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Introduction: laminar roll waves in laboratory

:|>Flat film flow
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FIG. 3. The evolution of solitary waves forced at /= 1.5 Hz with f=6.4", |
Re=29, and Weber number =35, Three wave profiles are measured at |
increasing distances from the inlet to show the spatial evolution. Phase- |
sensitive averaging is employed here to reduce imaging noise. H

Photo of 2-d roll-waves
(Park et Nosoko AIChE, 2003)

Liu and Gollub experience
(Phys of Fluids 94)
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Introduction: falling film in laboratory

Uair 30m5 Uair 30m/s

Free surface instabilities

Fingering instabilities
for different gas velocities (ONERA)

and formation of drops

P. Noble (IMT) Simulation of capillary thin films May 2015 3/1



Outline of the talk

@ Modeling of thin film flows

» Shallow water equations with surface tension
» Related models: phase transition

@ Stability of difference approximations for shallow water eqs

» Von Neumann (linearized) stability

» Entropy stability (Schrédinger type formulation)
» Two dimensional extension

» Implicit strategies

© Numerical simulations

» Entropy stability: numerical comparison
» Roll-waves: Liu Gollub experiment
» Drops: wet/dry fronts

P. Noble (IMT) Simulation of capillary thin films

May 2015

4/1



Thin films flow: shallow water equations |

o General model: Navier-Stokes (NS) equations with a free surface
» Unknowns: velocity & = (u, w) € R?, pressure p,
fluid domain Q; = {(x,z),x € R",0 < z < h(x, t)}
» Main issues:: presence of a free surface, study of non linear waves
(free surface instabilities)

@ Methodology: under suitable assumptions, derive simpler models

» Aspect ratio: = = H/L, (characteristic fluid height/characteristic
horizontal wavelengthl).

» Reynolds Number: Re = pHU/p.

» Froude Number: F? = U?/gH

» Weber Number: We = pU?H/o
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Thin film flows: shallow water equations Il

Definition (consistent models) Let (i, p-, h-) be an exact solution of
Navier-Stokes equations: NS.(i:, p-, h.) = 0. Define g. = Sga us(.,z)dz.

A shallow water model is
e consistent if SV.(q., h.) = R. and lim._,o |R-|| =0,
o of order k if |R.|| = O(c"): order 1 (1998), order 2 (2001)!

Exemple of first order consistent model (P.N., J.-P. Vila)

3th+axq=0,
2 5 2
q° k>  beotan(f)h®\ 5 3q
0eq + 0 e = s (g8 ) & Wehduuh (1)

v

Remark: in Liu-Gollub experiments, e2We = O(1)!
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Related models |: Euler Korteweg equations

Remark: neglecting source term, shallow water equations with surface tension
are a particular case of Euler Korteweg equations

Euler-Korteweg equations in conservative variables

dep + Ox(pu) =0,

2
0:(pu) + 0y (pu2 + P(p)) = 0y (p/g(p)&xxp alx (pH’(p) —k(p)) (0X2p) ) ,

@ r(p) = constant, P(p) = ap”: shallow water type equations
@ k(p) = constant/p: quantum hydrodynamic (=NLS)

@ k(p) = constant, P(p) = % — p%: Van der Waals gas (phase transition)

Additional Energy equation

2 a 2
O (pu2 + F(p) + K(p)(xzp)> + 0xF(p, u, 0xp, Oxu) = 0
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Related models |l: water waves

@ General model: Euler equations with a free surface (incompressible,
irrotational)

@ Unknowns: velocity & = (u, w) € R?, pressure p, fluid domain
Q¢ ={(x,2),x € R", —h(x) < z < n(t,x)}

@ Main issues: presence of a free surface, no regularization effects

H
@ Non dimensional numbers: o = 3 (dispersion), € = — (nonlinearity)

ITlo

Boussinesq equations

0en + 0x((h +en)) =0,

2
8¢ + €005 T + 0xn + 0> <%a§(ata) - gaﬁ(hata)> = O(ea® + o%).
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Stability of difference schemes: von Neumann stability

@ Remark: due to the presence of the third order derivative, the energy
equation is hardly satisfied in the original formulation

o A simplified problem: we check stability for linearized shallow water
equations (=Fourier analysis)

o Interest: provides necessary and, in practice, sufficient condition of
stability

Linearized equations (conservative variables: v = (h,q)")

5tV+A5XV=B(9XXXV, AZ(_2E_2 1_), B=<((j_)_ 8)

e Dispersion relation: s(k) = i+ +/c? + 5k?

e Heuristic CFL condition s(k)g—t < 1. Here s(k) ~ K/dx then
CFL condition: dt = O(6x?).

X
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Von Neumann stability I: formulation of the problem

Stability of difference approximation in the form
v (R0 = ) = B (v — v 2v ).
with A\, = 6t/0x*, and v"*? = (1 — O)v" + ov/ !

i .

Avi + Av 1

@ Lax-Friedrichs scheme: fl’jr% =——5 - 2—)\1(v,”+:l —v)
AVE 4 AV p(A)
@ Rusanov scheme: f;;’_% = 5 1 5 (vl — V)
Av + AV A
@ Roe scheme: f;'l% = % - T(Vinﬂ —v/)
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Von Neumann stability Il: first order accurate schemes
Definition

We search for solutions of (2) in the form v/ = £"e~'?: a scheme is stable in the
sense of Von Neumann if || < 1 for all 8 € [0, 27]

@ Instability of Roe scheme: The scheme (2) with Roe type flux and § =0
(forward Euler time discretization: FE), §# = 1 (backward Euler time
discretization: BE) is always unstable: the equivalent system of PDEs is
ill posed (bad interaction between numerical viscosity and third order
terms).

@ Stability of Lax-Friedrichs scheme:
» FE time discretization (6 = 0): stable under cfl condition 6t = O(Jx?)
» BE time discretization (¢ > 1/2): inconditionally stable

@ Stability of Rusanov scheme:
» FE time discretization (§ = 0): stable under cfl condition 6t = O(5x3)
» BE time discretization (6 > 1/2): inconditionally stable
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Von Neumann stability Ill: second order accurate schemes
We use a MUSCL type scheme for space discretization:

dv; A
7; = ox V2 T 0V + 6Vt — vj2)
1%
+ g2 (Vit2 = 4ja1 + 6 — 4y +vo)
B
=53 (Vir2 = 2vjp1 +2v1 = vj2) .

Remark: v, is the numerical viscosity (L-F: v, = 6x3/26t, Ru: v, = p(A)dx)

@ Stability of Lax-Friedrichs scheme:

» Runge Kutta 2 : stable under CFL condition 6t = O(dx?)
» Crank Nicolson (6 = 1/2): inconditionally stable

@ Stability of Rusanov scheme:

» Runge Kutta 2 (6 = 0): stable under CFL condition 6t = O(5x"/3)
» Crank Nicolson (0 = 1/2): inconditionally stable
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Well posedness of Equivalent Equations |
Modified or equivalent equation

Ve + Avx = Qi + BV 3)
Well posedness with initial data in L,% via Fourier Analysis :
vix,t)=e0(t), G =if(A+iEQ+EB)0
o well posedness requires eigenvalues X of (A + i£Q + £?B) satisfies
¢m(X) >0 VeeR
@ Scalar continuous case : 7 (t) = e/t (a+8%7)t o=t (0) The problem
is well posed for initial data in L2 iff ¢ >0
@ System case

_ 0 1 _( qu g _ (00
A_<E2_E2 2E)7Q_(q21 q22>7B_<5_ 0)7

Theorem
Viscosity matrices are admissible (ie (3) is well posed with initial data in L2

_ _ - 2 _
) iff g2 = 0 and c? > %ﬁﬂ, q11+92 >0, 6+qu192=0
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Well posedness of equivalent Equations Il

@ Remark : Continuous case with g1 = 0. The problem is ill posed

_ 5
unless gi» = 0 and ¢? > (uq&q#, G =>0,and 5 >0
22

@ Proof relies on explicit formulae for Eigenvalues X : for large ¢ (high
frequ.) X satisfies

2X = (2a + i€ (qu + qzz))
+4/4iq120 (52 + 25(,120 (Q11q22 +37 — qi2ga1) + O (E_%))

e Modified equation for Godunov/Roe scheme Q = |A|

|lu—cl(u+c)—|u+c|l(u—c) lu+c|—|—u+c]|

Al =

2c 2c
(CQ_UQ) lu+c|—|-u+c| lu+cl(u+c)—|u—c|(u—-c)
2c 2c
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Entropy stability of difference schemes: new formulation 1

“Entropy” of the Euler-Korteweg system

u? 2
U(p, u, 0xp) = fp? + F(p) + 5(p) (axzp)

@ Not an usual entropy (presence of dyp): reduction of order needed (see C.W.
Shu for KdV type equations with DG methods)

K(p)
p

A natural new variable: w = Oxp

U2+W2
2

@ Remark: a strategy used for compressible Navier-Stokes equations
(“Bresch-Desjardins” entropy) to define new weak solutions.

@ The “entropy” U now reads U(p, u, w) = fp + F(p).
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Entropy stability of difference schemes: new formulation 2

Euler-Korteweg equations: “Schrodinger type formulation”

Oev + 0xF(v) = 2x(B()dx(p™v)),  Blp) = (

with v = (p, pu, pw)7, f(v) = (pu, pu® + P(p), puw) .

@ The Schrodinger formulation is obtained by setting ¥ = pu + ipw
(useful for well posedness: see Benzoni-Danchin-Descombes 2006)

e Setting U(v) = p# + F(v) and G(v) = u(U(v) + P(p)):

Energy equation in the new formulation (classic energy estimate)
0tU(v) + 0xG(v) = 0x (u(p) (udxw — wiyu)) . (5)J
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Entropy stability of difference scheme: definition

We consider the following semi discretized system (setting z = p~1v)

d 75-+% - 75-_% B(PH%) (z41—7) — B(Pj—%) (2 — zj-1)

Definition
The semi-discretized scheme (6) is entropy stable if there exists a numerical flux
Gj 41, consistent with the entropy flux in (5), so that

d Gidn 94

E. Tadmor Entropy stability theory for difference approximations of nonlinear
conservation laws and related time-dependent problems Acta Numerica (2003)
P.G. LeFloch, J.M. Mercier, C. Rohde Fully discrete, entropy conservative
schemes of arbitrary order, SIAM J. Numer. Anal. 40 (2002)

C. Chalons, P.G. LeFloch High-Order Entropy-Conservative Schemes and Kinetic
Relations for van der Waals Fluids, JCP 168 (2001).
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Entropy stability: semi-discrete schemes

Theorem

Consider the entropy stable scheme

d o Fafi
Syt + LT, 7

which is a difference approximation of (4) with B = 0, then the associated
difference scheme (6) is an entropy stable difference scheme.

V.

Proof The scheme is entropy stable:

Up(vi(t) T (Fy1 = 1) = Fron = Fja + Ry Rj=0

N

Moreover, setting K; = (U, (v;(t)); r.-h.s of (5)) one has

2
K = pipn (ujwien — wjrawg) — 1 (ujawj — gjwj1)

P. Noble (IMT) Simulation of capillary thin films May 2015 18 /1



Entropy stability: fully-discrete schemes |
We consider only first order accurate schemes

Backward Euler time discretization

an+1 _ an + )\1 (f"+1 f-n+11)

Jt3 J=32

— ( ( Jn;rl) (Zﬂ:rf _ Zjn+1) _ B(Pjnj;l) (Zjn+1 _ Zjn_+11>> . (8)

Forward Euler time discretization

n+1 n n n

=l N (R —

i ;A (J+% -3
n

with 15 1 corresponding to a semi discrete entropy stable scheme.

I\J
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Entropy stability: fully discrete scheme Il

Theorem

Implicit Schemes Consider the entropy (spatially) stable semi scheme (7) which is
a difference approximation of (4) with B = 0, then the scheme (8) is
(unconditionally) entropy stable. There exists gj"+l so that

2

U(vi ™) — U(v) + Gy — G

i3

<0,Vj, Vn. (10)

v

Theorem
Explicit Schemes

@ Explicit scheme with Lax-Friedrichs flux is entropy stable with CFL 6t « §x?

@ Explicit scheme with Rusanov flux is entropy stable with CFL 6t « 6x3

@ Question 1: Two dimensional extension?

@ Question 2: Implicit strategies (to get rid of CFL conditions dt = o(dx?))?
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Two dimensional extensions |

Two-dimensional Shallow Water equations

och + div(hu) = 0,
h2

2
> e; ®e1> + V(g cos(ﬂ)?) =

. 2h° (gsin(6)
0O¢(hu) + div (hu Qu+ 225 (

ghsin(8)e; — 3u% + ZhvAh.
p

Multi-dimensional Euler-Korteweg equations

0r0 + div(pu) = 0, 0¢(ou) + div(ou ® u) + Vp(p) = divK,

€ = (v (K(@Vo) + J(K(0) - oK (@)IV0?) 1~ K()Ve@ o,
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Two dimensional extensions Il: (new) extended formulation

Introduce w = V¢(p) with ¢'(p) = % and F'(0) = 0¢'(0).

Extended formulation of Euler Korteweg equations
0ro + div (pu) = 0,
d¢(ou) + div (eu®u + p(0)Irr) = div(F(0)Vw") — V ((F(0) — oF'(0))div(w))
O:(ow) + div (ow ® u) = —div(F(o)Vu™) + V ((F(o) — oF'(0))div(u)) .

Entropy: U(o,u,w) = oFo(0) + § (Jul® + |w]?)

ocU(o,u,w)  +  div (u(U(g,u,w) + p(e))) = div(F(e)(Vwu — Vuw))
—div ((F(0) — oF'(0))(div(w)u — div(u)w)) .

Remark: Under suitable compatibility conditions for the discretization of
div and V operators, we prove similar energy estimates than in 1d case.
Restriction: Entropy quadratic w.r.t. Vo.
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Implicit strategies

e Explicit in time discretization requires a CFL condition 5t = o(dx?)
o Full implicit in time schemes implies heavy computational costs
(especially in 2d).
Implicit(surface tension)/Explicit (convection) time discretization

7 ()

2

e (87 (22 ™) - By (57 - 1) ).

o Stable under CFL condition §t = O(dx).
e Implicit steps amounts to solve (sparse) linear systems.

@ Higher order time discretization: IMEx strategies
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Entropy stability: numerical comparison |

@ Model: shallow water equations with horizontal bottom

2 o

Oth + 0x(hu) =0,  0¢(hu) + Ox(hu® + g%) = ;h&xxxh.

@ Periodic boundary conditions
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Entropy stability: numerical comparison I

@ Comparison of the original formulation and the “new” formulation
@ Second order schemes for numerical simulations

@ Conclusion: the new formulation provides a better entropy conservation

Entropy as a function of time

1.00035e+00
original formulation: LF
original formulation: RU [
new formulation: LF
new formulation: RU

1.00030e +00

1.00025e +00

L.00020e +00 -

L.00015e+00—

1.00010e+00

100005 +00

1.00000e +00

9.955950e-01 T T T T T T T T T
0.0 01 0.2 03 0.4 0.5 o6 0.7 L3 0.9 10
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Simulation of Liu Gollub experiment (Phys of Fluids 94)

@ The viscous term is heuristic
@ Numerical scheme: RK2/Rusanov (2nd order) on the extended formulation.

@ Reynolds number Re = 29, Inclination 6§ = 6.4°, Weber number We = 35.
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Numerical Simulations

@ Numerical simulation of shallow water equations (consistent models)

1d and 2d simulations: IMEx strategies+Extended formulations

Falling films: roll waves and drop (wet/dry front with precursor film)

Remark (MUSCL reconstruction): the flux limiters does not “kill”
surface tension effects.
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Simulation of drop motion

S 7 [ | [haa
0025 005 0.075 0.1 0125 015 0.175 0.2
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h(mm): 06 07 08 09 1

1112 13 14 15 16

Simulation of Liu Gollub experiment (Phys of Fluids 94)

h(mm): 05 06 07 08 09 1

1112 13 14 15
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Conclusion

@ Summary
» Proof of entropy stability with a new form of Euler-Korteweg equations

» Numerically: extended formulation is more stable than original
formulation and provides a natural implicit discretization (CFL

5t = 0(6x)).

» Ref : Noble Vila SINUM 2014 Vol. 52, No. 6, pp. 2770 2791 and
Bresch Couderc Noble Vila http://arxiv.org/abs/1503.08678

@ Open problems
» Other dispersive models (water wave models/ bi-fluid models) ?

» Derivation of suitable boundary conditions?

» Higher order methods (Discontinous Galerkin methods)?
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