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Introduction to electrocardiology
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Introduction to electrocardiology

Cell level - action potential
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Introduction to electrocardiology

Macroscopic level
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The monodomain model

The monodomain model

OtV + lion(V,w) = div(DV V),
Orw = G(V,w),

where :
e V [mV] is the transmembrane voltage,
® lion = lion(V,w) [A.F~1.cm™2] is the normalized ioinc current

par unit surface,

o D= [mS.uF~1] is the normalized diffusion tensor,

AmCm
@ w contains all auxiliary variables.
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The monodomain model

lonic models

The ionic current l,, and G are given by a so-called ionic model
which approximates all ionic processes in the cardiac cells :

@ Phenomenological models (Fitzugh-Nagumo, Aliev-Panfilov,
Mitchell-Schaeffer,...) are simple,

e Hodgkin-Huxley type models (Beeler-Reuter, Ten Tusscher et
al, Luo-Rudy,..) are more complex. Markov chains variants
(lyer et al...) are nowadays widely used by biologists.
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The monodomain model

Aliev-Panfilov

The Aliev-Panfilov model is a simple 2-equation model :
lion=—kV(V—=2a)(V—-1)—wV,

g(V,w) = (5—1—#1”2:'/_ V)(—W—K)V(V— b— 1))

Homogeneous monodomain + Aliev-Panfilov — bistable system
which preserves V' € (Vinin, Vimax)-

Its simplicity allows to obtain theoretical results (e.g. estimation of
propagation speed).
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The monodomain model

Hodgkin-Huxley formalism

Mimics the behavior of proteins in the cell membrane :
lion(V,w) = >, I; where the ;s are expressed as functions of
gating variables.

Example : Iy, = gnam>hj(V — Ep,) where :

RT Nat
o Fp, = I__In([[N;]]j) is Nernst's potential,
@ m, h,j are gating variables € [0, 1] given by :
d Moo — M
—_ = —
dt Tm

w € RN also contains other variables (concentrations,...) and N
ranges from 8 to 100+.
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The monodomain model

Main numerical difficulties

o Stiffness

e in time due to physiological processes (e.g. fast Nat channels),
e in time due to ODEs,
@ in space due to depolarization fronts,

@ propagation failure

o No propagation when the mesh is too coarse,
o Wrong propagation speed,

@ Anisotropy

Most codes use P; or equivalent methods with a mesh length
~ 100pm (which is too coarse!) and adapt Ap,.
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An high-order scheme for the monodomain model

Semi-discrete scheme

Finite volumes scheme : unknowns are mean values of V and w in
each cell K :

d 1
—Vk+lk == Fi - nj,
g VK Tk K| Z fl
d
e =G
dtWK K>

The scheme is determined by the choices of I, Gk and F; - n;.
Our choice : scheme based on the ideas of Clain, Machado,
Nobrega and Pereira (CMAME '13).
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An high-order scheme for the monodomain model

Approximation on cell edges

The diffusion part is approximated using a polynomial
reconstruction on cell interfaces :

V(Xa)/) = Z 7i,j(X - Xe)i(y _Ye)ja
i+j<m

Coeffs I' = ()i are obtained by computing the minimum of the
function :

1 e
M) =3 > we(V(xe,ye) = Vo),
Ces.

where S, is a neighborhood of e.
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An high-order scheme for the monodomain model

Approximation on cell edges

Therefore, I is the solution of the system :
(XTQex)r = x'qev,
where
o X =[(xc _Xe)i(YC _Ye)j]_c¢se )
i+j<m
o Q° =diag(wg),
o V= (Vc)ces..

In practice, X "Q¢X is invertible as soon as #S, is large enough.
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An high-order scheme for the monodomain model

Approximation on cell edges

The matrix M, := (XTQ¢X)~1X Q¢ is computed once and for all.
It maps V to the coeffs ;; :

M= M.V.
Then F; - n; is obtained through a quadrature formula :

Fioni==">_ wi(G(xi,y1)ni) - VV(x1, ),
I

using the reconstructed V.
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An high-order scheme for the monodomain model

Volumic approximation

The reaction terms are approximated using a polynomial
reconstruction on cells :

U(va) = Uk
T 1S§Sp Aij [(X —xk)'(y = yeY - qu /K(x — xk)'(y — yx Vx|,

where U = (V, w). This guarantees that :

1/~
— | U(x,y)dx = Uk.
K] Jy Vo )ox = U
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An high-order scheme for the monodomain model

Volumic approximation

Once again, the coefficients are chosen to be the solution of :
1
N) == dx — )
J(N) 2§ |C|/UXC7}/C)X Uc) ,

which leads to :
(XTQEX)A = xT oK,

and I and Gk are obtained with a quadrature formula :
I = wilion (V (3, 1), w0, ).
/

Gk = Z wi G (V(x1, y1), w(x1, y1)).-
i
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An high-order scheme for the monodomain model

A few remarks

@ Choice of S, and Sk,

o Weights : (wg)c : wg = (Xc — Xe)™°, with s >0,

@ No preconditionning,

@ Preservation of admissibility : a posteriori limitation on each
quadrature point,

@ 1 unknown/quadrature point vs cell reconstruction :

e 1 unkwown/quad. pt. : no need for interpolation by cell but
many more unknowns,

o cell reconst. : quadrature and evaluation of the polynomial at
the quadrature points (expensive) but less memory
requirement.
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An high-order scheme for the monodomain model

Time integration

@ Explicit schemes : ionic model — small At, “reasonable”
mesh, preservation of admissibility,...

o If At = O(Ax?) then time order = (space order)/2
@ Preservation of admissibility : SSP-RK.
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Numerical results

Order of convergence

Ad hoc choice of [, in order to have an analytical solution.

h p=2 ord. p=3 ord. p=4 ord. p=>5 ord.
1.2E-2 || 24E-5 | n/a || 6.8E-6 | n/a || 29E-6 | n/a || 9.5E-7 | n/a
6.1E-3 || 5.6E-6 | 2.09 || 5.1E-7 | 3.75 || 1.3E-7 | 451 || 2.1E-8 | 5.52
3.1E-3 || 1.3E-6 | 2.09 || 3.2E-8 | 3.97 || 5.2E-9 | 4.60 || 3.7E-10 | 5.80
15E-3 || 3.2E-7 | 2.03 || 2.0E-9 | 4.04 || 2.4E-10 | 4.46 || 6.3E-11 | 2.57

TABLE : L? errors for the analytical test case
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Numerical results

Planar waves - AP |

h p=1 p=3 p=>b
9.87E-002 || 3.25E-001 | 3.97E-001 | 4.40E-001
4.80E-002 || 3.79E-001 | 4.22E-001 | 4.43E-001
2.24E-002 || 4.09E-001 | 4.37E-001
1.05E-002 || 4.21E-001 | 4.43E-001
5.34E-003 || 4.22E-001

TABLE : Aliev-Panfilov : D =1.E-1, ¢ =4.43E-1 cm.ms™ 1.
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Numerical results

Planar wave - AP I

h p=1 p=3 p=>b
9.87E-002 PF 1.63E-001 | 1.71E-001
4.80E-002 PF 1.30E-001 | 1.40E-001
2.24E-002 || 1.05E-001 | 1.40E-001 | 1.40E-001
1.05E-002 || 1.37E-001
5.34E-003 || 1.40E-001

TABLE : Aliev-Panfilov :

D =1.E-2, ¢ =1.40E-1 cm.ms!.
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Numerical results

Planar wave - AP Il

h p=1 p=3 p=>b
9.87E-002 PF PF PF
4.80E-002 PF PF 4.25E-002
2.24E-002 PF 4.27E-002 | 4.68E-002
1.05E-002 || 3.01E-002 | 4.18E-002 | 4.43E-002
5.34E-003 || 3.49E-002

TABLE : Aliev-Panfilov :

D =1.E-3, ¢ =4.43E-2 cm.ms!.
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Numerical results

Planar wave - summary

2nd vs 4th order : 6 to 8 times more expensive,
dividing h by 2 : 3 to 20 times more expensive,
AP : the higher order, the better,

Realistic models : efficiency of high order is reduced (stiffness
— limitation).
< 4th order seems to be optimal.
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Numerical results

Spiral waves
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Numerical results

Spiral waves

FIGURE : Spiral wave (AP model) obtained on a moderately coarse mesh
with the schemes from order 2 (left) to 6 (right), t = 100ms.
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Numerical results

Spiral waves

FIGURE : Spiral wave (AP model) obtained on a moderately coarse mesh
with the schemes from order 2 (left) to 6 (right), t = 150ms.
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Numerical results

Spiral waves

FIGURE : Spiral wave (AP model) obtained on a moderately coarse mesh
with the schemes from order 2 (left) to 6 (right), t = 200ms.
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Conclusion and perspectives

Conclusion and perspectives

High-order is very interesting in this context,

For realistic models, 4th order seems optimal,

*]
(*]
@ Flexible scheme (order, dimension,...),
@ Drawback : 2 reconstructions,

]

Parallelization ?
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Conclusion and perspectives

Thanks for your attention !
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