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Introduction

A hierarchy of fluid models for modeling a rarefied gas
Microscopic: Newton equations for N -particles systems;

Mesoscopic: Kinetic equations (Boltzmann, Vlasov, . . . );
Macroscopic: Fluid dynamics equations (Euler, Navier-Stokes, . . . ).
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Theoretical works: C. Cercignani, C. Bardos, R. DiPerna, P.-L. Lions, D. Levermore, C.
Villani, F. Golse, L. Saint-Raymond;
Numerical simulations: E. Tadmor, B. Perthame, P. Degond, L. Pareschi, E.
Sonnendrücker, S. Jin, F. Filbet.
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Toward a high order, explicit, uniformly stable time integrator Projective Integration (PI) on a nutshell

Projective Integration “à la Gear and Kevrekidis”

GsGf

Let us consider the system of ODEs

(1)

{
u′(t) = g(u(t)), t > 0

u(0) = u0 ∈ RN ,

where N is large and
∂g/∂u eigenvalues are clustered into two groups Gf , Gs ⊂ C, separated by a large
gap (∼ stiffness): Gs is located in a neighborhood of the origin (slow components),
and Gf lies far in the left-half plane (fast components).
Because of the stiffness in g (through Gf ), the solution u is projected on a low
dimensional equilibrium manifold in a very short time.

Formal idea:
Perform a number of small time steps of an inner integrator, corresponding to the
fast rate of damping of u towards the equilibrium manifold.
Extrapolate forward with a large time step, corresponding to the slow manifold.
The inner integrator can be explicit because its time steps δt will be chosen very
small, e.g.

δt ' O (min |λ| : λ ∈ Gf )
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Toward a high order, explicit, uniformly stable time integrator Projective Forward Euler

Projective Forward Euler (PFE) scheme
Gear, Kevrekidi, SINUM, 2003

{
u′(t) = g(u(t)), t > 0

u(0) = u0 ∈ RN , u(t)

tn−1 tn tn+1

Inner integrator. Forward Euler method with small time step δt:

uk+1 = uk + δt g(uk), k = 0, 1, . . . .

Outer integrator. Let ∆t be a regular time step, given say by a hyperbolic CFL, and un
be an approximation of the solution at time tn = n∆t

First take K + 1 inner steps of size δt using the inner integrator, and denote by
un,k the numerical solution at time tn,k = n∆t+ kδt.
Extrapolate in time (projective Forward Euler, PFE) to compute un+1 := un+1,0

un+1 = un,K+1 + (∆t− (K + 1)δt)u
n,K+1 − un,K

δt
.

Iterate
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Toward a high order, explicit, uniformly stable time integrator Projective Forward Euler

Linear stability
{
u′(t) = λu(t), t > 0
u(0) = u0 ∈ R, u(t)

tn−1 tn tn+1

Inner integrator. Forward Euler method with small time step δt:

uk+1 = (1 + λδt)uk = (1 + λδt)k+1 u0, k = 0, 1, . . . .

Outer integrator. ∆t is the regular time step, and un ' u(tn):
After K + 1 inner steps of size δt using the inner integrator:

un,k = (1 + λδt)K+1 un

Extrapolate in time (projective Forward Euler, PFE):

un+1 = un,K+1 +Mδt
un,K+1 − un,K

δt
,

= ((M + 1)τ −M) τKun,

where τ = 1 + λδt and M = ∆t/δt− (K + 1).
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Toward a high order, explicit, uniformly stable time integrator Projective Forward Euler

Linear stability (cont’ed)

{
u′(t) = λu(t), t > 0
u(0) = u0 ∈ R, u(t)

tn−1 tn tn+1

We have un+1 = σ(τ)un where σ(τ) = ((M + 1)τ −M) τK and M = ∆t/δt− (K + 1).

Theorem (Gear, Kevrekidis, 2003, SINUM)
Let D(λ, r) = {z ∈ C : |z − λ| ≤ r}. Then

|σ(τ)| ≤ 1⇔ τ ∈ D
(

1− δt

∆t ,
δt

∆t

)
∪ D

(
0,
(
δt

∆t

)1/K
)
.

Corollary. The PFE method is linearly stable if, and only if

λ ∈ D
(
− 1

∆t ,
1

∆t

)
∪ D

(
− 1
δt
,

1
δt

(
δt

∆t

)1/K
)
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Toward a high order, explicit, uniformly stable time integrator Toward high order (and beyond?)

Projective Runge-Kutta method
Higher-order projective Runge-Kutta (PRK) methods can be constructed by replacing
each time derivative evaluation ks in a classical Runge-Kutta method by K + 1 steps of
an inner integrator as follows:

s = 1 :

{
un,k+1 = un,k + δtg(un,k), 0 ≤ k ≤ K

k1 = un,K+1 − un,K

δt

2 ≤ s ≤ S :


un+cs,0
s = un,K+1 + (cs∆t− (K + 1)δt)

∑s−1
l=1

as,l
cs
kl,

un+cs,k+1
s = un+cs,k

s + δtg(un+cs,k
s ), 0 ≤ k ≤ K

ks = un+cs,K+1
s − un+cs,K

s

δt

un+1 = un,K+1 + (∆t− (K + 1)δt)
S∑
s=1

bsks.

To ensure consistency, the Runge-Kutta matrix a = (as,i)Ss,i=1, weights b = (bs)Ss=1, and nodes
c = (cs)Ss=1 satisfy the usual conditions 0 ≤ bs ≤ 1 and 0 ≤ cs ≤ 1, as well as:

S∑
s=1

bs = 1,
S−1∑
i=1

as,i = cs, 1 ≤ s ≤ S.
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Application to kinetic equations On collisional kinetic equations

A general Boltzmann-like equation

Scaled form
Study of a particle distribution function fε(t, x, v), depending on the time t > 0, space
position x ∈ Ω ⊂ Rdx , dx ∈ {1, 2, 3} and particle velocity v ∈ Rdv , dv ≥ dx, solution to

(2)


∂fε

∂t
+ v · ∇xfε = 1

ε
Q(fε),

fε(0, x, v) = fin(x, v),

where Q is the collision operator, describing the microscopic collision dynamics between
particles and ε is the Knudsen number, ration between the mean free path between
collisions and the typical length scale.

→ Huge phase space (up to 7-D!) ⇒ Deterministic numerical simulations very
costly!

→ Stiff (possibly multi-scale), highly nonlinear problem ⇒ Impliciting almost
impossible!
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Application to kinetic equations On collisional kinetic equations

Mathematical properties of the collision operator
Conservation of mass, momentum and kinetic energy∫

R3
Q(f)(v) dv = 0,

∫
R3
Q(f)(v) v dv = 0,

∫
R3
Q(f)(v) |v|2 dv = 0;

Dissipation of Boltzmann entropy∫
R3
Q(f)(v) log(f)(v) dv ≤ 0;

Explicit equilibria, known as Maxwellian distribution

Q(f) = 0 ⇔ f =Mρ,u,T := ρ

(2πT 3/2)
exp
(
−|v − u|2

2T

)
;

0th order fluid limit ε→ 0 given by the compressible Euler system
∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx (ρu⊗ u + ρT I) = 0R3 ,

∂tE + divx (u (E + ρT )) = 0.
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Application to kinetic equations Examples of kinetic models

The Boltzmann equation

It describes the non equilibrium behavior of a diluted gas of solid particles, interacting
only via binary elastic collisions

Applications
Microscale flow in MEMS, space shuttle atmospheric re-entry, . . .

Boltzmann collision operator

QB(f)(v) =
∫
R3×S2

[
f ′∗f
′ − f∗f

]
B(|v − v∗|, cos θ) dσ dv∗,

where B is the collision kernel, cos θ := (v − v∗) · σ and

v′ = v + v∗
2 + |v − v∗|2 σ, v′∗ = v + v∗

2 − |v − v∗|2 σ.
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Application to kinetic equations Examples of kinetic models

The BGK equation
The BGK1 equation replaces the quadratic Boltzmann operator by a nonlinear relaxation
operator which mimics its main features.

Applications
Same as before, but the simpler structure of the operator allows for easier computations
(with a cost in accuracy)

BGK operator
QBGK(f)(v) = ν(rho)

[
Mρf ,uf ,Tf (v)− f(v)

]
,

where
(ρf ,uf , Tf ) =

∫
Rd

f(t, x, v)ϕ(v) dv

for ϕ(v) = (1, v, |v − uf |2) are the mass, velocity and local
temperature of f andMρ,u,T the associated Maxwellian
distribution.

1Bhatnagar, Gross, Krook, Phys. Rev. (1954)
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Application to kinetic equations Examples of kinetic models

Riemann problem (Sod’s tube) 1Dx × 2Dv
BGK vs. Boltzmann

Density ρ Temperature T Velocity ux
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BGK (red) and Boltzmann (blue) solutions for ε = 10−2 (top) and ε = 10−4, at t = 0.15
with 800 spatial cells and 642 velocity cells
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Application to kinetic equations PI for collisional kinetic equation

Kinetic approximation of conservation laws
Let fε ∈ L1

x,v ((1 + v) dv) solution to the kinetic equation

(3) ∂tf
ε + v∂xf

ε = 1
ε

(R[uε]− fε)

where ∫
R
R[uε](v)(1, v) dv =

(∫
R
fε(v) dv, g(uε)

)
.

Then, when ε→ 0, uε converges toward u, solution to the scalar conservation law

(4) ∂tu+ ∂xg(u) = 0

Discretizing (3) in v on a uniform grid and in x with upwind fluxes, one can prove

Theorem (Lafitte, Leijon, Melis, Samaey, 2012-2014)
Choosing the parameters of the PFE scheme as K = 2, δt = ε and ∆t as the hyperbolic
CFL coming from (4) provides a ε-uniformly stable time integrator for (3), whose limit is
a stable approximation to (4). It is also consistent in the linear case.

Proof. Compute the slow and fast eigenvalue branches:

λs = −λs1ε+ iµs(1 + ε2) +O(ε3), λf = −1
ε
− λf1ε− iµ

f (1 + ε2) +O(ε3)

then use the stability criterion of the PFE method.
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ε = 1
ε

(R[uε]− fε)

where ∫
R
R[uε](v)(1, v) dv =

(∫
R
fε(v) dv, g(uε)

)
.

Then, when ε→ 0, uε converges toward u, solution to the scalar conservation law

(4) ∂tu+ ∂xg(u) = 0
Discretizing (3) in v on a uniform grid and in x with upwind fluxes, one can prove

Theorem (Lafitte, Leijon, Melis, Samaey, 2012-2014)
Choosing the parameters of the PFE scheme as K = 2, δt = ε and ∆t as the hyperbolic
CFL coming from (4) provides a ε-uniformly stable time integrator for (3), whose limit is
a stable approximation to (4). It is also consistent in the linear case.

Proof. Compute the slow and fast eigenvalue branches:

λs = −λs1ε+ iµs(1 + ε2) +O(ε3), λf = −1
ε
− λf1ε− iµ

f (1 + ε2) +O(ε3)

then use the stability criterion of the PFE method.
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Application to kinetic equations PI for collisional kinetic equation

Spectrum of the linearized BGK and Boltzmann operators
And now, for something (slightly) different
Denoting byM the global Maxwellian distributionM1,0,1, one can define the linearized
BGK and Boltzmann operators as

LM g :=M−1 (Q(M, g) +Q(g,M)) = KMg − ν(v) g

where KM is a compact operator on L2
v

(
M−1dv

)
and ν is bounded by below.

Going to Fourier in space, one can then define the linearized Boltzmann equation by

(5) ∂tg = 1
ε
KMg − (ν(v)/ε+ i εγ · v) g.

Theorem (Grad ’56, McLennan ’65, Nicolaenko ’71, Ellis-Pinsky ’75)
The spectrum of the RHS of (5) is composed of

fast modes: Eigenvalues located at a distance at least 1/ε on the left of the
imaginary axis;
slow modes: if |ε| � 1, exactly Dv + 2 eigenvalues branches given by

λ(j)(|γ|) := i λ
(j)
1 ε|γ| − λ(j)

2 ε2|γ|2 +O
(
ε3|γ|3

)
,

In the Boltzmann case, an essential spectrum also exists...
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Application to kinetic equations PI for collisional kinetic equation

PI for the BGK and Boltzmann equations

The spectrum of the linearized BGK operator is composed of
Eigenvalues located at a distance at least 1/ε on the left of the imaginary axis;
If |ε| � 1, Dv + 2 eigenvalues branches given by

λ(j)(|γ|) := i λ
(j)
1 ε|γ| − λ(j)

2 ε2|γ|2 +O
(
ε3|γ|3

)
,

Fast (exponential?) rate of damping of the solution to the full BGK equation
toward Maxwellian distribution ⇒ Linear regime ⇒ Taking the same parameters for
the PFE scheme as before K = 2, δt = ε and ∆t as the hyperbolic CFL coming
from the compressible Euler dynamics will give an ε-stable, uniformly accurate,
explicit time integrator for the BGK equation!

In the Boltzmann case, an essential spectrum also exists... Need to use Telescopic
Projective Integration2, which brings a log(1/ε) dependency on δt. But this is
another story ;-)

2Gear, Kevrekidis, SINUM 2004, Melis, Samaey, preprint 2016
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Numerical Methods Summary

Summary of the numerical solvers
Numerically solving the kinetic equation

∂tf + v · ∇xf = 1
ε
Q(f)

Introduce a Cartesian grid V of RDv by V = {vk = k∆v + a, k ∈ K} and denote
the discrete collision invariants on V by mk = (1, vk, 1

2 |vk|
2).

Replace the continuous distribution function f by a N -vector fK(x, t), where each
component is assumed to be an approximation of f at location vk:

fk(x, t) ≈ f(x, vk, t).

The fluid quantities are then obtained from fk :

U(x, t) =
∑
k

mkfk(x, t) ∆v.

The discrete velocity model becomes a set of N equations for fk

∂tfk + vk · ∇xfk = Q(fk),

where the term Q(fk) couples all the equations.
Free transport term divx(vkfk) computed with WENO reconstruction.
PRK time stepping.
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Numerical Methods Fast spectral method for the Boltzmann operator

Spectral discretization of Boltzmann collision operator
Truncation of the Boltzmann operator (assume now that f = f(v) only):

If the distribution function f have compact support on B0(R), then
supp(Q(f, f)(v)) ⊂ B0(

√
2R).

Thus, to write a spectral approximation which avoids aliasing, it is sufficient that
f(v) is restricted to [−T, T ]Dv with T ≥ (2 +

√
2)R.

Assuming f(v) = 0 on [−T, T ]Dv \ B0(R), we extend f(v) to a periodic function
on the set [−T, T ]3.
The choice T = (3 +

√
2)R/2 guarantees the absence of intersection between

periods where f is different from zero.

Fourier representation of the collision operator:
Let us take T = π and hence R = λπ with λ = 2/(3 +

√
2).

The distribution function is represented as the truncated Fourier series

fN (v) =
N∑

k=−N

f̂ke
ik·v, f̂k = 1

(2π)Dv

∫
[−π,π]Dv

f(v)e−ik·v dv.
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Numerical Methods Fast spectral method for the Boltzmann operator

Spectral discretization of Boltzmann collision operator II

QB(f)(v) =
∫
R3×S2

[
f ′∗f
′ − f∗f

]
B(|v − v∗|, cos θ) dσ dv∗,

We then obtain a spectral quadrature by projecting the Boltzmann operator on the
space of trigonometric polynomials of degree ≤ N , i.e.

Q̂k =
∫

[−π,π]3
Q(fN )e−ik·v dv, k = −N, . . . , N.

By substituting the truncated Fourier series fN in Q̂ one gets

Q̂k =
N∑

l,m=−N
l+m=k

f̂l f̂mβ̂(l,m), k = −N, . . . , N,

β̂(l,m) = B(l,m)− B(m,m) are given by

B(l,m) =
∫
B0(2λπ)

∫
S2
|q|σ(|q|, cos θ)e−i(l·q

++m·q−) dω dq.

with q+ = 1
2 (q + |q|ω), q− = 1

2 (q − |q|ω).
The evaluation of B(l,m) requires O(N2) operations.
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Numerical Methods Fast spectral method for the Boltzmann operator

Fast spectral discretization
In order to reduce the number of operations needed to evaluate the collision integral, the
main idea is to use the so-called Carleman representation.

This gives

QB(f) =
∫
R3

∫
R3

B̃(x, y)δ(x · y) [f(v + y) f(v + x)− f(v + x+ y) f(v)] dx dy,

with

B̃(|x|, |y|) = 2dv−1 σ

(√
|x|2 + |y|2, |x|√

|x|2 + |y|2

)
(|x|2 + |y|2)−

dv−3
2 .

This transformation permits to get to the following new spectral quadrature formula

Q̂k =
N∑

l,m=−N
l+m=k

β̂F (l,m) f̂l f̂m, k = −N, ..., N

where β̂F (l,m) = BF (l,m)− BF (m,m) are now given by

BF (l,m) =
∫
B0(R)

∫
B0(R)

B̃(x, y) δ(x · y) ei(l·x+m·y) dx dy.
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Numerical Methods Fast spectral method for the Boltzmann operator

Fast spectral discretization II
Now, we look for a convolution structure. The aim is to approximate each β̂F (l,m)
by a sum

β̂F (l,m) '
A∑
p=1

αp(l)α′p(m)

This gives a sum of A discrete convolutions and so the algorithm can be computed
in O(AN log2 N) operations by means of standard FFT techniques.

An example, the two dimensional case:
Make the decoupling assumption

B̃(x, y) = a(|x|) b(|y|);
satisfied if e.g. B̃ is constant (2D Maxwellian molecules, 3D hard spheres).
This gives

BF (l,m) =
∫ π

0
φ2
R(l · eθ)φ2

R(m · eθ+π/2) dθ, φ2
R(s) = 2R sinc(Rs).

A regular discretization of M equally spaced points gives

BF (l,m) = π

M

M−1∑
p=0

αp(l)α′p(m), αp(l) = φ2
R(l · eθp ), α′p(m) = φ2

R(m · eθp+π/2)
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Numerical simulations

1Dx − 1Dv BGK
Sod shock tube problem, PRK4 time integrator, WENO 3 in x

First moments of the solution to the BGK equation with ν = 1 (left) and ν = ρ (right)
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∆t = 0.4∆x, ∆x = 0.01, Nv = 80, K = 2 and δt = ε, for ε = 10−1 (blue dots), 10−2

(purple dots), and 10−5 (green dots). Red line: hydrodynamic limit ε→ 0
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Numerical simulations

1Dx − 1Dv BGK
Sod shock tube problem, PRK4 time integrator, WENO 3 in x
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Numerical simulations

1Dx − 2Dv BGK vs. Boltzmann
Sod shock tube problem, PRK4 time integrator, WENO 2 in x, fast spectral in v

First moments of BGK equation with ν = 1 (blue), ν = ρ (green) and Boltzmann (red)
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∆t = 0.4∆x, ∆x = 0.01, Nv = 322, K = 2 and δt = ε, for ε = 10−2 (left), and 10−5

(right).
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Numerical simulations

1Dx − 2Dv BGK vs. Boltzmann
Sod shock tube problem, PRK4 time integrator, WENO 2 in x, fast spectral in v

First moments of BGK equation with ν = 1 (blue), ν = ρ (green) and Boltzmann (red)
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Numerical simulations

2Dx − 2Dv BGK
Shock-Bubble interaction, PRK4 time integrator, WENO 2 in x, ε = 10−5, ν = 1
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∆t = 0.4∆x, Nx = 200× 25, Nv = 322, K = 2 and δt = ε.
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∆t = 0.4∆x, Nx = 200× 25, Nv = 322, K = 2 and δt = ε.
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Numerical simulations

2Dx − 2Dv Boltzmann
Double Sod shock, TPRK4 time integrator, WENO 2 in x, ε = 5.10−5, ν = 1

Boltzmann equation in 2D/2D (level-2 TPRK4 + WENO2)
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Conclusion

Conclusion

We have built and implemented a deterministic, high order, explicit and
asymptotic preserving solvers for nonlinear kinetic equations;
The method is very easy to implement, since its basic building block is the
forward Euler scheme;
Need to know some spectral properties of the equation.

TODO What if the spectrum doesn’t separate?
TODO What about consistency?
TODO What about uniform accuracy?

Thanks a lot for your attention!
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