1D STEADY-STATE EULER SYSTEM

S. Clain¹, R. Loubère², G.J. Machado¹

¹Universidade do Minho, Centre of Mathematics, Guimarães, Portugal

²CNRS and Institut de Mathématiques de Bordeaux (IMB) Université de Bordeaux, Talence, France

SHARK-FV 2017 Ofir, 15 – 19 May, 2017, Portugal

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- to solve steady-state hyperbolic equations using finite volume schemes
- prototypes: Burgers' equation (scalar case) and Euler's equation (vectorial case)
- regular solutions: high accuracy
- solutions with a shock: stability (no oscillations) and accuracy (as possible)
- approach: MOOD (Multidimensional Optimal Order Detection)

- to solve steady-state hyperbolic equations using finite volume schemes
- prototypes: Burgers' equation (scalar case) and Euler's equation (vectorial case)
- regular solutions: high accuracy
- solutions with a shock: stability (no oscillations) and accuracy (as possible)
- approach: MOOD (Multidimensional Optimal Order Detection)

- to solve steady-state hyperbolic equations using finite volume schemes
- prototypes: Burgers' equation (scalar case) and Euler's equation (vectorial case)
- regular solutions: high accuracy
- solutions with a shock: stability (no oscillations) and accuracy (as possible)
- approach: MOOD (Multidimensional Optimal Order Detection)

- to solve steady-state hyperbolic equations using finite volume schemes
- prototypes: Burgers' equation (scalar case) and Euler's equation (vectorial case)
- regular solutions: high accuracy
- solutions with a shock: stability (no oscillations) and accuracy (as possible)
- approach: MOOD (Multidimensional Optimal Order Detection)

- to solve steady-state hyperbolic equations using finite volume schemes
- prototypes: Burgers' equation (scalar case) and Euler's equation (vectorial case)
- regular solutions: high accuracy
- solutions with a shock: stability (no oscillations) and accuracy (as possible)
- approach: MOOD (Multidimensional Optimal Order Detection)

INVISCID BURGERS' EQUATION

 we seek the velocity function φ = φ(x), solution of the 1D steady-state inviscid Burgers' equation

$$rac{\mathrm{d}\mathbb{F}(\phi)}{\mathrm{d}x}=f, \,\,\mathrm{in}\,\,\Omega=(0,1)$$

with Dirichlet boundary conditions

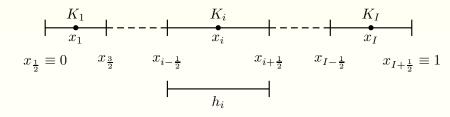
$$\phi = \phi_{\text{lf}}, \text{ on } x = 0$$

 $\phi = \phi_{\text{rg}}, \text{ on } x = 1$

with

$$\mathbb{F}(\phi) = \frac{\phi^2}{2}$$
$$f = f(x)$$

NOTATION



- *K_i* cell *i*
- I number of cells
- $x_{i-\frac{1}{2}}$, $x_{i+\frac{1}{2}}$ boundary points of cell *i*
- h_i length of cell i
- x_i centroid of cell i

FV SCHEME (I)

• integrating equation $\frac{\mathrm{d}\mathbb{F}(\phi)}{\mathrm{d}x} = f$ over cell K_i results in

$$\frac{1}{h_i}\left(\mathbb{F}_{i+\frac{1}{2}} - \mathbb{F}_{i-\frac{1}{2}}\right) - \bar{f}_i = 0$$

with

$$\mathbb{F}_{i+\frac{1}{2}} = \mathbb{F}(\phi(x_{i+\frac{1}{2}}))$$
$$\bar{f}_i = \frac{1}{h_i} \int_{\mathcal{K}_i} f(\xi) \,\mathrm{d}\xi$$

Iet

$$\begin{aligned} \mathcal{F}_{i+\frac{1}{2}} &\approx F_{i+\frac{1}{2}} \\ f_i &\approx \bar{f}_i \end{aligned}$$

the residual at cell K_i

$$\mathcal{G}_i = \frac{1}{h_i} \left(\mathcal{F}_{i+\frac{1}{2}} - \mathcal{F}_{i-\frac{1}{2}} \right) - f_i$$

FV SCHEME (II)

- goal to compute an approximation φ_i of the mean value of φ in each cell of the mesh
- the approximation to the mean value of *f* over cell *K_i*, *f_i*, will be computed by gaussian quadrature
- we will consider the Rusanov numerical flux
- to achieve high-order numerical approximations, we introduce local polynomial reconstructions of the underlying solutions
- stencil: the stencil S_i of cell K_i is composed of the d_i + 1 closest neighbour cells excluding cell K_i

POLYNOMIAL RECONSTRUCTIONS

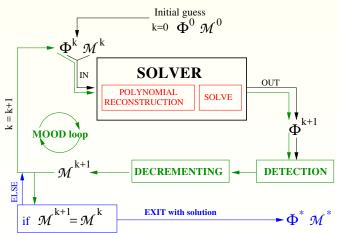
• reconstruction: the polynomial $\hat{\phi}_i(x; d_i)$ is based on the data associated to the stencil under a least-square technique

$$\phi_i(x; \mathsf{d}_i) = \sum_{\alpha=0}^{\mathsf{d}_i} \mathcal{R}_{i,\alpha}(x - m_i)^{\alpha}$$

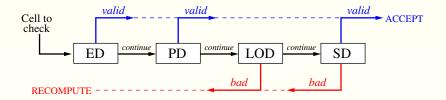
$$\begin{split} \min_{\mathcal{R}_{i,0},\dots,\mathcal{R}_{i,\mathbf{d}_{i}}} & \sum_{j\in\widehat{S}_{i}}\omega_{j}\left[\frac{1}{h_{j}}\int_{c_{j}}\phi_{i}(x;\mathsf{d}_{i})\mathsf{d}x-\phi_{j}\right]^{2} \\ \text{s.t.} & \frac{1}{h_{i}}\int_{c_{i}}\phi_{i}(x;\mathsf{d}_{i})\mathsf{d}x=\phi_{i} \text{ (mean value conservation)} \end{split}$$

• to construct a generic high-order scheme one has to substitute the left and right states in by states evaluated through high-order polynomial reconstructions

THE MOOD LOOP



BURGERS CHAIN DETECTOR



ED: Extrema Detector PD: Plateau Detector LOD: Local Oscillation Detector SD: Smoothness Detector

BURGERS: MANUFACTURED REGULAR SOLUTION (I)

manufactured regular solution

$$\phi(x) = \sin(3\pi x) \exp(x) + 2$$

then

$$f(x) = (\exp(x)\sin(3\pi x) + 2)(\exp(x)\sin(3\pi x) + 3\pi\exp(x)\cos(3\pi x))$$

$$\phi_{\text{lf}} = 2$$

$$\phi_{\text{rg}} = 2$$

		NS					ТМ			
	Ι	E ₁	\mathcal{O}_1	E_∞	\mathcal{O}_∞	-	E1	\mathcal{O}_1	E_∞	\mathcal{O}_{∞}
₽o	70	7.8E-02		1.9E-01	_		7.8E-02	_	1.9E-01	_
	80	6.8E-02	1.1	1.6E-01	1.0		6.8E-02	1.1	1.6E-01	1.0
	90	6.0E-02	1.0	1.5E-01	1.0		6.0E-02	1.0	1.5E-01	1.0
	100	5.4E-02	1.0	1.3E-01	1.0		5.4E-02	1.0	1.3E-01	1.0
\mathbb{P}_1	70	1.8E-03	_	7.4E-03	_		1.8E-03	_	7.4E-03	_
	80	1.4E-03	2.0	5.4E-03	2.4		1.4E-03	2.0	5.4E-03	2.4
	90	1.1E-03	2.0	4.1E-03	2.3		1.1E-03	2.0	4.1E-03	2.3
	100	8.6E-04	2.0	3.2E-03	2.3		8.6E-04	2.0	3.2E-03	2.3
₽5	70	1.1E-07	_	8.8E-07	_		1.8E-07	_	6.2E-07	_
	80	4.9E-08	6.0	3.8E-07	6.2		1.0E-07	4.3	3.6E-07	4.0
	90	2.4E-08	6.1	1.8E-07	6.2		5.7E-08	4.8	2.1E-07	4.7
	100	1.2E-08	6.2	1.1E-07	5.2		3.3E-08	5.1	1.2E-07	5.0

BURGERS: SOLUTION WITH A SHOCK

data

$$f(x) = -\pi \cos(\pi x)\phi(x)$$

 $\phi_{
m lf} = 1$
 $\phi_{
m rg} = -0.1$

analytical solution

$$\phi(x) = \begin{cases} 1 - \sin(\pi x) & \text{if } 0 \le x \le 0.1486\\ -0.1 - \sin(\pi x) & \text{if } 0.1486 \le x \le 1 \end{cases}$$

BURGERS: SOLUTION WITH A SHOCK

data

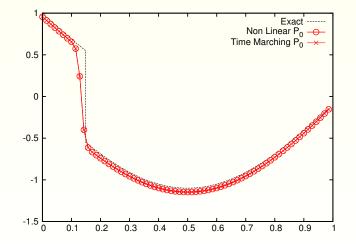
$$f(x) = -\pi \cos(\pi x)\phi(x)$$

$$\phi_{\rm lf} = 1$$

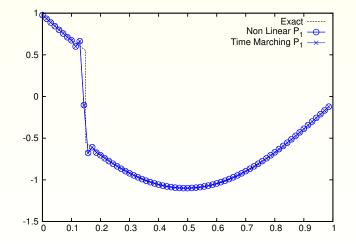
$$\phi_{\rm rg} = -0.1$$

analytical solution

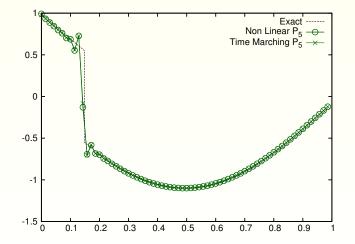
$$\phi(x) = \begin{cases} 1 - \sin(\pi x) & \text{if } 0 \le x \le 0.1486 \\ -0.1 - \sin(\pi x) & \text{if } 0.1486 \le x \le 1 \end{cases}$$



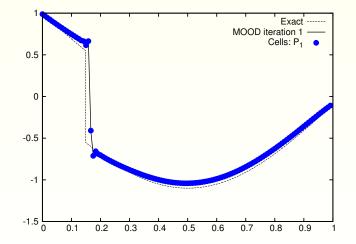
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM



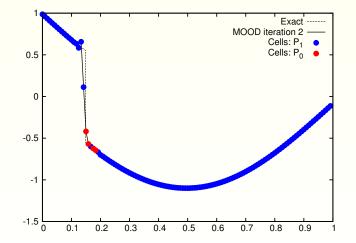
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM



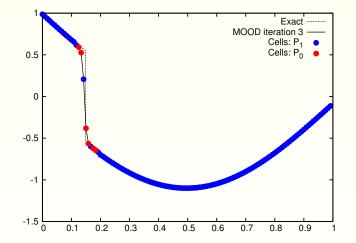
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM



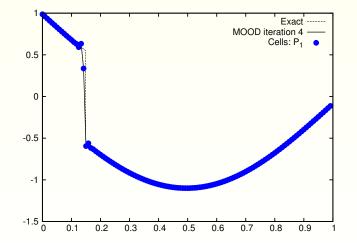
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

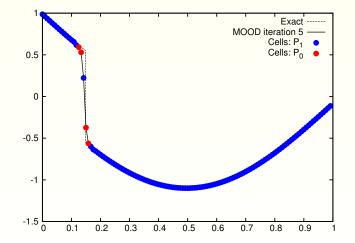


SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

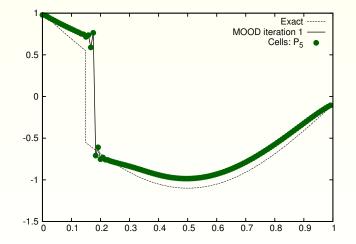


SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

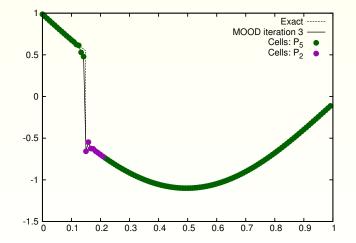


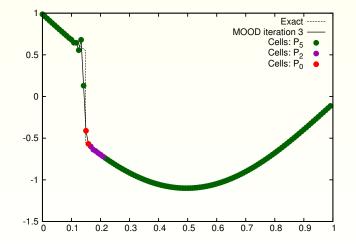


SC, RL, GJM 1D STEADY-STATE EULER SYSTEM



SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

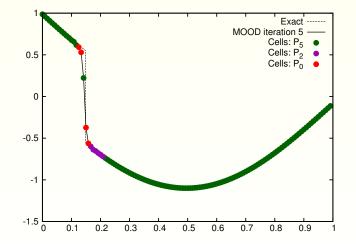




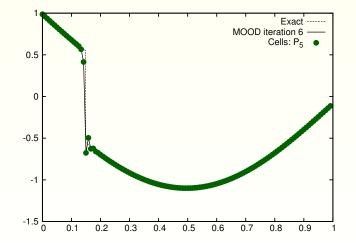
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

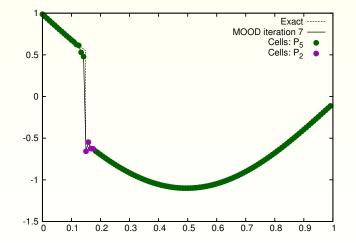


SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

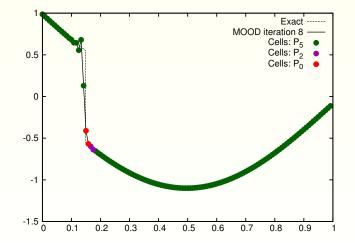


SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

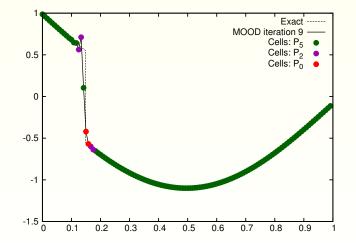




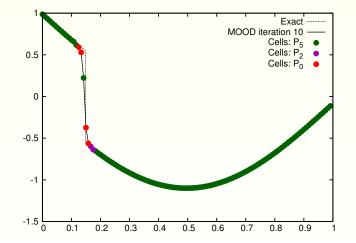
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM



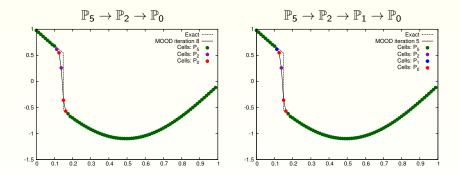
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM



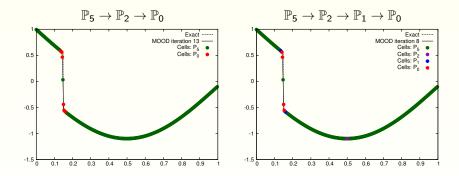
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM



NL | I = 80



 $NL \mid I = 320$



EULER SYSTEM FORMULATION

Euler equations

$$rac{\mathrm{d}\mathbb{F}(W)}{\mathrm{d}x}=rac{\mathrm{d}S}{\mathrm{d}x}, \ ext{in} \ \Omega=(0,1)$$

• conservative variable $W = (\rho, \rho u, E)^T$

- total energy $E = \frac{1}{2}\rho u^2 + \rho e$ (e is the specific internal energy)
- for an ideal gas, this system is closed by the equation of state $e = \frac{p}{\rho(\gamma-1)}$ (γ the ratio of specific heats with $\gamma = \frac{7}{5}$ in our studies)
- physical flux $\mathbb{F}(W) = (\rho u, \rho u^2 + p, u(E + p))^T$
- the source term $\frac{dS}{dx}$, $S = (D, F, H)^T = (D(x), F(x), H(x))^T$
- Dirichlet boundary conditions

$$egin{aligned} \mathcal{W}(0) &= \mathcal{W}_{\mathsf{lf}} \ \mathcal{W}(1) &= \mathcal{W}_{\mathsf{rg}} \end{aligned}$$

EULER'S EQUATIONS (I)

• existence of solution requires that the following compatibility condition are satisfied

$$F > 0, HD \ge 0, \frac{\gamma^2}{\gamma^2 - 1} \ge 2\frac{DH}{F^2}$$

• if D is positive, the supersonic solution writes

$$\hat{
ho}_{\mathsf{sup}}(D, F, H) = rac{2\gamma F - \sqrt{4\gamma^2 F^2 - 4(\gamma+1)(\gamma+1)DH^2}}{4(\gamma-1)rac{H}{D}}$$

• if D is positive, the subsonic solution writes

$$\hat{
ho}_{\mathsf{sub}}(D,\mathsf{F},\mathsf{H}) = rac{2\gamma \mathsf{F} + \sqrt{4\gamma^2 \mathsf{F}^2 - 4(\gamma+1)(\gamma+1)D \mathsf{H}^2}}{4(\gamma-1)rac{H}{D}}$$

• $W_{\rm lf} = W(D(0), F(0), H(0))$ and $W_{\rm rg} = W(D(1), F(1), H(1))$

• there are two choices for each condition: subsonic or supersonic

EULER'S EQUATIONS (II)

- Sup-Sup: smooth solution (in most of the cases)
- Sub-Sub: smooth solution (in most of the cases)

Theorem

A steady-state solution admits an entropic stationary shock at point x_c if Assume that a steady-state solution admits an entropic stationary genuinely nonlinear shock at point x_c . Then there only exist two admissible situations:

- (A) the solution is supercritical on the left and subcritical on the right with D > 0 and H > 0;
- (B) the solution is subcritical on the left and supercritical on the right with D < 0 and H < 0.
 - Sub-Sup: non entropic shock
 - Sup-Sub: solution with an entropic shock (need 1 more equation to fix the shock position)

EULER'S EQUATIONS (III)

Theorem

Assume that density $\tilde{\rho}(x, t)$, the mass flow $\tilde{\rho u}(x, t)$, and the total energy \tilde{E} are continuous at the boundaries for t > 0, that is, there are no jumps between the boundary conditions and the solution at x_L and x_R . Then for any time t > 0, we have

$$\int_0^1 \widetilde{\phi}(x,t) \, \mathrm{d}x = \int_0^1 \phi^0(x) \, \mathrm{d}x, \qquad \widetilde{\phi} = \widetilde{\rho}, \widetilde{\rho u}, \widetilde{E}.$$

Moreover, if the solution converges to a steady-state solution in time, denoted by ρ , u, and E, then we have

$$\int_0^1 \rho^0(x) \, dx = \int_0^1 \rho(x) \, dx,$$
$$\int_0^1 \rho^0(x) u^0(x) \, dx = \int_0^1 D(x) \, dx,$$
$$\int_0^1 E^0(x) \, dx = \int_0^1 E(x) \, dx.$$

EULER'S EQUATIONS (IV)

CORROLARY

- Assume that the initial conditions satisfy the theorem condition with D > 0, H > 0.
- Then the steady-state solution in constituted of the supersonic solution on $[0, x_c[$ and the subsonic solution on $]x_c, 1]$ with an entropic shock located at the unique point x_c such that

$$\int_0^{x_{\mathbf{c}}} \rho_{\sup}(x) \, \mathrm{d}x + \int_{x_{\mathbf{c}}}^1 \rho_{\sup}(x) \, \mathrm{d}x = \int_0^1 \rho^0(x) \, \mathrm{d}x.$$

this is the equation which fixes the shock position

- high-order FV scheme ...
- local polynomial reconstructions ...
- HLL flux ...
- MOOD ...
- nonlinear solver ...
- time marching solver ...

- high-order FV scheme ...
- local polynomial reconstructions ...
- HLL flux ...
- MOOD ...
- nonlinear solver …
- time marching solver ...

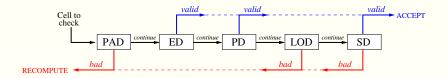
- high-order FV scheme ...
- local polynomial reconstructions ...
- HLL flux ...
- MOOD ...
- nonlinear solver …
- time marching solver ...

- high-order FV scheme ...
- local polynomial reconstructions ...
- HLL flux ...
- MOOD ...
- nonlinear solver ...
- time marching solver ...

- high-order FV scheme ...
- local polynomial reconstructions ...
- HLL flux ...
- MOOD ...
- nonlinear solver …
- time marching solver ...

- high-order FV scheme ...
- local polynomial reconstructions ...
- HLL flux ...
- MOOD ...
- nonlinear solver ...
- time marching solver ...

EULER CHAIN DETECTOR



PAD: Physical Admissible Detector (density + pressure) ED: Extrema Detector PD: Plateau Detector LOD: Local Oscillation Detector SD: Smoothness Detector

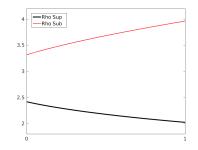
NUMERICAL TESTS

- D(x) = 1, F(x) = 0.027x + 0.6137, H(x) = 0.375
- supersonic branch:

$$\rho_{sup}(x) = 0.126x - 3.3333\sqrt{1.96(0.027x + 0.6137)^2 - 0.72 + 2.8639}$$

subsonic branch:

 $\rho_{sub}(x) = 0.126x + 3.3333\sqrt{1.96(0.027x + 0.6137)^2 - 0.72} + 2.8639$



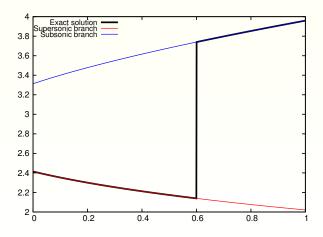
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

REGULAR CASE | SUPERSONIC-SUPERSONIC

		NL					ТМ			
	Ι	E_1	\mathcal{O}_1	E_∞	\mathcal{O}_∞		E_1	\mathcal{O}_1	E_∞	\mathcal{O}_∞
\mathbb{P}_0	25	7.8E-03		1.3E-02	_		7.8E-02		1.9E-01	
	50	3.9E-03	1.0	6.6E-03	1.0		6.8E-02	1.1	1.6E-01	1.0
	75	2.6E-03	1.0	4.4E-03	1.0		6.0E-02	1.0	1.5E-01	1.0
	100	2.0E-03	1.0	3.3E-03	1.0		5.4E-02	1.0	1.3E-01	1.0
\mathbb{P}_1	25	9.0E-05	_	9.3E-04	_		1.8E-03	_	7.4E-03	_
	50	1.9E-05	2.3	2.6E-04	1.8		1.4E-03	2.0	5.4E-03	2.4
	75	7.7E-06	2.2	1.2E-04	1.9		1.1E-03	2.0	4.1E-03	2.3
	100	4.1E-06	2.2	6.9E-05	1.9		8.6E-04	2.0	3.2E-03	2.3
\mathbb{P}_5	25	1.5E-07		3.4E-06			1.8E-07	_	6.2E-07	_
	50	2.9E-09	5.7	1.3E-07	4.7		1.0E-07	4.3	3.6E-07	4.0
	75	2.4E-10	6.1	1.6E-08	5.2		5.7E-08	4.8	2.1E-07	4.7
	100	4.0E-11	6.3	3.4E-09	5.4		3.3E-08	5.1	1.2E-07	5.0

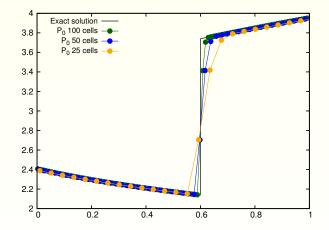
DISCONTINUOUS CASE

- x_c = 0.6
- supersonic-subsonic
- density variable
- NL scheme



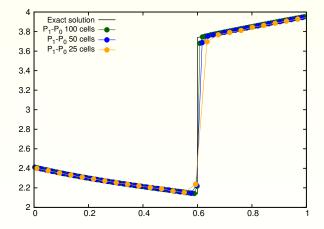
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

DISCONTINUOUS CASE | PARACHUTE SCHEME \mathbb{P}_0



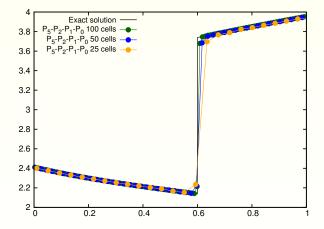
- we observe a convergence towards the exact solution when the mesh size increases without any spurious oscillation
- $\bullet\,$ this validates the robustness of the \mathbb{P}_0 scheme that is used as the parachute scheme of the MOOD cascade

DISCONTINUOUS CASE $| \mathbb{P}_1 \to \mathbb{P}_0$

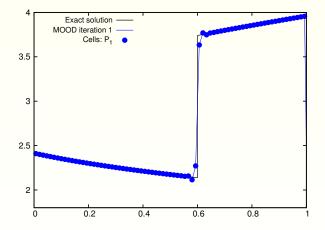


SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

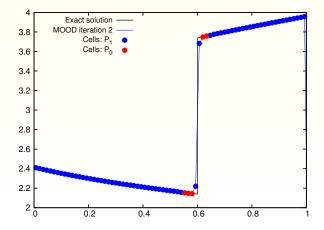
DISCONTINUOUS CASE $| \mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$



DISCONTINUOUS CASE $| \mathbb{P}_1 \to \mathbb{P}_0 |$ IT1

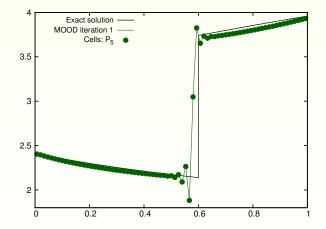


DISCONTINUOUS CASE $| \mathbb{P}_1 \to \mathbb{P}_0 | \text{ IT2}$

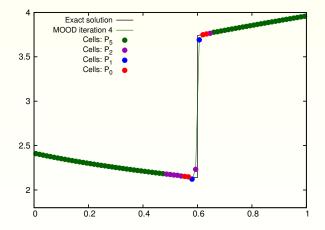


SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

DISCONTINUOUS CASE $\mid \mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0 \mid \text{IT1}$

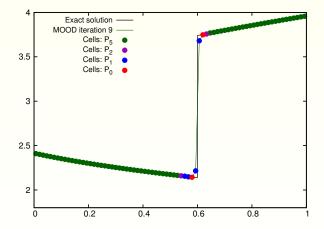


DISCONTINUOUS CASE $\mid \mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0 \mid \text{IT4}$



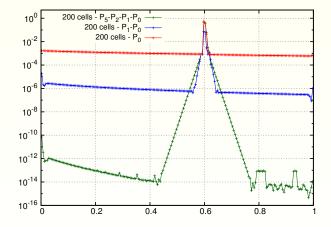
SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

DISCONTINUOUS CASE $| \mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0 | \text{ IT9}$



SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

DISCONTINUOUS CASE | ERRORS



SC, RL, GJM 1D STEADY-STATE EULER SYSTEM

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?

- a strategy to construct high accurate FV schemes has been presented to solve the 1D steady-state Burgers equation and Euler system
- identification of an extra equation to achieve an entropic stationary shock
- two solvers are considered: a NL implicit solver and a so-called explicit TM solver
- numerical experiments show that the optimal order of accuracy is reached for smooth solutions
- for non-smooth solutions, the *a posteriori* MOOD stabilization leads to non-oscillatory solutions
- is the NL solver more efficient than the explicit TM scheme?
- can the MOOD loop be improved?
- where we gain with the cascade $\mathbb{P}_5 \to \mathbb{P}_2 \to \mathbb{P}_1 \to \mathbb{P}_0$ comparing with the parachutte \mathbb{P}_0 scheme when there is a shock?
- can we reduce the cone of influence of the errors centered in the shock position?
- what if there are sonic points?