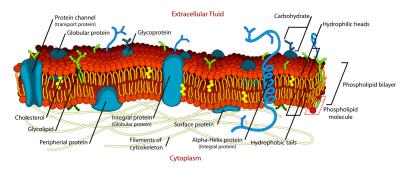
High-order finite volume scheme for cardiac electrophysiology

Y. Coudière - Rodolphe Turpault

Institut de Mathématiques de Bordeaux, Bordeaux-INP

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Cell level - membrane



The cell membrane

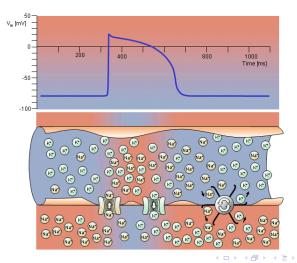
R. Turpault High-order finite volume scheme for cardiac electrophysiology

(a)

Introduction to electrocardiology The monodomain model An high-order scheme for the monodomain model

Conclusion and perspectives

Cell level - action potential



R. Turpault High-order finite volume scheme for cardiac electrophysiology

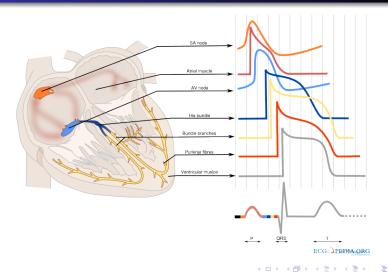
э

-

Introduction to electrocardiology The monodomain model

n high-order scheme for the monodomain model Numerical results Conclusion and perspectives

Macroscopic level



The monodomain model

$$\partial_t V + I_{ion}(V, w) = \operatorname{div}(D\nabla V),$$

 $\partial_t w = G(V, w),$

where :

- V[mV] is the transmembrane voltage,
- *I_{ion}* = *I_{ion}*(*V*, *w*) [*A*.*F*⁻¹.*cm*⁻²] is the normalized ioinc current par unit surface,

•
$$D = \frac{G}{A_m C_m} [mS.\mu F^{-1}]$$
 is the normalized diffusion tensor,

• w contains all auxiliary variables.

伺 ト く ヨ ト く ヨ ト

lonic models

The ionic current I_{ion} and G are given by a so-called *ionic model* which approximates all ionic processes in the cardiac cells :

- Phenomenological models (Fitzugh-Nagumo, Aliev-Panfilov, Mitchell-Schaeffer,...) are simple,
- Hodgkin-Huxley type models (Beeler-Reuter, Ten Tusscher et al, Luo-Rudy,..) are more complex. Markov chains variants (Iyer et al...) are nowadays widely used by biologists.

- 4 周 ト 4 戸 ト 4 戸 ト

Aliev-Panfilov

The Aliev-Panfilov model is a simple 2-equation model :

$$I_{ion} = -\kappa V(V - a)(V - 1) - wV,$$

$$g(V, w) = \left(\varepsilon + \mu_1 \frac{w}{\mu_2 + V}\right) \left(-w - \kappa V(V - b - 1)\right).$$

Homogeneous monodomain + Aliev-Panfilov \rightarrow bistable system which preserves $V \in (V_{min}, V_{max})$.

Its simplicity allows to obtain theoretical results (*e.g.* estimation of propagation speed).

- 4 同 6 4 日 6 4 日 6

Hodgkin-Huxley formalism

Mimics the behavior of proteins in the cell membrane :

 $I_{ion}(V, w) = \sum_{i} I_{i}$ where the I_{i} s are expressed as functions of gating variables.

Example : $I_{Na} = g_{Na}m^3hj(V - E_{Na})$ where :

•
$$E_{Na} = \frac{RT}{F} \ln\left(\frac{[Na^+]_e}{[Na^+]_i}\right)$$
 is Nernst's potential,

• m, h, j are gating variables $\in [0, 1]$ given by :

$$\frac{d}{dt}m=\frac{m_{\infty}-m}{\tau_m},$$

 $w \in \mathbb{R}^N$ also contains other variables (concentrations,...) and N ranges from 8 to 100+.

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Main numerical difficulties

- Stiffness
 - in time due to physiological processes (e.g. fast Na⁺ channels),
 - in time due to ODEs,
 - in space due to depolarization fronts,
- propagation failure
 - No propagation when the mesh is too coarse,
 - Wrong propagation speed,
- Anisotropy

Most codes use P_1 or equivalent methods with a mesh length $\simeq 100 \mu m$ (which is too coarse!) and adapt A_m .

くほし くほし くほし

Semi-discrete scheme

Finite volumes scheme : unknowns are mean values of V and w in each cell K :

$$\frac{d}{dt}V_{K} + I_{K} = \frac{1}{|K|}\sum_{e_{i}\in\mathcal{E}_{K}}F_{i}\cdot n_{i},$$
$$\frac{d}{dt}w_{K} = G_{K},$$

The scheme is determined by the choices of I_K , G_K and $F_i \cdot n_i$. Our choice : scheme based on the ideas of Clain, Machado, Nobrega and Pereira (CMAME '13).

・ 同 ト ・ ヨ ト ・ ヨ ト

Approximation on cell edges

The diffusion part is approximated using a polynomial reconstruction on cell interfaces :

$$V(x,y) = \sum_{i+j \le m} \gamma_{i,j} (x - x_e)^i (y - y_e)^j,$$

Coeffs $\Gamma = (\gamma_{i,j})_{i,j}$ are obtained by computing the minimum of the function :

$$J(\Gamma) = \frac{1}{2} \sum_{C \in S_e} \omega_C^e (V(x_C, y_C) - V_C)^2,$$

where S_e is a neighborhood of e.

・ 同 ト ・ ヨ ト ・ ヨ ト

Approximation on cell edges

Therefore, Γ is the solution of the system :

$$(X^{\top}\Omega^{e}X)\Gamma = X^{\top}\Omega^{e}\mathbb{V},$$

where

•
$$X = [(x_C - x_e)^i (y_C - y_e)^j]_{\substack{C \in S_e \\ i+j \le m}}$$
,

In practice, $X^{\top}\Omega^{e}X$ is invertible as soon as $\#S_{e}$ is large enough.

(4月) (1日) (日)

Approximation on cell edges

The matrix $M_e := (X^{\top} \Omega^e X)^{-1} X^{\top} \Omega^e$ is computed once and for all. It maps V to the coeffs $\gamma_{i,j}$:

$$\Gamma = M_e \mathbb{V}.$$

Then $F_i \cdot n_i$ is obtained through a quadrature formula :

$$F_i \cdot n_i := \sum_l w_l(G(x_l, y_l)n_i) \cdot \nabla V(x_l, y_l),$$

using the reconstructed V.

直 ト イヨ ト イヨ ト

Volumic approximation

The reaction terms are approximated using a polynomial reconstruction on cells :

$$\begin{split} \tilde{U}(x,y) &= U_{\mathcal{K}} \\ &+ \sum_{1 \leq i+j \leq p} \lambda_{i,j} \Big[(x - x_{\mathcal{K}})^i (y - y_{\mathcal{K}})^j - \frac{1}{|\mathcal{K}|} \int_{\mathcal{K}} (x - x_{\mathcal{K}})^i (y - y_{\mathcal{K}})^j d\mathbf{x} \Big], \end{split}$$

where U = (V, w). This guarantees that :

$$rac{1}{|K|}\int_K ilde U(x,y)d{f x}=U_K.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Volumic approximation

Once again, the coefficients are chosen to be the solution of :

$$J(\Lambda) = \frac{1}{2} \sum_{C \in S_{\kappa}} \omega_{C}^{\kappa} \Big(\frac{1}{|C|} \int_{C} U(x_{C}, y_{C}) d\mathbf{x} - U_{C} \Big)^{2},$$

which leads to :

$$(X^{\top}\Omega^{K}X)\Lambda = X^{\top}\Omega^{K}\mathbb{U},$$

and I_K and G_K are obtained with a quadrature formula :

$$I_{K} = \sum_{l} w_{l} I_{ion} (V(x_{l}, y_{l}), w(x_{l}, y_{l})),$$

$$G_{K} = \sum_{l} w_{l} G (V(x_{l}, y_{l}), w(x_{l}, y_{l})).$$

伺 ト イヨト イヨト

A few remarks

- Choice of S_e and S_K ,
- Weights : $(\omega_C^e)_C$: $\omega_C^e = (X_C X_e)^{-s}$, with s > 0,
- No preconditionning,
- Preservation of admissibility : *a posteriori* limitation on each quadrature point,
- 1 unknown/quadrature point vs cell reconstruction :
 - 1 unkwown/quad. pt. : no need for interpolation by cell but many more unknowns,
 - cell reconst. : quadrature and evaluation of the polynomial at the quadrature points (expensive) but less memory requirement.

- Explicit schemes : ionic model \rightarrow small Δt , "reasonable" mesh, preservation of admissibility,...
- If $\Delta t = \mathcal{O}(\Delta x^2)$ then time order = (space order)/2
- Preservation of admissibility : SSP-RK.

伺 ト イ ヨ ト イ ヨ ト

Order of convergence

Ad hoc choice of I_{ion} in order to have an analytical solution.

h	p=2	ord.	p=3	ord.	p=4	ord.	p=5	ord.
1.2E-2	2.4E-5	n/a	6.8E-6	n/a	2.9E-6	n/a	9.5E-7	n/a
6.1E-3	5.6E-6	2.09	5.1E-7	3.75	1.3E-7	4.51	2.1E-8	5.52
3.1E-3	1.3E-6	2.09	3.2E-8	3.97	5.2E-9	4.60	3.7E-10	5.80
1.5E-3	3.2E-7	2.03	2.0E-9	4.04	2.4E-10	4.46	6.3E-11	2.57

TABLE : L^2 errors for the analytical test case

< 同 > < 回 > < 回 >

Planar waves - AP I

h	p=1	p=3	p=5
9.87E-002	3.25E-001	3.97E-001	4.40E-001
4.80E-002	3.79E-001	4.22E-001	4.43E-001
2.24E-002	4.09E-001	4.37E-001	
1.05E-002	4.21E-001	4.43E-001	
5.34E-003	4.22E-001		

TABLE : Aliev-Panfilov : D = 1.E-1, c = 4.43E-1 cm.ms⁻¹.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Planar wave - AP II

h	p=1	p=3	p=5
9.87E-002	PF	1.63E-001	1.71E-001
4.80E-002	PF	1.30E-001	1.40E-001
2.24E-002	1.05E-001	1.40E-001	1.40E-001
1.05E-002	1.37E-001		
5.34E-003	1.40E-001		

TABLE : Aliev-Panfilov : D = 1.E-2, $c = 1.40E-1 \ cm.ms^{-1}$.

< 日 > < 同 > < 三 > < 三 >

Planar wave - AP III

h	p=1	p=3	p=5
9.87E-002	PF	PF	PF
4.80E-002	PF	PF	4.25E-002
2.24E-002	PF	4.27E-002	4.68E-002
1.05E-002	3.01E-002	4.18E-002	4.43E-002
5.34E-003	3.49E-002		

TABLE : Aliev-Panfilov : D = 1.E-3, $c = 4.43E-2 \text{ cm.ms}^{-1}$.

< 日 > < 同 > < 三 > < 三 >

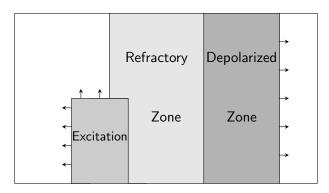
Planar wave - summary

- 2nd vs 4th order : 6 to 8 times more expensive,
- dividing h by 2 : 3 to 20 times more expensive,
- AP : the higher order, the better,
- Realistic models : efficiency of high order is reduced (stiffness \rightarrow limitation).
 - \hookrightarrow 4th order seems to be optimal.

.

Spiral waves

Setup :



- ● ● ●

Spiral waves

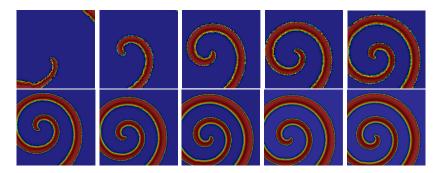


FIGURE : Spiral wave (AP model) obtained on a moderately coarse mesh with the schemes from order 2 (left) to 6 (right), t = 100ms.

< 日 > < 同 > < 三 > < 三 >

Spiral waves

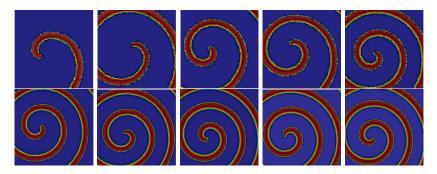


FIGURE : Spiral wave (AP model) obtained on a moderately coarse mesh with the schemes from order 2 (left) to 6 (right), t = 150ms.

< 日 > < 同 > < 三 > < 三 >

Spiral waves

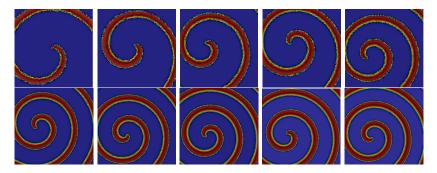


FIGURE : Spiral wave (AP model) obtained on a moderately coarse mesh with the schemes from order 2 (left) to 6 (right), t = 200ms.

<ロ> <同> <同> < 同> < 同>

Conclusion and perspectives

- High-order is very interesting in this context,
- For realistic models, 4th order seems optimal,
- Flexible scheme (order, dimension,...),
- Drawback : 2 reconstructions,
- Parallelization ?

Thanks for your attention !