Asymptotically accurate high-order space and time schemes for the Euler system in the low Mach regime

Victor Michel-Dansac

SHARK-FV, 15-19 May 2017 Giacomo Dimarco, Univ. of Ferrara, Italy Raphaël Loubère, Univ. of Bordeaux, CNRS, France Marie-Hélène Vignal, Univ. of Toulouse, France

Funding : ANR MOONRISE

Outline

General context : multi-scale models and principle of AP schemes

- 2 An order 1 AP scheme for the Euler system in the low Mach limit
- 3 High order schemes in time
- 4 High order schemes in time and space
- 5 Works in progress en perspectives

General context

Multiscale model : M_ϵ depends on a parameter ϵ

In the (space-time) domain $\boldsymbol{\epsilon}$ can

- be small compared to the reference scale
- be of same order as the reference scale
- take intermediate values

When
$$\varepsilon$$
 is small : $M_0 = \lim_{\varepsilon \to 0} M_\varepsilon$ asympt. model

Difficulties :

- Classical explicit schemes for M_ε : stable and consistent if the mesh resolves all the scales of ε ⇒ huge cost
- Schemes for M_0 with meshes independent of ϵ

But : $\longrightarrow M_0$ not valid everywhere, needs $\varepsilon \ll 1$ \implies location of the interface, moving interface

Principle of AP schemes

A possible solution : AP schemes

- Use the multi-scale model M_{ϵ} where you want.
- Discretize it with a scheme preserving the limit $\epsilon \rightarrow 0$
- The mesh is independent of ϵ : Asymptotic stability.
- •• You recover an approximate solution of M_0 when $\varepsilon \to 0$: Asymptotic consistency

Asymptotically stable and consistent scheme

 \Rightarrow Asymptotic preserving scheme (AP)

([S.Jin] kinetic \rightarrow hydro)

• You can use the AP scheme only to reconnect M_{ε} and M_{0}

Outline

An order 1 AP scheme for the Euler system in the low Mach limit

- 3 High order schemes in time
- 4 High order schemes in time and space
- 5 Works in progress en perspectives

The multi-scale model and its asymptotic limit

■ Isentropic Euler system in scaled variables $x \in \Omega \subset \mathbb{R}^d$, $t \ge 0$

$$(M_{\varepsilon}) \begin{cases} \partial_t \rho + \nabla \cdot (\rho u) = 0, \qquad (1)_{\varepsilon} \\ \partial_t (\rho u) + \nabla \cdot (\rho u \otimes u) + \frac{1}{\varepsilon} \nabla \rho(\rho) = 0, \qquad (2)_{\varepsilon} \end{cases}$$

Parameter : $\varepsilon = M^2 = m |\overline{u}|^2 / (\gamma \rho(\overline{\rho})/\overline{\rho}), \qquad M = Mach number$

Boundary and initial conditions :

(1

$$u \cdot n = 0, \text{ on } \partial \Omega, \quad ext{and} \quad \left\{ egin{array}{l} \rho(x,0) =
ho_0 + \epsilon \, ilde{
ho}_0(x), \ u(x,0) = u_0(x) + \epsilon \, ilde{u}_0(x), \ ext{ with }
abla \cdot u_0 = 0. \end{array}
ight.$$

The formal low Mach number limit $\epsilon \to 0$

$$(2)_{\varepsilon} \Rightarrow \nabla p(\rho) = 0, \Rightarrow \rho(x,t) = \rho(t).$$
$$)_{\varepsilon} \Rightarrow |\Omega| \rho'(t) + \rho(t) \int_{\partial \Omega} u \cdot n = 0, \Rightarrow \rho(t) = \rho(0) = \rho_0, \Rightarrow \nabla \cdot u = 0$$

The multi-scale model and its asymptotic limit

The asymptotic model : Rigorous limit [Klainerman, Majda, 81]

$$(M_0) \begin{cases} \rho = cste = \rho_0, \\ \rho_0 \nabla \cdot u = 0, \\ \rho_0 \partial_t u + \rho_0 \nabla \cdot (u \otimes u) + \nabla \pi_1 = 0, \\ \pi_1 = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Big(\rho(\rho) - \rho(\rho_0) \Big). \end{cases}$$
(1)₀
(2)₀

where

Explicit eq. for $\pi_1 \ \partial_t(1)_0 - \nabla \cdot (2)_0 \ \Rightarrow \ -\Delta \pi_1 = \rho_0 \ \nabla^2 : (u \otimes u).$

The pressure wave eq. from M_{ϵ} :

$$\partial_t(1)_{\varepsilon} - \nabla \cdot (2)_{\varepsilon} \Rightarrow \partial_{tt} \rho - \frac{1}{\varepsilon} \Delta \rho(\rho) = \nabla^2 : (\rho \, u \otimes u) \quad (3)_{\varepsilon}$$

From a numerical point of view

- Explicit treatment of $(3)_{\varepsilon} \Rightarrow$ conditional stability $\Delta t \leq \sqrt{\varepsilon} \Delta x$
- Implicit treatment of $(3)_{\varepsilon} \Rightarrow$ uniform stability with respect to ε

An order 1 AP scheme in the low Mach numb. limit

Order 1 **AP scheme in [Dimarco, Loubère, Vignal, SISC 2017] :** If ρ^n and u^n are known at time t^n

$$\begin{cases} \frac{\rho^{n+1} - \rho^n}{\Delta t} + \nabla \cdot (\rho u)^{n+1} = 0, \quad (1) \text{ (AS)} \\ \frac{(\rho u)^{n+1} - (\rho u)^n}{\Delta t} + \nabla \cdot (\rho u \otimes u)^n + \frac{1}{\epsilon} \nabla \rho(\rho^{n+1}) = 0. \quad (2) \text{ (AC)} \end{cases}$$

 $abla \cdot (2)$ inserted into (1) : gives an uncoupled formulation

$$\frac{\rho^{n+1}-\rho^n}{\Delta t}+\nabla\cdot(\rho u)^n-\frac{\Delta t}{\varepsilon}\Delta\rho(\rho^{n+1})-\Delta t\nabla^2:(\rho u\otimes u)^n=0,$$

Results uniformly L[∞] stable if the space discretization is well chosen
 Framework of IMEX (IMplicit-EXplicit) schemes :

$$\partial_t \underbrace{\begin{pmatrix} \rho \\ \rho u \end{pmatrix}}_{W} + \nabla \cdot \underbrace{\begin{pmatrix} 0 \\ \rho u \otimes u \end{pmatrix}}_{F_e(W)} + \nabla \cdot \underbrace{\begin{pmatrix} \rho u \\ \frac{p(\rho)}{\varepsilon} Id \end{pmatrix}}_{F_i(W)} = 0.$$

AP but diffusive results,1-D test-case

 $\epsilon = 10^{-4},\,300$ cells

AP but diffusive results,1-D test-case

∜

It is necessary to use high order schemes

But they must respect the AP properties

Outline

2 An order 1 AP scheme for the Euler system in the low Mach limit

5 Works in progress en perspectives

Principle of IMEX schemes

Biblio for stiff source terms or ode pb. : Asher, Boscarino, Cafflish, Dimarco, Filbet, Gottlieb, Le Floch, Pareschi, Russo, Ruuth, Shu, Spiteri, Tadmor...

IMEX division : $\partial_t W + \nabla \cdot F_e(W) + \nabla \cdot F_i(W) = 0.$

General principle : Step n : Wⁿ is known

• Quadrature formula with intermediate values

$$W(t^{n+1}) = W(t^n) - \underbrace{\int_{t^n}^{t^{n+1}} \nabla \cdot F_e(W(t)) dt}_{j=1} - \underbrace{\int_{t^n}^{t^{n+1}} \nabla \cdot F_i(W(t)) dt}_{j=1} - \underbrace{\int_{t^n}^{t^{n+1}} \nabla \cdot F_i(W(t)) dt}_{j=1}$$

$$W^{n+1} = W^n - \Delta t \sum_{j=1}^s \tilde{b}_j \nabla \cdot F_e(W^{n,j}) - \Delta t \sum_{j=1}^s b_j \nabla \cdot F_i(W^{n,j})$$

Quadratures exact on the constants : $\sum_{j=1}^{s} \tilde{b}_j = \sum_{j=1}^{s} b_j = 1$

• Intermediate values $t^{n,j} = t^n + c_j \Delta t$

$$W^{n,j} \approx W(t^n) + \int_{t^n}^{t^{n,j}} \partial_t W(t) dt = W^n + \Delta t \int_0^{c_j} \partial_t W(t^n + s \Delta t) ds$$

Principle of IMEX schemes

Quadrature formula for intermediate values : i = 1, · · · , s

Conditions for 2nd order : $\sum b_j c_j = \sum b_j \tilde{c}_j = \sum \tilde{b}_j c_j = \sum \tilde{b}_j \tilde{c}_j = 1/2$

AP Order 2 scheme for Euler

ARS scheme (Asher, Ruuth, Spiteri, 97) : "only 1" intermediate step 0 n () n n 0 β β 0 $\beta = 1 - \frac{1}{\sqrt{2}}$ $0 \quad 1-\beta \quad \beta$ B−1 2−B 0 $2-\beta$ $1 - \beta$ ß $\beta - 1$ 0 $W^{n,1} = W^n$ $W^{n,2} = W^{\star} = W^n - \Delta t \beta \nabla \cdot F_e(W^n) - \Delta t \beta \nabla \cdot F_i(W^{\star}),$ $W^{n,3} = W^{n+1} = \frac{W^n - \Delta t(\beta - 1)\nabla \cdot F_e(W^n)}{\Delta t(2 - \beta)\nabla \cdot F_e(W^{\star})}$ $-\Delta t(1-\beta)\nabla \cdot F_i(W^*) - \Delta t\beta\nabla \cdot F_i(W^{n+1}).$

Better understand the oscillations

For a scalar hyperbolic eq. $\partial_t w + \partial_x f(w) = 0$

2

• Oscillations measured by the Total Variation and the L^{∞} norm

$$TV(w^n) = \sum_j |w_{j+1}^n - w_j^n| \qquad \qquad \|w^n\|_{\infty} = \max|w_j^n|$$

• TVD (Total Variation Diminishing) property and L^{∞} stability

$$\begin{cases} TV(w^{n+1}) \le TV(w^n) \\ \|w^{n+1}\|_{\infty} \le \|w^n\|_{\infty} \end{cases} \Leftrightarrow \text{no oscillations} \end{cases}$$

First idea : Find an AP order 2 scheme which satisfies these properties

Impossible

Theorem (Gottlieb,Shu,Tadmor, 01)There are no implicit Runge-Kutta schemes of order higher than one which preserves the TVD property.

A limiting procedure

Another idea : use a limited scheme

$$W^{n+1} = \theta W^{n+1,O2} + (1-\theta) W^{n+1,O1},$$

- $W^{n+1,Oj} =$ order *j* AP approximation
- $\theta \in [0, 1]$ largest value such that W^{n+1} does not oscillate

Toy scalar equation
$$\partial_t w + \frac{c_i}{\sqrt{\epsilon}} \partial_x w + c_e \partial_x w = 0$$

• Order 1 AP scheme with upwind space discretizations $(c_e, c_i > 0)$ $w_j^{n+1,O1} = w_j^n - \frac{c_i}{\sqrt{\epsilon}} (w_j^{n+1,O1} - w_{j-1}^{n+1,O1}) - c_e (w_j^n - w_{j-1}^n)$

• Order 2 AP scheme ARS with the parameter $\beta = 1 - 1/\sqrt{2}$

Lemma (VMD,Loubère,Vignal) Under the CFL condition $\Delta t \leq \Delta x/c_e$

$$heta \leq rac{eta}{1-eta} \simeq 0.41 \quad \Rightarrow \left\{ egin{array}{c} TV(w^{n+1}) \leq TV(w^n) \ \|w^{n+1}\|_\infty \leq \|w^n\|_\infty \end{array}
ight.$$

A MOOD procedure

Limited AP scheme : • $w^{n+1,lim} = \theta w^{n+1,O2} + (1-\theta) w^{n+1,O1}$ with $\theta = \frac{\beta}{1-\beta}$ **Problem :** More accurate than order 1 but not order 2 **Solution :** MOOD procedure (Clain, Diot, Loubère, 11)

On the toy equation $w^{n+1,HO}$ MOOD AP scheme, CFL $\Delta t \leq \Delta x/c_e$

- Compute the order 2 approximation $w^{n+1,O2}$
- Detect if the max. principle is satisfied : ||w^{n+1,O2}||_∞ ≤ ||wⁿ||_∞?
- If not, compute the limited AP approximation w^{n+1,lim}

Outline

- General context : multi-scale models and principle of AP schemes
- 2 An order 1 AP scheme for the Euler system in the low Mach limit
- 3 High order schemes in time
- 4 High order schemes in time and space
- 5 Works in progress en perspectives

Error curves for the model problem

- Order 2 in space with MUSCL but explicit slopes for implicit fluxes
- Error curves on a smooth solution for the toy model

Second-order scheme for the Euler equations

Recall the first-order IMEX scheme for the Euler system :

$$\begin{cases} \frac{\rho^{n+1}-\rho^n}{\Delta t} + \nabla \cdot (\rho u)^{n+1} = 0, \quad (1)\\ \frac{(\rho u)^{n+1}-(\rho u)^n}{\Delta t} + \nabla \cdot (\rho u \otimes u)^n + \frac{1}{\varepsilon} \nabla \rho(\rho^{n+1}) = 0. \quad (2) \end{cases}$$

We apply the same convex combination procedure :

$$W^{n+1,lim} = \theta W^{n+1,O2} + (1-\theta) W^{n+1,O1}$$
, with $\theta = \beta/(1-\beta)$.

 \rightsquigarrow we use the value of θ given by the study of the model problem

 \rightsquigarrow But we need we need a criterion to detect oscillations in the MOOD procedure !

Euler equations : MOOD procedure

The previous detector (L^{∞} criterion on the solution) is irrelevant for the Euler equations, since ρ and u do not satisfy a maximum principle.

~ we need another detection criterion

We pick the Riemann invariants
$$\Phi_{\pm} = u \mp \frac{2}{\gamma - 1} \sqrt{\frac{1}{\epsilon} \frac{\partial p(\rho)}{\partial \rho}}$$
, since they

satisfy an advection equation for smooth solutions.

On the Euler equations $W^{n+1,HO}$ MOOD AP scheme, CFL $\Delta t \leq \Delta x/\lambda$

- Compute the order 2 approximation $W^{n+1,O2}$
- Detect if both Riemann invariants break the maximum principle at the same time
- If so, compute the limited AP approximation $W^{n+1,lim}$

Riemann problem : left rarefaction wave, right shock ; top curves : $\epsilon=1$; bottom curves : $\epsilon=10^{-4}$

 $\varepsilon = 1 \qquad \varepsilon = 10^{-2}$

$$\epsilon = 10^{-4}$$

Initial data for the explosion :

- density cylinder (left);
- outwards velocity field (right).

Outline

- General context : multi-scale models and principle of AP schemes
- 2 An order 1 AP scheme for the Euler system in the low Mach limit
- 3 High order schemes in time
- 4 High order schemes in time and space
- 5 Works in progress en perspectives

Works in progress and perspectives

- Choose the order 2 time discretization to get a θ as close as possible to 1 for the stability
- Study a local value of θ, depending on the presence of oscillations in a given cell
- Extension to full Euler (order 1 scheme exists but we have trouble decomposing between an explicit and an implicit flux)
- Simulations of physically relevant phenomena
- Domain decomposition with respect to $\boldsymbol{\epsilon}$

Thanks!

Bibliography

All speed schemes

- Preconditioning methods : [Chorin 65], [Choi, Merkle 85],
 [Turkel, 87], [Van Leer, Lee, Roe, 91], [Li,Gu 08,10], ···
- Splitting and pressure correction: [Harlow, Amsden, 68,71], [Karki, Patankar, 89], [Bijl, Wesseling, 98], [Sewall, Tafti, 08], [Klein, Botta, Schneider, Munz, Roller 08], [Guillard, Murrone, Viozat 99, 04, 06] [Herbin, Kheriji, Latché 12,13], ···
 - Asymptotic preserving schemes

[Degond, Deluzet, Sangam, Vignal, 09], [Degond, Tang 11], [Cordier, Degond, Kumbaro 12], [Grenier, Vila, Villedieu 13] [Dellacherie, Omnes, Raviart,13],

[Noelle, Bispen, Arun, Lukacova, Munz, 14],

[Chalons, Girardin, Kokh, 15] [Dimarco, Loubère, Vignal, 17]