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FV-MLS Applications

I FV-MLS Applications
• All-speed Navier-Stokes

• Incompressible Navier-Stokes

• Linearized Euler Equations (acoustics)

• Navier-Stokes Korteweg equations

• Turbulence (ILES)

• High-order Sliding mesh applications

• Cavitating flows

• ...
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The Finite Volume Method

I Let us consider a generic conservation law for the 2D
domain ΩT

∂UUUUUUUUUUUUUU

∂t
+∇·FFFFFFFFFFFFFF = S

I Finite Volume discretization over ΩI:

ΩI

∫
ΩI

∂UUUUUUUUUUUUUU I
∂t

dΩ +

∫
ΓI

(
FHFHFHFHFHFHFHFHFHFHFHFHFHFH −FVFVFVFVFVFVFVFVFVFVFVFVFVFV

)
· nnnnnnnnnnnnnndΓ = 00000000000000

• FHFHFHFHFHFHFHFHFHFHFHFHFHFH → Hyperbolic-like term

• FVFVFVFVFVFVFVFVFVFVFVFVFVFV → Elliptic-like term
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The Finite Volume Method

I Hyperbolic term:

• Godunov approach

I

U

I-1 I+1 I+2 xj

• FHFHFHFHFHFHFHFHFHFHFHFHFHFH is the solution of a Riemann problem

• Initial values → variables at both sides of the interface.
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The Finite Volume Method

I Hyperbolic term:

• Godunov approach

I

U

I-1 I+1 I+2 xj

• FHFHFHFHFHFHFHFHFHFHFHFHFHFH is the solution of a Riemann problem
• Initial values → variables at both sides of the interface.

UUUUUUUUUUUUUUL 6=UUUUUUUUUUUUUUR
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The Finite Volume Method

I

U

I-1 I+1 I+2 xj

UUUUUUUUUUUUUUL = UUUUUUUUUUUUUU I +∇∇∇∇∇∇∇∇∇∇∇∇∇∇UUUUUUUUUUUUUU I · (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI)

UUUUUUUUUUUUUUR = UUUUUUUUUUUUUU I+1 +∇∇∇∇∇∇∇∇∇∇∇∇∇∇UUUUUUUUUUUUUU I+1 · (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI+1)
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The Finite Volume Method

I

U

I-1 I+1 I+2 xj

UUUUUUUUUUUUUUL = UUUUUUUUUUUUUU I +∇∇∇∇∇∇∇∇∇∇∇∇∇∇UUUUUUUUUUUUUU I · (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI) +
1

2
(xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI)T HHHHHHHHHHHHHHI (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI)

UUUUUUUUUUUUUUR = UUUUUUUUUUUUUU I+1+∇∇∇∇∇∇∇∇∇∇∇∇∇∇UUUUUUUUUUUUUU I+1·(xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI+1)+
1

2
(xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI+1)

T
HHHHHHHHHHHHHHI+1 (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI+1)
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The Finite Volume Method

I

U

I-1 I+1 I+2 xj

UUUUUUUUUUUUUUL = UUUUUUUUUUUUUU I +∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I · (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI) +
1

2
(xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI)T HIHIHIHIHIHIHIHIHIHIHIHIHIHI (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI)

UUUUUUUUUUUUUUR = UUUUUUUUUUUUUU I+1+∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1·(xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI+1)+
1

2
(xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI+1)

T
HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1 (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI+1)
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Finite Volume Method. High-order schemes (II)

I Computation of high-order derivatives:

• Easy on structured grids.

• Unstructured grids⇒PROBLEM.

I We propose:
• The use of Moving Least Squares (MLS) to obtain an

accurate and multidimensional approximation of derivatives
on unstructured grids.
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The basis: Kernel approximations (I)

I Kernel approximation is based on the properties of
Dirac’s Delta distribution:

u(xxxxxxxxxxxxxx) =

∫
yyyyyyyyyyyyyy∈Ω

u(yyyyyyyyyyyyyy)δ(xxxxxxxxxxxxxx− yyyyyyyyyyyyyy)dΩ

I Kernel approximation is defined as:

uh(xxxxxxxxxxxxxx) =

∫
yyyyyyyyyyyyyy∈Ω

u(yyyyyyyyyyyyyy)W (xxxxxxxxxxxxxx− yyyyyyyyyyyyyy, ρ)dΩ
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The basis: Kernel approximations (II)

I In discrete form:

û(xxxxxxxxxxxxxx) =

n∑
j=1

ujW (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxj, h)Vj

I Vj is the statistical volume of a particle j.

I Compact support with r = 2h

I h is the smoothing length.
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The basis: Kernel approximations (IV)

I Many functions used as kernels: splines, gaussians

I An example, the cubic spline:

Wj(xxxxxxxxxxxxxx) = W (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxj, h) =
α

hν


1− 3

2s
2 + 3

4s
3 s ≤ 1

1
4(2− s)3 1 < s ≤ 2

0 s > 2

s =
‖xxxxxxxxxxxxxx− xxxxxxxxxxxxxxj‖

h
h = k max (‖xxxxxxxxxxxxxx− xxxxxxxxxxxxxxj‖)
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The basis: Kernel approximations (IV)

I Many functions used as kernels: splines, gaussians

I An example, the cubic spline:

Wj(xxxxxxxxxxxxxx) = W (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxj, h) =
α

hν


1− 3

2s
2 + 3

4s
3 s ≤ 1

1
4(2− s)3 1 < s ≤ 2

0 s > 2

s =
‖xxxxxxxxxxxxxx− xxxxxxxxxxxxxxj‖

h
h = kkkkkkkkkkkkkk max (‖xxxxxxxxxxxxxx− xxxxxxxxxxxxxxj‖)
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The basis: Kernel approximations (V)

I Another example: Exponential Kernel.

W (x, x∗, κ) =
e−(sc)

2

− e−(dmc )
2

1− e−(dmc )
2

s = |x− x∗| , dm = 2 max (|xj − x∗|) , c =
dm
2κ

I 2D kernel⇒ product of two 1D kernels:

Wj(xxxxxxxxxxxxxx,xxxxxxxxxxxxxx
∗, κx, κy) = Wj(x, x

∗, κx)Wj(y, y
∗, κy)
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The basis: Kernel approximations (V)
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2
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The basis: Kernel approximations (VI)

CUBIC SPLINE EXPONENTIAL KERNEL
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Moving Least Squares (I)

I Reconstruction of u(xxxxxxxxxxxxxx) at a point xxxxxxxxxxxxxx by using a
weighted LS approximation in the vicinity of xxxxxxxxxxxxxx:

u(xxxxxxxxxxxxxx) ≈ û(xxxxxxxxxxxxxx) =

m∑
i=1

pi(xxxxxxxxxxxxxx)αi(zzzzzzzzzzzzzz) |zzzzzzzzzzzzzz=xxxxxxxxxxxxxx = ppppppppppppppT (xxxxxxxxxxxxxx)α(z)α(z)α(z)α(z)α(z)α(z)α(z)α(z)α(z)α(z)α(z)α(z)α(z)α(z) |z = xz = xz = xz = xz = xz = xz = xz = xz = xz = xz = xz = xz = xz = x

• ppppppppppppppT (xxxxxxxxxxxxxx): base of functions with dimension m.

• αααααααααααααα(zzzzzzzzzzzzzz) |zzzzzzzzzzzzzz=xxxxxxxxxxxxxx: Parameters that minimize the error functional:

J(αααααααααααααα(zzzzzzzzzzzzzz) |zzzzzzzzzzzzzz=xxxxxxxxxxxxxx) =

∫
yyyyyyyyyyyyyy∈Ωx

W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h) |zzzzzzzzzzzzzz=xxxxxxxxxxxxxx
[
u(yyyyyyyyyyyyyy)− ppppppppppppppT (xxxxxxxxxxxxxx)αααααααααααααα(zzzzzzzzzzzzzz) |zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

]2
dΩxxxxxxxxxxxxxx

• W (z − yz − yz − yz − yz − yz − yz − yz − yz − yz − yz − yz − yz − yz − y, h) |zzzzzzzzzzzzzz=xxxxxxxxxxxxxx: kernel (smoothing function) with compact
support (Ωxxxxxxxxxxxxxx) centered in zzzzzzzzzzzzzz = xxxxxxxxxxxxxx.

• h: smoothing length.
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Moving Least Squares (III)
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Moving Least Squares (IV)

I Minimization of J leads to:

∫
yyyyyyyyyyyyyy∈Ωxxxxxxxxxxxxxx

pppppppppppppp(yyyyyyyyyyyyyy)W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h)

∣∣∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

u(yyyyyyyyyyyyyy)dΩxxxxxxxxxxxxxx = MMMMMMMMMMMMMM(xxxxxxxxxxxxxx)αααααααααααααα(zzzzzzzzzzzzzz)

∣∣∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

IMMMMMMMMMMMMMM(xxxxxxxxxxxxxx) is the moment matrix defined as:

MMMMMMMMMMMMMM(xxxxxxxxxxxxxx) =

∫
yyyyyyyyyyyyyy∈Ωxxxxxxxxxxxxxx

pppppppppppppp(yyyyyyyyyyyyyy)W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h)

∣∣∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

ppppppppppppppT (yyyyyyyyyyyyyy)
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Moving Least Squares (III)

I In practice, Ω is a set of scattered points. Previous
integrals are evaluated using points in Ωxxxxxxxxxxxxxx as
quadrature points:

αααααααααααααα(zzzzzzzzzzzzzz)

∣∣∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

= MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW (xxxxxxxxxxxxxx)uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx

• uuuuuuuuuuuuuuΩx contains nodal values of the function uxxxxxxxxxxxxxx to be
approximated, at nxxxxxxxxxxxxxx nodes in Ωxxxxxxxxxxxxxx

uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx =
(
u(xxxxxxxxxxxxxx1) u(xxxxxxxxxxxxxx2) · · · u

(
xxxxxxxxxxxxxxnxxxxxxxxxxxxxx

))T
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Moving Least Squares (IV)

I Discrete expression of the moment matrix is a m×m
matrix equals to MMMMMMMMMMMMMM(xxxxxxxxxxxxxx) = PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW (xxxxxxxxxxxxxx)PPPPPPPPPPPPPP T

Ωxxxxxxxxxxxxxx
• PPPPPPPPPPPPPPΩxxxxxxxxxxxxxx(dimension m× nxxxxxxxxxxxxxx), and WWWWWWWWWWWWWW (xxxxxxxxxxxxxx)(dimension nxxxxxxxxxxxxxx× nxxxxxxxxxxxxxx) are

obtained by
PPPPPPPPPPPPPPΩxxxxxxxxxxxxxx =

(
pppppppppppppp (xxxxxxxxxxxxxx1) pppppppppppppp (xxxxxxxxxxxxxx2) · · · pppppppppppppp

(
xxxxxxxxxxxxxxnxxxxxxxxxxxxxx

))

WWWWWWWWWWWWWW (xxxxxxxxxxxxxx) = diag {Wi (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxi)} i = 1, . . . , nxxxxxxxxxxxxxx (1)

I Finally, MLS approximation is written by:

û(xxxxxxxxxxxxxx) = ppppppppppppppT (xxxxxxxxxxxxxx)MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW (xxxxxxxxxxxxxx)uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx = NNNNNNNNNNNNNNT (xxxxxxxxxxxxxx)uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx =

nxxxxxxxxxxxxxx∑
j=1

Nj(xxxxxxxxxxxxxx)uj
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Moving Least Squares (V)

I Interpolation can be written as:

û(xxxxxxxxxxxxxx) =

nx∑
j=1

Nj(xxxxxxxxxxxxxx)uj

with
NNNNNNNNNNNNNNT (xxxxxxxxxxxxxx) = ppppppppppppppT (xxxxxxxxxxxxxx)MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW (xxxxxxxxxxxxxx)

I Nj can be considered as “shape functions”.

I Nj depends on the number of neighbors, the kernel
and the base (ppppppppppppppT).

I Nj is a function of the grid.
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Moving Least Squares (VI)

I A practical note about the polynomial basis

pppppppppppppp(xxxxxxxxxxxxxx) =
(
1 x y xy x2 y2

)T
• We define locally and scale the monomials of the basis

• Better conditioning of the momentum matrix

• If MLS shape functions NNNNNNNNNNNNNN(xxxxxxxxxxxxxx) are evaluated at a point xxxxxxxxxxxxxxI,
the basis is evaluated at xxxxxxxxxxxxxx−xxxxxxxxxxxxxxIh

• Then we can write:

NNNNNNNNNNNNNNT (xxxxxxxxxxxxxxI) = ppppppppppppppT (00000000000000)MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxxI)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxI
WWWWWWWWWWWWWW (xxxxxxxxxxxxxxI) = ppppppppppppppT (00000000000000)CCCCCCCCCCCCCC(xxxxxxxxxxxxxxI)

with
CCCCCCCCCCCCCC(xxxxxxxxxxxxxxI) = MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxxI)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxI

WWWWWWWWWWWWWW (xxxxxxxxxxxxxxI)
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Moving Least Squares (VII)

I Computation of derivatives
• First derivatives

∂NNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂x
=

∂ppppppppppppppT(xxxxxxxxxxxxxx)

∂x
CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) + ppppppppppppppT(xxxxxxxxxxxxxx)

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x

• Second derivatives

∂2NNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂x2
=

∂2ppppppppppppppT(xxxxxxxxxxxxxx)

∂x2
CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) + 2

∂ppppppppppppppT(xxxxxxxxxxxxxx)

∂x

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x
+ pppppppppppppp(xxxxxxxxxxxxxx)

∂2CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x2

∂2NNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂x∂y
=

∂2ppppppppppppppT(xxxxxxxxxxxxxx)

∂x∂y
CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) +

∂ppppppppppppppT(xxxxxxxxxxxxxx)

∂x

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂y
+
∂ppppppppppppppT(xxxxxxxxxxxxxx)

∂y

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x

+ ppppppppppppppT(xxxxxxxxxxxxxx)
∂2CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x∂y
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Moving Least Squares (VII)

• where ∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)
∂x is given by

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x
= CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)WWWWWWWWWWWWWW−1(xxxxxxxxxxxxxx)

∂WWWWWWWWWWWWWW (xxxxxxxxxxxxxx)

∂x

(
IIIIIIIIIIIIII − ppppppppppppppT(xxxxxxxxxxxxxx)CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

)
• and the second derivatives of CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂2CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x2
=

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x
WWWWWWWWWWWWWW
−1

(xxxxxxxxxxxxxx)
∂W

∂x

(
IIIIIIIIIIIIII − ppppppppppppppT

(xxxxxxxxxxxxxx)CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)
)

+CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)WWWWWWWWWWWWWW
−1

(xxxxxxxxxxxxxx)
∂2W (xxxxxxxxxxxxxx)

∂x2

(
IIIIIIIIIIIIII − ppppppppppppppT

(xxxxxxxxxxxxxx)CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)
)

−CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)WWWWWWWWWWWWWW
−1

(xxxxxxxxxxxxxx)
∂W (xxxxxxxxxxxxxx)

∂x
WWWWWWWWWWWWWW
−1

(xxxxxxxxxxxxxx)
∂W (xxxxxxxxxxxxxx)

∂x

(
IIIIIIIIIIIIII − ppppppppppppppT

(xxxxxxxxxxxxxx)CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)
)

−CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)WWWWWWWWWWWWWW
−1

(xxxxxxxxxxxxxx)
∂W (xxxxxxxxxxxxxx)

∂x
pppppppppppppp

T
(xxxxxxxxxxxxxx)

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x
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Moving Least Squares (VII)

∂2CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x∂y
=

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂y
WWWWWWWWWWWWWW
−1

(xxxxxxxxxxxxxx)
∂W (xxxxxxxxxxxxxx)

∂x

(
IIIIIIIIIIIIII − ppppppppppppppT

(xxxxxxxxxxxxxx)CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)
)

+CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)WWWWWWWWWWWWWW
−1

(xxxxxxxxxxxxxx)
∂2W (xxxxxxxxxxxxxx)

∂x∂y

(
IIIIIIIIIIIIII − ppppppppppppppT

(xxxxxxxxxxxxxx)CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)
)

−CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)WWWWWWWWWWWWWW
−1

(xxxxxxxxxxxxxx)
∂W (xxxxxxxxxxxxxx)

∂y
WWWWWWWWWWWWWW
−1

(xxxxxxxxxxxxxx)
∂W (xxxxxxxxxxxxxx)

∂x

(
IIIIIIIIIIIIII − ppppppppppppppT

(xxxxxxxxxxxxxx)CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)
)

−CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)WWWWWWWWWWWWWW
−1

(xxxxxxxxxxxxxx)
∂W (xxxxxxxxxxxxxx)

∂x
pppppppppppppp

T
(xxxxxxxxxxxxxx)

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂y
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Moving Least Squares (VII)

I Computation of derivatives
• The diffuse derivatives are obtained by neglecting all

derivatives of CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂2NNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂x2
≈ ∂2ppppppppppppppT(xxxxxxxxxxxxxx)

∂x2
CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂2NNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂x∂y
≈ ∂2ppppppppppppppT(xxxxxxxxxxxxxx)

∂x∂y
CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂nNNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂xn
≈ ∂nppppppppppppppT(xxxxxxxxxxxxxx)

∂xn
CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

Huerta et al.,Pseudo-divergence-free Element Free Galerkin method for incompressible fluid flow,CMAME,2004
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Moving Least Squares (VII)

• However, as we already have computed the first derivatives
of CCCCCCCCCCCCCC(xxxxxxxxxxxxxx), it is possible to use a semi-diffuse approach
without extra effort:

∂2NNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂x2
≈ ∂2ppppppppppppppT(xxxxxxxxxxxxxx)

∂x2
CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) + 2

∂ppppppppppppppT(xxxxxxxxxxxxxx)

∂x

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x

∂2NNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂x∂y
≈ ∂2ppppppppppppppT(xxxxxxxxxxxxxx)

∂x∂y
CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) +

∂ppppppppppppppT(xxxxxxxxxxxxxx)

∂x

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂y
+
∂ppppppppppppppT(xxxxxxxxxxxxxx)

∂y

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x

Derivatives L1 Error L2 Error

Diffuse 1.631× 10−5 4.784× 10−5

Semi-Diffuse 1.586× 10−5 4.710× 10−5

Full 1.288× 10−5 3.656× 10−5

B It has been proved that use of
diffuse or semi-diffuse
derivatives does not decrease
the order of accuracy.

B It should be noted that the
accuracy is affected

Accuracy assesment of a high-order moving least squares finite volume method for compressible flows,C&F,2013
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The FV-MLS method (I)

I Note that due to the local scaling xxxxxxxxxxxxxx−xxxxxxxxxxxxxxIh

ppppppppppppppT(00000000000000) = (1 0 0 0 0 0)

∂ppppppppppppppT(00000000000000)

∂x
=

(
0

1

h
0 0 0 0

)

∂ppppppppppppppT(00000000000000)

∂y
=

(
0 0

1

h
0 0 0

)
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The FV-MLS method

I This scheme acknowledge the different nature of
convective and diffusive terms.

I We start from a high-order, continuous MLS
approximation of the solution:

I Convective terms discretization:
• Breaks the continuous representation of the MLS

approximation.

• Obtains a continuous representation of the variables inside
each cell.

I Diffusive terms discretization is:
• Centered→ Direct interpolation at Gauss points with MLS.

• Continuous.

• Highly accurate.
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The FV-MLS method

I Hyperbolic term → Flux Difference Splitting

I

U

I-1 I+1 I+2 xj

UUUUUUUUUUUUUUL = UUUUUUUUUUUUUU I +∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I∇UUUUUUUUUUUUUU I · (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI) +
1

2
(xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI)T HIHIHIHIHIHIHIHIHIHIHIHIHIHI (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI)

UUUUUUUUUUUUUUR = UUUUUUUUUUUUUU I+1+∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1∇UUUUUUUUUUUUUU I+1·(xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI+1)+
1

2
(xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI+1)

T
HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1HI+1 (xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI+1)
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The FV-MLS method

I Hyperbolic-like terms:

• MLS is used to compute the gradients and high-order
derivatives required for the reconstruction of the variable at
integration points placed at interface.

CCCCCCCCCCCCCC(xxxxxxxxxxxxxxI) = MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxxI)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxI
WWWWWWWWWWWWWW (xxxxxxxxxxxxxxI)

∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

∂x
= CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)WWWWWWWWWWWWWW−1(xxxxxxxxxxxxxx)

∂WWWWWWWWWWWWWW (xxxxxxxxxxxxxx)

∂x

(
IIIIIIIIIIIIII − ppppppppppppppT(xxxxxxxxxxxxxx)CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)

)

∇∇∇∇∇∇∇∇∇∇∇∇∇∇UUUUUUUUUUUUUU I =

nx∑
j=1

UUUUUUUUUUUUUU j∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N j(xxxxxxxxxxxxxxI)

∂NNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂x

∣∣∣∣∣∣∣∣
x=xI

=
∂ppppppppppppppT(00000000000000)

∂x
CCCCCCCCCCCCCC(xxxxxxxxxxxxxxI)+pppppppppppppp

T(00000000000000)
∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxxI)

∂x
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The FV-MLS method

I Hyperbolic-like terms:

• MLS is used to compute the gradients and high-order
derivatives required for the reconstruction of the variable at
integration points placed at interface.

CCCCCCCCCCCCCC(xxxxxxxxxxxxxxI) = MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxxI)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxI
WWWWWWWWWWWWWW (xxxxxxxxxxxxxxI)

∂2UUUUUUUUUUUUUU I
∂x2

=

nx∑
j=1

UUUUUUUUUUUUUU j
∂2Nj(xxxxxxxxxxxxxxI)

∂x2

∂2NNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂x2

∣∣∣∣∣∣∣∣
x=xI

≈ ∂2ppppppppppppppT(00000000000000)

∂x2
CCCCCCCCCCCCCC(xxxxxxxxxxxxxxI)
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The FV-MLS method

I Hyperbolic-like terms:

• MLS is used to compute the gradients and high-order
derivatives required for the reconstruction of the variable at
integration points placed at interface.

CCCCCCCCCCCCCC(xxxxxxxxxxxxxxI) = MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxxI)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxI
WWWWWWWWWWWWWW (xxxxxxxxxxxxxxI)

∂nUUUUUUUUUUUUUU I
∂xn

=

nx∑
j=1

UUUUUUUUUUUUUU j
∂nNj(xxxxxxxxxxxxxxI)

∂xn

∂nNNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂xn

∣∣∣∣∣∣∣∣
x=xI

≈ ∂nppppppppppppppT(00000000000000)

∂xn
CCCCCCCCCCCCCC(xxxxxxxxxxxxxxI)

Universidade da Coruña — Group of Numerical Methods in Engineering



The FV-MLS method

I Elliptic-like terms:

• Direct interpolation at Gauss points with MLS.

UUUUUUUUUUUUUU iq =

niq∑
j=1

UUUUUUUUUUUUUU jNNNNNNNNNNNNNN j(xxxxxxxxxxxxxxiq)

NNNNNNNNNNNNNNT (xxxxxxxxxxxxxxiq) = ppppppppppppppT (00000000000000)CCCCCCCCCCCCCC(xxxxxxxxxxxxxxiq)
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The FV-MLS method

I Elliptic-like terms:

• Direct interpolation at Gauss points with MLS.

∇∇∇∇∇∇∇∇∇∇∇∇∇∇UUUUUUUUUUUUUU iq =

niq∑
j=1

UUUUUUUUUUUUUU j∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N j(xxxxxxxxxxxxxxiq)

∂NNNNNNNNNNNNNNT(xxxxxxxxxxxxxx)

∂x

∣∣∣∣∣∣∣∣
xxxxxxxxxxxxxx=xxxxxxxxxxxxxxiq

=
∂ppppppppppppppT(00000000000000)

∂x
CCCCCCCCCCCCCC(xxxxxxxxxxxxxxiq)+pppppppppppppp

T(00000000000000)
∂CCCCCCCCCCCCCC(xxxxxxxxxxxxxxiq)

∂x
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The FV-MLS method (V)

I Vertices and/or centroids of the control cells are the
“particles” to perform the MLS approximation.

I We need to define stencils to “mark” the neighbor
particles that define the cloud of points.
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The FV-MLS method (VI)

I How to define stencils?

I There exists an optimal size nxI of points in the
stencil such as Nmin < nxI

Nmin =
(d+ order)!

d!order!

I If it is large⇒excessive dissipation

I Maybe optimization??
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The FV-MLS method (VII)

I We want stencils as compact as possible by using
layers of cells around the active cell

I In practice this requires a high number of points in
the stencil

I To overcome this inconvenient, last particles are
placed such as satisfying a barycentric equilibrium

705 we used IDA [39] for Implicit Differential–Algebraic solver, a
706 C-based programming language variant of the well known DASPK
707 solver [40,41]. As major feature, the time integration method is
708 the variable-order (from 1 to 5), variable-coefficient Backward
709 Differentiation Formula, with adaptive time-step, see [42,43] for
710 more details.
711 For the solution of the linear system (22), an inexact Newton/
712 Krylov subspace iterative corrections based on a scaled precondi-
713 tioned GMRES [44] (Generalized Minimal Residual method) solver
714 is used. Only left preconditioning is allowed in IDA code. Typical
715 preconditioners used with this code are based on the approxima-
716 tion of the Jacobian matrix of the system given by (22). In our case,
717 the left preconditioner matrix is given by
718

P ¼ vM�rURð�;UÞ;720720

721 where v is a scalar inversely proportional to the time step. For sake
722 of simplicity, we consider
723

P � vM� diagðrURð�;UÞÞ;725725

726 accompanied by a zero fill-in incomplete LU (ILU(0)) factorization,
727 see [45] for more details. The obtained system using P is solved
728 via a standard LU decomposition solver.
729 This approximation can appear as a ‘‘crude’’ approximation of
730 the Jacobian matrix, but using even a poor approximation can be
731 surprisingly superior to using the Newton–Krylov method with
732 no preconditioning [45].

733 4. Computational aspects

734 4.1. Stencils: size and distribution

735 There exists an optimal size nxI of points in the stencil such as
736 Nmin 6 nxI 6 Nmax. The minimum number of points correspond to
737 the dimension of the polynomial basis, it is given by
738

Nmin :¼ m ¼ ðdþ orderÞ!
d!order!

ð26Þ740740

741

742

743 � for d = 2: Nmin ¼ 1
2 ðorderþ 1Þðorderþ 2Þ,

744 � for d = 3: Nmin ¼ 1
6 ðorderþ 1Þðorderþ 2Þðorderþ 3Þ.

745 The maximum number of points in a stencil is more difficult to
746 estimate. It can be defined as
747

Nmax ¼ Nmin þ nþ; ð27Þ749749

750where n+ is the additional number of points to be defined. It was ob-
751served that if p is too large, then the results present an excessive
752dissipation. Depending on the orders and the quality of the grid,
753we take 5 6 n+ 6 15. An optimization study should give more infor-
754mation to define this parameter.
755Once the size of the stencil is defined, the step after concerns
756the distribution of the particles (centroids) around the active cell.
757If possible, priority is given to construct stencils as compact as pos-
758sible by using layers of cells around the active cell, see Fig. 4(A). But
759in practice the fulfillment of the compactness condition requires a
760high number of points in the stencil, which induces dissipation as
761mentioned above. To overcome this inconvenient, last particles
762which can not form a compact layer are placed such as satisfying
763a barycentric equilibrium (see Fig. 4(B)). It is a choice among oth-
764ers, but it is more rigorous and maybe more accurate to define a
765distribution criterion based on the singularity-avoiding [46], the
766best momentum matrix conditioning ðPXxI

�W½xI �ðxÞ � P
T
XxI
Þ of Eq.

767(9) and/or minimum of diffusion. Concerning this last point, when
768the dissipation is very small, the scheme can become unstable, this
769is due to the fact that waves with high wavenumber are not well
770solved by the numerical scheme and present high dispersion errors
771(see Fig. 2). This is why one should be very careful when defining
772the minimum diffusion criterion.

7734.2. Boundary conditions

774For our modeling, the boundary conditions enter in the dis-
775cretized equations through a proper definition of the numerical
776flux. The numerical integration at the Gauss points at the bound-
777ary interfaces can be written as H(�, �,U+,U⁄�,n), where n is the
778outward normal unit vector from the domain and U⁄� is the
779external state variable. Depending on the boundary type, the con-
780struction of U⁄� accounts for, both, the physical boundary condi-
781tions that must be enforced and the information leaving the
782domain.
783In this paper, for Navier–Stokes equations we use no-slip
784boundary condition to model rigid walls and far-field boundary
785condition to model the external boundaries of the computational
786domain. For LEE, a perfectly reflecting boundary condition is easily
787obtained by defining, at each Gauss points on the rigid wall bound-
788aries, an external mirror fictitious state U⁄�. For external bound-
789aries, we propose a new methodology to model non-reflecting
790(absorbing) boundary conditions based on combining a stretching
791zone with MLS filtering and an upwinding technique used by Ber-
792nacki et al. [47] with DG.

Fig. 4. MLS 5th order scheme stencil (4th order polynomial basis): Nmin = 15 points and Nmax = Nmin + 4 = 19 points (Eq. (27)). (A) Compact stencil distribution and
(B) non-compact stencil distribution with respect to Nmax = 19 points.
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The FV-MLS method (VII)

I Boundary conditions: We impose them on the
numerical fluxes
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The FV-MLS method (VII)

I However, in order to improve the reconstruction we
include ghost cells in the stencil

∇∇∇∇∇∇∇∇∇∇∇∇∇∇UUUUUUUUUUUUUU I =

nx∑
j=1

UUUUUUUUUUUUUU j∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N∇N j(xxxxxxxxxxxxxxI)
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A note on curved boundaries

the exact solution, which is steady, smooth, subcritical, and symmetric, with streamlines
following contours of the body [2]. The numerical solutions, however, are unsteady
and may become transonic with higher (p = 2, 3) orders of approximation. Instead of
“wetting” the surface, the flow separates from the back of the cylinder forming a wake.
A close look at the velocity plot in Figure 2 reveals two vortices at the back side of the
cylinder. Remarkably, the quality of solutions deteriorate as the order of approximation
increases: the solutions become less symmetric and the wake increases.

The likely explanation is that by increasing the order of approximation, we obtain a
more accurate solution to a wrong problem: flow around a polygon. Rarefaction waves
are formed at the vertices of the polygon [2]. These are better resolved with higher p.
Density plots near the top of the cylinder (with the background mesh) in Figure 1, right,
demonstrate concentration of the error near vertices. Isolines take a wave-like shape
instead of a smooth curve. This becomes increasingly so and affects solution in further
parts of the domain as p increases.

Figure 1: Mach isolines (left) and density at the top of the cylinder (right) with reflecting
boundary conditions. p = 1, 2, 3, from top to bottom. A wake is formed at the rear; the
solution does not achieve a steady symmetric irrotational form.

6

Mach isolines (left) and density at the top of the cylinder (right) with reflecting boundary conditions. p = 1, 2,
3, from top to bottom. Taken from Krivodonova and Berger, High-Order Accurate Implementation of Solid Wall
Boundary Conditions in Curved Geometries, JCP, 2006
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A note on curved boundaries

CELL I
DG (p=2)
FV-MLS
MLS GHOST CELLS

Schematic representation of the differences on curved boundary discretization between FV-MLS and DG.
Shaded cells represent the MLS stencil.
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A note on curved boundaries

Author's personal copy

neglecting the first derivatives of C(x) (p = 1; case A in Table 2)
gives acceptable results compared to orders of accuracy obtained
using the full p = 1 MLS derivatives (case B in Table 2). Results ob-
tained for p = 2 confirm that the use of the semi-diffuse approxima-
tion not only increases the formal order of the numerical FV-MLS
scheme but also decreases its error level.

Fig. 8 shows that the distribution of the pressure coefficient
along the surface do not strongly differ when diffuse or full deriva-
tives are employed. However, it is interesting to note that the en-
tropy production on the wall decreases when the full derivatives
are computed, leading to a reduction in the maximum entropy pro-
duction by a factor ranging to 17% for the 64 � 16 grid up to 25%
for the 128 � 32 grid.

Our conclusion is that this study confirms that the diffuse
approximation of the derivatives do not deteriorate the O(hp+1) or-
der of converge on smooth inviscid solutions as it was pointed out
in [18]. However, for higher-order computations (e.g. p > 3) less
dissipative results should be obtained using the semi-diffuse ap-
proach with moderate extra coding effort compared to the full
derivative approach.

Finally, we intend to evaluate how the present solver is sensi-
tive to the high-order representation of the boundary flux inte-
grals. To this end, we consider the previous third-order FV-MLS
scheme with the diffuse derivative approximation as reference
(namely case C in Table 2). As expected, we remark from Table 3
that the use of a straight representation of the wall normals (case
A) results in a loss of accuracy compared to the case based on an
accurate reconstruction of physical normals (case B).

Fig. 9. Third-order accurate FV-MLS computation on a 64 � 16 grid using boundary normal evaluations based on a straight representation (a) or on a physical representation
(b) for curved geometry.

CELL I
DG (p=2)
FV-MLS
MLS GHOST CELLS

Fig. 10. Schematic representation of the differences on curved boundary discret-
ization between FV-MLS and DG. Shaded cells represent the MLS stencil.

Table 4
L1 and L2 norms of error in entropy production and orders of accuracy of the FV-MK
solver for the inviscid flow problem for constant, linear and quadratic reconstruction
of the Riemann states at wall edges (pbc denotes the order of the polynomial basis in
the computation of the MLS shape function derivatives).

Case Wall
reconstruction

pbc L1-error Order L2-error Order

A Constant 0 5.0204E�03 – 1.1925E�02 –
1.0728E�03 2.22 3.6569E�03 1.70
2.5466E�04 2.07 1.2632E�03 1.53

B Linear 1 3.1717E�03 – 7.2204E�03 –
2.8543E�04 3.47 7.4420E�04 3.27
2.1016E�05 3.76 7.2939E�05 3.35

C quadratic 2 3.0923E�03 – 7.0105E�03 –
2.5902E�04 3.57 6.4485E�04 3.44
1.6315E�05 3.98 4.7838E�05 3.75

Fig. 11. (a) Constant (pbc=0) and (b) quadratic (pbc = 2) reconstructions of the flow variables at solid edges (Riemann states at interior cells are computed using a third-order
quadratic MLS reconstruction, the grid size is 128 � 32).

48 J.-C. Chassaing et al. / Computers & Fluids 71 (2013) 41–53

Third-order accurate FV-MLS computation on a 64× 16 grid using boundary normal evaluations based on a
straight representation (a) or on a physical representation (b) for curved geometry.

Accuracy assesment of a high-order moving least squares finite volume method for compressible flows,C&F,2013
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Properties of the FV-MLS method

I We perform a Fourier Analysis for the 1D linear
advection equation.

I We obtain the dispersion-dissipation properties.

I We compare MLS interpolation with Piecewise
Polynomial Interpolation.

I We check the order of convergence.
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Dispersion and dissipation (I)

I Dispersion error: Associated with the error in the
speed of the wave propagation

I Dissipation error: Associated with the error in the
wave amplitude
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Dispersion and dissipation
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Dispersion-Dissipation Properties. Cubic spline kernel

DISPERSION DISSIPATION
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Dispersion-Dissipation Properties. Exponential kernel

DISPERSION DISSIPATION
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IS MLS INTERPOLATION ACCURATE?

A COMPARISON BETWEEN Piecewise Polynomial
Interpolation (PPI) AND FV-MLS
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IS MLS INTERPOLATION ACCURATE?

I We compare interpolation with equivalent spatial
resolution by using Moving Least Squares (MLS)
(cubic basis) and Piecewise Polynomial Interpolation
(PPI) (p = 3).

Division of a p = 3 element to obtain a FV-MLS grid with equivalent spatial resolution.
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IS MLS INTERPOLATION ACCURATE?

I We compare interpolation with equivalent spatial
resolution by using Moving Least Squares (MLS)
(cubic basis) and Piecewise Polynomial Interpolation
(PPI) (p = 3).

Division of a p = 3 element to obtain a FV-MLS grid with equivalent spatial resolution.
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IS MLS INTERPOLATION ACCURATE?

I We compare interpolation with equivalent spatial
resolution by using Moving Least Squares (MLS)
(cubic basis) and Piecewise Polynomial Interpolation
(PPI) (p = 3).

Division of a p = 3 element to obtain a FV-MLS grid with equivalent spatial resolution.
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Interpolation on a structured grid

I Function: u(x, y) = sin (2πx) sin (2πy)

• 13× 13 p = 3 elements on a cartesian [0, 1]× [0, 1] grid.

• 39× 39 FV-MLS elements on a cartesian [0, 1]× [0, 1] grid.

• We interpolate for both grids at the same points (located at
the 4× 4 Gauss-Legendre points of each FV-MLS element).

Absolute value of the error in the variable Absolute value of the error in the derivative

PPI MLS PPI MLS
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Interpolation on a distorted grid

I Function: u(x, y) = sin (2πx) sin (2πy)

Absolute value of the error in the variable Absolute value of the error in the derivative

PPI MLS PPI MLS
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Order of Convergence. Ringleb Flow (I)

I Domain: −1.15 ≤ x ≤ −0.75 , 0.15 ≤ y ≤ 0.55

Mach isolines.
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Order of Convergence. Ringleb Flow (II)

Grids

FV-MLS

15 x 15

30 x 30

60 x 60

I The order of convergence is the expected one.
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Order of Convergence. Poisson (I)

−∆u = f in Ω
u = gD on ΓD

u(x, y) = exp(α sin(Ax+By) + β cos(Cx+Dy))

Isolines of the exact solution for u.
Universidade da Coruña — Group of Numerical Methods in Engineering



Order of Convergence. Poisson (II)

h/h0
DG p = 3
Error L2 u

FV-MLS
Error L2 u

1 2.50 E − 04 8.34 E − 05

0.5 1.20 E − 05 5.60 E − 06

0.25 6.05 E − 07 3.75 E − 07

0.125 3.16 E − 08 2.52 E − 08

h/h0

DG p = 3
Order of

Convergence u

FV-MLS
Order of

Convergence u

DG p = 3
Order of

Convergence s

FV-MLS
Order of

Convergence s

1 − − − −

0.5 4.38 3.86 3.83 3.54

0.25 4.31 3.99 3.69 3.52

0.125 4.26 3.89 3.60 3.46
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A first motivating example. 1D Linear advection equation

• First ICASE/LaRC Workshop on Benchmark problems in
CAA

• We solve
∂u

∂t
+ a

∂u

∂x
= 0 with u(x, 0) = 0.5e− ln(2)(x3)

2

380 390 400 410 420 430 440 450

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

u

Exact

2nd order FV−MLS

3rd order FV−MLS

1D Linear advection equation, a = 1, t = 400, ∆x = 1, CFL = 0.6
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A first motivating example. 1D Linear advection equation

• First ICASE/LaRC Workshop on Benchmark problems in
CAA

• We solve
∂u

∂t
+ a

∂u

∂x
= 0 with u(x, 0) = 0.5e− ln(2)(x3)

2

80 90 100 110 120

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

u

t=100 Exacta
κ

x
=6

κ
x
=1

κ
x
=4

380 390 400 410 420

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

u

t=400 Exacta

κ
x
=6

κ
x
=1

κ
x
=4

1D Linear advection equation, a = 1, t = 400, ∆x = 1, CFL = 0.6
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A first motivating example. 1D Linear advection equation

• Solution with a fourth order MacCormack scheme, ∆x = 1,
CFL = 0.2

Viswanathan, Sankar, A Comparative Study of Upwind and MacCormac schemes for CAA Benchmark
problems, First ICASE/LaRC Workshop on Benchmark problems in CAA, NASA Conference Publication 3300,

185-195, 1995
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A CAA example on an unstructured grid.

I Solve the LEE for the convection of a monopolar
source

Sketch of the problem.

S = εe−α[(x−xs)2+(y−ys)2] sinwt
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A CAA example on an unstructured grid.
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A CAA example on an unstructured grid.

-0.35

-0.25

-0.15

-0.05

0.05

0.15

0.25

-100 -80 -60 -40 -20 0 20 40 60 80 100

p

x

Exact
with m ass-m atrix, 5th order

Acoustic pressure profile across y = 0
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A high-order formulation for incompressible flows

• Introduction

• The FV-MLS method

• A high-order formulation for incompressible flows

• High-order Fluid-Structure-Interaction techniques

• Conclusions
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A high-order formulation for incompressible flows

B Introduction

B Formulation

B Numerical Examples
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A high-order formulation for incompressible flows

B Introduction

B Formulation

B Numerical Examples
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Introduction

I Incompressibility assumption:
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Introduction

I Checkerboard:

∫
ΩI

∂p

∂x
dΩ =

Nf∑
j=1

NG∑
ig=1

[pjn̂xj]igWig
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Introduction

I Checkerboard:

II-1 I+1ew

∫
ΩI

∂p

∂x
dΩ = (pn̂x)e + (pn̂x)w
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Introduction

I Checkerboard:

II-1 I+1ew

∫
ΩI

∂p

∂x
dΩ = (p)e − (p)w
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Introduction

I Checkerboard:

II-1 I+1ew

(p)e =
pi+1 + pi

2
(p)w =

pi + pi−1

2∫
ΩI

∂p

∂x
dΩ = (p)e − (p)w
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Introduction

I Checkerboard:

II-1 I+1ew

(p)e =
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(p)w =

pi + pi−1
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Introduction

I Checkerboard:
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Introduction

I Checkerboard:
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Introduction

I In order to solve the checkerboard:

• Collocated grid arrangement → Special interpolation (MIM)

• Staggered grid arrangement → Special location of the
variables
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Introduction

I Collocated grid arrangement → u, v, p located at cell centroid.
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Introduction

I Staggered grid → u, v, p located at different locations.
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Introduction

I Staggered grid → u control volume.
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Introduction

I Staggered grid → v control volume.
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Introduction

I Staggered grid arrangement:
• Variables stored at different locations

• No interpolations required

• Drawback → Complex in unstructured and/or 3D grids

I Collocated grid arrangement:
• Variables stored at cell centroid

• Structured and unstructured grid

• Drawback → Possibility of checkerboard
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Introduction

I Staggered grid arrangement:
• Variables stored at different locations

• No interpolations required

• Drawback → Complex in unstructured and/or 3D grids

I Collocated grid arrangement:
• Variables stored at cell centroid

• Structured and unstructured grids

• Drawback → Possibility of checkerboard

• Special interpolation is required

Universidade da Coruña — Group of Numerical Methods in Engineering



A high-order formulation for incompressible flows

B Introduction

B Formulation

B Numerical Examples
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Incompressible Navier Stokes

I Incompressible Navier-Stokes:

∂UUUUUUUUUUUUUU

∂t
+UUUUUUUUUUUUUU · (∇UUUUUUUUUUUUUU) = −∇p+

1

Re
(∆UUUUUUUUUUUUUU)

∇ ·UUUUUUUUUUUUUU = 0

where UUUUUUUUUUUUUU = (u, v)T is the velocity field, p(x, y, t) is the
pressure variable and Re denotes the Reynolds number.

I Resolution procedure:

• A collocated Semi-Implicit Method for Pressure Linked
Equations (SIMPLE).
• Momentum Interpolation Method to avoid checkerboard

oscillations.
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SIMPLE

Start

Set time t=t+Δt

Solve the 
momentum 

equation  

Solve the 
pressure correction 

         equation 

Convergence?

Correct velocity
 and 

pressure fields  

Inner 
iteration 

(m)

t>tmax?

Exit

Time step
 (n)
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SIMPLE

I Momentum equation

• Cell centered finite volume scheme∫
ΩI

∂UUUUUUUUUUUUUU

∂t
dΩ+

∫
ΩI

UUUUUUUUUUUUUU · (∇UUUUUUUUUUUUUU)dΩ = −
∫

ΩI

∇pdΩ+
1

Re

(∫
ΩI

(∆UUUUUUUUUUUUUU)dΩ

)

• Discretized momentum equation

VI
3UUUUUUUUUUUUUUm+1,n+1

I − 4UUUUUUUUUUUUUUnI +UUUUUUUUUUUUUUn−1
I

2∆t
+

Nf∑
j=1

NG∑
ig=1

[
Hm,n+1
j UUUUUUUUUUUUUUm+1,n+1

j

]
ig
Wig =

= −
Nf∑
j=1

NG∑
ig=1

[
pm,n+1
j · n̂nnnnnnnnnnnnnj

]
ig
Wig+

1

Re

Nf∑
j=1

NG∑
ig=1

[
∇UUUUUUUUUUUUUUm+1,n+1

j · n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂nj
]
ig
Wig
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SIMPLE

I Momentum equation

• Cell centered finite volume scheme∫
ΩI

∂UUUUUUUUUUUUUU

∂t
dΩ+

∫
ΩI

UUUUUUUUUUUUUU · (∇UUUUUUUUUUUUUU)dΩ = −
∫

ΩI

∇pdΩ+
1

Re

(∫
ΩI

(∆UUUUUUUUUUUUUU)dΩ

)

• Discretized momentum equation

VI
3UUUUUUUUUUUUUUm+1,n+1

I − 4UUUUUUUUUUUUUUnI +UUUUUUUUUUUUUUn−1
I

2∆t
+

Nf∑
j=1

NG∑
ig=1

[
Hm,n+1
j UUUUUUUUUUUUUUm+1,n+1

j

]
ig
Wig =

= −
Nf∑
j=1

NG∑
ig=1

[
pm,n+1
j · n̂nnnnnnnnnnnnnj

]
ig
Wig+

1

Re

Nf∑
j=1

NG∑
ig=1

[
∇UUUUUUUUUUUUUUm+1,n+1

j · n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂nj
]
ig
Wig
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SIMPLE

I Higher-order approximations are made using MLS:

• Pressure term pj =

nxxxxxxxxxxxxxx∑
k=1

Ng
k (xxxxxxxxxxxxxxj)pk

• Diffusive term ∇UUUUUUUUUUUUUU j =

nxxxxxxxxxxxxxx∑
l=1

∇Ng
l (xxxxxxxxxxxxxxj)UUUUUUUUUUUUUU l

• Convective term ⇒ Deferred correction approach

UUUUUUUUUUUUUU j =
(
UUUUUUUUUUUUUULOj

)m+1,n+1
+ (UUUUUUUUUUUUUUHOj −UUUUUUUUUUUUUULOj )

m,n+1

UUUUUUUUUUUUUULOj =

{
UUUUUUUUUUUUUU I , Hj ≥ 0

UUUUUUUUUUUUUUN , Hj < 0
UUUUUUUUUUUUUUHOj =

nxxxxxxxxxxxxxx∑
k=1

Ng
k (xxxxxxxxxxxxxxj)UUUUUUUUUUUUUUk
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SIMPLE

Start
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SIMPLE

I Pressure correction equation

∫
ΩI

∇ ·UUUUUUUUUUUUUUdΩ =

∫
ΓI

UUUUUUUUUUUUUU · nnnnnnnnnnnnnnjdΓ =

Nf∑
j=1

NG∑
ig=1

[
Û̂ÛÛÛÛÛÛÛÛÛÛÛÛU j · n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂nj

]
ig
Wig

• In order to avoid checkerboard oscillations ⇒ Momentum
Interpolation Method (MIM)

Û̂ÛÛÛÛÛÛÛÛÛÛÛÛU j = UUUUUUUUUUUUUU∗j +

(
VI
aI

)
j

[(
∇pI

)
j
−∇pj

]

• The MIM was proposed by Rhie and Chow in 1983.
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SIMPLE

I Pressure correction equation

• Checkerboard oscillations⇒Momentum Interpolation Method

Û̂ÛÛÛÛÛÛÛÛÛÛÛÛU j = UUUUUUUUUUUUUU∗j +

(
VI
aI

)
j

[(
∇pI

)
j
−∇pj

]
B These terms are usually obtained at integration point j using linear

interpolation.
B We propose to use higher-order approximations using MLS

UUUUUUUUUUUUUU∗j =

nxxxxxxxxxxxxxx∑
k=1

Ng
k (xxxxxxxxxxxxxxj)UUUUUUUUUUUUUU

∗
k

(
VI
aI

)
j

=

nxxxxxxxxxxxxxx∑
k=1

Ng
k (xxxxxxxxxxxxxxj)

(
VI
aI

)
k

(
∇pI

)
j

=

nxxxxxxxxxxxxxx∑
k=1

Ng
k (xxxxxxxxxxxxxxj)∇pk ∇pj =

nxxxxxxxxxxxxxx∑
l=1

∇Ng
l (xxxxxxxxxxxxxxj)pl
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SIMPLE

I Pressure correction equation

• A pressure correction equation is solved in order to impose
the continuity “constraint”.

Nf∑
j=1

NG∑
ig=1

[
Û̂ÛÛÛÛÛÛÛÛÛÛÛÛU j · n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂nj

]
ig
Wig −

Nf∑
j=1

NG∑
ig=1

[(
VI
aI

)
j

(
∇p

′)
j
· n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂nj

]
ig

Wig = 0

• The pressure correction, p
′
, is the unknown.

• Approximations at integration point are obtained with MLS.
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SIMPLE

Start
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SIMPLE

I Correct velocity and pressure fields at cell centroids as

UUUUUUUUUUUUUUm+1,n+1 = UUUUUUUUUUUUUU∗ +UUUUUUUUUUUUUU
′
= UUUUUUUUUUUUUU∗ −

VI
aI

(
∇p

′)
I

pm+1,n+1 = pm,n+1 +
(
p
′)m+1,n+1

• The value
(
∇p′
)
I

is approximated at cell centroid using MLS

∇p
′
I =

nxxxxxxxxxxxxxx∑
l=1

∇Ng
l (xxxxxxxxxxxxxxj)p

′
l
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A high-order formulation for incompressible flows

B Introduction

B Formulation

B Numerical Examples
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Numerical Examples

I Kovasznay Flow.

u(x, y)=1− eαx cos (2πy)

v(x, y)= α
2πe

αx sin (2πy) α = Re
2 −

√
Re2

4 + 4π2

p(x, y)= 1
2

(
1− e2αx

)
• Domain Ω = [−0.5, 0.5]× [0.5, 0.5]. Re=40

u v p
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Numerical Examples

I Kovasznay Flow.
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pressure
Order 4

• The formal order of accuracy is recovered
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Numerical Examples

I 2D Taylor-Green Flow.

u(x, y, t)= e
−2t
Re cos (y) sin (x)

v(x, y, t)= −e−2t
Re cos (x) sin (y)

p(x, y, t)= e
−4t
Re

4 (cos (2x) + cos (2y))

• Domain Ω = [0, 2π]× [0, 2π]. Re=100

u v p
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Numerical Examples

I 2D Taylor-Green Flow.
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Numerical Examples

I Cavity Flow

Re=1000
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Numerical Examples

I Cavity Flow. 1635 cells.
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• Excellent agreement with the reference solution for different
Reynolds number. The reference solution is obtained on a
128x128 structured mesh (16384 cells).
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Numerical Examples

I Laminar Flow around a cylinder

• Benchmark proposed by Schäfer and Turek.

• Parabolic velocity profile at inlet

u(0, y) =
4Umy(H − y)

H2
, v(0, y) = 0

• Two test cases
B Reynolds 20
B Reynolds 100

Reference Solution: Schäfer, M., Turek, S., Benchmark Computations of Laminar Flow Around a
Cylinder, Notes on Numerical Fluid Mechanics, Volume 52 , pp. 547-566, 1996.
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Laminar Flow around a cylinder

• Reynolds 20

Mesh Order CD CL La ∆p

Mesh A 2 5.5869 0.0087 0.0881 0.1149

(4968 cells) 3 5.5919 0.0108 0.0851 0.1161

Mesh B 2 5.5817 0.0113 0.0851 0.1168

(19079 cells) 3 5.5859 0.0107 0.0845 0.1174

Upper bound − 5.5900 0.0110 0.0852 0.1176

Lower bound − 5.5700 0.0104 0.0842 0.1172
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Laminar Flow around a cylinder

• Reynolds 20

La

Mesh Order CD CL La ∆p

Mesh A 2 5.5869 0.0087 0.0881 0.1149

(4968 cells) 3 5.5919 0.0108 0.0851 0.1161

Mesh B 2 5.5817 0.0113 0.0851 0.1168

(19079 cells) 3 5.5859 0.0107 0.0845 0.1174

Upper bound − 5.5900 0.0110 0.0852 0.1176
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Laminar Flow around a cylinder

• Reynolds 100

Mesh Order CDmax CLmax St ∆p

Mesh A 2 3.2741 1.2246 0.2825 2.3548

(4968 cells) 3 3.2986 1.0451 0.2924 2.3962

Mesh B 2 3.2702 1.0662 0.2952 2.4731

(19079 cells) 3 3.2380 0.9985 0.3008 2.4858

Upper bound − 3.2400 1.0100 0.3050 2.5000

Lower bound − 3.2200 0.9900 0.2950 2.4600
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High-order Fluid-Structure-Interaction techniques

• Introduction

• The FV-MLS method

• A high-order formulation for incompressible flows

• High-order Fluid-Structure-Interaction techniques

• Conclusions
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High-order Fluid-Structure-Interaction techniques

I Incompressible flow around a cross-flow turbine.
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High-order Fluid-Structure-Interaction techniques

I Incompressible flow around a cross-flow turbine.
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High-order Fluid-Structure-Interaction techniques

I High-order Sliding Mesh Techniques
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High-order Fluid-Structure-Interaction techniques

I High-order Sliding Mesh Techniques
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High-order Fluid-Structure-Interaction techniques

I High-order Sliding Mesh Techniques
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High-order Fluid-Structure-Interaction techniques

I High-order Sliding Mesh Techniques
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High-order Fluid-Structure-Interaction techniques

I High-order Sliding Mesh Techniques
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High-order Fluid-Structure-Interaction techniques

I High-order Sliding Mesh Techniques

It will be presented tomorrow

Universidade da Coruña — Group of Numerical Methods in Engineering



Numerical Examples

I Incompressible flow around a cross-flow turbine.

~f =
{
fx
fy

}
=

∮
(p~n− ν(∇~U · ~n))dΓ

fN = fycosθ − fxsinθ fT = −fxcosθ − fysinθ
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High-order Fluid-Structure-Interaction techniques

I Fluid-Structure Interaction (FSI)

• Flow driven approach → ω given by the fluid

ωn+1 = ωn +
(T −M) ∆t

J

• T → Torque

• M → Loading Moment

• ∆t → Time step

• J → Mass moment of inertia
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Further research

I Fluid-Structure Interaction (FSI)
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Conclusions

• Introduction

• The FV-MLS method

• A high-order formulation for incompressible flows

• High-order Fluid-Structure-Interaction techniques

• Conclusions
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Conclusions

I We have a proposed a new higher-order accurate FV
formulation for the numerical solution of incompressible fluid
flows on unstructured meshes.

I We have modified the usual linear formulation of MIM to
introduce higher-order approximations using MLS.

I The proposed methodology obtains excellent results.

I This methodology can be easily included in existing finite
volume codes which represents an additional advantage.
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High-resolution finite volume methods on unstructured grids for turbulence and
aeroacoustics, ARCME, 2011

• S. Khelladi, X. Nogueira, F. Bakir, and I. Colominas, Toward a higher-order unsteady
finite volume solver based on reproducing kernel particle method, CMAME, 2011.

• J.C. Chassaing, S. Khelladi, and X.Nogueira, Accuracy assesment of a high-order
moving least squares finite volume method for compressible flows, C&F, 2013

• L. Ramirez, X. Nogueira, S. Khelladi, J.C. Chassaing, and I. Colominas, A new
higher-order finite volume method based on moving least squares for the resolution of
the incompressible Navier-Stokes equations on unstructured grids, CMAME, 2014

Universidade da Coruña — Group of Numerical Methods in Engineering


