RUNGE-KUTTA MULTIRATE SCHEMES FOR ODES AND CONSERVATION LAWS

MATTEO SEMPLICE¹ <u>GIUSEPPE VISCONTI</u>²

¹Department of Mathematics University of Turin

²Department of Science and High Technology University of Insubria

SHARK-FV CONFERENCE

Sao Félix (Portugal), 22-27 May 2016

Outline

- Introduction to the problem
- Ø Multirate Schemes
- Multirate with Continuous Extensions (MRKCE)
- Output State Numerical Tests
- Multirate strategy for Conservation Laws

Test problem

$$\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} -1 & \epsilon \\ \epsilon & -a \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

where $a>1,\,\epsilon$ is the coupling coefficient. The general solution is

$$y(t) = k_1 \bar{v}_1 \exp(\lambda_1 t) + k_2 \bar{v}_2 \exp(\lambda_2 t).$$

Real eigenvalues and for ϵ small enough

$$\bar{v}_1 = \begin{bmatrix} 1\\O(\epsilon) \end{bmatrix}, \quad \bar{v}_2 = \begin{bmatrix} O(\epsilon)\\1 \end{bmatrix}$$

 $\lambda_1 = -1 + O(\epsilon^2), \quad \lambda_2 = -a + O(\epsilon^2)$

 \Rightarrow separably stiff system $(a \gg 1)$

Active vs Latent

Consider a Cauchy Problem

$$\begin{cases} y' = f(t, y), & f : \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^m \\ y(0) = y_0, & y_0 \in \mathbb{R}^m \end{cases}$$

• moderately stiff: $\frac{|\lambda_{\max}|}{|\lambda_{\min}|} \in (4, 100)$

• partitioned in two sets of variables

$$y = \begin{pmatrix} y_A \\ y_L \end{pmatrix}, \ y_A \in \mathbb{R}^{m_A}, \ y_L \in \mathbb{R}^{m_L}, \ m_A + m_L = m$$

$$y' = f(y) \Leftrightarrow \begin{cases} y'_A(t) = f_A(y_A, y_L), & y_A(t_0) = y_{A,0} \\ y'_L(t) = f_L(y_A, y_L), & y_L(t_0) = y_{L,0} \end{cases}$$

 $y_A(t)$ active or fast $y_L(t)$ latent or slow • separably stiff: $\min_i |\lambda_i^A| \gg \max_i |\lambda_i^L|$.

Explicit Multirate methods

- $y_L(t)$ are approximated with time-step H
- $y_A(t)$ are approximated with time-step $h = \frac{H}{m}, m \in \mathbb{N}$

Benefit: we use an explicit scheme, reducing the computational cost and avoiding stability problems.

Applications

Electronic circuits

- · coupled digital and analogical circuits
- inverter chain

② Discretization of PDEs with the method of lines and non-uniform grids

Runge-Kutta Schemes

Multirate methods with explicit Runge-Kutta schemes.

Definition

An explicit Runge-Kutta (RK) scheme with s stages for the approximation of the Cauchy Problem is defined by

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i, \quad n = 0, 1, \dots, N-1$$
$$k_i = f(t_n + \frac{c_i}{h}, y_n + h \sum_{j=1}^{i-1} a_{ij} k_j), \quad i = 1, 2, \dots, s$$

c_1	a_{11}	a_{12}	 a_{1s}
c_2	a_{21}	a_{22}	 a_{2s}
:	•	:	:
•	•	•	•
c_s	a_{s1}	a_{s2}	 a_{ss}
	b_1	b_2	 b_s

Butcher Tableau

$$\Rightarrow \frac{c \mid A}{\mid b^t} \quad \text{or} \ (A, b, c)$$

Runge-Kutta Scheme

m=2 time-steps of amplitude h of a Runge-Kutta scheme (A,b,c)

$$k_i^1 = f(y_0 + h \sum_{j=1}^{i-1} a_{ij} k_j^1)$$

 $y_1 = y_0 + h \sum_{i=1}^{s} b_i k_i^1$

$$k_i^2 = f(y_1 + h \sum_{j=1}^{i-1} a_{ij} k_j^2)$$
$$y_2 = y_1 + h \sum_{i=1}^{s} b_i k_i^2$$

Runge-Kutta Scheme

m=2 time-steps of amplitude h of a Runge-Kutta scheme (A,b,c)

$$k_i^1 = f(y_0 + h \sum_{j=1}^{i-1} a_{ij} k_j^1) \qquad \qquad k_i^2 = f(y_0 + h \sum_{i=1}^{s} b_i k_i^1 + h \sum_{j=1}^{i-1} a_{ij} k_j^2)$$
$$y_2 = y_0 + h \sum_{i=1}^{s} b_i k_i^1 + h \sum_{i=1}^{s} b_i k_i^2$$

is equivalent to m = 1 time-step of amplitude H = 2h of the method

$$\begin{array}{c|c} \frac{\frac{1}{2}c}{\frac{1}{2}A} \\ \frac{\frac{1}{2}(\mathbf{1}_s+c)}{\frac{1}{2}\mathbf{1}_s b^t} & \frac{1}{2}A \\ \hline & \frac{\frac{1}{2}b^t}{\frac{1}{2}b^t} & \frac{1}{2}b^t \end{array}$$

Runge-Kutta Scheme

m=2 time-steps of amplitude h of a Runge-Kutta scheme (A,b,c)

$$k_i^1 = f(y_0 + h \sum_{j=1}^{i-1} a_{ij} k_j^1) \qquad \qquad k_i^2 = f(y_0 + h \sum_{i=1}^{s} b_i k_i^1 + h \sum_{j=1}^{i-1} a_{ij} k_j^2)$$
$$y_2 = y_0 + h \sum_{i=1}^{s} b_i k_i^1 + h \sum_{i=1}^{s} b_i k_i^2$$

is equivalent to m = 1 time-step of amplitude H = 2h of the method

$$\begin{array}{c|c} \frac{\frac{1}{2}c}{\frac{1}{2}A} \\ \\ \frac{\frac{1}{2}(\mathbf{1}_s+c)}{\frac{1}{2}\mathbf{1}_sb^t} & \frac{1}{2}A \\ \\ \hline \\ & \frac{\frac{1}{2}b^t}{\frac{1}{2}b^t} & \frac{1}{2}b^t \end{array}$$

In the case of a generic m the method is

8 / 35

Multirate Runge-Kutta

$$\begin{cases} y'_A(t) = f_A(y_A, y_L), & y_A(t_0) = y_{A,0} \\ y'_L(t) = f_L(y_A, y_L), & y_L(t_0) = y_{L,0} \end{cases}$$

Multirate Runge-Kutta

$$\begin{cases} y'_A(t) = f_A(y_A, y_L), & y_A(t_0) = y_{A,0} \\ y'_L(t) = f_L(y_A, y_L), & y_L(t_0) = y_{L,0} \end{cases}$$

Definition

Let (A, b, c) be an explicit Runge-Kutta scheme with s stages and let $h = \frac{H}{m}$. We define Multirate method (MRK) a numerical scheme in which the stages of the time-step n are computed as

$$k_{A,i}^{\lambda} = f_A \left(y_{A,n}^{\lambda} + h \sum_{j=1}^{i-1} a_{ij} k_{A,j}^{\lambda}, Y_{L,i}^{\lambda} \right), \ i = 1, 2, \dots, s, \ \lambda = 0, 1, \dots, m-1$$
$$k_{L,i} = f_L \left(Y_{A,i}, y_{L,n} + H \sum_{j=1}^{i-1} a_{ij} k_{L,j} \right), \ i = 1, 2, \dots, s$$

where $Y_{L,i}^{\lambda} \approx y_L(t_0 + (\lambda + c_i)h)$ and $Y_{A,i} \approx y_A(t_0 + c_iH)$.

 \Rightarrow necessity of computing the stage-values.

Multirate Runge-Kutta

We employ the already computed stages. Then in compact form:

Active:
$$y_{A,n+1} = y_{A,n} + H\tilde{b}^t \mathbf{k}_A$$

 $\mathbf{k}_A = f_A \left(y_{A,n} + H\tilde{A}\mathbf{k}_A, y_{L,n} + HB\mathbf{k}_L \right),$
Latent: $y_{L,n+1} = y_{L,n} + Hb^t \mathbf{k}_L$
 $\mathbf{k}_L = f_L \left(y_{A,n} + HC\mathbf{k}_A, y_{L,n} + HA\mathbf{k}_L \right).$

 \Rightarrow we write the Multirate as a Partitioned.

Partitioned Runge-Kutta

The components of the system are integrated with the same time-step H of two Runge-Kutta methods $(\hat{A}, \hat{b}_A, \hat{c}_A)$ with q stages and $(\hat{D}, \hat{b}_D, \hat{c}_D)$ with r stages.

$c_{A,1}$	α_{11}	 	 α_{1q}	β_{11}	 β_{1r}	$c_{B,1}$
÷	÷		÷	÷	÷	:
$c_{A,q}$	α_{q1}	 	 α_{qq}	β_{q1}	 β_{qr}	$c_{B,q}$
$c_{C,1}$	ξ11	 	 ξ_{1q}	δ_{11}	 δ_{1r}	$c_{D,1}$
÷	÷		:	÷	:	÷
$c_{C,r}$	ξ_{r1}	 	 ξ_{rq}	δ_{r1}	 δ_{rr}	$c_{D,r}$
	$b_{A,1}$	 	 $b_{A,q}$	$b_{D,1}$	 $b_{D,r}$	

$$k_{A,i} = f_A(y_{A,0} + H\sum_{j=1}^q \alpha_{ij}k_{A,j}, y_{L,0} + H\sum_{j=1}^r \beta_{ij}k_{L,j}), \ i = 1, 2, \dots, q$$
$$k_{L,i} = f_L(y_{A,0} + H\sum_{j=1}^q \xi_{ij}k_{A,j}, y_{L,0} + H\sum_{j=1}^r \delta_{ij}k_{L,j}), \ i = 1, 2, \dots, r$$

Partitioned Runge-Kutta: order conditions

Under the simplifying hypotheses [Hairer, 1981]:

order	active	latent	additionally, $orall heta \in \{rac{1}{m}, \dots, 1\}$
1	$\tilde{b}^t 1_{ms} = 1$	$b^t 1_s = 1$	$ ilde{b}^t(heta) 1_{ms} = heta$
2	$\tilde{b}^t \tilde{c} = \frac{1}{2}$	$b^t c = \frac{1}{2}$	$\tilde{b}^t(\theta)\tilde{c} = \frac{\theta^2}{2}$
	$\sum_{i=1}^{ms} \tilde{b}_i \tilde{c}_i^2 = \frac{1}{3}$	$\sum_{i=1}^{s} b_i c_i^2 = \frac{1}{3}$	$\sum_{i=1}^{ms} \tilde{b}_i(\theta) \tilde{c}_i^2 = \frac{\theta^3}{3}$
3	$\tilde{b}^t \tilde{A} \tilde{c} = \frac{1}{6}$	$b^t A c = \frac{1}{6}$	$\tilde{b}^t(\theta)\tilde{A}\tilde{c}=rac{ heta^3}{6}$
		$b^t C \tilde{c} = \frac{1}{6}$	$\tilde{b}^t(\theta)Bc = \frac{\theta^3}{6}$

where
$$x(l/m) = [\underbrace{x, \dots, x}_{l}, \underbrace{0, \dots, 0}_{m-l}]$$
.

Theorem

If the Partitioned scheme is a Multirate scheme then the order conditions marked in <u>blue</u> are automatically satisfied.

Goal

New method for determining the coefficients of $Y_{L,i}^{\lambda}$ and $Y_{A,i}$.

- Compute all the slow stages during the first active microstep
- \Rightarrow C is a lower triangular matrix
- \Rightarrow the relations $C\mathbf{1}_{ms}=c, \;\; b^tCc=\frac{1}{6}$ are sufficient to define C
- \Rightarrow we can immediately compute the approximation of the latent component $y_{L,n+1}\approx y_L(t_n+H)$
 - $Y_{L,i}^{\lambda} \approx y_L(t_n + \frac{c_i + \lambda}{m}H)$ approximations of y_L in the points $t_i^{\lambda} = t_n + \frac{c_i + \lambda}{m}H$, in $[t_n, t_n + H]$

We use the Continuous Extensions of the Runge-Kutta schemes.

M. Semplice, G. Visconti (2016), *Multirate schemes with continuous extensions for separably stiff problems*. In preparation

Continuous Extensions and DDEs

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t)))), & t_0 \le t \le t_f \\ y(t) = \phi(t), & t \le t_0 \end{cases}$$

$$N'(t) = rN(t) \left(1 - \frac{N(t - \tau)}{K}\right)$$
(Logistic equation with delay)

 \Rightarrow is useful having a continuous approximation of the solution.

Continuous Extensions and DDEs

$$\begin{cases} y'(t) = f(t, y(t), y(t - \tau(t, y(t)))), & t_0 \le t \le t_f \\ y(t) = \phi(t), & t \le t_0 \end{cases}$$

$$N'(t) = rN(t) \left(1 - \frac{N(t - \tau)}{K}\right)$$
(Logistic equation with delay)

 \Rightarrow is useful having a continuous approximation of the solution.

Definition (Zennaro 1986)

The Natural Continuous Extension (NCE) of an explicit Runge-Kutta scheme (A, b, c) of order p is the continuous approximation

$$u(t_0 + \rho H) = y_0 + H \sum_{i=1}^{s} \frac{b_i(\rho)k_i}{\rho}$$

where $\rho \in [0, 1]$, $b_i(\rho)$, i = 1, ..., s polynomials of degree $\leq d$ and such that

$$\int_{t_0}^{t_0+H} G(t)[y'(t) - u'(t)]dt = O(h^{p+1})$$
14/35

Coefficients of the NCEs

NCEs coefficients of the explicit Runge-Kutta methods of order $\label{eq:period} p = s = 1, 2, 3$

• Runge-Kutta with one stage and of order 1:

$$d = \left[\frac{p+1}{2}\right] = s = p = 1 \qquad b_1(\rho) = \rho$$

• Runge-Kutta with two stages and of order 2:

$$d = \left[\frac{p+1}{2}\right] = 1 \qquad b_i(\rho) = b_i\rho, \ i = 1, 2$$
$$d = s = p = 2 \qquad \begin{cases} b_1(\rho) = (b_1 - 1)\rho^2 + \rho\\ b_2(\rho) = b_2\rho^2 \end{cases}$$

• Runge-Kutta with three stages and of order 3:

 $d=\left[\frac{p+1}{2}\right]=2 \qquad b_i(\rho)=w_i\rho^2+(b_i-w_i)\rho,\ i=1,2,3$ where, for each $k\in\mathbb{R},$

$$w_1 = -\frac{k(c_3 - c_2) + c_2}{2c_2c_3}, \quad w_2 = \frac{k}{2c_2}, \quad w_3 = \frac{1 - k}{2c_3}$$

We use the continuous extensions for the latent stage-values $Y_{L,i}^{\lambda} \approx y_L(t_n + (\frac{c_i + \lambda}{m})H)$:

$$Y_{L,i}^{\lambda} = y_{L,n} + H \sum_{j=1}^{s} b_j(\boldsymbol{\rho}_i^{\lambda}) k_{L,j}$$

$$\rho_i^{\lambda} = \frac{c_i + \lambda}{m}, \ i = 1, \dots, s, \ \lambda = 0, \dots, m - 1$$

The simplifying hypothesis $B\mathbf{1}_s = \tilde{c}$ is verified:

$$\sum_{j=1}^{s} b_j(\boldsymbol{\rho_i^{\lambda}}) = \boldsymbol{\rho_i^{\lambda}} = \frac{c_i + \lambda}{m}, \ i = 1, 2, \ \lambda = 1, \dots, m-1$$

We use the continuous extensions for the latent stage-values $Y_{L,i}^{\lambda} \approx y_L(t_n + (\frac{c_i + \lambda}{m})H)$:

$$Y_{L,i}^{\lambda} = y_{L,n} + H \sum_{j=1}^{s} b_j(\boldsymbol{\rho}_i^{\lambda}) k_{L,j}$$

$$\rho_i^{\lambda} = \frac{c_i + \lambda}{m}, \ i = 1, \dots, s, \ \lambda = 0, \dots, m - 1$$

The simplifying hypothesis $B\mathbf{1}_s = \tilde{c}$ is verified:

$$\sum_{j=1}^{s} b_j(\boldsymbol{\rho_i^{\lambda}}) = \boldsymbol{\rho_i^{\lambda}} = \frac{c_i + \lambda}{m}, \ i = 1, 2, \ \lambda = 1, \dots, m-1$$

By means of two theorems we obtain the structure of B and C for multirate methods of order 2 and 3, with a generic number of microsteps, built with the coefficients of the continuous extensions.

Theorem

If the explicit Runge-Kutta scheme $({\cal A},b,c)$ has order p=s=2, choosing

$$C = \begin{bmatrix} 0 & 0 & 0 & 0 & \dots & 0 & 0 \\ c_2 & 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

the resulting Multirate method is of order 2 for the latent part. If (A,b,c) is of order p=s=3, choosing

$$C = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \dots & 0 & 0 \\ c_2 & 0 & 0 & 0 & 0 & 0 & \dots & 0 & 0 \\ c_3 - \frac{m}{6b_3c_2} & \frac{m}{6b_3c_2} & 0 & 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

with m number of microsteps, the resulting Multirate method is of order 3 for the latent part.

Theorem

Let (A,b,c) be an explicit Runge-Kutta scheme of order p=s=2,3 and let

$$B = \left[\begin{array}{c} B_0 \\ \\ b_j(\rho_i^\lambda) \end{array} \right]$$

where B_0 is a lower triangular matrix univocally determined by (A, b, c)and by the number of microsteps m, $b_j(\rho)$'s are the NCEs coefficients evaluated in $\rho_i^{\lambda} = \frac{c_i + \lambda}{m}$, $i = 1, \ldots, s$, $\lambda = 1, \ldots, m - 1$. Then the resulting Multirate method is of order 2,3 for the active part.

Multirate with NCEs - Examples

	0	0	0			0	0		
	$\frac{1}{2}$	$\frac{1}{2}$	0			$\frac{1}{2}$	0		
	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	0	0	$\frac{3}{8}$	$\frac{1}{8}$		
	1	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$		
		0	0			0	0	0	
		1	0			1	0	1	
		$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{2}$		
0	0	0					0	0	
$\frac{1}{3}$	$\frac{1}{3}$	0					$\frac{1}{3}$	0	
$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	0	0			$\frac{5}{18}$	$\frac{1}{18}$	
$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$	0			$\frac{4}{9}$	$\frac{2}{9}$	
$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	0	0	$\frac{4}{9}$	$\frac{2}{9}$	
1	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$	0	$\frac{1}{2}$	$\frac{1}{2}$	
	0	0					0	0	0
	1	0					1	0	1
	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{2}$	

19 / 35

Multirate with NCEs - Examples

0	0	0	0				0	0	0	
$\frac{1}{4}$	$\frac{1}{4}$	0	0				$\frac{1}{4}$	0	0	
$\frac{1}{2}$	$-\frac{1}{2}$	1	0				0	$\frac{1}{2}$	0	
$\frac{1}{2}$	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{12}$	0	0	0	$\frac{3k+5}{24}$	$\frac{4-3k}{12}$	$\frac{3k-1}{24}$	
$\frac{3}{4}$	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{4}$	0	0	$\frac{9k+21}{96}$	$\frac{8-3k}{16}$	$\frac{9k+3}{96}$	
1	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{12}$	$-\frac{1}{2}$	1	0	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$	
	0	0	0				0	0	0	0
	$\frac{1}{2}$	0	0				$\frac{1}{2}$	0	0	$\frac{1}{2}$
	-3	4	0				-1	2	0	1
	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$	

Continuous Extensions of MRKCE

MRKCE are also endowed with a Continuous Extension making them suitable to solve DDEs.

• Latent part: for $t \in [t_n, t_n + H]$

$$y_L(t_n + \theta H) = y_{L,n} + H \sum_{i=1}^s b_i(\theta) k_{L,i} \quad \theta \in [0,1]$$

Continuous Extensions of MRKCE

MRKCE are also endowed with a Continuous Extension making them suitable to solve DDEs.

• Latent part: for $t \in [t_n, t_n + H]$

$$y_L(t_n + \theta H) = y_{L,n} + H \sum_{i=1}^s b_i(\theta) k_{L,i} \quad \theta \in [0,1]$$

• Active part: for $t \in [t_n + \lambda h, t_n + (\lambda + 1)h]$

$$y_A(t_n + (\lambda + \theta)h) = y_{A,n}^{\lambda} + h \sum_{i=1}^s b_i(\theta)k_{A,i}^{\lambda}, \quad \theta \in [0,1]$$

Continuous Extensions of MRKCE

MRKCE are also endowed with a Continuous Extension making them suitable to solve DDEs.

• Latent part: for $t \in [t_n, t_n + H]$

$$y_L(t_n + \theta H) = y_{L,n} + H \sum_{i=1}^s b_i(\theta) k_{L,i} \quad \theta \in [0,1]$$

• Active part: for $t \in [t_n, t_n + H]$

$$y_A(t_n + \theta H) = y_{A,n} + H \sum_{i=1}^s \sum_{\lambda=1}^m \frac{b_{A,i}^{\lambda}(\theta)}{k_{A_i}^{\lambda}}, \quad \theta \in [0,1]$$

$$b^{A}_{(\lambda,i)}(\theta) = \begin{cases} 0 & \text{if } \theta \in [0, \frac{\lambda}{m}] \\ \frac{b_{i}(m\theta - \lambda)}{m} & \text{if } \theta \in [\frac{\lambda}{m}, \frac{\lambda + 1}{m}] \\ \frac{b_{i}}{m} & \text{if } \theta \in [\frac{\lambda + 1}{m}, 1] \end{cases} \quad \text{for } \lambda = 0, \dots, m - 1$$

Test problem

$$\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} -1 & \epsilon \\ \epsilon & -a \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

where a > 1, ϵ is the coupling coefficient. The general solution is

$$y(t) = k_1 \bar{v}_1 \exp(\lambda_1 t) + k_2 \bar{v}_2 \exp(\lambda_2 t).$$

Real eigenvalues and for ϵ small enough

$$\bar{v}_1 = \begin{bmatrix} 1\\ O(\epsilon) \end{bmatrix}, \quad \bar{v}_2 = \begin{bmatrix} O(\epsilon)\\ 1 \end{bmatrix}$$
$$\lambda_1 = -1 + O(\epsilon^2), \quad \lambda_2 = -a + O(\epsilon^2)$$
$$\Rightarrow \begin{bmatrix} y_1'\\ y_2' \end{bmatrix} = \begin{bmatrix} -1 & \epsilon\\ \epsilon & -a \end{bmatrix} \begin{bmatrix} y_1\\ y_2 \end{bmatrix}$$

Consider $\epsilon \approx 0$ and moderate velues of a.

$$y_1 = oldsymbol{R}(H, oldsymbol{a}, \epsilon) y_0, \quad y_0 = egin{bmatrix} y_{A,0} \ y_{L,0} \end{bmatrix}$$

Multirate schemes are absolutely stable $\iff |\rho(R)| < 1.$

$$\begin{cases} \mathbf{k}_{A} = \epsilon y_{L,0} - a y_{A,0} + H \epsilon B \mathbf{k}_{L} - H a \tilde{A} \mathbf{k}_{A} \\ y_{A,1} = y_{A,0} + H \tilde{b}^{t} \mathbf{k}_{A} \\ \mathbf{k}_{L} = -y_{L,0} + \epsilon y_{A,0} - H A \mathbf{k}_{L} + H \epsilon C \mathbf{k}_{A} \\ y_{L,1} = y_{L,0} + H b^{t} \mathbf{k}_{L} \end{cases}$$
$$\mathcal{B} = \begin{bmatrix} \tilde{b}^{t} & \mathbf{0} \\ \mathbf{0} & b^{t} \end{bmatrix}, \quad \mathcal{M} = \begin{bmatrix} -a \tilde{A} & \epsilon B \\ \epsilon C & -aA \end{bmatrix}, \quad \mathcal{A} = \begin{bmatrix} -a \mathbf{1}_{ms} & \epsilon \mathbf{1}_{ms} \\ \epsilon \mathbf{1}_{s} & -\mathbf{1}_{s} \end{bmatrix}$$

Compact formulation of a Multirate scheme:

$$\begin{cases} y_1 = y_0 + H\mathcal{B}\mathbf{k} \\ \mathbf{k} = \mathcal{A}y_0 + H\mathcal{M}\mathbf{k} \end{cases}$$
$$\Rightarrow y_1 = (I_1 + H\mathcal{B}(I_2 - H\mathcal{M})^{-1}\mathcal{A})y_0 = R(H, a, \epsilon)y_0.$$

22 / 35

Theorem

Let $m = \lceil a \rceil$ be the smallest integer such that m > a and let $\epsilon = 0$. The time integrator of the active component is stable for any choice of the time-step H for which the time integrator of the latent component is stable.

Theorem

Let $m = \lceil a \rceil$ be the smallest integer such that m > a and let $\epsilon = 0$. The time integrator of the active component is stable for any choice of the time-step H for which the time integrator of the latent component is stable.

Stability regions ($|R(H, \cdot, \epsilon)| < 1$)

Theorem

Let $m = \lceil a \rceil$ be the smallest integer such that m > a and let $\epsilon = 0$. The time integrator of the active component is stable for any choice of the time-step H for which the time integrator of the latent component is stable.

Stability regions ($|R(H, \cdot, \epsilon)| < 1$)

Convergence test

$$p = \frac{\log(e_{n+1}) - \log(e_n)}{\log(H_{n+1}) - \log(H_n)} = \frac{\log(\frac{e_{n+1}}{e_n})}{\log(\frac{H_{n+1}}{H_n})}$$

MRKCE Method	p_A	p_L
(p = 2, a = m = 2)	2.0288	1.9858
(p = 2, a = m = 3)	2.0126	1.9981
(p = 2, a = m = 4)	1.9986	1.9814
(p = 2, a = m = 8)	2.3617	3.5888
(p = 3, a = m = 2, k = 0)	3.0154	3.1847
(p = 3, a = m = 3, k = 0)	2.9962	3.0480
(p = 3, a = m = 4, k = 0)	3.0596	3.0474
(p = 3, a = m = 8, k = 0)	3.0640	3.0642
(p = 3, a = m = 2, k = 0.2)	3.0153	3.1855
(p = 3, a = m = 2, k = 0.4)	3.0153	3.1862
(p = 3, a = m = 2, k = 0.6)	3.0153	3.1869
(p = 3, a = m = 2, k = 0.8)	3.0153	3.1877
(p = 3, a = m = 2, k = 1.0)	3.0152	3.1884

Table: EOC for some multirate schemes based on NCEs

Work-precision tests

Bogacki Shampine

Nonlinear test problem (Robertson, 1966):

$$\begin{cases} y_1' = 0.4y_2 - 20y_1y_3 - 3y_1^2 \\ y_2' = -.04y_2 + 2y_1y_3 \\ y_3' = 0.15y_1^2 \end{cases}$$

with initial conditions y(0) = [0, 1, 0], for $t \in [0, 100]$.

$$\lambda_1 \simeq 2.5, \quad \lambda_2 \simeq 10^{-1}, \quad \lambda_3 \simeq 0$$

 $v_1 \simeq [1, 0, 0], \quad \operatorname{span}(v_2, v_3) \simeq \operatorname{span}(e_2, e_3)$

						DC	Backi .	onampine
	Heun			RI	<3	type	m	$H_{\rm max}$
type	m	H _{max}	type	m	$H_{\rm max}$		1	0.38
	1	0.3		1	0.38	MRKI	2	0.75
MRKI	2	0.59*	MRKI	2	0.77*	MRKCE	2	$1.00 \div 1.05^{\dagger}$
MRKCE	2	0.60	MRKCE	2	$0.77 \div 1.0^{\dagger}$	MRKI	3	1.14
MRKI	4	1.15*	MRKI	4	1.56*	MRKCE	3	$1.14 \div 1.58^{\dagger}$
MRKCE	4	1.18	MRKCE	4	$1.56 \div 1.68^{\dagger}$	MRKI	4	1.61
						MRKCE	4	$1.61 \div 1.71^{\dagger}$

Table: Boundary of the stability regions for different multirate strategies.

Work-precision tests

Figure: Scheme comparison on the Robertson problem.

CUSP problem (Hairer-Nørsett-Wanner, 1993)

$$\begin{cases} y'_i(t) = -A((y_i(t)^3 + a_i(t)y_i(t) + b_i(t - \tau)) + D(y_{i-1}(t) - 2y_i(t) + y_{i+1}(t)) \\ a'_i(t) = b_i(t) + 0.07v_i(t) + D(a_{i-1}(t) - 2a_i(t) + a_{i+1}(t)) \\ b'_i(t) = (1 - a_i(t)^2)b_i(t) - a_i(t) - 0.4y_i(t - \tau) + 0.035v_i(t) + D(b_{i-1}(t) - 2b_i(t) + b_{i+1}(t)) \end{cases}$$

CUSP problem (Hairer-Nørsett-Wanner, 1993)

$$\begin{cases} y_i'(t) = -A((y_i(t)^3 + a_i(t)y_i(t) + b_i(t - \tau)) + D(y_{i-1}(t) - 2y_i(t) + y_{i+1}(t)) \\ a_i'(t) = b_i(t) + 0.07v_i(t) + D(a_{i-1}(t) - 2a_i(t) + a_{i+1}(t)) \\ b_i'(t) = (1 - a_i(t)^2)b_i(t) - a_i(t) - 0.4y_i(t - \tau) + 0.035v_i(t) + D(b_{i-1}(t) - 2b_i(t) + b_{i+1}(t)) \end{cases}$$

H	m=1, au	= 1/7	m=2, au	= 1/7	m=2, au	= 1/3	$m = 4, \tau$	= 1/7
1.00E-2	1.94E-4		7.59E-4		4.35E-4		1.70E-3	
6.81E-3	8.91E-5	2.02	3.47E-4	2.04	1.99E-4	2.04	7.83E-4	2.03
4.64E-3	4.12E-5	2.01	1.60E-4	2.02	9.13E-5	2.02	3.60E-4	2.02
3.16E-3	1.91E-5	2.01	7.40E-5	2.00	4.22E-5	2.01	1.66E-4	2.02
2.15E-3	8.82E-6	2.01	3.41E-5	2.01	1.95E-5	2.01	7.63E-5	2.02
1.47E-3	4.09E-6	2.00	1.58E-5	2.00	9.03E-6	2.00	3.54E-5	2.00
1.00E-3	1.90E-6	2.00	7.35E-6	2.00	4.19E-6	2.00	1.64E-5	2.00

Table: Convergence test for the DDE: rates of convergence for the latent part of the MRKCE(2,m) schemes based on the Heun method.

CUSP problem (Hairer-Nørsett-Wanner, 1993)

$$\begin{cases} y_i'(t) = -A((y_i(t)^3 + a_i(t)y_i(t) + b_i(t - \tau)) + D(y_{i-1}(t) - 2y_i(t) + y_{i+1}(t)) \\ a_i'(t) = b_i(t) + 0.07v_i(t) + D(a_{i-1}(t) - 2a_i(t) + a_{i+1}(t)) \\ b_i'(t) = (1 - a_i(t)^2)b_i(t) - a_i(t) - 0.4y_i(t - \tau) + 0.035v_i(t) + D(b_{i-1}(t) - 2b_i(t) + b_{i+1}(t)) \end{cases}$$

Н	m=1, au	= 1/7	m=2, au	= 1/7	m=2, au	= 1/3	m=4, au	= 1/7
1.00E-2	5.54E-4		7.80E-4		8.29E-4		9.59E-4	
6.81E-3	2.60E-4	1.97	3.64E-4	1.98	3.84E-4	2.00	4.16E-4	2.18
4.64E-3	1.17E-4	2.09	1.68E-4	2.01	1.78E-4	2.01	1.92E-4	2.01
3.16E-3	5.40E-5	2.00	7.58E-5	2.08	8.17E-5	2.02	8.87E-5	2.01
2.15E-3	2.50E-5	2.00	3.56E-5	1.97	3.80E-5	2.00	4.08E-5	2.02
1.47E-3	1.16E-5	2.01	1.63E-5	2.04	1.76E-5	2.01	1.91E-5	1.97
1.00E-3	5.34E-6	2.01	7.52E-6	2.01	8.14E-6	2.00	8.90E-6	2.00

Table: Convergence test for the DDE: rates of convergence for the active part of the MRKCE(2,m) schemes based on the Heun method.

CUSP problem (Hairer-Nørsett-Wanner, 1993)

$$\begin{cases} y_i'(t) = -A((y_i(t)^3 + a_i(t)y_i(t) + b_i(t - \tau)) + D(y_{i-1}(t) - 2y_i(t) + y_{i+1}(t)) \\ a_i'(t) = b_i(t) + 0.07v_i(t) + D(a_{i-1}(t) - 2a_i(t) + a_{i+1}(t)) \\ b_i'(t) = (1 - a_i(t)^2)b_i(t) - a_i(t) - 0.4y_i(t - \tau) + 0.035v_i(t) + D(b_{i-1}(t) - 2b_i(t) + b_{i+1}(t)) \end{cases}$$

H	$m = 1, \tau$	= 1/7	m=2, au	= 1/7	m=2, au	= 1/3	m=3, au	= 1/7
1.00E-2	2.37E-6		7.61E-6		6.03E-5		5.36E-5	
6.81E-3	7.13E-7	3.12	2.33E-6	3.09	1.72E-5	3.27	1.53E-5	3.26
4.64E-3	2.21E-7	3.06	7.15E-7	3.07	5.05E-6	3.19	4.44E-6	3.23
3.16E-3	6.84E-8	3.05	2.21E-7	3.06	1.51E-6	3.15	1.37E-6	3.06
2.15E-3	2.11E-8	3.06	6.83E-8	3.06	4.48E-7	3.16	4.24E-7	3.06
1.47E-3	6.46E-9	3.09	2.12E-8	3.04	1.41E-7	3.01	1.31E-7	3.05
1.00E-3	1.88E-9	3.22	6.51E-9	3.08	4.35E-8	3.06	4.07E-8	3.05

Table: Convergence test for the DDE: rates of convergence for the latent part of the MRKCE(3,m) schemes based on the Bogacki-Shampine method.

CUSP problem (Hairer-Nørsett-Wanner, 1993)

4

$$\begin{cases} y_i'(t) = -A((y_i(t)^3 + a_i(t)y_i(t) + b_i(t - \tau)) + D(y_{i-1}(t) - 2y_i(t) + y_{i+1}(t)) \\ a_i'(t) = b_i(t) + 0.07v_i(t) + D(a_{i-1}(t) - 2a_i(t) + a_{i+1}(t)) \\ b_i'(t) = (1 - a_i(t)^2)b_i(t) - a_i(t) - 0.4y_i(t - \tau) + 0.035v_i(t) + D(b_{i-1}(t) - 2b_i(t) + b_{i+1}(t)) \end{cases}$$

Н	$m = 1, \tau$	= 1/7	$m = 2, \tau$	= 1/7	$m = 2, \tau$	= 1/3	$m = 3, \tau$	= 1/7
1.00E-2	1.86E-5		8.97E-6		6.07E-5		2.61E-5	
6.81E-3	6.00E-6	2.95	2.54E-6	3.29	1.84E-5	3.12	7.09E-6	3.39
4.64E-3	1.82E-6	3.10	7.59E-7	3.15	5.56E-6	3.11	1.63E-6	3.82
3.16E-3	5.63E-7	3.06	2.24E-7	3.18	1.69E-6	3.10	4.72E-7	3.24
2.15E-3	1.75E-7	3.04	6.70E-8	3.14	5.23E-7	3.06	1.25E-7	3.45
1.47E-3	5.21E-8	3.16	1.78E-8	3.45	1.60E-7	3.08	3.34E-8	3.44
1.00E-3	1.32E-8	3.58	5.04E-9	3.28	4.78E-8	3.15	1.05E-8	3.00

Table: Convergence test for the DDE: rates of convergence for the active part of the MRKCE(3,m) schemes based on the Bogacki-Shampine method.

$$t^{n} + H \xrightarrow{\overline{u}_{j+2}^{n+1}} x$$

$$\bar{u}_{j+2}^{n+1} = \bar{u}_{j+2}^n - \frac{H}{\Delta x} \sum_{i=1}^2 b_i \left(\mathcal{F}_{j+\frac{5}{2}}^{(i)} - \mathcal{F}_{j+\frac{3}{2}}^{(i)} \right)$$

0	0		
c_2	a_{21}	0	
	b_1	b_2	

Multirate for $u_t + F(u)_x = 0$

Multirate for $u_t + F(u)_x = 0$

 $\begin{array}{c} 0 \\ a_{21} & 0 \end{array}$

 b_1

 b_2

$$\bar{u}_{j-2}^{n+1} = \bar{u}_{j-2}^n - \frac{H}{\Delta x} \sum_{i=1}^4 \tilde{b}_i \left(\mathcal{F}_{j-\frac{3}{2}}^{(i)} - \mathcal{F}_{j-\frac{5}{2}}^{(i)} \right) \quad \bar{u}_{j+2}^{n+1} = \bar{u}_{j+2}^n - \frac{H}{\Delta x} \sum_{i=1}^2 b_i \left(\mathcal{F}_{j+\frac{5}{2}}^{(i)} - \mathcal{F}_{j+\frac{3}{2}}^{(i)} \right)$$

0	0					0	
$c_2/2$	$a_{21}/2$	0				c_2	
1/2	$b_{1/2}$	$b_2/2$	0				
$(c_2+1)/2$	$b_1/2$	$b_2/2$	$a_{21}/2$				
	$b_{1/2}$	$b_2/2$	$b_{1/2}$	$b_2/2$			

Multirate for $u_t + F(u)_x = 0$

$$\bar{u}_{j-2}^{n+1} = \bar{u}_{j-2}^n - \frac{H}{\Delta x} \sum_{i=1}^4 \tilde{b}_i \left(\mathcal{F}_{j-\frac{3}{2}}^{(i)} - \mathcal{F}_{j-\frac{5}{2}}^{(i)} \right) \quad \bar{u}_{j+2}^{n+1} = \bar{u}_{j+2}^n - \frac{H}{\Delta x} \sum_{i=1}^2 b_i \left(\mathcal{F}_{j+\frac{5}{2}}^{(i)} - \mathcal{F}_{j+\frac{3}{2}}^{(i)} \right)$$

0	0					0	0
$c_2/2$	$a_{21}/2$	0				c_2	a_{21}
$^{1/2}$	$b_1/2$	$b_2/2$	0				b_1
$(c_2+1)/2$	$b_1/2$	$b_2/2$	$a_{21}/2$				
	$b_{1/2}$	$b_{2}/2$	$b_{1/2}$	$b_2/2$			

 $\frac{0}{b_2}$

Cell-boundary partitioning

4 fluxes in $x_{j+1/2}$,

2 fluxes in $x_{j+1/2}$,

Start from $u_t + F(u)_x = 0$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{u}_{j} = -\frac{1}{\Delta x} \Big[f_{j+1/2} - f_{j-1/2} + g_{j+1/2} - g_{j-1/2} \Big]$$

$$f_{j+1/2} = \begin{cases} F\left(u(x_{j+1/2,t})\right), & \text{if there are}\\ 0, & \text{otherwise} \end{cases}$$

$$g_{j+1/2} = \begin{cases} F\left(u(x_{j+1/2,t})\right), & \text{if there are}\\ 0, & \text{otherwise} \end{cases}$$

Cell-boundary partitioning

Start from $u_t + F(u)_x = 0$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{u}_{j} = -\frac{1}{\Delta x} \Big[f_{j+1/2} - f_{j-1/2} + g_{j+1/2} - g_{j-1/2} \Big]$$

$$\begin{split} f_{j+1/2} &= \begin{cases} F\left(u(x_{j+1/2,t})\right), & \text{if there are 4 fluxes in } x_{j+1/2}, \\ 0, & \text{otherwise} \end{cases} \\ g_{j+1/2} &= \begin{cases} F\left(u(x_{j+1/2,t})\right), & \text{if there are 2 fluxes in } x_{j+1/2}, \\ 0, & \text{otherwise} \end{cases} \\ &\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \bar{\mathbf{u}} = -\frac{1}{\Delta x} \left[\Delta f + \Delta g\right] \end{split}$$

- \bullet use the Runge-Kutta (A,b,c) for Δg
- \bullet use the Runge-Kutta $(\tilde{A},\tilde{b},\tilde{c})$ for Δf

Coupling in the center cell

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{u}_{j} = -\frac{1}{\Delta x} \Big[\Delta f + \Delta g\Big]$$
$$\Rightarrow \bar{u}_{j}^{n+1} = \bar{u}_{j}^{n} - \frac{H}{\Delta x} \left[\sum_{i=1}^{ms} \tilde{b}_{i}K_{i} + \sum_{i=1}^{s} b_{i}J_{i}\right]$$

$$K_{i} = \Delta f \left(\bar{u}_{j}^{n} - \frac{H}{\Delta x} \sum_{j=1}^{i-1} \tilde{a}_{ij} K_{j} \right)$$
$$J_{i} = \Delta g \left(\bar{u}_{j}^{n} - \frac{H}{\Delta x} \sum_{j=1}^{i-1} a_{ij} J_{j} \right)$$

Coupling in the center cell

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{u}_{j} = -\frac{1}{\Delta x} \Big[\Delta f + \Delta g\Big]$$
$$\Rightarrow \bar{u}_{j}^{n+1} = \bar{u}_{j}^{n} - \frac{H}{\Delta x} \left[\sum_{i=1}^{ms} \tilde{b}_{i}K_{i} + \sum_{i=1}^{s} b_{i}J_{i}\right]$$

$$K_{i} = \Delta f \left(\bar{u}_{j}^{n} - \frac{H}{\Delta x} \sum_{j=1}^{i-1} \tilde{a}_{ij} K_{j} - \frac{H}{\Delta x} \sum_{j=1}^{s} \beta_{ij} J_{j} \right)$$
$$J_{i} = \Delta g \left(\bar{u}_{j}^{n} - \frac{H}{\Delta x} \sum_{j=1}^{i-1} a_{ij} J_{j} - \frac{H}{\Delta x} \sum_{j=1}^{ms} \gamma_{ij} K_{j} \right)$$

Second order method

Second order method

Second order method

Second-order conditions

G. Puppo, M. Semplice (2011), *Numerical entropy and adaptivity for finite volume schemes*, Comm. Comput. Phys., 10(5), pp.1132-1160

Theorem

The Multirate method is of second order if each method is of second order and the extended tableaux satisfy the coupling conditions

$$\sum_{i,j} \tilde{b}_i B_j^i = \frac{1}{2}, \quad \sum_{i,k} b_i C_k^i = \frac{1}{2}.$$

Perspectives

The construction of the previous method can be extend to a generic number of microsteps.

Theorem

Let (A, b, c) a Runge-Kutta scheme of order p = 3 with 3 stages and let m be the number of microsteps. Then we cannot have approximations of order 3 for the active component if the first block of B is

$$\begin{bmatrix} 0 & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix}$$

Perspectives

The construction of the previous method can be extend to a generic number of microsteps.

Theorem

Let (A, b, c) a Runge-Kutta scheme of order p = 3 with 3 stages and let m be the number of microsteps. Then we cannot have approximations of order 3 for the active component if the first block of B is

$$\begin{bmatrix} 0 & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix}$$

 \Rightarrow we are trying to use the Multirate Runge-Kutta method based on the Continuous Extensions.

Thank you for your attention!

