– Typeset by GMNI & $\mbox{FoilT}_{E}\!{\rm X}$ –

HIGHER-ORDER FINITE VOLUME METHODS WITH MOVING LEAST SQUARES APPROXIMATIONS

X. Nogueira^{*a*}, L. Ramírez^{*a*}, S. Khelladi^{*b*}, J.C Chassaing^{*c*}, I. Colominas^{*a*}

a: Dept. of Applied Mathematics Civil Engineering School University of A Coruña, Spain b:Arts et Métiers Paris Tech 151 Boulevard de l'Hôpital 75013 Paris, France

c:Institute Jean Le Rond d'Alembert Case 162, 4 Place Jussieu 75252 Paris, France

e-mail: xnogueira@udc.es web page: http://caminos.udc.es/gmni

Π

- Introduction
- The FV-MLS method
- Multiscale properties of MLS: MLS-based shock detection
- A formulation for all-speed flows
- A MLS-based sliding mesh technique
- Application to Navier-Stokes-Korteweg equations
- Conclusions

- Introduction
- The FV-MLS method
- Multiscale properties of MLS: MLS-based shock detection
- A formulation for all-speed flows
- A MLS-based sliding mesh technique
- Application to Navier-Stokes-Korteweg equations
- Conclusions

A Coruña...OK. But... where is it?

A Coruña...OK. But... where is it?

A Coruña...OK. But... where is it?

Origin of this research:

- Development of more accurate numerical methods for turbomachinery.
- Standard industrial codes: 2^{nd} order.
- We need high-resolution schemes for unstructured grids.
- Turbomachinery \Rightarrow Relative motion rotor/stator.

- It is not straightforward to obtain finite volume methods with order higher than two on unstructured grids.
- One of the main difficulties is the computation of high-order derivatives.

- Introduction
- The FV-MLS method
- Multiscale properties of MLS: MLS-based shock detection
- A formulation for all-speed flows
- A MLS-based sliding mesh technique
- Application to Navier-Stokes-Korteweg equations
- Conclusions

DVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conterence

2015

SHARK

- MLS performs a reconstruction of u(x) at a point x by using a weighted LS approximation in the vicinity of x.
- The approximation is written in terms of MLS shape functions.

$$\hat{u}(\boldsymbol{x}) = \sum_{j=1}^{n_{\mathbf{x}}} N_j(\boldsymbol{x}) u_j$$

The approximation basically depends on a kernel and a basis function.

Ofir, Portugal May 18 - 22, 2015

Many functions used as kernels: splines, gaussians
An example, the cubic spline:

Dfir, Portugal May 18 - 22, 2015

JARING HIGHER-ORDER ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK-FV

Π

Many functions used as kernels: splines, gaussians
An example, the cubic spline:

Dfir, Portugal May 18 - 22, 2015

JARING HIGHER-ORDER ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK-FV

Universidade da Coruña — Group of Numerical Methods in Engineering

Kernel functions

Another example: Exponential Kernel.

$$W(x, x^*, \kappa) = \frac{e^{-\left(\frac{s}{c}\right)^2} - e^{-\left(\frac{dm}{c}\right)^2}}{1 - e^{-\left(\frac{dm}{c}\right)^2}}$$
$$s = |x - x^*|, d_m = 2\max\left(|x_j - x^*|\right), c = \frac{d_m}{2\kappa}$$

► A 2D kernel is obtained by multiplying two 1D kernels:

$$W_j(\boldsymbol{x}, \boldsymbol{x}^*, \kappa_x, \kappa_y) = W_j(x, x^*, \kappa_x) W_j(y, y^*, \kappa_y)$$

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW on FINITE VOLUME Conference

2015

SHARK

Kernel functions

Another example: Exponential Kernel.

$$W(x, x^*, \kappa) = \frac{e^{-\left(\frac{s}{c}\right)^2} - e^{-\left(\frac{dm}{c}\right)^2}}{1 - e^{-\left(\frac{dm}{c}\right)^2}}$$
$$s = |x - x^*|, d_m = 2\max\left(|x_j - x^*|\right), c = \frac{d_m}{2\kappa}$$

► A 2D kernel is obtained by multiplying two 1D kernels:

$$W_j(\boldsymbol{x}, \boldsymbol{x}^*, \kappa_x, \kappa_y) = W_j(x, x^*, \kappa_x) W_j(y, y^*, \kappa_y)$$

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW on FINITE VOLUME Conference

2015

SHARK

Kernel functions

- Vertices and/or centroids of the control cells are the "particles" to perform the MLS approximation.
- We need to define stencils to "mark" the neighbor particles that define the cloud of points.

We use a polynomial cubic basis in all the computations.

- In order to develop high-order finite volume schemes:
 - Compute fluxes more accurately.
 - Improve function reconstruction at an integration point \boldsymbol{x} placed at the interface between elements.

$$\boldsymbol{U}(\boldsymbol{x}) = \boldsymbol{U}_{\boldsymbol{I}} + \nabla \boldsymbol{U}_{\boldsymbol{I}} \cdot (\boldsymbol{x} - \boldsymbol{x}_{\boldsymbol{I}}) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_{\boldsymbol{I}})^T \boldsymbol{H}_{\boldsymbol{I}} (\boldsymbol{x} - \boldsymbol{x}_{\boldsymbol{I}}) + \dots$$

Piece-wise linear reconstruction of a function.

- Computation of high-order derivatives:
 - Easy on structured grids.
 - Unstructured grids \Rightarrow **PROBLEM**.

DVANCED RESEARCH KNOW-HOW ON FINITE VOLUMI Conterence

201

► We propose:

• The use of Moving Least Squares (MLS) to obtain an accurate and multidimensional approximation of derivatives on unstructured grids.

Dfir, Portugal May 18 - 22, 2015

- on FINITE VOLUME Conterence **ADVANCED RESEARCH KNOW-HOW** 2015 Portugal 18 - 22, 201 SHARK
- This scheme acknowledge the different nature of convective and diffusive terms.
- We start from a high-order, continuous MLS approximation of the solution:
- Convective terms discretization:
 - Breaks the continuous representation of the MLS approximation.
 - Obtains a continuous representation of the variables inside each cell.
- Diffusive terms discretization is:
 - Centered.
 - Continuous.
 - Highly accurate.

- Introduction
- The FV-MLS method
- Multiscale properties of MLS: MLS-based shock detection
- A formulation for all-speed flows
- A MLS-based sliding mesh technique
- Application to Navier-Stokes-Korteweg equations
- Conclusions

Mach cone. (Source: www.airliners.net)

Universidade da Coruña — Group of Numerical Methods in Engineering

Slope limiters are used to design TVD schemes.

• A slope limiter limits the Taylor reconstruction of a high-order finite volume scheme as follows:

$$\boldsymbol{U}(\boldsymbol{x}) = \boldsymbol{U}_{I} + \chi_{I} \boldsymbol{\nabla} \boldsymbol{U}_{I} \cdot (\boldsymbol{x} - \boldsymbol{x}_{I})$$

 $\triangleright \chi_I = 0 \Rightarrow$ First-order scheme $\triangleright \chi_I = 1 \Rightarrow \mathsf{No} \mathsf{limitation}$

- Slope limiters present some drawbacks.
 - ▷ They avoid the convergence of the numerical method.
 - \triangleright They may be active in cells where the flow is smooth.
 - Straightforward application to higher-order schemes is not obvious.

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW on FINITE VOLUME Conference

2015

SHARK

- We propose to use the MLS multiresolution properties to detect shock waves¹. (Generalization of the work of Sjögreen and Yee ² for unstructured grids)
- The use of the Reproducing Kernel Particle Method as a filter for turbulence problems was proposed in 2000 by Wagner and Liu.
- MLS approximation of a variable can be seen as a low-pass filtering.

$$\overline{\Phi_I} = \sum_{j=1}^n N_j(\boldsymbol{x}) \Phi_j$$

¹X. Nogueira, L. Cueto-Felgueroso, I. Colominas, F. Navarrina, M. Casteleiro, A new shock-capturing technique based on moving least squares for higher-order numerical schemes on unstructured grids, CMAME, 2010 ²Sjögreen, B., Yee, H. C., Multiresolution wavelet based adaptive numerical dissipation control for high order methods, Journal of Scientific Computing, 20:211-255, 2004.

Conference

2015

SHARK

The cut frequency of the filter varies according to its transfer function.

Universidade da Coruña — Group of Numerical Methods in Engineering

DVANCED RESEARCH KNOW-HOW ON FINITE VOLUM Conterence

2015

Wavelets connection.

- We define two sets of MLS shape functions, $N^{h}(x) \vee N^{2h}(x)$, computed with h and 2h (Two different cut frequencies).
- Set of wavelet functions:

$$\Phi^{2\mathbf{h}}(\mathbf{x}) = \mathbf{N}^{\mathbf{h}}(\mathbf{x}) - \mathbf{N}^{2\mathbf{h}}(\mathbf{x})$$

 \triangleright h (smoothing length) is the scale parameter of the wavelet function.

- \triangleright We can do the same procedure with κ_x and exponential kernels.
- h-scale solution is the sum of the low-scale part and its complementary high-scale part:

$$u_h(\mathbf{x}) = u_{2h}(\mathbf{x}) + \mathbf{\Psi}(\mathbf{x})$$

$$\Psi(\mathbf{x}) = \sum_{j=1}^{n} \mathbf{u}_{j} \Phi_{j}^{2h}(\mathbf{x}) = \sum_{j=1}^{n} \mathbf{u}_{j} (\mathbf{N}^{h}(\mathbf{x}) - \mathbf{N}^{2h}(\mathbf{x}))$$

Portugal 18 - 22, 201

Ofir, I May

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK

MLS-based selective limiting:

- $\Psi \Rightarrow$ indicates the smoothness of the solution.
- \bullet We use Ψ to decide if a slope limiter algorithm is activated or not.
- We select the density as the reference variable.
- We need to define a threshold value for the function $\Psi_{\rho}(\mathbf{x})$.
 - ▷ We propose a possible choice, that depend on a parameter C_{lc} :

• T_v defined from the gradient of the reference variable in cell I.

$$T_v = \frac{C_{lc} \left| \nabla \rho \right|_I A_I^{\frac{1}{d}}}{M}$$

 A_{I} is the size (area in 2D) of the control volume $I,\,d$ is the number of spatial dimensions and M is the Mach number

Ofir, Portugal May 18 - 22, 2015

DVANCED RESEARCH KNOW-HOW ON FINITE VOLUMI Conference

2015

SHARK

► The slope limiter is active when:

$$|\Psi_{\rho}| = \left|\sum_{j=1}^{n_{I}} \rho_{j} \left(\mathbf{N}^{h}(\mathbf{x}) - \mathbf{N}^{2h}(\mathbf{x}) \right) \right| > T_{v}$$

MLS-based detection method can be applied to structured and unstructured grids.

- It avoids the limitation of smooth extrema.
- ▶ It improves the convergence of the numerical method.

Ofir, Portugal May 18 - 22, 2015

MLS-based shock detection. A first 1D test (I)

MLS-based shock detection. A first 1D test (II)

Multiple dimensions detection test

We test the ability of the proposed method to detect shock waves in a multidimensional data distribution.

Abgrall function for the multidimensional detection test.

Multiple dimensions detection test

We test the ability of the proposed method to detect shock waves in a multidimensional data distribution.

Abgrall function for the multidimensional detection test.

Multiple dimensions detection test.

- General grids \Rightarrow this approach may become unstable.
- Solution: If the slope limiter is activated in a cell it is activated in the whole stencil of that cell.
- We choose a less restrictive parameter for the detection $\Rightarrow C_{lc2} = 0.32$.

Multiple dimensions detection test. Unstructured grid

 $C_{lc2} = 0.32$

Detection results for the Abgrall function with the methodology for general grids.

- Slope limiters may difficult to achieve convergence
- MLS-based selective limiting alleviate these problems.
- We check these effects by solving the subsonic flow past a NACA 0012 profile

• Mach number=0.63, Angle of attack=2°

Portugal 18 - 22, 201

Ofir, I May

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK

2D Examples. A subsonic case

Numerical Scheme	C_L	C_D
Hodography method	0.335	0
FV-MLS 3^{rd} order + BJ	0.318	5.29E-03
FV-MLS 3^{rd} order BJ + selective limiting	0.328	1.24E-03

2D Examples. Transonic flow past a NACA 0012

2D Examples. Transonic flow past a NACA 0012

Shock-wave-vortex Interaction. $M_v = 0.4, M_s = 1.2, 200 \times 200$ grid Third-order FV-MLS scheme, Barth-Jespersen limiter

PERIODIC BC

2D Examples. Shock-wave-vortex Interaction

2D Examples. Shock-wave-vortex Interaction

2D Examples. Shock-wave-vortex Interaction

2D Examples. Double Mach Reflection

Schematic representation of the Double Mach reflection problem.

- Mach 10 right-moving shock
- $\blacktriangleright \alpha = 60$ degrees
- ► Third-order FV-MLS scheme, Van Albada limiter

2D Examples. Double Mach Reflection

Double Mach Reflection. Detail of the Mach stems region

2D Examples. Mach 3 Forward step

Detail of the mesh in the corner region.

• The size of the elements away from the corner is $(\Delta x = \Delta y = \frac{1}{160})$. Size of elements near the corner is one-half that.

Third-order FV-MLS scheme, Jawahar limiter

2D Examples. Mach 3 Forward step

2D Examples. Mach 3 Forward step

- Introduction
- The FV-MLS method
- A high-order formulation for all-speed flows
- High-order Sliding Mesh techniques
- Phase-transition phenomena
- Conclusions

Ofir, Portugal May 18 - 22, 2015

R ADVANCED RESEARCH KNOW-HOW on FINITE VOLUME

Conference

2015

SHARK

ADVANCED RESEARCH KNOW-HOW on FINITE VOLUME

Conference

2015

SHARK

- Two families of FV schemes:
 - Density-based solvers⇒ Compressible flows
 - Pressure-based solvers⇒ Incompressible flows
- The difference is in the computation of pressure field, and in the density.

Compressible Flow

Incompressible Flow

Ofir, Portugal May 18 - 22, 2015

Π

- Density-based solvers:
 - Density \Rightarrow computed from the continuity equation
 - Pressure \Rightarrow obtained via an EQUATION OF STATE
- Fails to compute low Mach number flows:
 - Discretized equations do not verify the right scaling of the pressure fluctuations with M^2

Dfir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME Conference

2015

SHARK

A high-order formulation for all-speed flows

Fig. 1. Isovalues of the pressure, on a 3114 node mesh for $M_{\infty} = 0.1$ (top), $M_{\infty} = 0.01$ (middle), $M_{\infty} = 0.001$ (bottom) and for Roe scheme (left), VFRoe scheme (middle), Godunov scheme (right).

H. Guillard and A.Murrone, Computers & Fluids, 2004

- Pressure-based solvers:
 - Continuity and momentum equations ⇒ Poisson equation
 - Pressure \Rightarrow Solve Poisson equation
- Not well-suited to compute high Mach flows

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW on FINITE VOLUME Conference

2015

SHARK

ALL THE REGIMES OF A FLOW

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK-FV

Conservation laws

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{\nabla} \cdot \left(\boldsymbol{\mathcal{F}}^{\boldsymbol{\mathcal{H}}} - \boldsymbol{\mathcal{F}}^{\boldsymbol{\mathcal{V}}} \right) = \boldsymbol{S} \qquad in \quad \Omega_T$$

Numerical discretization:

$$\Omega_{I} \frac{\partial \boldsymbol{U}_{I}}{\partial t} + \sum_{j=1}^{N_{f}} \sum_{ig=1}^{N_{G}} \left[\boldsymbol{\mathcal{H}}(\boldsymbol{U}_{j}^{+}, \boldsymbol{U}_{j}^{-}, \boldsymbol{\hat{n}}_{j}) - \boldsymbol{\mathcal{F}}^{\boldsymbol{\mathcal{V}}}_{j} \cdot \boldsymbol{\hat{n}}_{j} \right]_{ig} \mathcal{W}_{ig} = \int_{\Omega_{I}} S \, d\Omega$$

• Time integration $\rightarrow 3^{rd}$ order Runge-Kutta of Shu and Osher • $\mathcal{H}(\boldsymbol{U}_{i}^{+}, \boldsymbol{U}_{j}^{-}, \hat{\boldsymbol{n}}_{j}) \rightarrow \text{Numerical flux}$

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME Conterence

2015

SHARK

- Approximate Riemann solvers
 - Roe numerical flux

$$\boldsymbol{\mathcal{H}}_{j} = \frac{1}{2} (\boldsymbol{\mathcal{F}}^{\boldsymbol{\mathcal{H}}}(\boldsymbol{U}_{j}^{+}) + \boldsymbol{\mathcal{F}}^{\boldsymbol{\mathcal{H}}}(\boldsymbol{U}_{j}^{-})) \cdot \boldsymbol{\hat{n}} - \frac{1}{2} \sum_{k=1}^{4} \tilde{\alpha}_{k} |\tilde{\lambda}_{k}| \boldsymbol{\tilde{r}}_{k}$$

$$> ilde{\lambda} o$$
 eigenvalues
 $> ilde{m{ au}} o$ eigenvectors

$$\tilde{\alpha}_{1} = \frac{1}{2\tilde{c}^{2}} \left[\Delta(p) - \tilde{\rho}\tilde{c} \left(\Delta(u)n_{x} + \Delta(v)n_{y} \right) \right]$$

$$\tilde{\alpha}_{2} = \frac{\tilde{\rho}}{\tilde{c}} \left[\Delta(v)n_{x} - \Delta(u)n_{y} \right]$$

$$\tilde{\alpha}_{3} = \frac{1}{\tilde{c}^{2}} \left[\Delta(p) - \tilde{c}^{2}\Delta(\rho) \right]$$

$$\tilde{\alpha}_{4} = \frac{1}{2\tilde{c}^{2}} \left[\Delta(p) + \tilde{\rho}\tilde{c} \left(\Delta(u)n_{x} + \Delta(v)n_{y} \right) \right]$$

• Rusanov numerical flux

$$\mathcal{H}_j = \frac{1}{2} (\mathcal{F}^{\mathcal{H}}(\boldsymbol{U}_j^+) + \mathcal{F}^{\mathcal{H}}(\boldsymbol{U}_j^-)) \cdot \hat{\boldsymbol{n}} - \frac{1}{2} S^+ \Delta(\boldsymbol{U})$$

$$\triangleright S^+ = max(|v^+| + c^+, |v^-| + c^-)$$

Ofir, Portugal May 18 - 22, 2015

HARING HIGHER-ORDER ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK

First-order FV

Fourth-order FV-MLS

First-order FV Fourth-order FV-MLS Unphysical solution!

Formulation

► Physical solution→Mach,mesh and order dependency

• The numerical dissipation of the continuity and momentum equations can always be expressed as:

Formulation

 $c_u \Delta \boldsymbol{u} + c_p \Delta p$

- $ightarrow c_u$ and c_p are the coefficients of the velocity difference and pressure difference terms
- \triangleright The accuracy problem is only attributable to $c_u = O(c)$ of the momentum equation
- ▷ Checkerboard problems are attributable to the order of c_p especially for the continity equation. A reasonable interval is $c_p \in [c_p^{-1}, c_p^0]^1$

¹X. -s. Li, C. -w. Gu Mechanism of Roe-type schemes for all-speed flows and its application, C&F, 2013

Rieper's fix for the Roe flux

$$\boldsymbol{\mathcal{H}}_{j} = \frac{1}{2} (\boldsymbol{\mathcal{F}^{\mathcal{H}}}(\boldsymbol{U}_{j}^{+}) + \boldsymbol{\mathcal{F}^{\mathcal{H}}}(\boldsymbol{U}_{j}^{-})) \cdot \boldsymbol{\hat{n}} - \frac{1}{2} \sum_{k=1}^{4} \tilde{\alpha}_{k} |\tilde{\lambda}_{k}| \boldsymbol{\tilde{r}}_{k}$$

$$\tilde{\alpha}_{1} = \frac{1}{2\tilde{c}^{2}} \left[\Delta(p) - \tilde{\rho}\tilde{c}f(M_{l}) \left(\Delta(u)n_{x} + \Delta(v)n_{y} \right) \right]$$
$$\tilde{\alpha}_{2} = \frac{\tilde{\rho}}{\tilde{c}} \left[\Delta(v)n_{x} - \Delta(u)n_{y} \right]$$
$$\tilde{\alpha}_{3} = \frac{1}{\tilde{c}^{2}} \left[\Delta(p) - \tilde{c}^{2}\Delta(\rho) \right]$$
$$\tilde{\alpha}_{4} = \frac{1}{2\tilde{c}^{2}} \left[\Delta(p) + \tilde{\rho}\tilde{c}f(M_{l}) \left(\Delta(u)n_{x} + \Delta(v)n_{y} \right) \right]$$

$$f(M_l) = min(M_l, 1)$$
 $M_l = \frac{|\tilde{u}|_I + |\tilde{v}|_I}{\tilde{c}_I}$

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME Conference

HARING HIGHER-ORDER

2015

SHARK

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Ofir, Portugal May 18 - 22, 2015

Conference

2015

SHARK

• The formal order of accuracy is recovered

Formulation

▶ Inviscid Flow past a cylinder. $M_{\infty} = 10^{-3}$

• The formal order of accuracy is recovered with the fix

▶ Inviscid Flow past a cylinder. $M_{\infty} = 10^{-6}$.

- 4^{th} ROE-FV-MLS with Rieper's fix
- 32×16 grid

Pressure contours

$$\Delta(\boldsymbol{U}) = \left\{ \begin{array}{l} \Delta(\rho) \\ f(M_l)\Delta(\rho u) \\ f(M_l)\Delta(\rho v) \\ \Delta(\rho E) \end{array} \right\}$$
$$f(M_l) = min(M_l, 1) \qquad M_l = \frac{|u|_I + |v|_I}{c_I}$$

Ofir, Portugal May 18 - 22, 2015

IARING HIGHER-ORDER ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME 2015 Conference

SHARK-FV

Formulation

▶ Inviscid Flow past a cylinder. $M_{\infty} = 10^{-2}$

Universidade da Coruña — Group of Numerical Methods in Engineering

Formulation

▶ Inviscid Flow past a cylinder. $M_{\infty} = 10^{-3}$

• The formal order of accuracy is recovered with the fix

Universidade da Coruña — Group of Numerical Methods in Engineering

- RUSANOV-FV-MLS with Li and Gu's fix
- 96×48 grid

- ▶ Inviscid Flow past a cylinder. $M_{\infty} = 10^{-2}$.
 - RUSANOV-FV-MLS with Li and Gu's fix
 - 96×48 grid

Slope limiters are used to design TVD schemes.

• A slope limiter limits the Taylor reconstruction of a high-order finite volume scheme as follows:

$$\boldsymbol{U}(\boldsymbol{x}) = \boldsymbol{U}_I + \chi_I \boldsymbol{\nabla} \boldsymbol{U}_I \cdot (\boldsymbol{x} - \boldsymbol{x}_I)$$

▷ $\chi_I = 0 \Rightarrow$ First-order scheme ▷ $\chi_I = 1 \Rightarrow$ No limitation

Slope limiters:

- Barth and Jespersen slope limiter
 - Non-differential limiter
- Venkatakrishnan slope limiter
 - Differentiable limiter
 - Near strong shocks may introduce deviations from the monotone solution
- Van-Albada limiter
 - Non-differential limiter

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK

- 4^{th} FV-MLS
- \bullet Unstructured grid of 2320 elements.

Slope limiters

RUSANOV+Li and Gu's fix

Slope limiters

- Domain: $\Omega_T = [-\pi, \pi]^3 \rightarrow 32^3$ elements.
- Periodic boundary conditions.
- 3^{rd} order ROE-FV-MLS with Rieper's fix.
- Van Albada limiter with the MLS-based sensor.
- Reference solution: 6^{th} order FD + LES.

- $M_{\infty} = 0.80$. Re = 166.000.
- 3^{rd} ROE-FV-MLS with Rieper's Fix.

- 720 CV around the cylinder.
- $y_n = 2.85 \times 10^{-4} D$
- Total: 206.150 CV.

Unsteady transonic viscous flow over a circular cylinder

Unsteady transonic viscous flow over a circular cylinder

Method	C_{DRAG}	1 - FV-MLS Van Albada+MLS-based sensor - FV-MLS Venkatakrishnan - FV-MLS Van Albada
Reference 2D computations	1.86	0.5-
FV-MLS Van Albada	1.82	
FV-MLS Venkatakrishnan	1.84	
FV-MLS Van Albada+MLS-based sensor	1.81	
Experimental	1.50	
		-1.5 0 15 30 45 60 75 90 105 120

Experimental reference: Murthy, V.S., Rose, W.C., *Detailed Measurements on a Circular Cylinder in Cross Flow*, AIAA Journal, *57*, 549–550, 1978.

2D reference: Garcia, R., Bobenrieth, R.F., *Dettached Eddy simulation of the transonic flow over a circular cylinder*, Proceedings of COBEM, 2005.

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME Conference 2015 , Portugal SHARK Ofir, I May

- Introduction
- The FV-MLS method
- Multiscale properties of MLS: MLS-based shock detection
- A formulation for all-speed flows
- A MLS-based sliding mesh technique
- Application to Navier-Stokes-Korteweg equations
- Conclusions

- 1. MLS-based sliding mesh with intersections.
- 2. Interface halo-cell sliding mesh.

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK

MLS-based sliding mesh with intersections

MLS-based sliding mesh with intersections

- MLS-based sliding mesh with intersections.
 - Recursive searching of intersection nodes.
 - Computation of the numerical flux at interface.

• The stencil can be defined as:

- Create a halo cell.
- Computation of the numerical flux at interface.

Ofir, Portugal May 18 - 22, 2015

HARING HIGHER-ORDER ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK

A MLS-based sliding mesh technique

• It avoids the computation of intersection points!

Ofir, Portugal May 18 - 22, 2015

HARING HIGHER-ORDER ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK-FV

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME Conference

2015

SHARK

► 1D Steady Shock

Initial Conditions

$$\begin{array}{ll} \rho_L = 1, & \rho_R = 1.8621 \\ u_L = 1.5, & u_R = 0.8055 \\ p_L = 0.71429, & p_R = 1.7559 \end{array}$$

- Computational domain $0 \le x \le 10$ discretized in two regions of 25 elements
- The Interface is located at x = 5.0

Z.J.Wang et al., Recent development on the conservation property of chimera, IJCFD, 15,265-278,2001.

Ofir, Portugal May 18 - 22, 2015

► 1D Steady Shock

1D Unsteady Shock

- First test case of: Riemann solvers and numerical methods for fluid dynamics. A practical introduction. Springer, 1999.
- Initial Conditions

$$\begin{array}{ll} \rho_L = 1.0, & \rho_R = 0.125 \\ u_L = 0.75, & u_R = 0.0 \\ p_L = 1.0, & p_R = 0.1 \end{array}$$

- \bullet Computational domain $0 \leq x \leq 1$ discretized in two regions of 150 elements
- The Interface is located at x = 0.5

► 1D Unsteady Shock

► 1D Unsteady Shock

Ringleb flow test case

• Third order FV-MLS

Ringleb flow test case

• Fourth order FV-MLS

Ringleb flow test case

Conservation Error

► 2D Vortex Convection

D Vortex Convection

• Third order FV-MLS

► 2D Vortex Convection

• Conservation Error

Third order

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

SHARING HIGHER-ORDE

SHARK

Ofir, Portugal May 18 - 22, 2015

Conference

2015

Universidade da Coruña — Group of Numerical Methods in Engineering

Supersonic Flow over a cylinder. Mach 3

Method	$p_0/(p)_\infty$	Stand-off distance/D
Single mesh	0.327	0.405
Sliding Mesh FS Halo 0 rpm	0.324	0.407
Sliding Mesh FS Halo 1000 rpm	0.324	0.408
Sliding Mesh FS Intersections 1000 rpm	0.324	0.408
Reference solution	0.328	_

Ofir, Portugal May 18 - 22, 2015

SHARING HIGHER-ORDER ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

-FV

SHARK

Universidade da Coruña — Group of Numerical Methods in Engineering

Incompressible flow around a cross-flow turbine.

- Two test cases:
 - Single-bladed cross-flow turbine
 - > Three-bladed cross-flow turbine

Problems Setup: E. Ferrer et al. A high order discontinuous galerkin fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes. JCP, 231:7037-7056, 2012.

Flow

Incompressible flow around a cross-flow turbine.

$$\vec{f} = \left\{ \begin{array}{c} f_x \\ f_y \end{array} \right\} = \oint (p\vec{n} - \nu(\nabla \vec{U} \cdot \vec{n}))d\Gamma$$
$$f_N = f_y \cos\theta - f_x \sin\theta \quad f_T = -f_x \cos\theta - f_y \sin\theta$$

• Problem setup:

Free-stream velocity	Rotational Speed	Tip Speed Ratio $\lambda = \omega R/U_{c}$
$\frac{c_0}{0.2}$	$\frac{\omega}{0.5}$	$\frac{\lambda - \omega R/U_0}{5}$
$\begin{array}{c} 0.5 \\ 1.0 \end{array}$	$\begin{array}{c} 0.5 \\ 0.5 \end{array}$	$\begin{array}{c} 2\\ 1\end{array}$

Single-bladed cross-flow turbine

Three bladed cross-flow turbine

• Problem setup:

$$\triangleright U_0 = 0.5 \text{ m/s}$$

$$\triangleright Re = 50$$

 $\triangleright \omega = 0.5 \text{ rad/s} \rightarrow \text{Tip-Speed Ratio (TSR)} = \frac{\omega R}{U_0} = 2$

Ofir, Portugal May 18 - 22, 2015

HARING HIGHER-ORDER ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

SHARK-FV

Three bladed cross-flow turbine

Three bladed cross-flow turbine

Normalized Tangential Force

 \mathbb{I}

- Introduction
- The FV-MLS method
- Multiscale properties of MLS: MLS-based shock detection
- A formulation for all-speed flows
- A MLS-based sliding mesh technique
- Application to Navier-Stokes-Korteweg equations
- Conclusions

, Portugal

Ofir, I May

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

- Density is the phase-field parameter
- Simplest model for vaporization is the isothermal version
- Spatial derivatives of order three
- Very few numerical solutions (see D. Diehl, PhD. Thesis)

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUMI

Conference

2015

Phase-field modeling:

- Initiated for phase evolution/transition problems
 - Phase separation of immiscible fluids
 - Vaporization and condensation
 - Solidification
- Sound mathematics and thermodynamics
- Successfully applied to other phenomena
 - Crack propagation
 - Thin liquid films
 - Porous media flow
 - Cancer growth

Ofir, Portugal May 18 - 22, 2015

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUMI

Conference

5

201

Application to Navier-Stokes-Korteweg equations

Phase-field modeling

on FINITE VOLUME

ADVANCED RESEARCH KNOW-HOW

Conference

201

Sharp-interface models

- Partial differential equations of the individual phases are coupled through interface boundary conditions
- Very difficult numerically
- Phase-field models
 - Sharp interfaces approximated by thin layers described by higher-order differential operators
 - All variables are continuous across the interface
 - Examples:
 - Cahn-Hilliard equation
 - Navier-Stokes-Korteweg equations

, Portugal / 18 - 22, 2015

Ofir, I May

$$p(\rho) = Rb\frac{\rho\theta}{b - rho} - a\rho^2$$

heta is the temperature, a, b are the van der Waals constants and R is the universal gas constant

Ofir, Portugal May 18 - 22, 2015

SHARING HIGHER-ORDER ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

-FV

- Korteweg term: Direct computation at Gauss points using MLS
- Interface upscaling
 - There is a very limited number of numerical solutions to the Navier–Stokes–Korteweg equations in the literature.
 - One of the main reasons is that NSK equations are only a realistic model if the thickness of the interfaces is extremely small.
 - The interfaces must be resolved by the computational mesh, which imposes severe restrictions on any numerical method.
 - We use a scaling according to which the thickness of the interfaces is adapted to the computational mesh¹.

¹H. Gomez,T.J.R. Hughes, X. Nogueira, V. Calo *Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations*, CMAME, 199, 2010

Portugal 18 - 22, 201

Ofir, J May

ADVANCED RESEARCH KNOW-HOW ON FINITE VOLUME

Conference

2015

- Ca expresses the ratio between a characteristic length scale of the NSK equations and the arbitrary length scale L_0
- Ca scales as the thickness of the interfaces.

L

• We propose to scale the capillarity number as:

$$Ca = \frac{h}{L_0}$$

• From dimensional analysis the product of Re and Ca must be a constant.

$$Re = \alpha \frac{L_0}{h}$$
$$= 1, \ \alpha = 2, \ h = \max(V_i)^{1/d}$$

DVANCED RESEARCH KNOW-HOW ON FINITE VOLUM

Conterence

201

Final Two bubbles coalescence: 256^2 grid

Final Two bubbles coalescence: 256^2 grid

▶ Wet-wall boundary condition: 64^2 grid

Application to Navier-Stokes-Korteweg equations

▶ Droplet falling interacting with an obstacle: 64^2 grid

Application to Navier-Stokes-Korteweg equations

Two-phase spinodal decomposition with obstacles: 64² grid

Universidade da Coruña — Group of Numerical Methods in Engineering

- Introduction
- The FV-MLS method
- Multiscale properties of MLS: MLS-based shock detection
- A formulation for all-speed flows
- A MLS-based sliding mesh technique
- Application to Navier-Stokes-Korteweg equations
- Conclusions

- Many numerical applications using MLS with FV schemes have been presented.
- The accuracy and robustness of the new methodologies have been shown with different numerical test cases.
- MLS allows increasing the accuracy and capabilities of current FV codes.

FV-MLS is a good method for phase field models.

HIGHER-ORDER FINITE VOLUME METHODS WITH MOVING LEAST SQUARES APPROXIMATIONS

Xesús Nogueira

email: xnogueira@udc.es

Thank you

Universidade da Coruña — Group of Numerical Methods in Engineering

This work has been partially supported by:

- The *Ministerio de Educación y Ciencia* of the Spanish Government,
- Dirección Xeral de I+D of the Consellería de Innovación, Industria e Comercio of the Xunta de Galicia,
- the Universidade da Coruña (UDC), and
- the Group of Numerical Methods in Engineering GMNI

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL "Unha maneira de facer Europa"

UNIÓN EUROPEA

- L. Cueto-Felgueroso, I. Colominas, X. Nogueira, F. Navarrina, and M. Casteleiro, Finite-volume solvers and moving least-squares approximations for the compressible Navier-Stokes equations on unstructured grids, CMAME, 2007
- X. Nogueira, I. Colominas, L. Cueto-Felgueroso, and S. Khelladi, On the simulation of wave propagation with a higher-order finite volume scheme based on reproducing kernel methods, CMAME, 2010
- X. Nogueira, L. Cueto-Felgueroso, I. Colominas, F. Navarrina, and M. Casteleiro, A new shock-capturing technique based on moving least squares for higher-order numerical schemes on unstructured grids, CMAME, 2010
- X. Nogueira, L. Cueto-Felgueroso, I. Colominas, H.Gómez, *Implicit Large Eddy* Simulation of non-wall-bounded turbulent flows based on the multiscale properties of a high-order finite volume method, CMAME, 2010
- X. Nogueira, S. Khelladi, I. Colominas, L. Cueto-Felgueroso, J. París, and H. Gómez, *High-resolution finite volume methods on unstructured grids for turbulence and aeroacoustics*, ARCME, 2011
- S. Khelladi, X. Nogueira, F. Bakir, and I. Colominas, *Toward a higher-order unsteady finite volume solver based on reproducing kernel particle method*, CMAME, 2011.
- J.C. Chassaing, S. Khelladi, and X.Nogueira, Accuracy assessment of a high-order moving least squares finite volume method for compressible flows, C&F, 2013
- L. Ramirez, X. Nogueira, S. Khelladi, J.C. Chassaing, and I. Colominas, A new higher-order finite volume method based on moving least squares for the resolution of the incompressible Navier-Stokes equations on unstructured grids, CMAME, 2014

