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conclusions and perspectives

a strategy to construct high accurate FV schemes has been presented
to solve the 1D steady-state Burgers equation and Euler system
identification of an extra equation to achieve an entropic stationary
shock
two solvers are considered: a NL implicit solver and a so-called
explicit TM solver
numerical experiments show that the optimal order of accuracy is
reached for smooth solutions
for non-smooth solutions, the a posteriori MOOD stabilization leads
to non-oscillatory solutions

is the NL solver more efficient than the explicit TM scheme?
can the MOOD loop be improved?
where we gain with the cascade P5 → P2 → P1 → P0 comparing
with the parachutte P0 scheme when there is a shock?
can we reduce the cone of influence of the errors centered in the
shock position?
what if there are sonic points?
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motivation

to solve steady-state hyperbolic equations using finite volume

schemes

prototypes: Burgers’ equation (scalar case) and Euler’s equation

(vectorial case)

regular solutions: high accuracy

solutions with a shock: stability (no oscillations) and accuracy (as

possible)

approach: MOOD (Multidimensional Optimal Order Detection)
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inviscid Burgers’ equation

we seek the velocity function φ = φ(x), solution of the 1D
steady-state inviscid Burgers’ equation

dF(φ)

dx
= f , in Ω = (0, 1)

with Dirichlet boundary conditions

φ = φlf, on x = 0
φ = φrg, on x = 1

with

F(φ) =
φ2

2
f = f (x)
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notation

hi

x 1
2
≡ 0

K1
b

x1

x 3
2

xi− 1
2

Ki
b

xi

xi+ 1
2

xI− 1
2

KI
b

xI

xI+ 1
2
≡ 1

Ki — cell i
I — number of cells
xi− 1

2
, xi+ 1

2
— boundary points of cell i

hi — length of cell i
xi — centroid of cell i
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FV scheme (i)
integrating equation dF(φ)

dx = f over cell Ki results in

1
hi

(
Fi+ 1

2
− Fi− 1

2

)
− f̄i = 0

with

Fi+ 1
2

= F(φ(xi+ 1
2

))

f̄i =
1
hi

∫
Ki

f (ξ) dξ

let

Fi+ 1
2
≈ Fi+ 1

2

fi ≈ f̄i

the residual at cell Ki

Gi =
1
hi

(
Fi+ 1

2
−Fi− 1

2

)
− fi
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FV scheme (ii)

goal — to compute an approximation φi of the mean value of φ in

each cell of the mesh

the approximation to the mean value of f over cell Ki , fi , will be

computed by gaussian quadrature

we will consider the Rusanov numerical flux

to achieve high-order numerical approximations, we introduce local

polynomial reconstructions of the underlying solutions

stencil: the stencil Si of cell Ki is composed of the di + 1 closest

neighbour cells excluding cell Ki
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polynomial reconstructions

reconstruction: the polynomial φ̂i (x ; di) is based on the data
associated to the stencil under a least-square technique

φi (x ; di ) =

di∑
α=0

Ri,α(x −mi )
α

min
Ri,0,...,Ri,di

∑
j∈Ŝi

ωj

[
1
hj

∫
cj

φi (x ; di )dx − φj
]2

s.t.
1
hi

∫
ci

φi (x ; di )dx = φi (mean value conservation)

to construct a generic high-order scheme one has to substitute the
left and right states in by states evaluated through high-order
polynomial reconstructions
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the MOOD loop

TM ...
NL

MΦ
k k

Φ
k+1

M
k+1

M
k+1

M
k

=

MΦ
0 0

k=0

Initial guess

POLYNOMIAL

RECONSTRUCTION

OUT

E
L

S
E

if

k
 =

 k
+

1 SOLVE

DETECTIONDECREMENTING

IN

MOOD loop

SOLVER

EXIT with solution

MΦ
* *
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Burgers chain detector

check

Cell to
valid valid valid

bad bad

continue continue continue

LODED PD SD

ACCEPT

RECOMPUTE

ED: Extrema Detector
PD: Plateau Detector
LOD: Local Oscillation Detector
SD: Smoothness Detector
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Burgers: manufactured regular solution (i)

manufactured regular solution

φ(x) = sin(3πx) exp(x) + 2

then

f (x) = (exp(x) sin(3πx) + 2)(exp(x) sin(3πx) + 3π exp(x) cos(3πx))

φlf = 2
φrg = 2
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Burgers: manufactured regular solution (ii)

NS TM
I E1 O1 E∞ O∞ E1 O1 E∞ O∞

P0

70 7.8E−02 — 1.9E−01 — 7.8E−02 — 1.9E−01 —
80 6.8E−02 1.1 1.6E−01 1.0 6.8E−02 1.1 1.6E−01 1.0
90 6.0E−02 1.0 1.5E−01 1.0 6.0E−02 1.0 1.5E−01 1.0
100 5.4E−02 1.0 1.3E−01 1.0 5.4E−02 1.0 1.3E−01 1.0

P1

70 1.8E−03 — 7.4E−03 — 1.8E−03 — 7.4E−03 —
80 1.4E−03 2.0 5.4E−03 2.4 1.4E−03 2.0 5.4E−03 2.4
90 1.1E−03 2.0 4.1E−03 2.3 1.1E−03 2.0 4.1E−03 2.3
100 8.6E−04 2.0 3.2E−03 2.3 8.6E−04 2.0 3.2E−03 2.3

P5

70 1.1E−07 — 8.8E−07 — 1.8E−07 — 6.2E−07 —
80 4.9E−08 6.0 3.8E−07 6.2 1.0E−07 4.3 3.6E−07 4.0
90 2.4E−08 6.1 1.8E−07 6.2 5.7E−08 4.8 2.1E−07 4.7
100 1.2E−08 6.2 1.1E−07 5.2 3.3E−08 5.1 1.2E−07 5.0
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Burgers: solution with a shock

data

f (x) = −π cos(πx)φ(x)

φlf = 1
φrg = −0.1

analytical solution

φ(x) =

{
1− sin(πx) if 0 ≤ x ≤ 0.1486
−0.1− sin(πx) if 0.1486 ≤ x ≤ 1
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NL + TM | parachute scheme P0
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NL + TM | unlimited P1
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NL + TM | unlimited P5
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NL | P1 → P0 | it1
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NL | P1 → P0 | it2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Exact

MOOD iteration 2

Cells: P1

Cells: P0

SC, RL, GJM 1D STEADY-STATE EULER SYSTEM



NL | P1 → P0 | it3 (6)
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NL | P1 → P0 | it4 — reinitialization
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NL | P1 → P0 | it5 (4)
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NL | P5 → P2 → P0 | it1
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NL | P5 → P2 → P0 | it2
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NL | P5 → P2 → P0 | it3
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NL | P5 → P2 → P0 | it4
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NL | P5 → P2 → P0 | it5 (4+6)
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NL | P5 → P2 → P0 | it6 — reinitialization
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NL | P5 → P2 → P0 | it7
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NL | P5 → P2 → P0 | it8
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NL | P5 → P2 → P0 | it9
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NL | P5 → P2 → P0 | it10 (4+2)
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NL | I = 80
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NL | I = 320
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Euler system formulation

Euler equations

dF(W )

dx
=

dS
dx
, in Ω = (0, 1)

conservative variable W = (ρ, ρu,E )T

total energy E = 1
2ρu

2 + ρe (e is the specific internal energy)
for an ideal gas, this system is closed by the equation of state
e = p

ρ(γ−1) (γ the ratio of specific heats with γ = 7
5 in our studies)

physical flux F(W ) = (ρu, ρu2 + p, u(E + p))T

the source term dS
dx , S = (D,F ,H)T = (D(x),F (x),H(x))T

Dirichlet boundary conditions

W (0) = Wlf

W (1) = Wrg
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Euler’s equations (i)

existence of solution requires that the following compatibility
condition are satisfied

F > 0, HD ≥ 0,
γ2

γ2 − 1
≥ 2

DH

F 2

if D is positive, the supersonic solution writes

ρ̂sup(D,F ,H) =
2γF −

√
4γ2F 2 − 4(γ + 1)(γ + 1)DH2

4(γ − 1)H
D

if D is positive, the subsonic solution writes

ρ̂sub(D,F ,H) =
2γF +

√
4γ2F 2 − 4(γ + 1)(γ + 1)DH2

4(γ − 1)H
D

Wlf = W (D(0),F (0),H(0)) and Wrg = W (D(1),F (1),H(1))

there are two choices for each condition: subsonic or supersonic
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Euler’s equations (ii)

Sup-Sup: smooth solution (in most of the cases)
Sub-Sub: smooth solution (in most of the cases)

Theorem

A steady-state solution admits an entropic stationary shock at point xc if
Assume that a steady-state solution admits an entropic stationary
genuinely nonlinear shock at point xc. Then there only exist two
admissible situations:
(a) the solution is supercritical on the left and subcritical on the right

with D > 0 and H > 0;
(b) the solution is subcritical on the left and supercritical on the right

with D < 0 and H < 0.

Sub-Sup: non entropic shock
Sup-Sub: solution with an entropic shock (need 1 more equation to
fix the shock position)

SC, RL, GJM 1D STEADY-STATE EULER SYSTEM



Euler’s equations (iii)

Theorem

Assume that density ρ̃(x , t), the mass flow ρ̃u(x , t), and the total energy
Ẽ are continuous at the boundaries for t > 0, that is, there are no jumps
between the boundary conditions and the solution at xL and xR. Then for
any time t > 0, we have∫ 1

0
φ̃(x , t) dx =

∫ 1

0
φ0(x) dx , φ̃ = ρ̃, ρ̃u, Ẽ .

Moreover, if the solution converges to a steady-state solution in time,
denoted by ρ, u, and E , then we have∫ 1

0
ρ0(x) dx =

∫ 1

0
ρ(x) dx ,∫ 1

0
ρ0(x)u0(x) dx =

∫ 1

0
D(x) dx ,∫ 1

0
E 0(x) dx =

∫ 1

0
E (x) dx .
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Euler’s equations (iv)

Corrolary

Assume that the initial conditions satisfy the theorem condition with
D > 0, H > 0.
Then the steady-state solution in constituted of the supersonic
solution on [0, xc[ and the subsonic solution on ]xc, 1] with an
entropic shock located at the unique point xc such that∫ xc

0
ρsup(x) dx +

∫ 1

xc

ρsub(x) dx =

∫ 1

0
ρ0(x) dx .

this is the equation which fixes the shock position
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Euler chain detector

check

Cell to

bad

valid valid valid

bad bad

continue continue continuecontinue

PAD LODED PD SD

ACCEPT

RECOMPUTE

PAD: Physical Admissible Detector (density + pressure)
ED: Extrema Detector
PD: Plateau Detector
LOD: Local Oscillation Detector
SD: Smoothness Detector
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numerical tests

D(x) = 1, F (x) = 0.027x + 0.6137, H(x) = 0.375
supersonic branch:

ρsup(x) = 0.126x−3.3333
√

1.96(0.027x + 0.6137)2 − 0.72+2.8639

subsonic branch:

ρsub(x) = 0.126x+3.3333
√

1.96(0.027x + 0.6137)2 − 0.72+2.8639
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regular case | supersonic-supersonic

NL TM
I E1 O1 E∞ O∞ E1 O1 E∞ O∞

P0

25 7.8E−03 — 1.3E−02 — 7.8E−02 — 1.9E−01 —
50 3.9E−03 1.0 6.6E−03 1.0 6.8E−02 1.1 1.6E−01 1.0
75 2.6E−03 1.0 4.4E−03 1.0 6.0E−02 1.0 1.5E−01 1.0
100 2.0E−03 1.0 3.3E−03 1.0 5.4E−02 1.0 1.3E−01 1.0

P1

25 9.0E−05 — 9.3E−04 — 1.8E−03 — 7.4E−03 —
50 1.9E−05 2.3 2.6E−04 1.8 1.4E−03 2.0 5.4E−03 2.4
75 7.7E−06 2.2 1.2E−04 1.9 1.1E−03 2.0 4.1E−03 2.3
100 4.1E−06 2.2 6.9E−05 1.9 8.6E−04 2.0 3.2E−03 2.3

P5

25 1.5E−07 — 3.4E−06 — 1.8E−07 — 6.2E−07 —
50 2.9E−09 5.7 1.3E−07 4.7 1.0E−07 4.3 3.6E−07 4.0
75 2.4E−10 6.1 1.6E−08 5.2 5.7E−08 4.8 2.1E−07 4.7
100 4.0E−11 6.3 3.4E−09 5.4 3.3E−08 5.1 1.2E−07 5.0
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discontinuous case

xc = 0.6
supersonic-subsonic
density variable
NL scheme
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discontinuous case | parachute scheme P0
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we observe a convergence towards the exact solution when the mesh
size increases without any spurious oscillation
this validates the robustness of the P0 scheme that is used as the
parachute scheme of the MOOD cascade
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discontinuous case | P1 → P0
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discontinuous case | P5 → P2 → P1 → P0
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discontinuous case | P1 → P0 | it1
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discontinuous case | P1 → P0 | it2
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discontinuous case | P5 → P2 → P1 → P0 | it1
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discontinuous case | P5 → P2 → P1 → P0 | it4
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discontinuous case | P5 → P2 → P1 → P0 | it9
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discontinuous case | errors
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conclusions and perspectives

a strategy to construct high accurate FV schemes has been presented
to solve the 1D steady-state Burgers equation and Euler system
identification of an extra equation to achieve an entropic stationary
shock
two solvers are considered: a NL implicit solver and a so-called
explicit TM solver
numerical experiments show that the optimal order of accuracy is
reached for smooth solutions
for non-smooth solutions, the a posteriori MOOD stabilization leads
to non-oscillatory solutions

is the NL solver more efficient than the explicit TM scheme?
can the MOOD loop be improved?
where we gain with the cascade P5 → P2 → P1 → P0 comparing
with the parachutte P0 scheme when there is a shock?
can we reduce the cone of influence of the errors centered in the
shock position?
what if there are sonic points?
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