

High-order finite volume method for curved boundaries and non-matching domain-mesh problems

May 23-27, 2016, São Félix, Portugal

Ricardo Costa^{1,2}, Stéphane Clain^{1,2}, Gaspar J. Machado², Raphaël Loubère¹

¹Institut de Mathématiques de Toulouse, Université de Toulouse, France ²Centro de Matemática, Universidade do Minho, Guimarães, Portugal

Universidade do Minho

Outline

- Motivation and Background
- **2** Problem Formulation
- **3** Polynomial Reconstruction Machinery
- 4 ARCH Method
- **5** Finite Volume Scheme
- **6** Numerical Benchmark

SHARK-FV Replacing curved boundaries by polygonal edges associated to the mesh provides at most 2nd-order accuracy

- Isoparametric elements are widely applied for FEM and DG
- Very few methods have been developed in the context of HO-FVM

State-of-art in HO-FVM

 Ghost cells approach: add extra cells between the geometric boundary and the computational domain

¹C.F. Ollivier-Gooch and M. Van Altena, A high-order accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, Journal of Computational Physics, (2002).

State-of-art in HO-FVM

- Ghost cells approach: add extra cells between the geometric boundary and the computational domain
- Ollivier-Gooch approach¹: enforce the BC by constraining the LSM associated to the PR
 - can be very time consuming if the LSM matrix has to be updated (moving boundaries/interfaces, tracking interfaces/discontinuities problems)

¹C.F. Ollivier-Gooch and M. Van Altena, A high-order accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, Journal of Computational Physics, (2002).

State-of-art in HO-FVM

- Ghost cells approach: add extra cells between the geometric boundary and the computational domain
- Ollivier-Gooch approach¹: enforce the BC by constraining the LSM associated to the PR
 - can be very time consuming if the LSM matrix has to be updated (moving boundaries/interfaces, tracking interfaces/discontinuities problems)

New approach: detach the BC conservation from the LSM matrix

Easier, flexible, more efficient, more elegant

¹C.F. Ollivier-Gooch and M. Van Altena, A high-order accurate unstructured mesh finite-volume scheme for the advection-diffusion equation, Journal of Computational Physics, (2002).

Problem Formulation

Poisson's equation and BCs:

$\nabla^2 \phi = f,$	in Ω
$\phi = \phi_{D},$	on Γ_D
$\nabla \phi \cdot \mathbf{n} = g_{N},$	on $\Gamma_{\rm N}$
$\alpha \phi + \beta \nabla \phi \cdot \mathbf{n} = \mathbf{g}_{R},$	on Γ _R

- Ω , $\partial \Omega = \{\Gamma_D \cup \Gamma_N \cup \Gamma_R\}$ real domain and its boundary
- n unit normal vector to $\partial \Omega$
- $\phi_{\rm D}$ Dirichlet BC
- g_N Neumann BC
- **g**_R Robin BC with coefficients α and β

Generic FV Scheme

- c_i , e_{ij} cell, edge
- q_i , q_{ij} –quadrature points
- n_{ij} normal vector

$$\int_{\partial c_i} (\nabla \phi) \cdot n_i \, \mathrm{d}s = \int_{c_i} f \, \mathrm{d}x \Rightarrow \sum_{j \in \nu(i)} |e_{ij}| \left[\sum_{r=1}^R \zeta_r \mathbb{F}_{ij,r} \right] - \frac{f_i}{|c_i|} = \mathcal{O}(h_i^{2R})$$

Physical fluxes:

$$\mathbb{F}_{ij,r} = \nabla \phi(q_{ij,r}) \cdot n_{ij},$$

Source term:

$$f_i = \sum_{s=1}^S \zeta_s f(q_{i,s})$$

SHARK-FV Non-conservative PR for inner edges eij

$$arphi_{ij}(x) = \sum_{0 \leq |lpha| \leq d} \mathcal{R}^{lpha}_{ij}(x - m_{ij})^{lpha}$$

•
$$\alpha = (\alpha_1, \alpha_2), \ |\alpha| = \alpha_1 + \alpha_2, \ x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2}$$

SHARK-FV Non-conservative PR for inner edges eij

$$arphi_{ij}(x) = \sum_{0 \leq |lpha| \leq d} \mathcal{R}^{lpha}_{ij}(x - m_{ij})^{lpha}$$

•
$$\alpha = (\alpha_1, \alpha_2), \ |\alpha| = \alpha_1 + \alpha_2, \ x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2}$$

$$E_{ij}(\mathcal{R}_{ij}) = \sum_{q \in S_{ij}} \omega_{ij,q} \left[\frac{1}{|c_q|} \int_{c_q} \varphi_{ij}(x) \, \mathrm{d}x - \phi_q \right]^2$$

• $\widetilde{\varphi}_{ij}(x)$ defined with $\widetilde{\mathcal{R}}_{ij} = \underset{\mathcal{R}_{ij}}{\arg\min} [E_{ij}(\mathcal{R}_{ij})]$

 $\mathcal{L}_{SHARK-FV}$ Conservative PR for Dirichlet boundary edges e_{iD}

$$arphi_{i\mathrm{D}}(x) = \phi_{i\mathrm{D}} + \sum_{1 \leq |lpha| \leq d} \mathcal{R}^{lpha}_{i\mathrm{D}} \left[(x - m_{i\mathrm{D}})^{lpha} - M^{lpha}_{i\mathrm{D}}
ight]$$

•
$$\alpha = (\alpha_1, \alpha_2), \ |\alpha| = \alpha_1 + \alpha_2, \ x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2}$$

 $\mathcal{L}_{SHARK-FV}$ Conservative PR for Dirichlet boundary edges e_{iD}

$$arphi_{i\mathrm{D}}(x) = \phi_{i\mathrm{D}} + \sum_{1 \leq |lpha| \leq d} \mathcal{R}^{lpha}_{i\mathrm{D}} \left[(x - m_{i\mathrm{D}})^{lpha} - M^{lpha}_{i\mathrm{D}}
ight]$$

•
$$\alpha = (\alpha_1, \alpha_2), \ |\alpha| = \alpha_1 + \alpha_2, \ x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2}$$

$$E_{i\mathsf{D}}(\mathcal{R}_{i\mathsf{D}}) = \sum_{q \in S_{i\mathsf{D}}} \omega_{i\mathsf{D},q} \left[\frac{1}{|c_q|} \int_{c_q} \varphi_{i\mathsf{D}}(x) \, \mathsf{d}x - \phi_q \right]^2$$

•
$$\widehat{\varphi}_{iD}(x)$$
 defined with $\widehat{\mathcal{R}}_{iD} = \operatorname*{arg\,min}_{\mathcal{R}_{iD}} [E_{iD}(\mathcal{R}_{iD})]$

Naive mean-value conservation – 2nd-order!

$$\begin{split} \phi_{i\mathsf{D}} &= \frac{1}{|e_{i\mathsf{D}}|} \int_{e_{i\mathsf{D}}} \phi_{\mathsf{D}}(x) \, \mathsf{d}s, \qquad \frac{1}{|e_{i\mathsf{D}}|} \int_{e_{i\mathsf{D}}} \varphi_{i\mathsf{D}}(x) \, \mathsf{d}s = \phi_{i\mathsf{D}} \\ \mathcal{M}_{i\mathsf{D}}^{\alpha} &= \frac{1}{|e_{i\mathsf{D}}|} \int_{e_{i\mathsf{D}}} (x - m_{i\mathsf{D}})^{\alpha} \, \mathsf{d}x \end{split}$$

Naive mean-value conservation – 2nd-order!

$$\begin{split} \phi_{i\mathsf{D}} &= \frac{1}{|e_{i\mathsf{D}}|} \int_{e_{i\mathsf{D}}} \phi_{\mathsf{D}}(x) \, \mathsf{d}s, \qquad \frac{1}{|e_{i\mathsf{D}}|} \int_{e_{i\mathsf{D}}} \varphi_{i\mathsf{D}}(x) \, \mathsf{d}s = \phi_{i\mathsf{D}} \\ M_{i\mathsf{D}}^{\alpha} &= \frac{1}{|e_{i\mathsf{D}}|} \int_{e_{i\mathsf{D}}} (x - m_{i\mathsf{D}})^{\alpha} \, \mathsf{d}x \end{split}$$

• Wise mean-value conservation – Quadrature points on $\partial \Omega!$

$$\begin{split} \phi_{i\mathrm{D}} &= \frac{1}{|\widehat{e}_{i\mathrm{D}}|} \int_{\widehat{e}_{i\mathrm{D}}} \phi_{\mathrm{D}}(x) \, \mathrm{d}s, \qquad \frac{1}{|\widehat{e}_{i\mathrm{D}}|} \int_{\widehat{e}_{i\mathrm{D}}} \varphi_{i\mathrm{D}}(x) \, \mathrm{d}s = \phi_{i\mathrm{D}} \\ M_{i\mathrm{D}}^{\alpha} &= \frac{1}{|\widehat{e}_{i\mathrm{D}}|} \int_{\widehat{e}_{i\mathrm{D}}} (x - m_{i\mathrm{D}})^{\alpha} \, \mathrm{d}x \end{split}$$

Naive mean-value conservation – 2nd-order!

$$\begin{split} \phi_{i\mathsf{D}} &= \frac{1}{|e_{i\mathsf{D}}|} \int_{e_{i\mathsf{D}}} \phi_{\mathsf{D}}(x) \, \mathsf{d}s, \qquad \frac{1}{|e_{i\mathsf{D}}|} \int_{e_{i\mathsf{D}}} \varphi_{i\mathsf{D}}(x) \, \mathsf{d}s = \phi_{i\mathsf{D}} \\ M_{i\mathsf{D}}^{\alpha} &= \frac{1}{|e_{i\mathsf{D}}|} \int_{e_{i\mathsf{D}}} (x - m_{i\mathsf{D}})^{\alpha} \, \mathsf{d}x \end{split}$$

• Wise mean-value conservation – Quadrature points on $\partial \Omega!$

$$\begin{split} \phi_{i\mathsf{D}} &= \frac{1}{|\widehat{e}_{i\mathsf{D}}|} \int_{\widehat{e}_{i\mathsf{D}}} \phi_{\mathsf{D}}(x) \, \mathsf{d}s, \qquad \frac{1}{|\widehat{e}_{i\mathsf{D}}|} \int_{\widehat{e}_{i\mathsf{D}}} \varphi_{i\mathsf{D}}(x) \, \mathsf{d}s = \phi_{i\mathsf{D}} \\ \mathcal{M}_{i\mathsf{D}}^{\alpha} &= \frac{1}{|\widehat{e}_{i\mathsf{D}}|} \int_{\widehat{e}_{i\mathsf{D}}} (x - m_{i\mathsf{D}})^{\alpha} \, \mathsf{d}x \end{split}$$

Wise point-value conservation:

- Conservation of Dirichlet BC only
- Coefficients M_{iD}^{α} are boundary dependent
- LSM matrix has to be updated for...
 - ... moving boundaries/interfaces or dynamic BC in time-dependent and unsteady problems
 - ... optimization problems
 - ... tracking interfaces/discontinuities problems
 - ... etc.
 - Ollivier-Gooch method consists in an augmented LSM matrix by constraints rows (equivalent to the wise conservation)

ARCH

Adaptive Reconstruction for Conservation of High-order

 $\mathcal{A}_{\text{SHARK-FV}}$ The aim of ARCH is to improve the boundary treatment

The main ideas are...

- ... conserve the HO accuracy
- ... detach the boundary from the LSM matrix
- ... easy handling of moving boundaries
- ... generic treatment of Dirichlet, Neumann and Robin BCs

ARCH Method

$$\mathcal{ARCH}_{SHARK-FV}$$
 ARCH for boundary edges e_{iB}

$$\varphi_{i\mathsf{B}}(x;\psi_{i\mathsf{B}}) = \psi_{i\mathsf{B}} + \varphi_{i\mathsf{B}}(x)$$

- $\varphi_{iB}(x)$ non-conservative/naive conservative/wise conservative PR
- ψ_{iB} free parameter (to be determined)

$$E_{i\mathsf{B}}(\mathcal{R}_{i\mathsf{B}};\psi_{i\mathsf{B}}) = \sum_{q\in \mathcal{S}_{i\mathsf{B}}} \omega_{i\mathsf{B},q} \left[\psi_{i\mathsf{B}} + \frac{1}{|c_q|} \int_{c_q} \varphi_{i\mathsf{B}}(x;\psi_{i\mathsf{B}}) \, \mathsf{d}x - \phi_q \right]^2$$

• $\check{\varphi}_{iB}(x; \psi_{iB})$ defined with $\check{\mathcal{R}}_{iB} = \underset{\mathcal{R}_{iB}}{\arg\min} [E_{iB}(\mathcal{R}_{iB}; \psi_{iB})]$

• $\psi_{i\mathsf{B}}$ is a RHS – the LSM matrix remains the same :D

ARCH Method

• Generic BC on $\partial \Omega$ to satisfy:

 $g(x; \alpha, \beta) = \alpha(x)\phi(x) + \beta(x)\nabla\phi \cdot \mathbf{n}$

- Dirichlet BC: $\alpha = 1$, $\beta = 0$
- Neumann BC: $\alpha = 0, \beta \neq 0$
- Robin BC: $\alpha \neq 0$, $\beta \neq 0$

ARCH Method

• Generic BC on $\partial \Omega$ to satisfy:

 $g(x;\alpha,\beta) = \alpha(x)\phi(x) + \beta(x)\nabla\phi \cdot \mathbf{n}$

- Dirichlet BC: $\alpha = 1$, $\beta = 0$
- Neumann BC: $\alpha = 0, \beta \neq 0$
- Robin BC: $\alpha \neq 0$, $\beta \neq 0$

For a given $p_{iB} \in \partial \Omega$, the parameter ψ_{iB} is prescribed such that

 $\alpha(p_{i\mathsf{B}})\varphi_{i\mathsf{B}}(p_{i\mathsf{B}};\check{\psi}_{i\mathsf{B}}) + \beta(p_{i\mathsf{B}})\nabla\varphi_{i\mathsf{B}}(p_{i\mathsf{B}};\check{\psi}_{i\mathsf{B}}) \cdot n = g(p_{i\mathsf{B}};\alpha,\beta)$

$$\widecheck{\psi}_{i\mathsf{B}} = \psi_{i\mathsf{B}}^{\mathsf{0}} - \frac{\mathcal{B}(p_{i\mathsf{B}}; \alpha, \beta, \psi_{i\mathsf{B}}^{\mathsf{0}})(\psi_{i\mathsf{B}}^{\mathsf{0}} - \psi_{i\mathsf{B}}^{\mathsf{1}})}{\mathcal{B}(p_{i\mathsf{B}}; \alpha, \beta, \psi_{i\mathsf{B}}^{\mathsf{0}}) - \mathcal{B}(p_{i\mathsf{B}}; \alpha, \beta, \psi_{i\mathsf{B}}^{\mathsf{0}} + \varphi_{i\mathsf{B}}^{\mathsf{1}})}$$

•
$$\psi_{i\mathsf{B}}^{\mathsf{0}} \neq \psi_{i\mathsf{B}}^{\mathsf{1}}$$

Finite Volume Scheme

- Numerical fluxes:
 - inner edge e_{ij} : $\mathcal{F}_{ij,r} = \nabla \widetilde{\varphi}_{ij}(q_{ij,r}) \cdot n_{ij}$
 - boundary edge e_{iB} : $\mathcal{F}_{iB,r} = \nabla \widecheck{\varphi}_{iB}(q_{iD,r}; \psi_{iB}) \cdot n_{iB}$
- PR and fluxes are linear identities
- Linear residual operator $\Phi \to G_i(\Phi)$ for vector $\Phi \in \mathbb{R}^d$

$$egin{aligned} \mathcal{G}_i(\Phi) &= \sum_{j \in
u(i)} |e_{ij}| \left[\sum_{r=1}^R \zeta_r \mathcal{F}_{ij,r}
ight] - f_i |c_i|, \ \mathcal{G}(\Phi) &= \left(\mathcal{G}_i(\Phi)
ight)_{i=1,...,l} \end{aligned}$$

Free matrix method

• Compute vector $\Phi^{\star} \in \mathbb{R}^{l}$ solution of $\mathcal{G}(\Phi) = 0$

- Manufactured solution: $\phi(r) = a + b \ln(r)$
 - *a*, *b* such that $\phi \in [0, 1]$

DOF = 197340

	\mathbb{P}_1		\mathbb{P}_3		\mathbb{P}_5	
	E_1	E_{∞}	E_1	E_{∞}	E_1	E_{∞}
Naive PR	2.91E-03	9.36E-03	2.91E-03	9.36E-03	2.91E-03	9.36E-03
Wise PR	1.20E-05	6.12E-05	4.45E-09	3.60E-08	2.98E-11	4.60E-10
ARCH	1.20E-05	6.37E-05	5.35E-09	3.74E-08	9.48E-12	2.15E-09

DOF = 197340

	\mathbb{P}_1		\mathbb{P}_3		\mathbb{P}_5	
	E_1	E_{∞}	E_1	E_{∞}	E_1	E_{∞}
Naive PR	2.87E-03	9.33E-03	2.87E-03	9.31E-03	2.87E-03	9.31E-03
Wise PR	1.07E-05	1.36E-02	5.45E-09	1.16E-06	3.37E-12	1.44E-10
ARCH	1.03E-05	2.03E-03	7.42E-10	4.40E-08	1.93E-12	1.00E-10

DOF = 197340

	\mathbb{P}_1		\mathbb{P}_3		\mathbb{P}_5	
	E_1	E_{∞}	E_1	E_{∞}	E_1	E_{∞}
Naive PR	5.88E-03	1.88E-02	5.88E-03	1.88E-02	5.88E-03	1.88E-02
Wise PR	6.47E-05	1.77E-04	3.68E-08	1.37E-07	1.80E-10	6.22E-09
ARCH	6.48E-05	1.80E-04	4.44E-08	1.76E-07	1.21E-10	1.24E-08

DOF = 13056

	\mathbb{P}_1		\mathbb{P}_3		\mathbb{P}_5	
	E_1	E_{∞}	E_1	E_{∞}	$\overline{E_1}$	E_{∞}
Naive PR	2.13E-02	7.06E-02	2.12E-02	7.05E-02	2.12E-02	7.05E-02
Wise PR	9.72E-04	9.67E-03	8.25E-06	6.20E-04	3.31E-08	1.30E-06
ARCH	9.24E-04	6.35E-03	7.29E-07	8.27E-05	4.84E-09	5.86E-07

DOF = 13056

	\mathbb{P}_1		\mathbb{P}_3		\mathbb{P}_5	
	E_1	E_{∞}	$\overline{E_1}$	E_{∞}	$\overline{E_1}$	E_{∞}
Naive PR	2.13E-02	7.06E-02	2.12E-02	7.05E-02	2.12E-02	7.05E-02
Wise PR	9.72E-04	9.67E-03	8.25E-06	6.20E-04	3.31E-08	1.30E-06
ARCH	9.24E-04	6.35E-03	7.29E-07	8.27E-05	4.84E-09	5.86E-07

• Γ_I , Γ_E – interior and exterior boundaries

$$\Gamma_{I}: \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = R_{I}(\theta; \alpha_{I}) \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}, \quad \Gamma_{E}: \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = R_{E}(\theta; \alpha_{E}) \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$
$$R_{I}(\theta; \alpha_{I}) = r_{I} \left(1 + \frac{1}{10} \sin(\alpha_{I}\theta) \right), \quad R_{E}(\theta; \alpha_{E}) = r_{E} \left(1 + \frac{1}{10} \sin(\alpha_{E}\theta) \right)$$

Manufactured solution:

$$\phi(r,\theta) = a(\theta) + b(\theta)\ln(r)$$

• $a(\theta)$ and $b(\theta)$ are chosen such that $\phi \in [0,1]$ in Ω

F

- ${\bf \ensuremath{\square}}$ HO is fully restored with the ARCH method
- ${\it {\ensuremath{\wp}}}$ Wise PR and ARCH methods have comparable accuracy
- ${\ensuremath{\en$

- ${\bf \ensuremath{\mathbb Z}}$ HO is fully restored with the ARCH method
- ☑ Wise PR and ARCH methods have comparable accuracy
- \blacksquare Extrapolation situations are less robust
- Benchmarks for Neumann and Robin BCs are in progress (promising results)
- Improved mesh pick-up algorithms are in progress

- ${\bf \ensuremath{\mathbb Z}}$ HO is fully restored with the ARCH method
- ☑ Wise PR and ARCH methods have comparable accuracy
- \blacksquare Extrapolation situations are less robust
- Benchmarks for Neumann and Robin BCs are in progress (promising results)

SHARK-FVSHARK-FVSHARK-FVSHARK-FVSHARK-FVSHARK-FVSHARK-FVSHARK-FVSHARK-FVSHARK-FVSHARK-FVSHARK-FVSHARK-FVSHARK-FV