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Finite volume schemes

Method of lines
d

dt
un+1(t) = − ∆t

∆xj

(
Fj+1/2(t)− Fj−1/2(t)

)
(Approximate) Riemann solver

Fj+1/2(t) = F
(
u−j+1/2

(t), u+
j+1/2

(t)
)

Reconstruction procedure

u−j+1/2
(t) = R−

(
uj−r (t), . . . , uj+r (t)

)
u+
j+1/2

(t) = R−
(
uj−r+1(t), . . . , uj+r+1(t)

)



Requirements for a reconstruction procedure
on h-adaptive meshes

Must be:

high-order accurate

non-oscillatory

For the ADER-DG predictor:

point values are not enough, but we really need a polynomial
defined in the whole cell Ωj

For high order finite volume methods, it should also be efficient at:

reconstructing point values at many locations on ∂Ωj

Mesh topology (⇒ quadrature nodes) is changing in time

reconstructing point values at locations inside Ωj

for SWE or for entropy indicator

computing sub-cell averages in refinement



Reconstruction points

For fluxes For source quadrature

For refinement For wb quadrature in 1D

Uj

U1 U2

U3 U4

third order

trapezoid+Richardson

fifth order
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Essentially non-oscillatory reconstructions

Given the cell averages uj−r , . . . , uj+r of a bounded function u(x),

Popt

P1 P2 Pr Pr+1

Popt s.t. ∀i = −r , . . . , r :
1

|Ωj+i |

∫
Ωj+i

Popt(x)dx = uj+i

1 has accuracy O(∆x2r+1) in smooth regions

2 is however oscillatory if a discontinuity is present in its stencil

3 is best replaced by a (lower accuracy) non-oscillatory
alternative, e.g. one of the Pk ’s



(Jiang-Shu) smoothness indicators

Given P ∈ PN ,

Definition

I[P] =
N∑
`=1

|Ωj |2`−1
∫

Ωj

[
d`

dx`
P

]2

dx

Properties

I[P] = O(1) (in general)

I[P] � 1 (on discontinous data)

I[P] = u′ |Ωj |2 +O(|Ωj |4), (on regular data)

Jiang, Shu J. Comput. Phys. 1996



WENO: the linear coefficients

The WENO construction is based on the following fact:

Popt(xj+1/2) =
r+1∑
k=1

dkPk(xj+1/2)

For example:

WENO3: d1 = 1/3, d2 = 2/3

WENO5: d1 = 1/10, d2 = 3/5, d3 = 3/10

up to order 9: tabulated in the literature

general formula: published in 2012

Note: the coefficients for xj−1/2 are different!

Shu ICASE report (1997)

Arandiga et al. SINUM (2012)



WENO3: the linear coefficients on a nonuniform mesh

For x−j+1/2
:

d1 =
hj+1

hj−1 + hj + hj+1

d2 =
hj−1 + hj

hj−1 + hj + hj+1

For x+
j−1/2

:

d1 =
hj + hj+1

hj−1 + hj + hj+1

d2 =
hj−1

hj−1 + hj + hj+1

They must be recomputed after each mesh adaption!



WENO5: the linear coefficients on a nonuniform mesh

For x+
0−1/2

:

d1 =
h1(h1 + h2)

(h−2 + . . .+ h2)(h−2 + . . .+ h1)
∈ [0, 1]

d2 =
(h−2 + h−1 + h0)(h1 + h2)(h−2 + 2h−1 + 2h0 + 2h1 + h2)

(h−2 + . . .+ h2)(h−1 + . . .+ h2)(h−2 + . . .+ h1)
∈ [0, 1]

d3 =
(h−2 + h−1 + h0)(h−1 + h0)

(h−2 + . . .+ h2)(h−1 + . . .+ h2)
∈ [0, 1]

. . . and an alogous set for x−0+1/2
. . .



WENO reconstructions

Given a point x̂ ∈ Ωj : The WENO reconstruction operator is

Prec,j(x̂) = WENO(P1, . . . ,Pr+1;Popt, x̂) ∈ R

and is computed as follows:
1 Find optimal coefficients d1(x̂), . . . , dr+1(x̂) such that

r+1∑
k=1

dk(x̂)Pk(x̂) = Popt(x̂) and
r+1∑
k=1

dk(x̂) = 1.

2 Compute nonlinear coefficients ωk as

αk(x̂) =
dk(x̂)

(IPk
+ ε)t

ωk(x̂) =
αk(x̂)∑r+1
j=1 αj(x̂)

, (1)

where I[Pk ] denotes a suitable regularity indicator (later)
evaluated on Pk , ε is a small positive quantity and t ≥ 2.

3 Finally

Prec,j(x̂) =
r+1∑
k=1

ωk(x̂)Pk(x̂) (2)



WENO: smooth data

Goal: show that u(x̂)− Prec(x̂) = O(h2r+1).

reconstruction
error︷ ︸︸ ︷

u(x̂)− Prec(x̂) = u(x̂)− Popt(x̂)︸ ︷︷ ︸
O(h2r+1)

+ Popt(x̂)− Prec(x̂)

= O(h2r+1)) +
∑
k

(dk − ωk)Pk(x̂) +
∑
k

dk︸ ︷︷ ︸
=1

u(x̂)−
∑
k

ωk︸ ︷︷ ︸
=1

u(x̂)

= O(h2r+1) +
∑
k

(dk − ωk)︸ ︷︷ ︸
O(hr )?

(Pk(x̂)− u(x̂))︸ ︷︷ ︸
O(hr+1)
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WENO: smooth data (cont.)

Arandiga et al: compare each Ik with some fixed Ik̂

ωk = dk

[
1− dk

Ik − Ik̂
ε+ Ik̂

t−1∑
s=0

(
ε+ Ik
ε+ Ik̂

)s

+ o
(
Ik−Ik̂
ε+Ik̂

)]

IP = u′2h2 + c1u
′u′′h3 + (c2u

′u′′′ + c3u
′′2)h4 + . . .

Obstructions to dk − ωk = O(hr ) come
from

differences between the indicators
of two candidate polynomials

ε too small
2 1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0
WENO3 close to a local extremum

IP1
=O(h2 )

IP2
=O(h4 )

u(x)

Arandiga et al. SINUM (2012)



WENO: discontinuous data

In this example:

IP1 � 1, IP2 � 1, IP3 � h2

α1 � 1, α2 � 1, α3 � 1/h2

α1 + α2 + α3 � 1/h2

ω1 � h2, ω2 � h2, ω3 � 1

⇓
Prec ' P3

⇓
TVB reconstruction

2 1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
(4)

OPT

P1

P2

P3

Note!

It is crucial that at least one of IP1 , . . . , IPr+1 be O(h2)!



WENO: discontinuity in the central cell

all candidate polynomials contain a discontinuity

⇒ ∀k : I[Pk ] � 1

in the case of finite differences,
all candidate polynomials are monotone in the cell1

⇒ monotone reconstructed values

in the case of finite volumes,
very small over/undershoots can be created
⇒ TVB reconstructed values

1Harten, Osher, Engquist, and Chachravarty. Uniformly high order accurate
essentially non-oscillatory schemes III, NASA ICASE report 86-22 (1986).
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Linear coefficients for cell center

WENO3

It is impossible to find
dL, dR such that

P(2)(xj) = dLP
(1)
L (xj)+dRP

(1)
R (xj)

P
(2)
opt (x)

PL(x)

PR(x)

dR

dL

dL

dR

WENO5

d0, d1, d2 exist but are not in [0, 1].
(See for a partial fix reducing the order to 4)

G. Puppo, M.S. Well-balanced high order 1D schemes on non-uniform
grids and entropy residuals J Sci Comp (2016)



An extra candidate polynomial: P0

Motivated from central schemes ,

Popt(x̂) = d1(x̂)P1(x̂) + d2(x̂)P2(x̂) (WENO3)

was replaced by

∀x : Popt(x) = d0P0(x) + d1P1(x) + d2P2(x) (CWENO3)

where

P0(x) := 1
d0

(Popt(x)− d1P1(x)− d2P2(x))

has only the following interpolation property:
1

|Ωj |

∫
Ωj

P0(x)dx = uj

Note that dk do not depend on the reconstruction point,

Levy, Puppo, Russo M2AN (1999)
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CWENO(Popt(x),P1(x), . . . ,Pn(x)) −→ Prec(x)

Given any d0, d1, dn ∈ (0, 1) such that
∑n

ξ=0
dξ = 1:

1

P0(x) := 1
d0

(
Popt(x)−

n∑
ξ=1

dξPξ(x)

)
2 Compute smoothness indicators I0, I1, . . . , In
3 Compute nonlinear weights

αξ =
dξ

(Iξ+ε)t , ωξ =
αξ∑
λ αλ

4 Reconstruction polynomial (unif. accurate in the cell!)

∀x ∈ cell Prec(x) =
n∑
ξ=0

ωξPξ(x)

Levy, Puppo, Russo M2AN (1999)

G. Puppo, M.S. J. Sci. Comput. (2015, electronic)



Comparision of WENO and CWENO

WENO

dk depend on
reconstruction point

for each reconstruction
point x̂ , need to compute
ωk(x̂) from dk(x̂)

wonderful for
conservation laws on
structured cartesian
meshes

CWENO

dk arbitrary (e.g.
d0 = 1

2 , dk = 1
2r )

compute ωk from dk only
once per cell

one extra regularity
indicator to compute
I[P0]

more suitable for balance
laws, AMR, unstructured
meshes, . . .
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1D CWENO in the literature

Levy, Puppo, Russo order 3, uniform mesh M2AN (1999)

Capdeville order 5, non uniform mesh JCP (2008)

Zaharan WENO-Z nonlinear weights Appl. Math. Comp.
(2009)
Kolb Analysis of CWENO3 on uniform meshes (choice of ε)

SINUM (2015)
I. Cravero, M.S. Analysis of CWENO3 on non-uniform meshes

(choice of ε) J Sci Comput (2016)
I I. Cravero, G. Puppo, M.S., G. Visconti CWENO5, CWENO7,

Hierarchic CWENO, . . . In preparation



Multi-dimensional CWENO in the literature

Levy, Puppo, Russo order 3, 2D, cartesian mesh SIAM J Sci
Comput (2000)
Levy, Puppo, Russo order 4, 2D, cartesian mesh SIAM J Sci

Comput (2002)
Lahooti, Pishevar order 4, 3D, cartesian mesh Appl. Math.

and Comput (2012)
M.S., Coco, Russo order 3, 2D, quad-tree mesh J Sci Comput

(2016)
I M. Dumbser, M.S. CWENO3 on triangular and tetrahedral

meshes In preparation



Shallow water equations using CWENO3

Exploiting the
reconstruction at cell center,
we can build a
well-balanced scheme
with third order accuracy:

10
1

10
2

10
3

10
410

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Error

 

 

uniform
quasiregular
random

‖∆(h + z)‖∞ ‖q‖∞
Q-regular 100 200 400 800 100 200 400 800
p = 3 0 4.44e-16 4.44e-16 6.66e-16 6.87e-16 1.47e-15 1.67e-15 2.47e-15

Random
p = 3 2.22e-16 6.66e-16 6.66e-16 6.66e-16 5.63e-16 8.47e-16 9.94e-16 1.28e-15



Shallow water equations using CWENO5

Exploiting the
reconstruction at xj−1/4, xj , xj+1/4,
we can build a
well-balanced scheme
with fifth order accuracy:

10 1 10 2 10 3
10 -8

10 -6

10 -4

10 -2

10 0
Error

uniform

‖∆(h + z)‖∞ ‖q‖∞
100 200 400 800 100 200 400 800

p = 5 2.22e-16 8.88e-16 1.33e-15 1.11e-16 6.10e-16 8.21e-16 9.69e-16 1.24e-15



2D Euler equations with AMR on quad-tree grids

Shock-bubble interaction test for 2D Euler equations

average N cells per direction
10 2 10 3

no
rm

-1
 e

rr
or

s

10 -2

10 -1

Shock-bubble interaction

uniform, order 2
uniform, order 3
h-adaptive, CWENO3

CPU time
10 3 10 4 10 5

no
rm

-1
 e

rr
or

s

10 -2

10 -1

Shock-bubble interaction

uniform, order 2
uniform, order 3
h-adaptive, CWENO3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Final grid for 30x102 with 5 levels of refinement

M.S., Coco, Russo order 3, 2D, quad-tree mesh J Sci Comput (2016)



CWENO on triangular unstructured meshes

Thanks to M. Dumbser!

P2 P3

9.78E-02 4.95E-02
1.96E-02 2.33 1.73E-03 4.03
2.88E-03 2.80 1.13E-04 3.86
3.71E-04 2.97 6.82E-06 4.11

P4 P5

6.12E-02 5.87E-02
1.55E-03 4.92 9.25E-04 6.56
6.13E-05 4.77 5.46E-06 6.96
1.93E-06 5.03 FR 4703
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CWENO on discontinuous data (jump not in central cell)

WENO argument

For k = 1, . . . , r :

at least one of Pk ’s iterpolates smooth data, so I[Pk ]O(h2)

all Pk ’s interpolationg across the jump will have I[Pk ] � 1

reconstruction (essentially uses) only information from the
smooth part

CWENO argument?

For k = 1, . . . , r :

at least one of Pk ’s iterpolates smooth data, so I[Pk ]O(h2)

all Pk ’s interpolationg across the jump will have I[Pk ] � 1

reconstruction (essentially uses) only information from the
smooth part, only if also I[P0] � 1!



CWENO on discontinuous data (jump not in central cell)

WENO argument

For k = 1, . . . , r :

at least one of Pk ’s iterpolates smooth data, so I[Pk ]O(h2)

all Pk ’s interpolationg across the jump will have I[Pk ] � 1

reconstruction (essentially uses) only information from the
smooth part

CWENO argument?

For k = 1, . . . , r :

at least one of Pk ’s iterpolates smooth data, so I[Pk ]O(h2)

all Pk ’s interpolationg across the jump will have I[Pk ] � 1

reconstruction (essentially uses) only information from the
smooth part, only if also I[P0] � 1!



Property A

Property A

If I[Popt] � 1, then I[P0] � 1

sufficient to prove “ENO” property of CWENO

it looks trivial, but

P0 := 1
d0

(
Popt −

r∑
k=1

dkPk

)

I[P0] :=
N∑
`=1

h2`−1

∫
Ωj

[
d`

dx`
P0

]2

dx

= 1
d0
I[Popt] +

r∑
k=1

dk
d0
I[Popt] + cross terms

and the cross terms do not have a definite sign



Proofs of Property A

Proposition (CWENO3)

For any choice of weights, explicit computation yields
I[P0]

I[Popt]
=

3d2
0 − 6d0 + 16

16d2
0

>
13

16

Proposition (CWENO5)

For any (symmetric) choice of weights, then
I[P0]

I[Popt]
attains its

minimum for d0 = 1 and
I[P0]

I[Popt]

∣∣∣∣
d0=1

> 0.6.

Proposition (CWENO7)

A similar result holds true. . .

I.C., G.P., M.S., G.V. In preparation



Conclusions and perspectives

CWENO is much more flexible than WENO and can be
applied in more general situations

Accuracy on smooth data can be proven similarly as for
WENO and depends on ε (best: ε = h2)

Non-oscillatory properties depend on a new idea Property A
that we could prove for each “reasonable” 1D CWENO’s

CWENO of aerbitrary order on triangular and tetrahedral
meshes has been implemented this week

A new hierarchic construction CWENOH tailored to data with
smooth high frequencies and discontinuities will come soon. . .

Thanks for the attention!
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