Towards an ultra efficient kinetic scheme J

J. Narski',
G. Dimarco'?, R. Loubére', T. Rey® V. Rispoli

"CNRS and Institut de Mathématique de Toulouse (IMT), Toulouse, France
2Dipartimento di matematica, Ferrara, ltalia.

3Laboratoire Paul Painlevé, Université Lille 1, Lille, France.

http://sites.google.com/site/jaceknarski/

Shark May '16

J. Narski (IMT) FKS Shark May '16 1/34

N
Motivation

Motivations
@ Modeling of non equilibrium gas flows (plasma, hypersonic flow)
@ Kinetic equations extremely difficult to solve numerically (7 dimensions)

Purposes
@ Develop an efficient kinetic scheme
@ Simulate 2D x3D on 'normal’ machines
@ Simple, reusable and evolutive scheme)

Bibliography

[1] Towards an ultra efficient kinetic scheme Part I: basics on the BGK equation , G. Dimarco, R. Loubére, Journal of Computational Physics, Volume 255,

2013, pp 680-698.

[2] Towards an ultra efficient kinetic scheme Part II: The High-order case , G. Dimarco, R. Loubére, Journal of Computational Physics, Volume 255, 2013, pp

699-719.

[3] Towards an ultra efficient kinetic scheme Part IlI: High Performance Computing: OpenMP & MPI, JN, G. Dimarco, R. Loubére, J.Comput.Phys. 284,
22-39, 2015

[4] Towards an ultra efficient kinetic scheme Part IV: Boltzmann equation, G. Dimarco, R. Loubeére, JN, in preparation 2016

[5] Towards an ultra efficient kinetic scheme Part V: Massivly Parallel Architecures, G. Dimarco, R. Loubeére, JN, in preparation 2016

J. Narski (IMT) FKS Shark May 16

2/34

N
Kinetic - Fluid models

Boltzmann-BGK description of rarefied gaz dynamics

1
Of+ V- -Vxf=—(M—f) XeQCR%VeR® (1)

=
f = f(X, V, t) density of particles, = > 0 is the relaxation time. BGK= collisions modeled by relaxation towards
the local thermodynamical equilibrium defined by the Maxwellian distribution

—jlu—v|?
My = Mylp, U, T](V) = (zﬂg)d/z exp(I - [) @

where p €R, p > 0and U = (u,v,w)' € R? are the density and mean velocity, 0 defined as 6 = RT with T
the temperature, R gas constant.

Macroscopic moments

Moments p, U and T are related to f in 3D by:

1 1
p=/ fdv, U=7/ vidv, 0:—/ HV—UHzde7
R3 p Jr3 3p Jr3

1 3
with total energy: E = } / IVIEF dV = ~pl|UI2 + 2 p0,
R3 2 2

J. Narski (IMT) FKS Shark May 16 3/34

Kinetic - Fluid models

The limitof = — 0

If number of collisions goes to infinity, then = — 0 and f — M;. One retrieves compressible Euler equations

Op

ZF - (pU) =0,

8tJer (pU)

a(pU
(gt)+vx-(pU®U+pl):0,
oE

ot TVx-(E+pU) =0,

3 1 2
=00, E=2p0+~p|U|2,
p=p 5P +2PH Il

where [is the identity and p the pressure given by a perfect equation of state with gas constant v = 5/3 in 3D.
This is the fluid/macroscopic model.

J. Narski (IMT) FKS Shark May 16 3/34

Fast Kinetic Scheme
DVM

Semi-Lagrangian scheme for Discrete Velocity Model (DVM) approximation of Boltzmann-BGK equation. J

DVM

Let K be a bounded set of NE multi-indices of N%. Let V be a Cartesian grid given by
V=A{Vi=kAv+ W, ke K},

where Av is the grid step in the velocity space. The generic cell in the velocity space is w12 = [Vi; V1]
We denote the discrete collision invariants on V by

me= (1, Vi 3 IVel?)
The continuous distribution function f is replaced by a vector
fic(X, 1) = (f(X, 1), fi (X, 1) = f(X, Vi, t).
Fluid quantities:

F(X, 1) =>" my f(X, 1) Av.

kex

J. Narski (IMT) FKS Shark May '16 4/34

N
Fast Kinetic Scheme

Equations

Set of N2 evolution equations
1
(E[F] — %) M

T

Otfx + Vi - Vxlx =

Space and time discretization

Cartesian uniform grid X = {X; = jAx + Y, j € J}, Axis the grid step, Y is a vector in R¥®and J isa
subset of N°.
t"1 = " 4+ At, time step At defined by a CFL condition.

Splitting

Each equation (1) is solved by a time splitting. Transport stage solves LHS, relxation stage solves RHS using
solution from transport stage

Transport stage — Otfc + Vi - Vxfe =0,

1
Relaxation stage — Oifx = —(Ek[F] — f).
T

J. Narski (IMT) FKS Shark May 16 5/34

Fast Kinetic Scheme

Transport stage

Let £, be the pointwise approximation at discrete time ¢" of the distribution f: 7 = f(Xj, Vi, t") and &£ [F]
be the equilibrium distribution approximation of Mfk = M;(X;, Vi, t") defined at any point X; of space at

discrete time t = ¢".
Let f, be a piecewise constant function associated with velocity V at time t” defined at each space cell by

- 1
f"-:—/ (X, Vi, t") dX
k.j |Q/-| Qj (k)

Exact transport during At:
M S F(X = VeAl), VX EQ

J. Narski (IMT) FKS Shark May 16 6/34

N
Fast Kinetic Scheme

Relaxation stage

Relaxation step

1
Ok = —(EklF] = fx)

Initial data is given by the result of the transport step f/.*,;"“ f: o

Maxwellian computed using macroscopic quantities

I_—jn+1 — F* ,n+1 Z My £* n+1 Av
ke

(X))-

Preservation of macroscopic quantities: moments before (Fj*"’“) and after (F/"“) unchanged. Then
i = exp(—At/T)f" 4 (1 — exp(—At/m))EF],

New value of ™' only in the cell centers, we need ™' in whole domain for the transport step.
Define & as the equilibrium function with the discontinuities located in the same positions as f

R (XIF] = €7'[F], VX suchthat £ (X) = 7" (X))

Finally
(0 = F(X, 17 + At) = exp(—At/7), (X) + (1 — exp(—At/7))E (X)[F]

J. Narski (IMT) FKS Shark May '16 7/34

N
Fast Kinetic Scheme

Conservation of macroscopic quantities

Constrained optimization formulation (dy = 3)

@ leti = ?1 ,72, S ,?N ! be the pointwise distribution vector and f = (f1, fz, . .

which fulfill the conservation of moments
t
@ Cioyioyxn = ((Av)3, Vi(Av), HVKHZ(AV)S) a matrix constant in time
@ Fui2x1 = (ppU E)' be the vector of the conserved quantities.

Conservation can be imposed solving?:

Givenf € RV, C € RHDIXN gng F ¢ RO)X

., fv)" be the unknowns

find f € RV such that || — f||3 is min under constraints Cf = F.

Using a Lagrange multiplier A € R%*2, the objective function to be optimized is
L(f, \) = SN [f — f|? + AT(Cf — F). Exactly solved into
f=TF+cT(cchy~"(F - cf).
Also done for the equilibrium distribution M¢[F] = M;(X;, Vi, tn)[F]
E[F] = Mi[F] + CT(CCT) ™" (F — CM;[F]),

@Gamba et al JGP 228 2009

J. Narski (IMT) FKS

Shark May '16

8/34

|
HOFKS - high order extension

Second order in time

Time splitting with Strang splitting strategy. CFL:

"4
Atmax 1Vl <1
K Le —

@ performs well in collisionless regimes
@ scheme stable for At > CFL
@ projection over the equilibrium of first order — loss of accuracy close to fluid regime

77 (X) = exp(—At/7)Tx (X) + (1 — exp(—At/7))E, (X)[F]

Solve the equilibrium part with of the distribution function with a macroscopic scheme instead of kinetic. J

Moments from the transport stage are replaced by a solution of Euler equations. We use MUSCL scheme.
Stability condition:

1 Ax
At < -

2 amax

J. Narski (IMT) FKS Shark May 16 9/34

-
Efficient implementation

* 4 *—=0 ticle leaving cell j for cel J+
Se . - ;“' NS) Ty ;“' Y| e—w0 ‘p:l‘uc:elmen;g&l‘ll ,' Inm‘l]crll 5,-5
R e S Y R N
PR AR N FARN N b,
: " & * p leaving for @vl_g R i(i.&”{?‘
NN ENRNYEN R WA R
ORI JEPESS Sy ey ‘\)dpsifﬁ\.’
] *
SRR R B N N
C S . N
NN / NN f -~ .
< N
Particle implementation: Initially NE particles are positioned at the cell center
0 t
X, = (Ax/2,Ay/2,Az/2)
each particle has a unique constant velocity V, from the velocity space, p =1, - -, Nf. The transport of these

particles during At follows
>+ n
X, =X, +AtVp

Same set of particles in every space cell, only positions and velocities of particles in generic cell kept in
memory. Memory consumption reduced by 85%.

J. Narski (IMT) FKS Shark May '16 10/34

I
Particle mass

Each particle p in cell j carries its “mass” which is updated defined at t” thanks to the previous mass m?~' and

ip
updated moments pf, U7, 6] as
m], = exp(—At/T)m 5" + (1 — exp(—At/7))Milp], U], 071(V,)

Because the fluid quantities are obtained through discrete summations on particles in cell j:
Ny
n __ n
Fl=>_mi,av
p=1

the updated fluid quantities are therefore obtained after the transport step following

ntl _ pno n n
Fim =F Do ompAve > ml Ay
¥ zq. s xMcq.
p, Xp* ¢ Py Xp €9
-
Leaving particles Entering particles

Recall that these conservative cell centered fluid quantities are constituted of mass, momentum and total
energy whereas primitive ones are density, velocity and temperature. Then a mapper from conservative
an+1 = (F1, Fo,]—'3)1’.“'1 to primitive (p, U, T)l'.7+1 variables is defined as

pjlj+1 —]_—1n+1,

U/{I+1 — Fg+1 /.F1IH~17

g - 2 (1 H:ﬁmz) JFm
1

J. Narski (IMT) FKS Shark May '16

11/34

Generic algorithm

0 Relaxation step. Compute masses of Nf particles, store them in an array of the size N‘f’ x N3

e Transport of particles. Displace Nf particles, produce a list of Nyt particles escaping the generic cell and
store the & determining the destination and provenance of associated sister particles.

e Update conservative variables I—'j”+1

@ Update primitive variables

J. Narski (IMT) FKS Shark May '16 12/34

N
FKS under HPC

OpenMP algorithm
o Relaxation step. Compute in parallel masses of NE particles with, parallelization is performed on the
external loop over N2 particles.
e Transport of particles. Move in parallel NS particles
e Update conservative variables. Test in a parallel loop over N2 particles if a particle has escaped from the

generic cell. If so, add a contribution to F™ for every space cell. Update the particle position and
exchange particle mass with the associated sister particle.

© Update primitive variables

GPU algorithm — Easily extendable to multi GPU architectures

o Copy from CPU to GPU. Copy to the GPU memory all primitive and conservative variables.
e Loop over particles
@ Relaxation step Compute relaxed masses of particles for every space cell using CUDA. Store the
result on GPU.
@ Transport step Move every particle and test if it has escaped the generic cell. If so, store the
provenance of the sister cell.
© Update conservative variables. If the particle has escaped the generic cell, add contribution to
conservative variables and assign mass to he one of the incoming sister particle.
@ Copy from GPU to CPU. Copy the resulting mass array from the GPU memory to the CPU memory.
e Update primitive variables in parallel on GPU.
o Copy from GPU to CPU. Write to the CPU memory the updated conservative variables.
J. Narski (IMT) FKS Shark May '16 13/34

N
Machines

HOFKS and HOFKS-OMP
Serial version implemented in C++ compiled with gcc 4.7.2 and -Ofast optimization flag

Computational server with 4 Intel(R) Xeon(TM) E5-4650 processors running at 2.7 GHz (giving a total of 32
physical cores and 64 logical) with 512GB of RAM running under Debian Wheezy

HOFKS-GPU
GPU version implemented in CUDA 5.5 and gcc 4.7.2 and -Ofast optimization flag

Computational server with dual Intel(R) Xeon(TM) E5-2650 processor running at 2.0 GHz (16 physical and 32
virtual cores) with 128GB and 2 Nvidia GTX 780 units (3GB of memory, 2304 CUDA cores at 900MHz each)
running under Debian Wheezy

Decent card for gaming, not designed for professional applications (lack of memory error correction, double
precision, worse copy engine than Tesla/Quadro)

J. Narski (IMT) FKS Shark May '16 14/34

N
Machines

CUDA architecture

Massively parallel : 12 multiprocessors consisting of 192 CUDA cores

Functions executed on GPU (kernels) are executed in warps involving 32 threads
Parallelization strategy : replace every loop over space cells by a call to suitable CUDA kernel
Slow CPU « GPU memory transfer (8Gb/s at most)

Example: 200% x 15° particles equals to 100Gb of data (mass vector) — 25s lost on transfer from and to
GPU

Sometimes better to recompute some values than to copy them from CPU memory
Not really possible in this case

Possibility to use two concurent copy engine (Tesla/Quadro) : mass array of 1 particle is copied to GPU,
second particle is processed by GPU and the updated masses of third particle are transfered back to
CPU at the same time =- time lost on transfered reduced to 0.

J. Narski (IMT) FKS Shark May '16 14/34

|
SOD

Parallelization test only J

@ Q =[0,2]3, ball centered at (1,1, 1), radius r = 0.2, number of space
cells N® = 25,50, 100, 200, velocity space [—15, 15] discretized with
N, = 153 points

@ The relaxation parameter 7 = 10~*
@ At fixed at maximal time step

Convergence tests in

@ G. DIMARCO, R. LOUBERE, Towards an ultra efficient kinetic scheme.
Part I: basics on the BGK equation, J. Comput. Phys., Vol. 255, 2013, pp
680-698.

@ G. DIMARCO, R. LOUBERE, Towards an ultra efficient kinetic scheme.
Part Il: the high order case, J. Comput. Phys., Vol. 255, 2013, pp
699-719.

4

J. Narski (IMT) FKS Shark May '16 15/34

SOD
Sequential, OpenMP and GPUversions compared in terms of CPU time
Cell # Cycle Time T/cycle T/cell Mem
NC X Ns Ncycle T (S) Tcycle (S) Tcell (S) (GB)
25° x 15° 13 204s (3.5mn) 15.69 1x 1073 0.23
=527 x 108 6.77s 0.52 33x107°
6.1s 0.47 30 x 107°
50° x 15° 25 3244s (54mn) 129.76 1%x 1073 1.6
=421.9 x 10° 86.6s (1.43mn) 3.46 27.7 x 107°
46s 1.84 14.7 x 1078
100% x 15° 50 46408s (13h) 928 09x 1073 12
=3.4x10° 1102s (18.4mn) | 22.04 | 22.04 x 107°
486s (8.1mn) 9.7 9.7 x 1078
200° x 15° 98 784 x 10%s (9d) | 8000 1%x 1073 101
=27 x10° 170365 (4.73h) 174 21.7 x 107°
9353s (2.6h) 95 12 x 10°°

J. Narski (IMT) FKS Shark May '16 15/34

OpenMP scalability

of Time Time/cycle Time/cell Speed
cores T(s) ‘ Teycle (8) Teell (8) up
1 46408 928 928 x 108 1
2 23573 471 471 x 108 1.96
4 12395 248 248 x 106 3.74
8 6674 133.5 133.5 x 10~8 6.95
16 3536 70.7 70.7 x 106 138.12
32 1735 34.7 34.7 x 10~6 26.74
64 1102 22.04 22.04 x 10—6 42.11

@ Smaller speed-up when no. of threads exceeds no. of physical cores

@ FKS seems “embarrassingly parallel”

time {min]

100000

10000

1000

100

eal acceleration —+—
ideal scaling

100

Narski (IM

FKS

Shark May '16

16/34

|
GPU scalability

SOD test again, N = 100°, N, varies from 15° to 30°

1e406

Sequential —— / 1GPU ——
HOFKS-OMP —— 2GPUs -~
Horks APy ——]
100000 s 100
80
10000 :g
7 Lhour _w
E 1000 %
g »
100 1.min. — ol
[
10
10 = 8 o
103107 100 x10° T Tox10° T T % T LTl %
log(h) R S B
N2
@ Computational time grows linearly with number of particles
@ 2 GPUs almost twice as fast as single GPU

Narski (IM FKS

Shark May '16 17/34

3D reentry test case

Top-bottom 7 = 3.10~", 3.1072, 3.10~4, density, streamlines

o
I
||
o
o
]
I.
o
o
2
]
I.
o

J. Narski (IMT) FKS Shark May '16 18/34

Kelvin-Helmholtz instabilities

rho

2,1.2

1.8

| |
s 3D instability

Shear flow along horizontal plane.

N, = 15, N, = 100%, r = 10~*
Density plot (hidden cells are such that
p<1.2)

14000 time steps

Computational time: 11.5h on 2 GPUs,
equivalent to 77 days on serial machine

1.2

o.oal 1

S

J. Narski (IMT) FKS Shark May '16 19/34

|
High-Order Fast Kinetic Scheme (HOFKS) under HPC

Profiling 3D Sod shock tube for 7 = 10—4

Cost of major subroutines - OpenMP FKS code (1 or 16 threads) - GPU FKS code (1, 2 cards)

OMP code GPU code
1 thread 16 threads 1 GPU 2 GPU
25% % 15° 253 x 15° 100°x 15° 100°x 15°

l

Subroutines

[[CPU(s) (%) | CPU(S) (%) |

CPU (s) (%)

[

CPU (s) (%)

l

Transport <0.01 (0%) [<0.001 (0%) 0.0043 (0%) 0.0035 (0%)
EulerHO 7.08 (3%) 1.39 (6%) 0.8844 (0.2%) 1.14 (0.4%)
Relaxation 203.58 (90%) | 19.11 (89%)
Primitive <001 (0%) | <0.001 (0%) || | 47176 (97%) |] 277.00 (05%)
Initial. /Comm. 14.33 (6%) 0.99 (5%) 15 (3%) 15 (5%)
Total 225 (100%) 21.5 (100%) 487.6 (100%) 293.1 (100%)

GPU mesh convergence N° x 15%, N = 25,50, 100.

1 GPU 2 GPUs
N=25 [N=50 [N=100 [N=25 [N=50 [N=100
Relaxation+Prim. 60% [93% [9% [45% [8% | 9%

The relaxation stage always consumes a large amount of ressources

J. Narski (IMT)

FKS

Shark May '16

20/34

-
Velocity Adaptive Mesh Refinement (AMR)

Discrete Velocity Model issues

Fixed velocity space bounds and constant velocity mesh spacing Av = inaccuracy

Initial profile =0 Initial profile

" Example: explosion like prob-
lem in 1D, mesh adaptation is

mandatory!

Hyp. 10 cells per
;| final mesh adapted Maxwellian, = = 1078,
meshes
R a = 3,4,5,6 leads to

~ 200, 700, 2200, 7000

! N N ! I4 uniform cells. Only < 20
4 el
2 affordable in 3D
_— [— S

Strategy for velocity AMR for FKS - Choice: only one velocity mesh! [**]

Initial profile >0 Initial profile

@ Adapt the velocity mesh to given data - Start with valid velocity mesh
@ Define a frequency of regridding - When should the grid be reshaped?
@ Design some sort of remapping technique - Transfer data from old to new velocity mesh

[*] Towards... Part IV: Adaptive velocity Mesh Refinement, G. Dimarco, RL, J.Narski, V.Rispoli, in preparation 2015.
[**] C. Baranger, J. Claudel, N. Hérouard, L. Mieussens, Locally refined discrete velocity grids for stationary rarefied flow simulations, J. Comput. Phys.,
257(15), 572-593 (2014) . J

J. Narski (IM FKS Shark May '16 21/34

Velocity Adaptive Mesh Refinement (AMR)

Preliminary results - 2D explosion problem - Annulus of Maxwellians
45
30 - 25
25 2

Initial Aguess ‘ Adapted t =0 Adapted >0

J. Narski (IMT) FKS Shark May '16 22/34

|
Boltzmann collision operator discretization

Boltzmann collision operator Q(f) in Oif + V- Vxf = 10(f)

Assume B locally integrable and short range interaction models [9
y 9 9 (] Maxw. molecules model

oW = [[. B(v—v.lcoso)tf ~ t.dadv. B(u,c080) - 1
, V4 ERY S e80T , Hard Sphere model
Vv /2 = v = V= ale), V= v 1/2(0 =)+ V= velo), B(y, cos 6) — |ul
COS6 =u.o, U=V — Vs Variable HS model
B(u,cos) = C,|u|”

Classical spectral method [8] or fast (FFT) spectral method [7,9]
BGK relaxation model was expensive, nothing to compare against Boltzmann !
Derivation based on periodized truncation of the operator, truncated Fourier

expansion of f and projection of collision operator on Py (polyn. of degree ~ Hm=k —
n in each direction) [9] leads to a syst. of ODEs. j3(/, m) may be complex Ot = Z B, m)fifm
depending on the model. Illl,kllm<|§n

[7] A. V. Bobylev and S. Rjasanow, Difference scheme for the Boltz. eq. based on the FFT, Eur. J. Mech. B Fluids, 16 (1997)
[8] L. Pareschi and G. Russo, Numerical solution of the Boltz. eq. I:..., SIAM J. Numer. Anal., 37 (2000)
[9] F.Filbet On deterministic approx of the Boltzmann equation... SIAM MULTISCALE MODEL. SIMUL., 10, 3, 2011 J

J. Narski (IMT) FKS Shark May '16 23/34

|
Boltzmann collision operator discretization

Preliminary validation tests in 0D x2D

0D x 2D and Maxwellian molecule model

Velocity domains: [—V, V]2, V = 4,6, 9 for respect. N, = 8, 16, 32 Fourier modes and 8 discrete angles 0.
Test problem with an exact solutlon

_ exp(—v?/25) 1-8 , .
f(v,t) = —ong 2371+?v E
S = 1-—exp(—t/8)/2, t=10

8 modes
16 modes
. 32 modes
10™
Ly and L errors for the fast spectral method
wl e [#modes [[ErorE; | ErrorE, |
e -] 8 0.0063 0.0038
10 N 16 0.00057 0.00029
32 0.000065 | 0.000072
10° Figure for Ly error.
10
0 1 2 3 4 5 6 7 8 9 10

time

J. Narski (IMT)

FKS

Shark May '16

|
Boltzmann collision operator discretization

Preliminary validation tests in 0D x3D

3D Maxwellian molecules and the initial condition

1 v —w? v+wn?
f(v,t:O):W{exp<—T + exp gz s

0% =02, vi = (=1, —1,-0.25), fjng = 2.

J. Narski (IMT) FKS Shark May '16 25/34

Boltzmann collision operator discretization

Preliminary validation tests in 0D x3D - directional temperature, entropy

1 .
Ti(t) = f/ Wi—ulftv)dv, i=1,23 H() =/ (t, v) log(£(t, v)) dv.
p Jr3 Rr3
>
32 Fourier modes
12 . 024
Temperature —=— 32x32 —e—
Tomperane -Gy —a—
B Tomperaine dr ~3 1 oas |
i -0.28
09 \
lllllll -0.3
o 08T
H //. 5 032
§ o7l g
g / w034
T oost g
osk ,’ 0.36
oslf
03 ¢ 0.4
02 L L 042 . .
o 05 1 15 2 05 15 2
y
J. Narski (IMT) FKS Shark May '16 26/34

Boltzmann collision operator discretization

Preliminary validation tests in 0D x3D - directional temperature, entropy

1 .
T = * / WVi—uPf(tv)dv, i=1,23, H(t) = / (t, v) log(£(t, v)) dv.
p Jr3 R3)
64 Fourier modes
12 . 02
[— prey—
Tomparara s dy
N Tompmae v —=— =
1+ -0.28 ,\
0.9 =
o= os *
o 08
5 5 082 \
§ o7 g
g w034
" os
-0.36
0.5
0o ™
03 0.4
02 . > -0.42 . .
05 15 0 05 15 2
y
J. Narski (IMT) FKS Shark May '16 26/34

Boltzmann collision operator discretization

Preliminary validation tests in 0D x 3D - distribution function

J. Narski (IMT) Shark May '16

|
Boltzmann collision operator discretization

Preliminary tests in 1Dx2D - convergence of the model

J. Narski (IMT) FKS Shark May '16 28/34

|
Boltzmann collision operator discretization

Preliminary tests in 1Dx2D - Boltzmann vs. BGK

=102, N, = 800, N7 = 64

BGR 800 ot —— L ere—
Botzmanm o0 cols —— Eotamam st oot ——
05 7 18
o 65 16
. ‘
o7
55 12
08
B
05
s 08
04
4 05
o2 as 04
02 a 02
o1 25

T
o
. "
os o ,
.
E i .
5
os !
s
os o
i
o 0
.
os . o
o2 . .
o 2

ot 05 08 v [[z e 0 o1 o5 o8 0 12 o i) o o5 08 v 2 T . '

J. Narski (IMT) FKS Shark May '16 29/34

Boltzmann vs. BGK
Sod in 1Dx2D

BGK 100 cells ——
Bolfzmann 100 calls ——

J. Narski (IMT) FKS Shark May '16 30/34

N
Boltzmann vs. BGK

Isentropic vortex in 2D x2D
Vortex in motion

U=Us +6U, V=V +68v, 0" =05 +50"
pPoo =1.0, Uso =1.0, Voo =1.0, poo =1.0, 65 =1.0

_ B 1-r _ B 1-r° «_ (=18 2
ou= ygexp(5 >7 v = x—exp(5 , 007 = 8779)@(1 r),

r= \/X/2+y/27 X=X = Xoexs ¥ =¥ — Wortex
1
0 7T (7_1)6 2)771
= Poo =(1———F—exp(1—-r
r=r (9) (g P (1=7)

Parameters

@ Space domain : [0; 10]? discretized with N; = N x N = 100 x 100 points
Velocity domain : [—7.5; 7.5]? discretized with N, = M x M = 32 x 32 points
Periodic boundary conditions everywhere

Simulation time: fr = 10 (vertex back in its initial position)

7 =10"" = no analytical solution

J. Narski (IMT) FKS Shark May '16 31/34

N
Boltzmann vs. BGK

Isentropic vortex in 2D x2D

Initial conditions

J. Narski (IMT) Shark May '16 31/34

Boltzmann vs. BGK

Isentropic vortex in 2D x2D

Final time

Density Temperature

BGK results

Boltzmann results

J. Narski (IMT) Shark May '16 31/34

N
Boltzmann vs. BGK

Isentropic vortex in 2D x2D

Final time

Velocity u Velocity v

BGK results

Boltzmann results

J. Narski (IMT) Shark May '16 31/34

N
Boltzmann vs. BGK

Isentropic vortex in 2D x2D

Initial density BGK model results Boltzmann model results

J. Narski (IMT) FKS Shark May '16 31/34

Boltzmann vs. BGK

Isentropic vortex in 2D x2D

Vortex problem in 2D x2D

§ Velocity' Cell # Cycle Time T/cycle T/cell T/d.o.f
8 G
= Ny > Nz x Ny Ncycle T (S) Tcycle (S) Tcell (S) 7—dof (S)
2 2
:2564><><31204 351 2.61 0.0035 | 5.60 x 10~° | 5.47 x 10~°
—_ V4 V4
o in :5256xx3§04 701 | 1877 | 0.0196 | 7.84x 10~° | 7.66 x 10~°
3% 9 [T~z
Nl e e || 1400 | 10242 | 00732 | 7.32x 1070 | 7.15x 107
- 2007 x 327
B 2896XX3104 2800 | 78554 | 0.2806 | 7.02x 10°° | 6.85 x 10~°
2 2 2
:564XX31204 351 | 8292 | 0.0938 | 1.50 x 10~* | 1.47 x 107
c — 4 2
c) 50° x 32 _4 _7
701 | 24503 | 0350 | 1.40 x 10 1.37 x 10
[} N~ 4
E| e | =26x10
£ | 1007 x 32 1400 | 2008.56 | 1.435 | 1.44x 10~ | 1.40 x 107
2 1| =1024 x 10*))
V4 V4
:zgg%xxsfm 2800 | 15762 | 5.630 | 1.41x10~* | 1.37 x 107
J. Narski (IMT) FKS Shark May '16

31/34

|
MPI domain decomposition

node#t3 Strategy

ghost cells @ Divide physical domains
into slices along z axis

@ Each slice contains .
node#2 N X Ny % Nz joo % Ny
particles
@ 2 ghost layers of the
size Ny x Ny x N3
@ One slice per MPI
node#1 process

@ After each iteration :
broadcast masses of
particles escaping from
a slice to neighbouring

node#0 MPI processes
(N« x Ny x N2 at most)

z axis

ghost cells

] = = =)
J. Narski (IMT) FKS Shark May '16 32/34

|
Speedup

EOS supercomputer
@ 612 nodes
@ 64Gb per node (total 39Tb)
@ 2 x 10 core Intel Ivybridge 2.8 GHz processor per core (total of 12240 computational cores)

Simulations were run on different meshes:
BGK

@ N =64%and N, = 32, 64Gb, at least 2 nodes,

@ N =128%and N, = 16, 64Gb, at least 2 nodes,
@ N =192% and N, = 16, 216Gb, at least 4 nodes,
@ N =270%and N, = 16, 600Gb, at least 15 nodes,

Boltzmann

@ N =64%and N, = 16, 8Gb, at least 2 nodes,
@ N =64%and N, = 32, 64Gb, at least 2 nodes,

J. Narski (IMT) FKS Shark May '16 33/34

Speedup

BGK

100
120 « s s ideal
100 N 643 x 323, 33 time steps —%— A
80 90 1283 X 163‘ 64 time steps —+—
192° X 16°, 95 time steps
gg b . 70; X 16§. 133 time steps —e—
40 G
~ 70
20
—_ 60
£
£En s 2
F g 50
E 8 8
£ 6 & ¥
< 5 40
4 /
~ N 30 -
) o ., ideal scalin
64% x 323, 33 time steps —w—
1287 x 16, 64 time steps —— \\\ 20
192° x 167, 95 time steps
1 270° x 16%, 133 time steps —o— "
' ,
ol
20 40 60 80 120 160 240 320 480 640 960 1280 1800 2560) 10 20 30 40 50 60 70 80 90
cores No. of nodes
w

FKS Shark May '16 33/34

|
Speedup

Boltzmann
70
NS ideal
642 x 162, 32 time steps —#—
2000 64 x 32° 33 time steps —+—
60 A
1000
500 ™ 50
T 160 40
£ s
2 w ™~ ™~ |
= 5 2
B \ ? 30
= 40
\\
20
S 20
ideal scalin I~
10 64 x 163, 32 time steps —+— ~
65° x 32°, 33 time steps —+—
~~ 10
5 ~5
2 o
20 40 60 80 120 160 240 320 480 640 960 1280 1800 2560 o 10 20 30 40 50 60 K
cores No. of nodes
y

FKS Shark May '16 33/34

|
Acknowledgements

This work was partially supported by the PHC Gallileo 2015-2016 number 32272UL. J

This work has been supported by the French ’Agence Nationale pour la Recherche (ANR)’ in the frame of the
contract “MOONRISE” (ANR- 14-CE23-0007-01). J

This work was performed using HPC resources from CALMIP (Grant 2015-P1542) J

THANK YOU FOR YOUR
ATTENTION

J. Narski (IMT) FKS Shark May '16 34/34

	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

