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Context




Typical problem

Consider Qf as the fluid domain and €2 as the solid one. Define I' as the border
between both domains. Denote us the fluid velocity, us the solid one and also ol and g,
the fluid and solid constraints tensors. Let nr be the normal outward T.

Boundary conditions on the border I" writes

us-nr=Uus-nr, g;-nr=g, -nr, sur I. (1)




Cea Euler system

Inside Q; C R?, consider the Euler system of equations' which writes

Op + V.(pu) =0,

d¢(pu) + V.(pu®@u+pl) =0, @)
de(pe) + V.(peu + pu) =0,

P = EOS(p,u,e)

with variables p, p, u, e for the density, the pressure, the velocity, and the total energy.
System is closed using the equation of state EOS.

The schemes used usually inside the laboratory are very high-order accurate finite volume

Lagrange remap schemes based on cartesian grids?3*.

YE. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws.
Vol. 118. Springer Science & Business Media, 2013.

2F. Duboc et al. “High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics”.

C. R. Acad. Sci. Paris, Ser. 1348 (2010), pp. 105-110.

3M. Wolff. “Mathematical and numerical analysis of the resistive magnetohydrodynamics system with
self-generated magnetic field terms”. PhD thesis. Université de Strasbourg, 2011,

4G. Dakin and H. Jourdren. “High-order accurate Lagrange-remap hydrodynamic schemes on staggered
Cartesian grids”. Comptes Rendus Mathematique (2016).



Fictitious domain methods

One has to define values of U inside the domain Q_ denoted U/_ using data provided on
the border T" and values inside the interior domain /. Then, one builds an operator R

such that

RUT) =U_



High-order accuracy interest

Here, a piston (which lies originally near x = —1) with infinite mass is oscillating in a gas
initially at rest®.
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(a) High order reconstruction (b) Second order reconstruction

Figure : 10 cells per wavelength at 7' =9, for order 3, 4 and 6 schemes.

5G. Dakin, B. Després, and S. Jaouen. “Inverse Lax-Wendroff boundary treatment for compressible
Lagrange-remap hydrodynamics on Cartesian grids”. Journal of Computational Physics (2017), pp. -.



Boundary conditions discretization for
linear hyperbolic systems




CZa The advection case

Problem with initial and boundary conditions writes, for a > 0, zs = cAx

Otu + adzu = 0, t>0, x> s,
u(zs,t)  =g(t), t>0, ®3)
u(z,0) =uo(z), x> .
Boundary
U_; Up U; Uy Us
gAx
Az

Figure : Picture of the border and fluid and fictitious domain decomposition.



cea Inverse Lax—\Wendroff procedure

The main of the inverse Lax-Wendroff procedure®’ is to use the following equation

dpu = (—a) " du,a >0 @)

in order to transform spatial derivatives of u in Taylor series into time derivatives of w.
Denote Ax the mesh size. The average value of u at point x in a neighborhood of
writes

(a,t) = —— / S B S obuen )@= gy (5)
Az [, 2s Az —4 =5 k!
It yields
) D (@ + % D (@ Aj Nas
e t) = 37 > rulws,1) k+ 11 - k+ 11 (©)

k>0

S, Tan and C.-W. Shu. “Inverse Lax-Wendroff procedure for numerical boundary conditions of
conservation laws”. Journal of Computational Physics 229.21 (2010), pp. 8144-8166.

’S. Tan and C.-W. Shu. “A high order moving boundary treatment for compressible inviscid flows”.
Journal of Computational Physics 230.15 (2011), pp. 6023-6036.



Inverse Lax—\Wendroff procedure

(CC+ % 71.5)164»1 (x _ g — )kJrl

_ 2 B
Yr(z) = k+ 10 k+ 1!

We introduce also two parameters m and n and we write

W, 1) = 3= > Obu(e, 1)n(e)

k>0

- = ( S (o) obuon, @) + 3 35“(9“’”%@)

0<k<n k>n+1

= ﬁ ( > (—a) ofu(ms, k(@) + Y afu(%’t)wk(x)) + O(Az™).

0<k<n n+1<k<m



Inverse Lax—\Wendroff procedure

Using the fact that u(zs,t) = g(¢), then we write
u(x,t) = Aig; ( Yo o ogn@) + Y dhulas, (e )) +0(Ax™).
0<k<n n+l1<k<m

Consider a third oder scheme needing two ghost cells values, then dropping the & and
taking m = 3, n = 1 it yields for g =0

u(x,t) = 73 u(ws, t) 3 - 2
2 2 2 2
= Bulwt) (12:E 24xoAx ;L412Ax o’ + Az ) . R

Then, taking x = z1 = Az, it yields

24
O2u(xs,t) = ( )* ) 8
u@st) =\ A7 “st0na? F13a2) " ®)



CZa Ghost cells values computation

We can finally deduce values for @y and u_1 which write

— _ 12A:v2o'2+Az2 2
T L)

(9)

2_2 2 2
— 13A 2
;s (12A:c o +2422Az +13Ax )8 u(zs, 1)

We can straightforwardly rewrite those values as function of ;. It yields

— _ 120241 —

o = 1202 240113 YL (10)
_ 2 _

T, = 12024240413

1202 —-240+13

10/36



High order generalization with g # 0

We generalize the reconstruction for any order m taking into account n time derivatives
of g. We write the Taylor series under the matrix form

U-=8"+ym™". 0o,
m 11
{u+:s¢+zp"-e. (11)
where S” and S only depends on the boundary condition g. We show that the matrix

Y™ is invertible for 0 < n < m and then it yields

Uo =S Y™ () U — ST, (12)

Last, we define the reconstruction operator R™™ at the boundary as

Em,n — z:n,n . (zr,n)—l. (13)

l N, “ R0 l RoT ‘ 2 ‘
20 || 3.1e-2 . 2.8e-2 . 2.9e-2 .

40 || 5.9e-3 | 2.39 | 5.6e-3 | 2.32 | 5.6e-3 | 2.35
80 || 8.0e-4 | 2.88 | 7.7e-4 | 2.86 | 7.7e-4 | 2.86
160 || 1.0e-4 | 2.93 | 1.0e-4 | 2.92 | 1.0e-4 | 2.92

11/36



Schemes stability

Denote Z the interior numerical scheme which satisfies
Uttt = zy*.

Let R be the reconstruction operator which writes
U-=RU..

Then the scheme writes

k+1 k
(u+> _ (Zl,l §1,2) . <Z/I+) — ((gl,l +§1,QE) LI_Z_) . (14)
U- §2,1 §2,2 U- (52,1 + 52,23) uy

Which can be rewritten under the following form

Ut = (2, + 2, ,R) U = NUY, (15)

where N'= (£, , + Z, ,R) is called the effective operator.



cea Reduced stability definition

Denote N,,, € R”i, Ny, = Pn NP where P, is the projection satisfying X' € 12,
Pr.X = (X1,..., Xn.) € R, In order to avoid heavy computations introduced in GKS
analysis®, the reduced stability definition is proposed.

Definition (Reduced stability)
Let Z be the interior scheme and R be the reconstruction operator. Operator
N = (21,1 + Z12R) is stable in a reduced sense if
Z is proved stable for the Cauchy problem,
There exists n. € N* such that p(N,,) < 1.
In practice, we check numerically the interior scheme stability, function of v using von

Neumann analysis®*® then we compute numerically the spectral radius of N,,_, function
of m, n, o et v.

8B. Gustafsson, H.-O. Kreiss, and A. Sundstrém. “Stability theory of difference approximations for mixed
initial boundary value problems. II". . Mathematics of Computation (1972), pp. 649-686.

°J. G. Charney, R. Fjértoft, and J. v. Neumann. “Numerical integration of the barotropic vorticity
equation”. Tellus 2.4 (1950), pp. 237-254.

109G Allaire. Numerical analysis and optimization: an introduction to mathematical modelling and numerical
simulation. Oxford University Press, 2007.
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Reduced stability for the O3 scheme

An instability area is observed for high values of (v, o) for the reconstruction operator
RS,O.

RO m=3n=0 R m=3n=1

Figure : Reduced stability area {(v,0) / p(Nnc) < 1} (in white) for the third order Strang
scheme with n. = 20 for the reconstruction operator R>:? and R31.

14 /36



Reduced stability for the P4 scheme

An additionnal behavior is observed here. The instability domain for R*° contains an
instability area for very small values of v.

RY . m=4n=0 R¥ Y :m=4n=1

Figure : Reduced stability area {(v,0) / p(Nnc) < 1} (in white) for the fourth order Strang
scheme with n. = 30 for the reconstruction operator R*? and R*1.

15/36



Instability for the O3 scheme

Here, comparisons are drawn between theoretical results and numerical ones about third
order scheme using operator R*° with parameters v = 0.8, o = 0.45 and with n. = 200.

7

Analytic solution
G3/R30 - @ -
6L |

The predicted instabily in the sense of reduced stability is observed.

16/36



Instability for the P4 scheme

Here, comparisons are drawn between theoretical stability results and numerical ones

about fourth order scheme using operator R*? with parameters v = 0.01, ¢ = —0.49
and with n. = 30.
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The predicted instabily in the sense of reduced stability is observed. 17/36



Boundary conditions discretization for
compressible hydrodynamocs




Cea Euler equations

Let 0 € [—% : %[ AX the grid step and X, = 0 AX a point which does not coincide
with the mesh. Consider the following system

Oip + O (pu) 0
O: (pu) + 0x (pu® +p) = 0,
0

9 (pe) + Ox (pue + pu)= : (16)
p 1/p’ 67 u)?
u(@s(t),1) = g().

Using lagrangian coordinates, it yields

!
&
O

2
\]

Dt (poT) — 8Xu = O

D¢ (pou) + 0xp = 0

Dy (poe) + Oxpu= 0
P =EO0S(t=1
u(Xs,t) = g(t)

(17)
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Non-invertibility of the matrix A = VyF

0 -4 0
A | 2 6(1)9 op 18
8= | Opor dpou dpoe |- (18)

op_ p Op
uaoor %—’_ugpou “5/;06

Obviously, matrix A is not invertible. Indeed, A has three eigenvalues
A1 > 0,22 = 0,3 = —A1. This is an additional difficulty as in the linear analysis,
hypothesis on the invertibility of A has been made.

Focus on a simple case, just to get an idea of the kind of solution we are looking for.
Consider that

m po =1,
Em=2n=1,

B p=FEOS(t,e,u) =(y—1)

1,2

€—§’LL
T

19/36



Building the system for pg =1, m=2,n=1

7(Xs) + Ox7(X:) (X — Xs) = 7(X),

w(Xs) + Oxu(X:)(X — Xs) = u(X),

e(Xa) + Oxe(X)(X — X,) = e(X), (19)
’LL(XS) = 9,

Ix7(X:)0,p(Xs) — Oxe(X:)0ep(Xs) — Oxu(Xs)0up(Xs)

_Dtg7

whose unknowns are 7(X5), Ox7(Xs), u(Xs), Oxu(Xs), e(Xs), Oxe(Xs).

We lack an equation to close the system. Hence, let us add another Taylor development
of 7 at point X2 # X3

7(Xs) + Ox7(Xs) (X1 — Xs) = 7(X1),
T(Xs) + Ox7(Xs) (X2 — Xs) = 7(X2),
w(X.) + Oxu(Xe) (X1 — X) = w(X1),
e(X.) + Oxe(X.)(X1 — X.) = o(X1),
U(Xg) = 9,
Ox7(Xs)0rp(Xs) — Oxe(Xs)0ep(Xs) — Oxu(Xs)0up(Xs) = —Dug

20/36



System solving at the boundary

Hence, we can write

71(X2 — Xs) — 72(X1 — X,)

Ts = X — X1 ’
— T2 — T1
aXTS - X2 — le
Us = 97
Oxus = ,Xy/ll _)% 5
2
€s = (el - (Xl - Xe)(gaxus E 1Dtg + %8)(7—9))(1 + (Xl - X§)8§§7’5)-1
> s
e
Oxes = gOxus — *IDtg—F 2 OxTs.

The system is linear. We have existence and uniqueness of the solution as far as
X1 # X, X1# Xo, 1 #0.

— Can we generalize this solution for any po, m and p ? For simplicity sake, we only
focus on n = 1 reconstruction operator.

21/36



ced Existence and uniqueness of the system

The following Lemma gives results concerning existence and uniqueness of the
reconstruction in the fictitious domain®!.

Lemma (e-affine EOS)

Let m > 1, let any po, let an e-affine EOS: p(e,7) = a(7)e + b(7). Then the system is
linear. It is invertible under the condition a(ts) # 0.

Examples of e-affine EOS:
m Perfect gaz: p(e,7) = (y — 1)<,
m Stiffened gas: p(e,7) = (y — 1)£ — p*,
® Mie-Griineisen EOS™: p(e, 1) = p* (1) + " (e — * (7).

=

11G. Dakin, B. Després, and S. Jaouen. “Inverse Lax-Wendroff boundary treatment for compressible
Lagrange-remap hydrodynamics on Cartesian grids”. Journal of Computational Physics (2017), pp. -.
12yy. B. Holzapfel. “Equations of state and thermophysical properties of solids under pressure’.
High-Pressure Crystallography. Springer, 2004, pp. 217-236.
22/36



ced Kidder isentropic compression

Boundary condition discretizatio is used for the GoHy schemes'®, which are colocated
high-order one-step schemes for the Euler equations.

The first test case is the Kidder isentropic compression'® where we prescribe analytically
the speed of the both side of the domain using the exact solution.

[ N | GoHy-1 [ GoHy-2 [ GoHy-3 ] GoHy-4 [ GoHy-5 |
25 9.1e-4 . 3.0e-4 . 1.5e-5 . 2.0e-5 . 7.5e-6 .
50 4.5e-4 | 1.0 3.6e-5 | 3.0 5.0e-7 | 4.9 3.7e-7 5.7 2.9e-8 8.0
100 22e-4 | 1.0 3.0e-5 | 0.2 2.7e-7 | 0.9 1.5e-8 4.6 4.1e-10 | 6.1
200 1.2e-4 | 0.9 7.9e-6 | 2.0 3.0e-8 | 3.2 2.7e-10 | 5.8 2.3e-12 | 75
400 6.2e-5 | 0.9 2.0e-6 | 2.0 3.4e-9 | 3.2 8.5e-12 | 5.0 5.3e-14 | 55

Table : I error in both time and space as well as experimental order of convergence for the
GoHy schemes GoHy until T=0.01, with CFL=0.9. The expected order of accuracy is reached.
For stability issues (predicted in the linear case), a least square method is developed for order 4
and 5.

13M. Wolff. “Mathematical and numerical analysis of the resistive magnetohydrodynamics system with
self-generated magnetic field terms”. PhD thesis. Université de Strasbourg, 2011,

14R. E. Kidder. The Theory of Homogeneous Isentropic Compression and its Application to Laser Fusion.
Springer. Vol. 3B. 1974, pp. 449-464.



The Sod shock tube

Cea

The Sod test-case'® is modified here. We
problem, with a moving wall whose speed
in the original problem. Thus, initial data

(a) Order 2

consider only the right state of the initial Sod
is equal to the one of the contact discontinuity
are

0.125
0
0.1
0.5

(21)

07 o 08

(b) Order 3

15G. A. Sod. “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic

Conservation Laws’.

J. Comput. Physics 27 (1978),

pp. 1-31.
24/36



From 1D to 2D

The border T is discretized using a necklace of pearls, that are represented by red crosses
on the figure.

m For every pearl P; on T :
= A stencil of points Py in a
n(t,s)p 5 o neighborhood of Ps is built inside the
O = SN fluid domain Q,
X Using the boundary condition on P,
A fa the reconstruction operator is built.
X [ . . .- .
7 N m For every cell in the fictitious domain
X 7 Q_
- L~ T Find the nearest pearl Ps, from the
B cell center,
Apply the reconstruction operator.

25 /36



Numerical results in 2D

We assess stability of the proposed reconstruction as well as their accuracy on a C*°
test-case. In this scenario, the solid domain completely circles the fluid domain.

1
o :(1_ (”/8:/7225261_72)7—1
B 1-r2 t
U = ?6 2 ) (_yvx)
Po = Pg
u-nr= 0
[ N | GoHy-1 [ GoHy-2 [ GoHy-3 ‘

50 4.96e-1 . 35% | 5.33e-2 . 47% | 9.93e-2 . 49%
100 || 2.52e-1 | 0.97 | 23% | 1.40e-2 | 1.93 | 42% | 2.04e-2 | 2.28 | 45%
200 || 1.20e-1 | 1.07 | 12% | 4.50e-3 | 1.63 | 27% | 3.46e-3 | 2.56 | 35%
400 || 5.66e-2 | 1.08 | 7% 1.28e-3 | 1.81 | 16% | 6.43e-4 | 2.43 | 22%
800 || 2.74e-2 | 1.05 | 3.7% | 3.23e-4 | 1.99 | 9.7% | 9.31e-5 | 2.79 | 14%

Table : 11 in both time and space on the density as well as experimental order of convergence.
The cost of the inverse Lax—Wendroff procedure is given in % w.r.t the total cost of the GoHy
schemes. 26/36



Aeroacoustic diffraction around a cylinder

A incident plane wave impacts a motionless cylinder and then is scattered by the
obstacle®.

Harmonic solution Harmonic solution
GoHy3/1 GoHy3/ ———

GoHy3/2 e GoHy3/2
GaHya/3 j GoHya/3

i } | i y i ; i

T + t 1
5000 1c.08 15008 20:08 50-09 16-08 1.5p-08 26-08
«

Figure : Polar plot of the pressure pertubations Ap(#) on the cylinder border with respectively
20 cells per wavelength on the left and 40 cells on the right for a third order scheme, with
recontructions of order 1, 2 and 3.

) J. Bowman, T. B. Senior, and P. L. Uslenghi. “Electromagnetic and acoustic scattering by simple

shapes (Revised edition)”. New York, Hemisphere Publishing Corp., 1987, 747 p. 1 (1987).
27/36



Double Mach reflection

A solid wall is positionned at (0,0) and has a 30° angle with respect to the horizontal
axis.'"*8, A Mach 10 shock is initialized in {(z,y) € Q,z < —0.5}.

R R .
—t— —

6 ok o ds 08 1 2 a8 1 b Za 25 2b

(a) Discrétisation (b) Ordre 3

17p, Woodward and P. Colella. “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong
Shocks”. J. Comput. Physics 54 (1984), pp. 115-173.
185 Tan and C.-W. Shu. “Inverse Lax-Wendroff procedure for numerical boundary conditions of
conservation laws”.  Journal of Computational Physics 229.21 (2010), pp. 8144-8166.
28/36



Fluid - rigid body coupling




Immersed rigid body dynamics in an inviscid fluid

Js
Rigid body dynamics writes then
MsDeug

JsDiw

DtX

(22)

(23)
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Iso-As spatial discretization

I is parametrized by v : [0 : 1] — R?. Denote s the curvilinear coordinate. We have
I'={x,3s5€[0,1],7(s) = x}.

Consider a discretization with N elements FH% such that

S0 = 0,
SN = 1,
Ssit1—Si = As, Vi € {0, ey N — 1}, (24)

Liv1 = {x,3s € [si,8541],7(s) =x} Vie{0,...N —1}.

30/36



Resulting forces and torques computation

The iso-As discretization yields spectral precision'® for the integral of forces and torques
computation on I'. It writes

JRCES Z / dx—AsZ / ) lr(s)lds

Lemma

Let T' a closed curve smooth enough, ¢ € €°°, and ¢ i+l = ¢(7(si+%))||'y/(si+%)||.
Then

N-1
Vm > 0, / p(x)dx = As 3 67, + O(As™).
r i=0 2

This peculiar result has been found using traditionnal polynomial interpolation
coefficients used routinely on Cartesian grids.

A Kurganov and J. Rauch. “The order of accuracy of quadrature formulae for periodic functions”.
Progress in nonlinear differential equations and their applications 78 (2009), pp. 155-159.



Coupling algorithm between fluid and structure

(—{yn,Ghost)_,[yn-H]

ur ur

’ Inverse Lax-Wendroff treatment‘

Uy p

)

o
o
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Fluid - rigid body interaction
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Figure : 60 pressure contours (top) from 0 to 28 and density contours (bottom) from 0 to 12 at
time t=0.14 for the third order GoHy scheme with Az = Ay = 6.25 x 10™4.
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Fluid - rigid body interaction

0154

VA0

005

o151

VAE01--

oos--

obs ols

Figure : 60 pressure contours (top) from 0 to 28 and density contours (bottom) from 0 to 12 at
time t=0.255 for the third order GoHy scheme with Az = Ay = 6.25 x 10~%,
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Conservation error

We present in Table 3, absolute errors made on conservation of mass and total energy
which seem to converge with a slope of 0.7 — 0.8 for the first order scheme, and near
unity for the second and third order ones.

Ax = Ay GoHy-1 GoHy-2 GoHy-3
Aml| | JAel | |Am| | |Ael | |Am| | |Ae
2.5 x 1073 1.55e-2 | 4.24e-2 | 8.07e-3 | 1.71e-2 1.1e-2 2.5e-2
1.25 x 1073 9.41e-3 | 2.62e-2 | 4.12e-3 | 8.89e-3 | 5.58e-3 | 1.29e-2
6.25 x 1072 5.36e-3 | 1.54e-2 | 2.16e-3 | 4.58e-3 | 2.81le-3 | 6.47e-3
3.125 x 107* || 2.96e-3 | 8.59e-3 | 1.11e-3 | 2.38e-3 | 1.41e-3 | 3.24e-3

Table : Conservation on mass and total energy at ¢ = 0.255 for the lift-off cylinder test-case.



ce Conclusion and perspectives

Main results
= New method for boundary conditions discretization.
m Development of a stability criterion for boundary conditions called "reduced
stability".
& Straightforward coupling algorithm for fluid - rigid body interaction.

Perspectives
® 3D formulation of the boundary conditions discretization,
m Coupling between a compressible fluid and an elastic structure.
® Strong coupling using iterative method to determine both displacement and pressure
forces.
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