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Motivation

To develop a software to simulate and optimize a gas transportation
network, provided with a graphical user interface and a data basis to
manage scenarios and results.

GANESOr (Gas Network Simulation and Optimization).

Mostly funded by Reganosa Company (Mugardos, Galicia, Spain).
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The goal

The framework of this talk is transient mathematical modelling of gas
transport networks.

The model consists of a system of nonlinear hyperbolic partial
differential equations coupled at the nodes of the network.

The edges of the graph represent pipes where the gas flow is modelled
by the non-isothermal non-adiabatic Euler compressible equations for
real gases, with source terms arising from heat transfer with the
outside of the network, wall viscous friction, and gravity force; the
latter involves the slope of the pipe.

M.E. Vázquez-Cendón (USC & ITMATI) Purple SHARK-VF 2017 May 15-19 2017 3 / 81



Introduction Mathematical Model Numerical Solution Gas network simulation

The goal

Up to now, the gas is assumed to be homogeneous in composition.

Now, let us suppose that the composition is different from one entry
point to another.

Furthermore, we also assume that, at each entry point, the
composition changes along the time.

Under these assumptions the gas composition in the network changes
from point to point and also along the time.

From the composition, the “gas quality” in terms of its calorific value
can be computed at each point x and time t.
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OUTLINE

Mathematical model of gas flow in a pipe

Numerical solution. Finite volume discretization

Flux and source terms upwinding

Numerical tests: analytical solution

Numerical results vs experimental data

M.E. Vázquez-Cendón (USC & ITMATI) Purple SHARK-VF 2017 May 15-19 2017 5 / 81



Introduction Mathematical Model Numerical Solution Gas network simulation

Modelling one single pipe: Geometry and gravity force term

x(s)

L
π − α(x(s))

α(x(s))

ρg sin(π − α(x(s)) ≃ −ρg tanα(x(s)) ≃ −ρgh′(x(s))

s0

h(x(s))

s

Figure: Approximation of the gravity force term assuming x ′(s) ≈ 1.
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Modelling one single pipe: Notations

ρ is the average mass density (kg/m3),

v is the mass-weighted average velocity on cross-sections of the pipe
sections (m/s),

p is the average thermodynamic pressure (N/m2),

g is the gravity acceleration (m/s2),

h is the height of the pipe at the x cross-section (m),

D is the diameter of the pipe (m),

λ is the friction factor between the gas and the pipe walls; it is a
non-dimensional number depending on the diameter of the pipe, the
rugosity of its wall and the Reynolds number of the flow,
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Modelling one single pipe: Notations

E is the average specific total energy (J/kg),

e is the specific internal energy (J/kg),

β is a heat transfer coefficient (W/m2K),

θ is the average temperature (K),

θext is the exterior temperature (K),

Yk is the mass fraction of the k-th species,

ρk = ρYk is partial density of the k-th specie (kg/m3).
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Modelling one single pipe: Balance law

The balance equations can be rewritten in the compact form:

Euler system:

∂W

∂t
(x , t) +

∂FW

∂x
(W(x , t),ρ(x , t)) =

3∑
j=1

Gj(x , t,W(x , t),ρ(x , t)), (1)

Gas composition system:

∂ρ

∂t
(x , t) +

∂Fρ

∂x
(W(x , t),ρ(x , t)) = 0, (2)

A. Bermúdez, X. López and MEVC, Finite volume methods for multi-component

Euler equations with source terms, Submitted to Computers & Fluids, (2016).
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Modelling one single pipe: Balance law

Conservative variables Euler system: W = (W1,W2,W3)
W1 = ρ (mass density, kg/m3),
W2 = ρv (mass flux or linear momentum density, kg/(m2s)),
W3 = ρE (total energy density, J/m3),

Conservative variables gas composition system: ρ = (ρ1, · · · , ρNe )t

ρk = ρYk (partial density of the k-th species (kg/m3)),

Coupling: W1 =
∑Ne

k=1 ρk then it is enough to solve Ne − 1 equations
for the species in gas composition system.

Physical flux Euler system Physical flux gas composition system

FW (W,ρ(x , t)) =


W2

W 2
2

W1
+ p̂(W,ρ)

)
(
W3 + p̂(W,ρ)

)W2

W1

 , Fρ(W(x , t),ρ) =
W2

W1
ρ,
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State equations. Homogeneous mixture of perfect gases

p̂ and θ̂ are the mappings giving pressure and absolute temperature from
the conservative variables, through the state equations:

p =

(
Ne∑
k=1

ρk
Mk

)
Rθ, (3)

Ne∑
k=1

ρk

∫ θ

θref

ĉvk(s) ds = W3 −
1

2

W 2
2

W1
−W1ê(θref ). (4)

ê(θref ) is the specific internal energy at reference temperatures θref ,

ĉvk(θ) is the specific heat at constant volume of the k-th species, at
temperature θ (J/(kgK)),

R is the universal gas constant (J/(k-mol K).
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Source terms

Friction:G1(x , t,W(x , t),ρ(x , t)) =


0

−λ(x , t)

2D

W2|W2|
W1

0

 ,

Variable height
along the pipeline: G2(x , t,W(x , t),ρ(x , t)) =

 0
−gW1h

′(x)
−gW2h

′(x)

 ,

Heat exchange with the exterior:

G3(x , t,W(x , t),ρ(x , t)) =

 0
0

4β

D

(
θext(x , t)− θ̂(x , t,W)

)
 ,
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Initial conditions

W(x , 0) = W0(x), ρ(x , 0) = ρ0(x), x ∈ (0,L).

In practice, initial values for density, velocity, temperature and mass
fraction of the species at each cross-section x of the pipeline are
given, denoted by ρ0(x), v0(x), θ0(x) and Yk0(x), k = 1, · · · ,Ne :

W10(x) = ρ0(x), W20(x) = ρ0(x)v0(x),

ρk(x , 0) = ρ0(x)Yk0(x), k = 1, · · · ,Ne ,

and W30(x), can be computed by

W30(x) = ρ0(x)ê(θref ) +
Ne∑
k=1

ρk0(x)

∫ θ

θref

ĉvk(s) ds +
1

2
ρ0(x)(v0(x))2.

M.E. Vázquez-Cendón (USC & ITMATI) Purple SHARK-VF 2017 May 15-19 2017 13 / 81



Introduction Mathematical Model Numerical Solution Gas network simulation

Boundary conditions

They are written at the left-end of the pipe, x = 0.

Inflow (W2(0, t) > 0):
W2(0, t) = qL(t), θ(0, t) = θL(t),Yi (0, t) = YiL(t), i = 1, · · · ,N.

Outflow (W2(0, t) < 0): W2(0, t) = qL(t),
qL(t) is the mass flux (kg/(m2s) ) at x = 0 and time t.

Free exit:
∂Wi

∂x
= 0, i = 1, 2, 3,

∂Yk

∂x
= 0, k = 1, · · · ,Ne .

Inlet/Outlet pressure: p(0, t) = pL(t);
besides,

θ(0, t) = θL(t),Yi (0, t) = YiL(t), i = 1, · · · ,N if W2(0, t) > 0.

Wall: W2(0, t) = 0.
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Numerical solution. Constant gas composition

Euler explicit for time discretization.

Finite volume method for space discretization.

Approximate Riemann solver (van Leer’s Q-Scheme).

Upwind discretization of source terms following the general
methodology from: A. Bermúdez and MEVC, Upwind methods for

hyperbolic conservation laws with source terms, Comput. and Fluids 23(8),

1049–1071 (1994).

More details: A. Bermúdez, X. López and MEVC, Numerical solution of

non-isothermal non-adiabatic flow of real gases in pipelines, J. Comput.

Phys., 323, 126–148 (2016).

M.E. Vázquez-Cendón (USC & ITMATI) Purple SHARK-VF 2017 May 15-19 2017 15 / 81



Introduction Mathematical Model Numerical Solution Gas network simulation

Some related work

Well-balanced schemes for a similar problem, Euler equations with
gravitation, have introduced by several authors in the last years:

C. Chalons, F. Coquel, E. Godlewski, P. A. Raviart, M3AS (2010)

P. Chandrashekar, C. Klingenberg, SIAM J. Sci. Comput.(2015).

V. Desveaux, M. Zenk, C. Berthon, C. Klingenberg, Int. J. Numer.
Meth. Fluids (2010).

R. Käppeli, S. Mishra, J. Comput. Phys. (2014).

J. Luo, K. Xu,N. Liu, SIAM J. Sci. Comput. (2011).

K. Xu, J. Luo, S. Chen, Adv. Appl. Math. Mech. (2010).

Y. Xing and C.-W. Shu, J. Sci. Comput. (2013).
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Numerical solution. Variable gas composition

Physical flux is also space dependent. For a similar problem in shallow
water equations, several authors have introduced different numerical
methods in the last years:

P. Garćıa-Navarro and MEVC, Comput. and Fluids (2000)

M.J. Castro, E. D. Fernández-Nieto, T. Morales de Luna, G.
Narbona-Reina and C. Parés, M2AN (2013)
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Numerical solution. Variable gas composition

To preserve the mass fractions positivity, several authors have introduced
different numerical methods in the last years:

B. Larrouturou, [Research Report] RR-1080, 1989. J. Comput. Phys.,
(1991)

L. Cea and MEVC, J. Comput. Phys. (2012)

S. Paván, J.-M. Hervouet, M. Ricchiuto, R. Ata, J. Comput. Phys.
(2016)
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Let us notice first that Euler system and gas composition system are
coupled:

Pressure and temperature in the former depends on gas composition
Velocity (which is given by W2/W1) appears in the flux term of the
second system

In this work we are interested in segregated schemes, i.e., in solving
the two systems independently:

Solving Euler system we must assume that ρ is a given function of
(x , t)
Solving gas composition system we must assume that W is a given
function of (x , t).

This fact leads us to write the above systems in a slightly different
form, for the sake of clarity. Let us introduce the following vector
functions:

FW (x , t,W) := FW (W,ρ(x , t)),

Fρ
(
x , t,ρ

)
:= Fρ

(
W(x , t),ρ

)
,

Gj(x , t,W) := Gj(x , t,W,ρ(x , t)), j = 1, 2, 3.
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Then the systems can be rewritten as follows:

∂W

∂t
(x , t) +

dFW

dx
(x , t,W(x , t)) =

3∑
j=1

Gj(x , t,W),

∂ρ

∂t
(x , t) +

dF ρ

dx
(x , t,ρ(x , t)) = 0,

where

dFW

dx
(x , t,W(x , t)) :=

∂FW

∂x
(x , t,W(x , t)) +

∂FW

∂W
(x , t,W(x , t))

∂W

∂x
(x , t),

dFρ

dx
(x , t,ρ(x , t)) :=

∂Fρ

∂x
(x , t,ρ(x , t)) +

∂Fρ

∂ρ
(x , t,ρ(x , t))

∂ρ

∂x
(x , t).
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Finite volume mesh for the one-dimensional model

x0
x0+ 1

2

C0
�-

xN
xN− 1

2

CN
� -

xi−1 xi xi+1
xi− 1

2
xi+ 1

2

Ci
� -

Let us consider a finite volume mesh of the interval [0,L] = [x0, xN ].

The interior finite volumes are

Ci = (xi−1/2, xi+1/2), i = 1, · · · ,N − 1,

where
∆x = L/N, xi = i∆x and xi−1/2 = 1

2 (xi−1 + xi ), i = 1, · · · ,N.

The boundary finite volumes are C0 = (x0, x1/2), CN = (xN−1/2, xN).
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By integrating in Ci , i = 1, · · · ,N − 1, we get

d

dt

∫
Ci

W(x , t) dx + FW (xi+1/2, t,W(xi+1/2, t))− FW (xi−1/2, t,W(xi−1/2, t))

=
3∑

j=1

∫
Ci

Gj(x , t,W(x , t))dx .

The approximated solution is taken constant on each finite volume Ci

where its value, at time t, is denoted by Wi (t).

Therefore, at the boundaries of the finite volumes we approximate the
flux at these points by a so-called numerical flux Φ:

FW (xi−1/2, t,W(xi−1/2, t)) ≈ ΦW (xi−1, xi , t,Wi−1(t),Wi (t)), i = 1, · · · ,N−1.
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Several numerical fluxes are proposed in the literature to approximate
F. We have chosen the Q-scheme of van Leer for which Φ is defined
by

ΦW (xL, xR , t,WL,WR) = 1
2

(
FW (xL, t,WL) + FW (xR , t,WR)

)
−1

2 |QW (xL, xR , t,WL,WR)|(WR −WL),

where

QW (xL, xR , t,WL,WR) =
∂FW

∂W

(1

2
(xL + xR), t,

1

2
(WL + WR)

)
.

Let us recall that the absolute value of a diagonalizable matrix Q is
|Q| = X |Λ|X−1, where |Λ| is the diagonal matrix of the absolute
values of the eigenvalues of Q, and Q = XΛX−1.
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In order to make a full discretization, a mesh of the time interval is
introduced:

tn = n∆t, n = 0, · · · ,M.

Let us denote by Wn
i the approximation of W(xi , tn) given by the

explicit Euler numerical scheme:

Wn+1
i −Wn

i

∆t
+

1

∆x

(
ΦW (xi , xi+1, tn,W

n
i ,W

n
i+1)−ΦW (xi−1, xi , tn,W

n
i−1,W

n
i )
)

=
∑3

j=1 Gn
j ,i , (E1)
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Gn
j ,i denotes an upwinded approximation of

1

∆x

∫
Ci

Gj(x , tn,W(x , tn)) dx

Let us introduce the Gn
j ,i for j = 1, 2, 3. Following Bermúdez and

MEVC (1994), we define these approximations by using the functions
Ψj , j = 1, 2, 3, to be given below, as follows:

Gn
ji := Ψj(xi−1, xi , xi+1, tn,W

n
i−1,W

n
i ,W

n
i+1), j = 1, 2, 3.
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In order to get a well-balanced scheme, functions Ψj are defined in
accordance with the chosen numerical flux.

In our case, we have taken the Q-scheme of van Leer and hence

Ψj(x , y , z , t,U,V,W) = ΨL
j (x , y , t,U,V) + ΨR

j (y , z , t,V,W), j = 1, 2, 3,

ΨL
j and ΨR

j are approximations of the integrals
2

∆x

∫ xi
xi−1/2

Gj(x ,W
n) dx and 2

∆x

∫ xi+1/2

xi
Gj(x ,W

n) dx ,.

ΨL
j (xi−1, xi , tn,W

n
i−1,W

n
i )

:=
1

2

[
I + |QWn

i−1/2|(QWn
i−1/2)−1

]
Ĝj(xi−1, xi , tn,W

n
i−1,W

n
i ),

ΨR
j (xi , xi+1, tn,W

n
i ,W

n
i+1)

:=
1

2

[
I − |QWn

i+1/2|(QWn
i+1/2)−1

]
Ĝj(xi , xi+1, tn,W

n
i ,W

n
i+1),
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Average density

From the numerical results for static tests given below, we deduce
that the best choice of the average density involved in Gj is this
logarithmic average density introduced by Ismail and Roe (2009):

ρ̂(WL,WR) =


ρR − ρL

ln(ρR)− ln(ρL)
if ρR 6= ρL,

ρL if ρR = ρL.

However, the arithmetic average will be also considered, especially for
unsteady cases.
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The Euler stage. A new segregated scheme (E2)

It is well known that this discrete approximation does not work properly in
the case of mixtures of gases.

? The first term of ΦW leads to a centred scheme of FW (x , t,W).

? The second part of ΦW , −1
2 |QW |(WR −WL) is the numerical

viscosity needed for the stability of the scheme. The important
remark is that this term is built with the Jacobian matrix
∂FW

∂W
(x , t,W(x , t) so it only adds artificial viscosity (equivalently,

upwinding) to the discretization of the term ∂
∂W FW (x , t,W) ∂

∂x W but

not to the discretization of the other term, ∂
∂x FW (x , t,W(x , t)).

This lack of upwinding causes the bad behaviour of the scheme.
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Therefore, according to the previous analysis, the remedy to the bad
behaviour of E1 should consist in adding a new artificial viscosity

term to get an upwind discretization of
∂FW

∂x
(x , t,W(x , t)).

We propose to define this viscosity term as the difference between an
upwind and a centred discretization of this partial derivative. This is
the underlying idea in the discretization we propose below:

d

dt

∫
Ci

W(x , t) dx+FW (xi+1/2, t,W(xi+1/2, t))+FW (xi−1/2, t,W(xi−1/2, t))

−
∫
Ci

V(x , t,W(x , t))dx =
4∑

j=1

∫
Ci

Gj(x , t,W(x , t))dx .

for i = 0, · · · ,N, where

V(x , t,W) :=
∂

∂x
FW (x , t,W), G4(x , t,W) := − ∂

∂x
FW (x , t,W)
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Let us denote by Wn
i the approximation of W(xi , tn) given by the

explicit Euler method

Wn+1
i −Wn

i

∆t
+

1

∆x

{
ΦW (xi , xi+1, tn,W

n
i ,W

n
i+1)−ΦW (xi−1, xi , tn,W

n
i−1,W

n
i )
}

−Vn
i =

4∑
j=1

Gn
j ,i , (E2)

where Vn
i := 1

2

(
VLn

i + VRn
i

)
denotes a centred approximation and

Gn
4,i denotes an upwind approximation of 1

∆x

∫
Ci

G4(x , tn,Wn) dx .
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Vn
i := 1

2

(
VLn

i + VRn
i

)
, denotes a centred approximation of

2

∆x

∫ xi

x
i− 1

2

V(x , tn,W
n) dx +

2

∆x

∫ x
i+ 1

2

xi

V(x , tn,W
n) dx .

where

VLn
i ≈ V

(
xi−1 + xi

2
, tn,

1

2

(
Wn

i−1 + Wn
i

))

VRn
i ≈ V

(
xi + xi+1

2
, tn,

1

2

(
Wn

i + Wn
i+1

))
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Expression of V

To introduce V, we compute, for a mixture of calorically perfect
gases, the flux in terms of the conservative variables:

FW (x , t,W) =


W2

(γ(x , t)− 1)W3 +
(3− γ(x , t))

2

W 2
2

W1

γ(x , t)
W2W3

W1
+ (1− γ(x , t))

W 3
2

2W 2
1

 ,

where γ(x , t) =
cp(x ,t)
cv (x ,t) =

∑Ne
k=1 Yk(x , t)cpk∑Ne
k=1 Yk(x , t)cvk

.
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Expression of V

Then, V for a mixture of calorically perfect gases is

V(x , t,W(x , t)) :=
∂

∂x
FW (x , t,W(x , t))

=
∂

∂x
γ(x , t)


0

W3 −
W 2

2

W1
W2

W1

(
W3 −

W 2
2

W1

)
 .
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Centred discretization of V

In order to obtain a well-balanced scheme we deduce that the best
choice of the average discretization Vn

i := 1
2

(
VLn

i + VRn
i

)
is given by

V Ln
2i =

γni − γni−1/2

∆x

(
W n

3i −
(W n

2i )
2

2W n
1i

)

+
γni−1/2 − γni−1

∆x

W n
3(i−1) −

(
W n

2(i−1))
)2

2W n
1(i−1)

 ,

V Rn
2i =

γni+1 − γni+1/2

∆x

W n
3(i+1) −

(
W n

2(i+1)

)2

2W n
1(i+1)

 .

+
γni+1/2 − γni

∆x

(
W n

3i −
(W n

2i )
2

2W n
1i

)
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Centred discretization of V

V Ln
3i =

γni − γni−1/2

∆x

(
W n

3i −
(W n

2i )
2

2W n
1i

)
W n

2i

W n
1i

+
γni−1/2 − γni−1

∆x

W n
3(i−1) −

(
W n

2(i−1)

)2

2W n
1(i−1)

W n
2(i−1)

W n
1(i−1)

,

V Rn
3,i =

γni+1 − γni+1/2

∆x

W n
3,i+1 −

(
W n

2,i+1

)2

2W n
1,i+1

W n
2,i+1

W n
1,i+1

+
γni+1/2 − γni

∆x

(
W n

3,i −
(W n

2,i )
2

2W n
1,i

)
W n

2,i

W n
1,i

.

Let us recall that the first component of V is null, and

γni−1/2 = γ
(
xi−1+xi

2 , tn
)

, γni+1/2 = γ
(
xi+xi+1

2 , tn
)
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In summary, the scheme given by (E2) is

Wn+1
i =Wn

i −
∆t

∆x

{
ΦW (xi , xi+1, tn,W

n
i ,W

n
i+1)−ΦW (xi−1, xi , tn,W

n
i−1,W

n
i )
}

+
∆t

2

(
VLn

i +VRn
i

)
+∆t

4∑
j=1

(
ΨL

j (xi−1, xi , tn,W
n
i−1,W

n
i )+ΨR

j (xi , xi+1, tn,W
n
i ,W

n
i+1)
)
,

then we get the purple difference between (E2) and (E1)

Wn+1
i =Wn

i −
∆t

∆x

{
ΦW (xi , xi+1, tn,W

n
i ,W

n
i+1)−ΦW (xi−1, xi , tn,W

n
i−1,W

n
i )
}

−∆t

2
|QWn

i−1/2|(QWn
i−1/2)−1VLn

i +
∆t

2
|QWn

i+1/2|(Q
W ,n
i+1/2)−1VRn

i

+∆t
3∑

j=1

(
ΨL

j (xi−1, xi , tn,W
n
i−1,W

n
i ) + ΨR

j (xi , xi+1, tn,W
n
i ,W

n
i+1)

)
.
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The gas composition stage. A first segregated scheme (C1)

A similar problem to the one analyzed above also arises in solving the
second block of equations, i.e. gas composition system, but unlike the
Euler block they do not include any source term.

For upwind dicretization the numerical flux is also defined by the
Q-scheme of van Leer, that is,

Φρ(xL, xR , t,ρL,ρR) =
1

2

(
Fρ(xL, t,ρL) + Fρ(xR , t,ρR)

)
− 1

2
|Qρ(xL, xR , t,ρL,ρR)|(ρR − ρL),

where

Qρ(xL, xR , t,ρL,ρR) :=
∂Fρ

∂ρ

(1

2
(xL+xR), t,

1

2
(ρL+ρR)

)
= v

(1

2
(xL+xR), t

)
I,

and I is the identity matrix.
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The corresponding scheme is

ρn+1
i − ρni

∆t
+

1

∆x

(
Φρ(xi , xi+1, tn,ρ

n
i ,ρ

n
i+1)−Φρ(xi−1, xi , tn,ρ

n
i−1,ρ

n
i )
)

=0. (C1)

The drawback of this scheme is that it does not satisfy the maximum
principle so the discrete partial densities ρnk,i can be negative. In order
to avoid this inconvenient two different schemes are introduced below.
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The gas composition stage. New segregated schemes

Let us recall that the physical flux term consists of two parts:

dF ρ

dx
(x , t,ρ(x , t)) =

∂Fρ

∂x
(x , t,ρ(x , t)) +

∂Fρ

∂ρ
(x , t,ρ(x , t))

∂ρ

∂x
(x , t)

=
∂v

∂x
(x , t)ρ(x , t) + v(x , t)

∂ρ

∂x
(x , t),

but in scheme (C1) we are only upwinding the second one.

The second scheme (C2)

d

dt

∫
Ci

ρ(x , t) dx + Fρ(xi+1/2, t,ρ(xi+1/2, t))− Fρ(xi−1/2, t,ρ(xi−1/2, t))

−
∫
Ci

R(x , t,ρ(x , t))dx =

∫
Ci

G5

(
x , t,ρ(x , t)

)
dx ,

R(x , t,ρ) :=
∂v

∂x
(x , t)ρ and G5(x , t,ρ) := −∂v

∂x
(x , t)ρ.
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This scheme is fully independent of the one proposed for the Euler
stage.

It only considers the velocity computed at that stage.

Consequently, the approximation of partial densities ρ(xi , tn) is quite
different from the one used to approximate the total density
W1(xi , tn).

This fact provokes that the physical relation W1 =
∑Ne

k=1 ρk is not
satisfied.

Let us confirm this drawback by analysing a particular case.
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Assuming that vni−1/2 > 0 and vni+1/2 > 0 we will prove that the
previous identity does not hold:

Ne∑
k=1

ρn+1
k,i =

Ne∑
k=1

ρnk,i −
∆t

∆x

(
vni

Ne∑
k=1

ρnk,i − vni−1

Ne∑
k=1

ρnk,i−1

)

= W n
1,i −

∆t

∆x

(
vni W

n
1,i − vni−1W

n
1,i−1

)
.

W n+1
1,i = W n

1,i −
∆t

∆x

(
ηRni − ηLni

)
,

ηLni := φW1
(
xi−1, xi , tn,W n

i−1,W
n
i

)
+ ∆x

4∑
j=1

ΨL
j ,1

(
xi−1, xi , tn,W n

i−1,W
n
i

)
,

ηRni := φW1
(
xi , xi+1, tn,W

n
i ,W

n
i+1

)
−∆x

4∑
j=1

ΨR
j ,1

(
xi , xi+1, tn,W

n
i ,W

n
i+1

)
.
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The gas composition stage. The third scheme (C3)

This new scheme satisfies W1 =
∑Ne

k=1 ρk at time tn+1, assuming that
it is satisfied at time tn.

We follow the same procedure introduced in (C2) but we will couple
the composition stage to the Euler stage by replacing the velocities in
the numerical flux of the former with the ones obtained from ηLni and
ηRni , used to compute W n+1

1,i in (E2).

We define new numerical fluxes of the Q-scheme of van Leer:

Φρ
L(xi−1, xi , tn,ρ

n
i−1,ρ

n
i ) :=

1

2

(
ṽnL,i−1ρ

n
i−1 + ṽnL,iρ

n
i

)
− 1

2
|ṽnL,i−1/2|(ρni − ρni−1),

Φρ
R(xi , xi+1, tn,ρ

n
i ,ρ

n
i+1) :=

1

2

(
ṽnR,iρ

n
i + ṽnR,i+1ρ

n
i+1

)
− 1

2
|ṽnR,i+1/2|(ρni+1 − ρni ),
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The new approximations of velocities are

ṽnL,i−1 := ηLni
1

W n
1,i−1

, ṽnL,i := ηLni
1

W n
1,i

,

ṽnL,i−1/2 :=
1

2

(
ṽnL,i−1 + ṽnL,i

)
= ηLni

1

2

(
1

W n
1,i−1

+
1

W n
1,i

)
,

ṽnR,i := ηRni
1

W n
1,i

, ṽnR,i+1 := ηRni
1

W n
1,i+1

,

ṽnR,i+1/2 :=
1

2

(
ṽnR,i + ṽnR,i+1

)
= ηRni

1

2

(
1

W n
1,i

+
1

W n
1,i+1

)
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Accordingly, the upwind discretization of the source term Gn
5,i

corresponds to

ΨL
5(xi−1, xi , tn,ρ

n
i−1,ρ

n
i ) = −1

2

(
I +
|ṽnL,i−1/2|
ṽnL,i−1/2

I
)

RLn
i ,

ΨR
5 (xi , xi+1, tn,ρ

n
i ,ρ

n
i+1) = −1

2

(
I −
|ṽnR,i+1/2|
ṽnR,i+1/2

I
)

RRn
i ,

where

RLn
i =

ṽnL,i − ṽnL,i−1/2

∆x
ρni +

ṽnL,i−1/2 − ṽnL,i−1

∆x
ρni−1,

RRn
i =

ṽnR,i+1 − ṽnR,i+1/2

∆x
ρni+1 +

ṽnR,i+1/2 − ṽnR,i

∆x
ρni .
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Then, after some algebra, we can rewrite this new scheme as

ρn+1
i − ρni

∆t
+

1

∆x

(
ϕRn

i (xi , xi+1, tn,ρ
n
i ,ρ

n
i+1)−ϕLn

i (xi−1, xi , tn,ρ
n
i−1,ρ

n
i )
)

= 0,

where the global numerical fluxes ϕLn
i and ϕRn

i are defined by

ϕLn
i (xi−1, xi , tn,ρ

n
i−1,ρ

n
i ) =


ṽnL,i−1ρ

n
i−1 if ṽnL,i−1/2 > 0,

ṽnL,iρ
n
i if ṽnL,i−1/2 ≤ 0,

ϕRn
i (xi , xi+1, tn,ρ

n
i ,ρ

n
i+1) =


ṽnR,iρ

n
i if ṽnR,i+1/2 > 0,

ṽnR,i+1ρ
n
i+1 if ṽnR,i+1/2 ≤ 0.

This scheme preserves the positivity of partial densities ρk if the CFL
condition is satisfied.
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This new scheme satisfies the suitable property, W n+1
1 =

∑Ne
k=1 ρ

n+1
k ,

assuming that W n
1,i =

∑Ne
k=1 ρ

n
k,i , ∀i .

Let us denote ϕLn
k,i := ϕLn

k (xi−1, xi , tn,ρ
n
i−1,ρ

n
i ) and

ϕRn
k,i := ϕRn

k (xi , xi+1, tn,ρ
n
i ,ρ

n
i+1).

Ne∑
k=1

ϕLn
k,i=


ṽnL,i−1

Ne∑
k=1

ρnk,i−1 = ηLni
1

W n
1,i−1

Ne∑
k=1

ρnk,i−1 if ṽnL,i−1/2 > 0

ṽnL,i

Ne∑
k=1

ρnk,i = ηLni
1

W n
1,i

Ne∑
k=1

ρnk,i if ṽnL,i−1/2 ≤ 0


= ηLni ,

and also
∑Ne

k=1ϕ
Rn
k,i = ηRni . Then,

Ne∑
k=1

ρn+1
k,i =

Ne∑
k=1

ρnk,i −
∆t

∆x

(
Ne∑
k=1

ϕRn
k,i −

Ne∑
k=1

ϕLn
k,i

)
= W n+1

1,i .
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Imposing boundary conditions

In academic tests designed to analyze the order of accuracy of the
numerical discretizations, it is a usual practice to impose the values of
the exact solution at the boundary nodes.

This practice avoids that the accuracy of the method can be affected
by the treatment of boundary conditions.

From the mathematical point of view, it is like considering Dirichlet
boundary conditions.
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Test 1

The initial condition consists in a static situation (v = 0) with
spatially constant Rθ = K .

ρ(x) =
p(x)

R(x)θ(x)
=

p(x)

K

ρ(x) = ρ(0) exp
(
− g

K

(
h(x)− h(0)

))
.

θ(x) =

{
θL if x < L

2 ,

θR if x > L
2 ,

, Yk(x) =

{
YkL if x < L

2 ,

YkR if x > L
2 ,

, k = 1, · · · , 5,

where species are methane, ethane, propane, butane and nitrogen,
respectively.
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Test 1

Y1L Y1R Y2L Y2R Y3L Y3R Y4L Y4R Y5L Y5R

0.95 0.70 0.03 0.05 0.015 0.10 0.025 0.15 00025 0

Table: Data for Test 1 (I)

θL (C) θR(C) Rθ h(x) (m) L (m)

4.965142 63.434338 140329 200 sin
(

4πx
L
)

10000

Table: Data for Test 1 (II)
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Test 1

The initial condition consists in a static situation (v = 0) with
spatially constant Rθ.
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Test 1. Numerical results with (E1)+(C3)

Figure: Numerical results with scheme (E1)+(C3). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 2s.

The velocity is fully wrong: roughly speaking it oscillates between
vmin ' −4.6 m/s and vMax ' 15 m/s while the exact velocity is null.
The computed pressure is also wrong near x = L

2 .
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Test 1. Numerical results with (E1)+(C3)

Figure: Numerical results with scheme (E1)+(C3). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 200s.
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Test 1. Numerical results with (E2)+(C2)

Figure: Numerical results with (E2)+(C2). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 2s
(notice that the scale of velocities has to be multiplied by 10−15).

The numerical results are in good agreement with the exact solution.
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Test 1. Numerical results with (E2)+(C2)

Figure: Numerical results with (E2)+(C2). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 200s
(notice that the scale of velocities has to be multiplied by 10−15).
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Test 1. Numerical results with (E2)+(C3)

Figure: Numerical results with (E2)+(C3). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 2s
(notice that the scale of velocities has to be multiplied by 10−15).

The numerical results are in good agreement with the exact solution.
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Test 1. Numerical results with (E2)+(C3)

Figure: Numerical results with (E2)+(C3). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 200s
(notice that the scale of velocities has to be multiplied by 10−15).
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Test 1

Figure: Test 1. L1-error evolution in time with scheme (E2)+(C3). Top:
temperature (left) and pressure (right). Middle: density (left) and mass flux
(right). Bottom: partial density ρ1 (left). t = 200s.
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Test 1. Numerical results with (E2)+(C4)

Figure: Numerical results with (E2)+(C4). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 2s
(notice that the scale of velocities has to be multiplied by 10−15).

For this scheme the results are not in good agreement with the exact
solution.
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Test 1. Numerical results with (E2)+(C4)

Figure: Numerical results with (E2)+(C4). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 200s
(notice that the scale of velocities has to be multiplied by 10−15).

For this scheme the results are not in good agreement with the exact
solution.
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Test 2.

This case concerns a non-static situation (v = vc 6= 0). We look for a
steady solution for ρ and v such that

ρ(x , t) = ρc , v(x , t) = vc , θ(x)R(x) = K , ∀x ∈ (0,L).

where ρc , vc and K are constants.

We assume that h′(x) = 0, and G1 and G3 are null at the Euler stage.

Then, it is easy to check that the total energy E is the solution of a
transport equation with constant velocity vc .

Moreover, if we assume that ρc , vc are constant, then mass fractions
Yk , k = 1, · · · ,Ne are also solution of the same linear transport
equation.
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Test 2.

Y1L Y1R Y2L Y2R Y3L Y3R Y4L Y4R Y5L Y5R

0.70 0.95 0.05 0.03 0.10 0.015 0.15 0.0025 0 0.0025

Table: Data for Test 2 (I).

θL θR K = Rθ h(x) L ρc vc

(C) (C) (m) (m) (kg/m3) (m/s)

63.434338 4.965142 140329 0 10000 40 2

Table: Data for Test 2 (II).
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Test 2

Initial condition
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Test 2. Numerical results with (E2)+(C2) and (E2)+(C3)

Figure: Numerical solutions with scheme (E2)+(C2) (blue), and with scheme
(E2)+(C3) (red). Above: temperature (left) and pressure (right). Below: velocity
(left) and mass fraction 100Y1 (right). t = 5s.
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Test 2. Numerical results with (E2)+(C2) and (E2)+(C3)

Figure: Numerical solutions with scheme (E2)+(C2) (blue), and with scheme
(E2)+(C3) (red). Above: temperature (left) and pressure (right). Below: velocity
(left) and mass fraction 100Y1 (right). t = 200s.
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Gas network simulation

The ultimate goal of the methodology proposed in this talk is the
prediction of the physical variables involved in real gas transportation
networks.

In order to check if this is made accurately, we present a test
involving real data.

The network, depicted in next Figure, consists of 11 nodes, joined by
10 pipes.
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Real gas network

Figure: Real gas network, with node (rectangle) and edge (circle) identifications.
(Galicia. Spain).
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Topography is quite irregular

Figure: Test 4. Height profile along pipe number 4.
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Test 3, real case.

We present a test involving real data.

We show the results obtained with schemes (E2)+(C2) and
(E2)+(C3) along edge number 2.

The variable height profile along this pipe is shown in previous figure.

We select a real case with methane constant composition along the
edge (100Y1 = 81.372634114) and show the numerical results
obtained with the above mentioned schemes.

At t = 20 s the velocity along the pipe is not constant and,
furthermore it changes sign. For this magnitude both schemes gives
similar results for schemes (E2)+(C2) and (E2)+(C3).

However, regarding methane mass fraction these schemes give
different solutions.
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Test 3, real case. Numerical results with (E2)+(C2)

Figure: Velocity along pipe number 2 with scheme (E2)+(C2) . t = 20 s.
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Test 3, real case. Numerical results with (E2)+(C3)

Figure: Velocity along pipe number 2 with scheme (E2)+(C3) . t = 20 s.
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Test 3, real case. Numerical results with (E2)+(C2)

Figure: Mass fraction 100Y1 along pipe number 2 with scheme (E2)+(C2) .
t = 20 s.
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Test 3, real case. Numerical results with (E2)+(C3)

Figure: Mass fraction 100Y1 along pipe number 2 with scheme (E2)+(C3) .
t = 20 s.
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Test 4. Gas network simulation

Node 01A represents the Reganosa’s regasification plant. This is the
only gas inlet into the whole network: the rest of the nodes are
outlets.

The main gas outlet is located at node I-013 which is a terminal node
of the network where an outflow boundary condition is considered;
the consumptions of the rest of the nodes are very small in
comparison with this one.

In order to take into account the consumption at the interior nodes
we introduce an edge for each and impose an outflow boundary
condition at its terminal node.
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Test 4. Data: Initial conditions, height profile

Initial condition is based on the values of pressure, mass flow and
temperature at the nodes, that are interpolated over the edges.

In addition, we have the height profile of every gaseoduct.

The total time period for which we make this test is 172800 s, in
other words, 2 days.
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Test 4. Numerical results: mass flow rate

Figure: Mass flow at node 01A. Blue: real measurement. Red: computed with a
homogeneous gas composition model. Green: computed with a variable gas
composition model.
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xTest 4. Numerical results: Pressure

Figure: Pressure at node I-015. Blue: real measurement. Red: computed with a
homogeneous gas composition model. Green: computed with a variable gas
composition model.
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Test 4. Numerical results: Pressure

Figure: Pressure at node I-013. Blue: real measurement. Red: computed with a
homogeneous gas composition model. Green: computed with a variable gas
composition model.
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Test 4.Numerical results: Pressure

Figure: Pressure at node 06B. Blue: real measurement. Red: computed with a
homogeneous gas composition model. Green: computed with a variable gas
composition model.
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Test 5.Numerical results with (E2)+(C3)

Figure: Pressure at node 5 for one day. Black: real measurement. Blue:
computed.
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Test 5.Numerical results with (E2)+(C3)

Figure: 100Y1 at node 5 for one day. Black: real measurement. Blue: computed.
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