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Introduction

I Origin of this research:
• Development of more accurate numerical methods for

turbomachinery.

• Standard industrial codes: 2nd order.

• We need high-resolution schemes for unstructured grids.

• Turbomachinery ⇒ Relative motion rotor/stator.
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Introduction

I It is not straightforward to obtain finite volume
methods with order higher than two on unstructured
grids.

I One of the main difficulties is the computation of
high-order derivatives.

Universidade da Coruña — Group of Numerical Methods in Engineering



Outline

• Introduction

• The FV-MLS method

•Multiscale properties of MLS: MLS-based shock
detection

• A formulation for all-speed flows

• A MLS-based sliding mesh technique

• Application to Navier-Stokes-Korteweg equations

• Conclusions

Universidade da Coruña — Group of Numerical Methods in Engineering



The MLS method in a nutshell

I MLS is an approximation method very used by the
meshless community.

I MLS performs a reconstruction of u(xxxxxxxxxxxxxx) at a point xxxxxxxxxxxxxx
by using a weighted LS approximation in the vicinity
of xxxxxxxxxxxxxx.

I The approximation is written in terms of MLS shape
functions.

û(xxxxxxxxxxxxxx) =

nx∑
j=1

Nj(xxxxxxxxxxxxxx)uj

I The approximation basically depends on a kernel and
a basis function.
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Kernel functions

I Many functions used as kernels: splines, gaussians

I An example, the cubic spline:

Wj(xxxxxxxxxxxxxx) = W (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxj, h) =
α

hν


1− 3

2s
2 + 3

4s
3 s ≤ 1

1
4(2− s)3 1 < s ≤ 2

0 s > 2

s =
‖xxxxxxxxxxxxxx−xxxxxxxxxxxxxxj‖

h

h = k max (‖xxxxxxxxxxxxxx− xxxxxxxxxxxxxxj‖)
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Kernel functions

I Another example: Exponential Kernel.

W (x, x∗, κ) =
e−(sc)

2

− e−(dmc )
2

1− e−(dmc )
2

s = |x− x∗| , dm = 2 max (|xj − x∗|) , c =
dm
2κ

I A 2D kernel is obtained by multiplying two 1D
kernels:

Wj(xxxxxxxxxxxxxx,xxxxxxxxxxxxxx
∗, κx, κy) = Wj(x, x

∗, κx)Wj(y, y
∗, κy)
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Kernel functions
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Kernel functions

CUBIC SPLINE EXPONENTIAL KERNEL
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A practical note

I Vertices and/or centroids of the control cells are the
“particles” to perform the MLS approximation.

I We need to define stencils to “mark” the neighbor
particles that define the cloud of points.

I We use a polynomial cubic basis in all the
computations.
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The FV-MLS method

I In order to develop high-order finite volume schemes:

• Compute fluxes more accurately.
• Improve function reconstruction at an integration point xxxxxxxxxxxxxx

placed at the interface between elements.

UUUUUUUUUUUUUU(x) = UIUIUIUIUIUIUIUIUIUIUIUIUIUI+∇UIUIUIUIUIUIUIUIUIUIUIUIUIUI ·(xxxxxxxxxxxxxx−xIxIxIxIxIxIxIxIxIxIxIxIxIxI)+
1

2
(xxxxxxxxxxxxxx−xIxIxIxIxIxIxIxIxIxIxIxIxIxI)

THIHIHIHIHIHIHIHIHIHIHIHIHIHI(xxxxxxxxxxxxxx−xIxIxIxIxIxIxIxIxIxIxIxIxIxI)+...

Piece-wise linear reconstruction of a function.
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The FV-MLS method

I Computation of high-order derivatives:
• Easy on structured grids.

• Unstructured grids⇒PROBLEM.

I We propose:
• The use of Moving Least Squares (MLS) to obtain an

accurate and multidimensional approximation of derivatives
on unstructured grids.
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The FV-MLS method

I This scheme acknowledge the different nature of
convective and diffusive terms.

I We start from a high-order, continuous MLS
approximation of the solution:

I Convective terms discretization:
• Breaks the continuous representation of the MLS

approximation.

• Obtains a continuous representation of the variables inside
each cell.

I Diffusive terms discretization is:
• Centered.

• Continuous.

• Highly accurate.
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MLS-based shock detection

Mach cone. (Source: www.airliners.net)
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MLS-based shock detection

I Slope limiters are used to design TVD schemes.

• A slope limiter limits the Taylor reconstruction of a
high-order finite volume scheme as follows:

UUUUUUUUUUUUUU(xxxxxxxxxxxxxx) = UUUUUUUUUUUUUU I + χI∇∇∇∇∇∇∇∇∇∇∇∇∇∇UUUUUUUUUUUUUU I · (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI)

B χI = 0⇒ First-order scheme
B χI = 1⇒ No limitation

• Slope limiters present some drawbacks.

B They avoid the convergence of the numerical method.

B They may be active in cells where the flow is smooth.

B Straightforward application to higher-order schemes is not obvious.
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MLS-based filtering (I)

• We propose to use the MLS multiresolution properties to
detect shock waves1. (Generalization of the work of Sjögreen
and Yee 2 for unstructured grids)

• The use of the Reproducing Kernel Particle Method as a
filter for turbulence problems was proposed in 2000 by
Wagner and Liu.

• MLS approximation of a variable can be seen as a low-pass
filtering.

ΦI =
n∑
j=1

Nj(xxxxxxxxxxxxxx)Φj

1X. Nogueira, L. Cueto-Felgueroso, I. Colominas, F. Navarrina, M. Casteleiro, A new shock-capturing technique
based on moving least squares for higher-order numerical schemes on unstructured grids, CMAME, 2010
2Sjögreen, B., Yee, H. C., Multiresolution wavelet based adaptive numerical dissipation control for high order
methods, Journal of Scientific Computing, 20 :211-255, 2004.
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MLS-based filtering (II)

I The filter properties are analyzed by the study of its
transfer function

Transfer function for the exponential (left) and for the cubic (right)
kernels.
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MLS-based shock detection (II)

I We can decompose a given data series in:

u = û+ u′

Raw Data (u)

Low frequencies (û)

High frequencies (u′)

I The cut frequency of the filter varies according to its
transfer function.
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MLS-based shock detection

I Wavelets connection.
• We define two sets of MLS shape functions, Nh(x) y N2h(x),

computed with h and 2h (Two different cut frequencies).
• Set of wavelet functions:

Φ2h(x) = Nh(x)−N2h(x)

B h (smoothing length) is the scale parameter of the wavelet function.
B We can do the same procedure with κx and exponential kernels.

• h-scale solution is the sum of the low-scale part and its
complementary high-scale part:

uh(x) = u2h(x) + Ψ(x)

Ψ(x) =
n∑

j=1

ujΦ
2h
j (x) =

n∑
j=1

uj(N
h(x)−N2h(x))
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MLS-based shock detection

I MLS-based selective limiting:
• Ψ⇒ indicates the smoothness of the solution.

• We use Ψ to decide if a slope limiter algorithm is activated
or not.

• We select the density as the reference variable.

• We need to define a threshold value for the function Ψρ(x).

B We propose a possible choice, that depend on a parameter
Clc:
◦ Tv defined from the gradient of the reference variable in

cell I.

Tv =
Clc |∇ρ|I A

1
d
I

M

AI is the size (area in 2D) of the control volume I, d is the number of spatial dimensions and M is
the Mach number
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MLS-based shock detection

I The slope limiter is active when:

|Ψρ| =

∣∣∣∣∣∣
nI∑
j=1

ρj
(
Nh(x)−N2h(x)

)∣∣∣∣∣∣ > Tv

I MLS-based detection method can be applied to
structured and unstructured grids.

I This selective limiting allows the extension of slope
limiters to higher-order schemes.

I It avoids the limitation of smooth extrema.

I It improves the convergence of the numerical method.

Universidade da Coruña — Group of Numerical Methods in Engineering



MLS-based shock detection. A first 1D test (I)

Linear reconstruction (left) and quadratic reconstruction (right) with the BJ limiter for the 1D Shu-Osher problem.
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MLS-based shock detection. A first 1D test (II)

Quadratic reconstruction without detector (left) and with detector (right) for the 1D Shu-Osher problem.
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MLS-based shock detection. A first 1D test (III)

I Ψ⇒ indicates the smoothness of the solution.

Shape of Ψ for the 1D Shu-Osher problem.
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Multiple dimensions detection test

I We test the ability of the proposed method to detect
shock waves in a multidimensional data distribution.

Abgrall function for the multidimensional detection test.
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Multiple dimensions detection test.

Clc = 0.2 Clc = 0.4
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Multiple dimensions detection test.

I General grids ⇒ this approach may become unstable.

I Solution: If the slope limiter is activated in a cell it is
activated in the whole stencil of that cell.

I We choose a less restrictive parameter for the
detection ⇒ Clc2 = 0.32.
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Multiple dimensions detection test. Unstructured grid

Clc2 = 0.32

Detection results for the Abgrall function with the methodology for general grids.
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2D Examples. A subsonic case

I Slope limiters may limit even for smooth flows

I Slope limiters may difficult to achieve convergence

I MLS-based selective limiting alleviate these problems.

I We check these effects by solving the subsonic flow
past a NACA 0012 profile
• Mach number=0.63, Angle of attack=2o
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2D Examples. A subsonic case

Selective limiting BJ limiter
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2D Examples. A subsonic case

Numerical Scheme CL CD

Hodography method 0.335 0

FV-MLS 3rd order + BJ 0.318 5.29E-03

FV-MLS 3rd order BJ + selective limiting 0.328 1.24E-03
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2D Examples. Transonic flow past a NACA 0012

Mach number=0.8, Angle of attack=1.25o

Selective limiting BJ limiter

X

Y

Z X

Y

Z

X

Y

Z X

Y
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2D Examples. Transonic flow past a NACA 0012

Numerical Scheme CL CD

FV-MLS 2nd order + BJ 0.341 2.465E-02

FV-MLS 4th order + BJ 0.342 2.486E-02

FV-MLS 4th order BJ + selective limiting 0.343 2.317E-02

AGARD Reference 0.347 2.221E-02
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2D Examples. Shock-wave-vortex Interaction

Shock-wave-vortex Interaction.
Mv = 0.4, Ms = 1.2, 200× 200 grid

Third-order FV-MLS scheme, Barth-Jespersen limiter
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2D Examples. Shock-wave-vortex Interaction
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2D Examples. Shock-wave-vortex Interaction
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2D Examples. Shock-wave-vortex Interaction
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2D Examples. Double Mach Reflection

Schematic representation of the Double Mach reflection problem.

I The size of the elements is ∆x = ∆y = 1
200

I Mach 10 right-moving shock
I α = 60 degrees
I Third-order FV-MLS scheme, Van Albada limiter
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2D Examples. Double Mach Reflection
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Double Mach Reflection. Detail of the Mach stems region

Present Approach

WENO (Shu, JCP,150 (1999))
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2D Examples. Mach 3 Forward step

Gx

Gy

Gz

X

Y

Z

Detail of the mesh in the corner region.

I The size of the elements away from the corner is (∆x = ∆y = 1
160). Size of

elements near the corner is one-half that.
I Third-order FV-MLS scheme, Jawahar limiter
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2D Examples. Mach 3 Forward step
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2D Examples. Mach 3 Forward step

Present Approach

WENO (Shu, JCP,150 (1999))

Universidade da Coruña — Group of Numerical Methods in Engineering



A high-order formulation for all-speed flows

• Introduction
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• A high-order formulation for all-speed flows

• High-order Sliding Mesh techniques

• Phase-transition phenomena

• Conclusions
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A high-order formulation for all-speed flows

I Two families of FV schemes:
• Density-based solvers⇒ Compressible flows

• Pressure-based solvers⇒ Incompressible flows

I The difference is in the computation of pressure field,
and in the density.

Compressible Flow Incompressible Flow
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A high-order formulation for all-speed flows

I Density-based solvers:

• Density⇒ computed from the continuity equation

• Pressure ⇒ obtained via an EQUATION OF STATE

I Fails to compute low Mach number flows:
• Discretized equations do not verify the right scaling of the

pressure fluctuations with M2
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A high-order formulation for all-speed flows

point to understand is that in general the strong limit solution of the compressible Euler model is
not described by the incompressible Euler equations. From the work of Schochet [18] (see also
[5]), this behavior for general initial data is well-understood at least for the isentropic equations
and can be summarized as follows: the limit solution separates into an acoustic wave that depends
on a fast time variable t=M� plus a slow part that does not depend on this fast time variable.
Moreover, the slow part does satisfy the incompressible Euler equations. If qðx; tÞ denote the
solutions of the compressible model, we have as the Mach number approaches zero:

qðx; tÞ ¼ qslowðx; tÞ þ qoscðx; t; t=M�Þ þHOT ð3Þ
where qslowðx; tÞ denote the solution of the incompressible Euler equations, qoscðx; t; t=M�Þ an
oscillatory component described by an acoustic type equation and HOT stands for higher order
terms.

For a restricted class of special initial data (but not in the general case) the acoustic component
is not present at leading order and the solutions of the incompressible Euler equations are the
strong limits of the solutions of the compressible ones as was known from some earlier results of

Fig. 1. Isovalues of the pressure, on a 3114 node mesh for M1 ¼ 0:1 (top), M1 ¼ 0:01 (middle), M1 ¼ 0:001 (bottom)

and for Roe scheme (left), VFRoe scheme (middle), Godunov scheme (right).

H. Guillard, A. Murrone / Computers & Fluids 33 (2004) 655–675 657

H. Guillard and A.Murrone, Computers & Fluids, 2004
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A high-order formulation for all-speed flows

I Pressure-based solvers:

• Continuity and momentum equations⇒ Poisson equation

• Pressure ⇒ Solve Poisson equation

I Not well-suited to compute high Mach flows
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A high-order formulation for all-speed flows

We want to develop solvers for

ALL THE REGIMES OF A FLOW
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A high-order formulation for all-speed flows

I Conservation laws

∂UUUUUUUUUUUUUU

∂t
+∇∇∇∇∇∇∇∇∇∇∇∇∇∇ ·

(
FHFHFHFHFHFHFHFHFHFHFHFHFHFH −FVFVFVFVFVFVFVFVFVFVFVFVFVFV

)
= SSSSSSSSSSSSSS in ΩT

I Numerical discretization:

ΩI
∂UUUUUUUUUUUUUU I
∂t

+

Nf∑
j=1

NG∑
ig=1

[
HHHHHHHHHHHHHH(UUUUUUUUUUUUUU+

j ,UUUUUUUUUUUUUU
−
j , n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂nj)−FVFVFVFVFVFVFVFVFVFVFVFVFVFVj · n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂nj

]
ig
Wig =

∫
ΩI

S dΩ

• Time integration → 3rd order Runge-Kutta of Shu and Osher

• HHHHHHHHHHHHHH(UUUUUUUUUUUUUU+
j ,UUUUUUUUUUUUUU

−
j , n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂nj) → Numerical flux
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A high-order formulation for all-speed flows

I Approximate Riemann solvers

• Roe numerical flux

HHHHHHHHHHHHHHj =
1

2
(FHFHFHFHFHFHFHFHFHFHFHFHFHFH(UUUUUUUUUUUUUU+

j ) +FHFHFHFHFHFHFHFHFHFHFHFHFHFH(UUUUUUUUUUUUUU−j )) · n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n−
1

2

4∑
k=1

α̃k|λ̃k|r̃rrrrrrrrrrrrrk

B λ̃ → eigenvalues

B r̃rrrrrrrrrrrrr → eigenvectors

α̃1 = 1
2c̃2

[∆(p)− ρ̃c̃ (∆(u)nx + ∆(v)ny)]

α̃2 = ρ̃
c̃ [∆(v)nx −∆(u)ny]

α̃3 = 1
c̃2

[
∆(p)− c̃2∆(ρ)

]
α̃4 = 1

2c̃2
[∆(p) + ρ̃c̃ (∆(u)nx + ∆(v)ny)]

• Rusanov numerical flux

HHHHHHHHHHHHHHj =
1

2
(FHFHFHFHFHFHFHFHFHFHFHFHFHFH(UUUUUUUUUUUUUU+

j ) +FHFHFHFHFHFHFHFHFHFHFHFHFHFH(UUUUUUUUUUUUUU−j )) · n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n−
1

2
S+∆(UUUUUUUUUUUUUU)

B S+ = max(|vvvvvvvvvvvvvv+|+ c+, |vvvvvvvvvvvvvv−|+ c−)
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A high-order formulation for all-speed flows

I Inviscid Flow past a cylinder. M∞ = 10−3

First-order FV Fourth-order FV-MLS
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A high-order formulation for all-speed flows

I Inviscid Flow past a cylinder. M∞ = 10−3

First-order FV Fourth-order FV-MLS

Unphysical solution!
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Formulation

I Physical solution→Mach,mesh and order dependency
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4th order ROE−FV−MLS Mesh 32x16
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Formulation

• The numerical dissipation of the continuity and momentum
equations can always be expressed as:

cu∆uuuuuuuuuuuuuu+ cp∆p

B cu and cp are the coefficients of the velocity difference and pressure
difference terms

B The accuracy problem is only attributable to cu = O(c) of the
momentum equation

B Checkerboard problems are attributable to the order of cp especially
for the contiuity equation. A reasonable interval is cp ∈ [c−1

p , c0p]
1

I

U

I-1 I+1 I+2 xj

Δ(U)

1X. -s. Li, C. -w. Gu Mechanism of Roe-type schemes for all-speed flows and its application, C&F, 2013
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A high-order formulation for all-speed flows

I Rieper’s fix for the Roe flux

HHHHHHHHHHHHHHj =
1

2
(FHFHFHFHFHFHFHFHFHFHFHFHFHFH(UUUUUUUUUUUUUU+

j ) +FHFHFHFHFHFHFHFHFHFHFHFHFHFH(UUUUUUUUUUUUUU−j )) · n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n−
1

2

4∑
k=1

α̃k|λ̃k|r̃rrrrrrrrrrrrrk

α̃1 =
1

2c̃2
[∆(p)− ρ̃c̃f(Ml) (∆(u)nx + ∆(v)ny)]

α̃2 =
ρ̃

c̃
[∆(v)nx −∆(u)ny]

α̃3 =
1

c̃2
[
∆(p)− c̃2∆(ρ)

]
α̃4 =

1

2c̃2
[∆(p) + ρ̃c̃f(Ml) (∆(u)nx + ∆(v)ny)]

f(Ml) = min(Ml, 1) Ml = |ũ|I+|ṽ|I
c̃I
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A high-order formulation for all-speed flows

I Inviscid Flow past a cylinder. M∞ = 10−2
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4th ROE−FV−MLS

4th ROE−FV−MLS with Rieper’s Fix
Order 4

• The formal order of accuracy is recovered
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Formulation

I Inviscid Flow past a cylinder. M∞ = 10−3

500 1000 5000
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4th ROE−FV−MLS

4th ROE−FV−MLS with Rieper’s Fix
Order 4

• The formal order of accuracy is recovered with the fix
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A high-order formulation for all-speed flows

I Inviscid Flow past a cylinder. M∞ = 10−6.

• 4th ROE-FV-MLS with Rieper’s fix
• 32× 16 grid

Pressure contours
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A high-order formulation for all-speed flows

I Li and Gu’s fix for the Rusanov flux

HHHHHHHHHHHHHHj =
1

2
(FHFHFHFHFHFHFHFHFHFHFHFHFHFH(UUUUUUUUUUUUUU+

j ) +FHFHFHFHFHFHFHFHFHFHFHFHFHFH(UUUUUUUUUUUUUU−j )) · n̂̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n̂n−
1

2
S+∆(UUUUUUUUUUUUUU)

S+ = max(|vvvvvvvvvvvvvv+|+ c+, |vvvvvvvvvvvvvv−|+ c−)

∆(UUUUUUUUUUUUUU) =


∆(ρ)
f(Ml)∆(ρu)
f(Ml)∆(ρv)
∆(ρE)


f(Ml) = min(Ml, 1) Ml = |u|I+|v|I

cI
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Formulation

I Inviscid Flow past a cylinder. M∞ = 10−2
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4th RUSANOV−FV−MLS

4th RUSANOV−FV−MLS with Li and Gu’s Fix
Order 4

• The formal order of accuracy is recovered
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Formulation

I Inviscid Flow past a cylinder. M∞ = 10−3
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4th RUSANOV−FV−MLS with Li and Gu’s Fix
Order 4

• The formal order of accuracy is recovered with the fix
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A high-order formulation for all-speed flows

I Inviscid Flow past a cylinder. M∞ = 10−2.

• RUSANOV-FV-MLS with Li and Gu’s fix

• 96× 48 grid

1st order 4th order

Universidade da Coruña — Group of Numerical Methods in Engineering



A high-order formulation for all-speed flows

I Inviscid Flow past a cylinder. M∞ = 10−2.

• RUSANOV-FV-MLS with Li and Gu’s fix
• 96× 48 grid

1st order 4th order
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Slope limiters

I Slope limiters are used to design TVD schemes.

I

U

I-1 I+1 I+2 xj I

U

I-1 I+1 I+2 xj

• A slope limiter limits the Taylor reconstruction of a
high-order finite volume scheme as follows:

UUUUUUUUUUUUUU(xxxxxxxxxxxxxx) = UUUUUUUUUUUUUU I + χI∇∇∇∇∇∇∇∇∇∇∇∇∇∇UUUUUUUUUUUUUU I · (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI)

B χI = 0⇒ First-order scheme
B χI = 1⇒ No limitation
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Slope limiters

I Slope limiters:
• Barth and Jespersen slope limiter

B Non-differential limiter

• Venkatakrishnan slope limiter
B Differentiable limiter
B Near strong shocks may introduce deviations from the monotone

solution

• Van-Albada limiter
B Non-differential limiter
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Slope limiters

I Inviscid Flow past a cylinder. M∞ = 10−3.

• 4th FV-MLS

• Unstructured grid of 2320 elements.
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Slope limiters

I Inviscid Flow past a cylinder. M∞ = 10−3.

Method Barth-Jespersen Van Albada Venkatakrishnan

4thROE+
Rieper’s fix

4th

RUSANOV+Li
and Gu’s fix
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Slope limiters

Method Van Albada Van Albada +
MLS-based sensor

4thROE+ Rieper’s
fix

4th RUSANOV+Li
and Gu’s fix
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Numerical Examples

I 3D decay of compressible isotropic turbulence

• Domain: ΩT = [−π, π]3 → 323 elements.

• Periodic boundary conditions.

• 3rd order ROE-FV-MLS with Rieper’s fix.

• Van Albada limiter with the MLS-based sensor.

• Reference solution: 6th order FD + LES.
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Numerical Examples
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Numerical Examples

I Unsteady transonic viscous flow over a circular
cylinder

• M∞ = 0.80. Re = 166.000.

• 3rd ROE-FV-MLS with Rieper’s Fix.

• 720 CV around the
cylinder.

• yn = 2.85× 10−4D

• Total: 206.150 CV.
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Numerical Examples

I Unsteady transonic viscous flow over a circular
cylinder
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Numerical Examples

I Unsteady transonic viscous flow over a circular
cylinder

Method CDRAG

Reference 2D computations 1.86

FV-MLS Van Albada 1.82

FV-MLS Venkatakrishnan 1.84

FV-MLS Van Albada+MLS-based sensor 1.81

Experimental 1.50
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FV−MLS Van Albada+MLS−based sensor
FV−MLS Venkatakrishnan
FV−MLS Van Albada
Reference 2D computations 
Experimental data 

Experimental reference: Murthy, V.S., Rose, W.C., Detailed Measurements on a Circular Cylinder
in Cross Flow, AIAA Journal,57, 549–550, 1978.

2D reference: Garcia, R., Bobenrieth, R.F., Dettached Eddy simulation of the transonic flow over
a circular cylinder, Proceedings of COBEM, 2005.
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A MLS-based sliding mesh technique

• Introduction

• The FV-MLS method

•Multiscale properties of MLS: MLS-based shock
detection

• A formulation for all-speed flows

• A MLS-based sliding mesh technique

• Application to Navier-Stokes-Korteweg equations

• Conclusions
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A MLS based sliding-mesh technique

I Two different approaches

• 1. MLS-based sliding mesh with intersections.

• 2. Interface halo-cell sliding mesh.
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MLS-based sliding mesh with intersections
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MLS-based sliding mesh with intersections
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MLS-based sliding mesh with intersections

Universidade da Coruña — Group of Numerical Methods in Engineering



MLS-based sliding mesh with intersections
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MLS-based sliding mesh with intersections
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A MLS-based sliding mesh technique

I MLS-based sliding mesh with intersections.

• Recursive searching of intersection nodes.

• Computation of the numerical flux at interface.
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A MLS-based sliding mesh technique

I MLS-based sliding mesh with intersections.

• The stencil can be defined as:

Full Stencil Half Stencil
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A MLS-based sliding mesh technique

I Interface halo cell sliding mesh.

• Create a halo cell.

• Computation of the numerical flux at interface.
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A MLS-based sliding mesh technique
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A MLS-based sliding mesh technique
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A MLS-based sliding mesh technique

• UUUUUUUUUUUUUUPH is defined as

UUUUUUUUUUUUUUPH =
1

APH

∫
UUUUUUUUUUUUUUdA =

1

APH

∫ nx∑
j=1

Nj(xxxxxxxxxxxxxxPH)UjdA

• It avoids the computation of intersection points!
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Numerical Examples

I 1D Steady Shock

• Initial Conditions
ρL = 1, ρR = 1.8621
uL = 1.5, uR = 0.8055
pL = 0.71429, pR = 1.7559

• Computational domain 0 ≤ x ≤ 10 discretized in two regions
of 25 elements

• The Interface is located at x = 5.0

Z.J.Wang et al.. Recent development on the conservation property of chimera. IJCFD,
15,265-278,2001.
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Numerical Examples

I 1D Steady Shock
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Numerical Examples

I 1D Unsteady Shock

• First test case of: Riemann solvers and numerical methods for fluid
dynamics. A practical introduction. Springer,1999.

• Initial Conditions
ρL = 1.0, ρR = 0.125
uL = 0.75, uR = 0.0
pL = 1.0, pR = 0.1

• Computational domain 0 ≤ x ≤ 1 discretized in two regions
of 150 elements

• The Interface is located at x = 0.5
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Numerical Examples

I 1D Unsteady Shock
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Numerical Examples

I 1D Unsteady Shock
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Numerical Examples

I Ringleb flow test case
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Numerical Examples

I Ringleb flow test case

• Third order FV-MLS
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Numerical Examples

I Ringleb flow test case

• Fourth order FV-MLS
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Numerical Examples

I Ringleb flow test case

• Conservation Error
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Numerical Examples

I 2D Vortex Convection
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Numerical Examples

I 2D Vortex Convection

• Third order FV-MLS
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Numerical Examples

I 2D Vortex Convection

• Conservation Error
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Numerical Examples

I Supersonic inviscid Flow over a cylinder. Mach 3
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Numerical Examples

I Supersonic Flow over a cylinder. Mach 3
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D
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Method p0/(p)∞ Stand-off distance/D

Single mesh 0.327 0.405

Sliding Mesh FS Halo 0 rpm 0.324 0.407

Sliding Mesh FS Halo 1000 rpm 0.324 0.408

Sliding Mesh FS Intersections 1000 rpm 0.324 0.408

Reference solution 0.328 −
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Numerical Examples

I Incompressible flow around a cross-flow turbine.

• Two test cases:
B Single-bladed cross-flow turbine
B Three-bladed cross-flow turbine

Problems Setup: E. Ferrer et al. A high order discontinuous galerkin fourier incompressible 3D
Navier-Stokes solver with rotating sliding meshes. JCP, 231:7037-7056, 2012.
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Numerical Examples

I Incompressible flow around a cross-flow turbine.

~f =
{
fx
fy

}
=

∮
(p~n− ν(∇~U · ~n))dΓ

fN = fycosθ − fxsinθ fT = −fxcosθ − fysinθ
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Numerical Examples

I Single-bladed cross-flow turbine

• Problem setup:

Free-stream
velocity

Rotational
Speed

Tip Speed Ratio

U0 ω λ = ωR/U0

0.2 0.5 5
0.5 0.5 2
1.0 0.5 1
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Numerical Examples

I Single-bladed cross-flow turbine
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Numerical Examples

I Three bladed cross-flow turbine

• Problem setup:

B U0 = 0.5 m/s

B Re = 50
B ω = 0.5 rad/s → Tip-Speed Ratio (TSR)= ωR

U0
= 2
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Numerical Examples

I Three bladed cross-flow turbine
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Numerical Examples

I Three bladed cross-flow turbine
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Application to Navier-Stokes-Korteweg equations

• Introduction

• The FV-MLS method

•Multiscale properties of MLS: MLS-based shock
detection

• A formulation for all-speed flows

• A MLS-based sliding mesh technique

• Application to Navier-Stokes-Korteweg equations

• Conclusions
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Application to Navier-Stokes-Korteweg equations

I Navier-Stokes-Korteweg equations:

• Density is the phase-field parameter

• Simplest model for vaporization is the isothermal version

• Spatial derivatives of order three

• Very few numerical solutions (see D. Diehl, PhD. Thesis)
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Application to Navier-Stokes-Korteweg equations

I Phase-field modeling:

• Initiated for phase evolution/transition problems

B Phase separation of immiscible fluids

B Vaporization and condensation

B Solidification

• Sound mathematics and thermodynamics

• Successfully applied to other phenomena
B Crack propagation

B Thin liquid films

B Porous media flow

B Cancer growth
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Application to Navier-Stokes-Korteweg equations

I Phase-field modeling
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Application to Navier-Stokes-Korteweg equations

I Sharp-interface models
• Partial differential equations of the individual phases are

coupled through interface boundary conditions

• Very difficult numerically

I Phase-field models
• Sharp interfaces approximated by thin layers described by

higher-order differential operators

• All variables are continuous across the interface
• Examples:

B Cahn-Hilliard equation
B Navier-Stokes-Korteweg equations
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Application to Navier-Stokes-Korteweg equations

I Navier-Stokes-Korteweg equations

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p−∇ · τ −∇ · ς = Sb

where
τ = µ(∇u+∇uT ) + λ∇ · uIIIIIIIIIIIIII

ς = λ(ρ∇ρ+
1

2
|∇ρ|)IIIIIIIIIIIIII − λ∇ρ⊗∇ρ

The capillarity term may be written in non conservative
form:

∇ · ς = λρ∇(∆ρ)
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Application to Navier-Stokes-Korteweg equations

I Model based on van der Waals equations

p(ρ) = Rb
ρθ

b− rho
− aρ2

θ is the temperature, a, b are the van der Waals constants and R is the universal gas constant
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Application to Navier-Stokes-Korteweg equations

I Convective term: Rusanov flux with Li and Gu’s fix

I Korteweg term: Direct computation at Gauss points
using MLS

I Interface upscaling
• There is a very limited number of numerical solutions to the

Navier–Stokes–Korteweg equations in the literature.
• One of the main reasons is that NSK equations are only a

realistic model if the thickness of the interfaces is extremely
small.
• The interfaces must be resolved by the computational mesh,

which imposes severe restrictions on any numerical method.
• We use a scaling according to which the thickness of the

interfaces is adapted to the computational mesh1.
1H. Gomez,T.J.R. Hughes, X. Nogueira, V. Calo Isogeometric analysis of the isothermal Navier–Stokes–Korteweg

equations, CMAME, 199, 2010
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Application to Navier-Stokes-Korteweg equations

I Refinement methodology
• Ca expresses the ratio between a characteristic length scale

of the NSK equations and the arbitrary length scale L0

• Ca scales as the thickness of the interfaces.
• We propose to scale the capillarity number as:

Ca =
h

L0

• From dimensional analysis the product of Re and Ca must
be a constant.

Re = α
L0

h

L = 1, α = 2, h = max(Vi)
1/d
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Application to Navier-Stokes-Korteweg equations

I Two bubbles coalescence: 2562 grid
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Application to Navier-Stokes-Korteweg equations

I Two bubbles coalescence: 2562 grid
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Application to Navier-Stokes-Korteweg equations

I Two bubbles coalescence: 2562 grid
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Application to Navier-Stokes-Korteweg equations

I Wet-wall boundary condition: 642 grid
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Application to Navier-Stokes-Korteweg equations

I Wet-wall boundary condition (intense gravity): 642

grid
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Application to Navier-Stokes-Korteweg equations

I Droplet falling interacting with an obstacle: 642 grid
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Application to Navier-Stokes-Korteweg equations

I Two-phase spinodal decomposition with obstacles:
642 grid
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Outline

• Introduction

• The FV-MLS method

•Multiscale properties of MLS: MLS-based shock
detection

• A formulation for all-speed flows

• A MLS-based sliding mesh technique

• Application to Navier-Stokes-Korteweg equations

• Conclusions
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Conclusions

I Many numerical applications using MLS with FV schemes have
been presented.

I The accuracy and robustness of the new methodologies have
been shown with different numerical test cases.

I MLS allows increasing the accuracy and capabilities of current
FV codes.

I FV-MLS is a good method for phase field models.
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