	1.11e-3	2.38e-3	1.41e-3	3.24e-3	

Table : Conservation on mass and total energy at t = 0.255 for the lift-off cylinder test-case.

Main results

- New method for boundary conditions discretization.
- Development of a stability criterion for boundary conditions called "reduced stability".
- Straightforward coupling algorithm for fluid rigid body interaction.

Perspectives

- 3D formulation of the boundary conditions discretization,
- Coupling between a compressible fluid and an elastic structure.
- Strong coupling using iterative method to determine both displacement and pressure forces.

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 66 30 | F. +33 (0)1 69 08 66 30

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019