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o can the MOOD loop be improved?

o where we gain with the cascade Ps — P, — P; — Py comparing
with the parachutte Py scheme when there is a shock?

o can we reduce the cone of influence of the errors centered in the
shock position?
o what if there are sonic points?
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MOTIVATION

o to solve steady-state hyperbolic equations using finite volume

schemes

o prototypes: Burgers' equation (scalar case) and Euler's equation

(vectorial case)
o regular solutions: high accuracy

o solutions with a shock: stability (no oscillations) and accuracy (as

possible)

o approach: MOOD (Multidimensional Optimal Order Detection)
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INVISCID BURGERS’ EQUATION

o we seek the velocity function ¢ = ¢(x), solution of the 1D
steady-state inviscid Burgers' equation

dF(¢)
dx

=f,inQ=(0,1)

o with Dirichlet boundary conditions

¢ = ¢, onx=0
¢ =g, onx=1

o with
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NOTATION

Ky | K; | Kr
X1 J .77'1 J Xy
r1 =0 zs Ti—1 Tiyd Tr-1 Tryl
} {
hi

o Ki —cell i

o | — number of cells

©

X;_ 1

i—30

h; — length of cell f

©

o x; — centroid of cell /
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Xiy1 — boundary points of cell
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FV SCHEME (I)

o integrating equation %Xﬂ = f over cell K; results in
1

with

o let
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FV SCHEME (I1)

o goal — to compute an approximation ¢; of the mean value of ¢ in

each cell of the mesh

o the approximation to the mean value of f over cell K;, f;, will be

computed by gaussian quadrature
o we will consider the Rusanov numerical flux

o to achieve high-order numerical approximations, we introduce local

polynomial reconstructions of the underlying solutions

o stencil: the stencil S; of cell K; is composed of the d; + 1 closest

neighbour cells excluding cell K;
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POLYNOMIAL RECONSTRUCTIONS

o reconstruction: the polynomial quS,-(x;d;) is based on the data
associated to the stencil under a least-square technique

1
s.t. F/ ¢i(x; d;)dx = ¢; (mean value conservation)
i G;

o to construct a generic high-order scheme one has to substitute the
left and right states in by states evaluated through high-order
polynomial reconstructions
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THE MOOD LoOP

o TM ...
o NL
Initial guess
_ 0 0
k=0 ®° ar
k k
— O M
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ouT
POLYNOMIAL
T RECONSTRUCTION 0692
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OOD loop i i
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By
k+1 k EXIT with solution * *
if M =M o M
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BURGERS CHAIN DETECTOR

valid valid valid
Cﬁn tlf e ACCEPT
chec
| ED I continue I PD I continue I LOD continue SD |
bad bad
RECOMPUTE - - - ==~ ===--=~~~- ad | __ a

ED: Extrema Detector
PD: Plateau Detector

LOD: Local Oscillation Detector
SD: Smoothness Detector
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BURGERS: MANUFACTURED REGULAR SOLUTION (I)

o manufactured regular solution

@(x) = sin(37x) exp(x) + 2

then
f(x) = (exp(x)sin(3mx) + 2)(exp(x) sin(37x) + 37 exp(x) cos(37x))
=2
(brg =2
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BURGERS: MANUFACTURED REGULAR SOLUTION (II)
NS ™
/ E1 01 Eoo Ooo El Ol Eoo Ooo
70 78E-02 — 19E-01 — 78E-02 — 19E-01 —
P 80 6.8E-02 1.1 16E-01 1.0 6.8E-02 1.1 16E-01 1.0
® 90 60E-02 10 15E—01 1.0 6.0E-02 1.0 15E-01 1.0
100 54E-02 10 13E-01 1.0 54E-02 10 13E-01 1.0
70 18E-03 — T7.4E-03 — 1.8E-03 — 7.4E-03 —
P 80 14E-03 2.0 b54E-03 24 14E-03 20 54E-03 24
' 90 11E-03 20 4.1E-03 23 1.1E-03 2.0 4.1E-03 23
100 8.6E—04 2.0 3.2E-03 23 8.6E—04 2.0 32E-03 23
70 1.1E-07 — 8.8E-07 — 1.8E-07 — 6.2E-07 —
P 80 49E-08 6.0 38E-07 6.2 1.0E-07 4.3 3.6E-07 4.0
® 90 24E-08 6.1 18E—07 6.2 5.7E—-08 4.8 21E-07 47
100 1.2E-08 6.2 1.1E-07 5.2 33E-08 51 12E-07 5.0
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o data

f(x) = —m cos(mx)p(x)
P =1
brg = —0.1



BURGERS: SOLUTION WITH A SHOCK

o data

f(x) = —m cos(mx)p(x)
=1
g = —0.1

o analytical solution

6(x) 1 —sin(mx) if 0 < x <0.1486
X) =
—0.1 —sin(mx) if0.1486 < x <1
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NL + TM | PARACHUTE SCHEME Py
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NL + TM | UNLIMITED Py
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NL + TM | UNLIMITED Ps

" Exact ——
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05
0F
05}
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NL | P; — Py | 173 (6)
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NL | Py — Py | IT4 — REINITIALIZATION
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NL | P; — Py | ITH (4)
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NL | Ps — P, — Py | IT5 (4+6)
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EULER SYSTEM FORMULATION

o Euler equations

dF(W) dS
T—a, |nQ—(071)

o conservative variable W = (p, pu, E)T

©

total energy E = %pu2 + pe (e is the specific internal energy)

(*]

for an ideal gas, this system is closed by the equation of state
e= ﬁ (7 the ratio of specific heats with v = £ in our studies)

©

physical flux F(W) = (pu, pu® + p, u(E + p))"
o the source term g—i, S=(D,F,H)T = (D(x), F(x),H(x))"
o Dirichlet boundary conditions

W(0) = Wi
W(1) = Wig

SC, RL, GJM 1D STEADY-STATE EULER SYSTEM



EULER’S EQUATIONS (1)

o existence of solution requires that the following compatibility
condition are satisfied

2

~y DH
F HD >0, - >2="
>0, HD 20, 5 >20;

o if D is positive, the supersonic solution writes

2vF — \/872F2 —4(y + 1)(v + 1)DH?
4y-1)3

o if D is positive, the subsonic solution writes

pAsup(Dv Fa H) =

2vF + /4y2F2 — 4(y + 1)(y + 1)DH?
Ay -1)p
Wie = W(D(0), F(0), H(0)) and W, = W(D(1), F(1), H(1))

o there are two choices for each condition: subsonic or supersonic

pASub(DaFv H) =

©
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EULER’S EQUATIONS (II)

o Sup-Sup: smooth solution (in most of the cases)

o Sub-Sub: smooth solution (in most of the cases)

THEOREM

A steady-state solution admits an entropic stationary shock at point x. if
Assume that a steady-state solution admits an entropic stationary

genuinely nonlinear shock at point x.. Then there only exist two
admissible situations:

(A) the solution is supercritical on the left and subcritical on the right
with D > 0 and H > 0;

(B) the solution is subcritical on the left and supercritical on the right
with D < 0 and H < 0.

o Sub-Sup: non entropic shock

o Sup-Sub: solution with an entropic shock (need 1 more equation to
fix the shock position)
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EULER’S EQUATIONS (I1I)

THEOREM

Assume that density p(x, t), the mass flow pu(x,t), and the total energy
E are continuous at the boundaries for t > 0, that is, there are no jumps
between the boundary conditions and the solution at x. and xg. Then for
any time t > 0, we have

1 1 _ _
| dxoax= [ ®dx o= gk
0 0

Moreover, if the solution converges to a steady-state solution in time,
denoted by p, u, and E, then we have

/ () dx = / o

/01 P°(x)u°(x)dx = /01 D(x)dx,

/01 E%x)dx = /01 E(x)dx.
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EULER’'S EQUATIONS (1V)

CORROLARY

o Assume that the initial conditions satisfy the theorem condition with
D>0,H>0.

o Then the steady-state solution in constituted of the supersonic
solution on [0, x.[ and the subsonic solution on |x, 1] with an
entropic shock located at the unique point x. such that

Xe 1 1
/ Psup(x) dx + / Psub(Xx) dx = / po(x) dx.
0 Xe 0

<

this is the equation which fixes the shock position
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EULER CHAIN DETECTOR

Cellto  —————- L
check

l PAD }wm‘iuue{ ED }(()nrimm{ PD }('{)mhme{ LOD }c{)nrirme{ SD ‘

bad bad bad
RECOMPUTE ———— - = - === -=----------——-- Sc

PAD: Physical Admissible Detector (density + pressure)
ED: Extrema Detector

PD: Plateau Detector

LOD: Local Oscillation Detector

SD: Smoothness Detector
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NUMERICAL TESTS

o D(x) =1, F(x) = 0.027x + 0.6137, H(x) = 0.375

o supersonic branch:

peup(x) = 0.126x —3.3333/1.96(0.027x + 0.6137)2 — 0.72+2.8639

o subsonic branch:

peub(x) = 0.126x+3.33331/1.96(0.027x + 0.6137)2 — 0.72+2.8639
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REGULAR CASE

SUPERSONIC-SUPERSONIC

NL ™
/ E; (@ E O E @ Ex O
25 78E-03 — 13E-02 — 78E-02 — 19E-01 —
P 50 39E-03 1.0 6.6E-03 1.0 6.8E—02 1.1 16E-01 1.0
© 75 26E-03 1.0 44E-03 1.0 6.0E-02 1.0 15E-01 1.0
100 2.0E-03 1.0 33E-03 1.0 54E-02 10 13E-01 1.0
25 9.0E-05 — 93E-04 — 18E-03 — 7.4E-03 —
P 50 19E-05 23 26E-04 1.8 1.4E-03 2.0 5.4E-03 24
1 75 77E-06 22 12E-04 1.9 1.1E-03 2.0 4.1E-03 23
100 4.1E-06 2.2 69E-05 1.9 8.6e—04 2.0 3.2E-03 23
25 15E-07 — 3.4E-06 — 1.8E-07 — 6.2E-07 —
P 50 29E-09 5.7 13E-07 4.7 1.0E-07 4.3 3.6E-07 4.0
® 75 24E-10 6.1 16E-08 5.2 5.7TE-08 4.8 2.1E-07 4.7
100 4.0E-11 6.3 34E-09 54 3.3E-08 5.1 1.2E-07 5.0

SC, RL, GJM
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DISCONTINUOUS CASE

x. = 0.6
supersonic-subsonic
density variable

© 0 © o

NL scheme

4 T
Exact solution =
Supersonic branch ——
3.8 | Subsonic branch —— 4

341 1

32F 1

28 E

26 E
2.4 E
22 \ i
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DISCONTINUOUS CASE | PARACHUTE SCHEME Py

3.8

3.6

3.4

3.2

2.8

2.6

2.4

2.2

T
Exact solution ——
P, 100 cells —@—
Py 50 cells —@—

Py 25 cells

o we observe a convergence towards the exact solution when the mesh
size increases without any spurious oscillation

o this validates the robustness of the Py scheme that is used as the
parachute scheme of the MOOD cascade
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DISCONTINUOUS CASE | P; — Py
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Exact solution ——
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I Py-Pg25cells

}‘E:xx 1
x::

L xmd 4

1 1 1 1

0 0.2 0.4 0.6 0.8 1
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DISCONTINUOUS CASE | Ps — P, — P; — Py

3.8

3.6

3.4

3.2

2.8

2.6

2.4

2.2

Exactlsolution E—
P5-Po-P4-Po 100 cells —@—
Pg-P,-P4-P( 50 cells —@—
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I Ps-Py-Py-Py 25 cells

}‘E”H: 1
Xx

L Hxlhﬂ i

0 0.2 0.4 0.6 0.8 1
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DISCONTINUOUS CASE | P; — Py | IT1
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MOOD iteration 1 ——
Cells:P; @
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3 -
* \2
2 -
1 1 1 1
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DISCONTINUOUS CASE | P; — Py | 1T2
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o can the MOOD loop be improved?

o where we gain with the cascade Ps — P, — P; — Py comparing
with the parachutte Py scheme when there is a shock?

o can we reduce the cone of influence of the errors centered in the
shock position?
o what if there are sonic points?
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