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Introduction

Introduction

Motivation : numerical study of two-phase flows in nuclear
reactors

We consider the following model

Otp+ V- (pu)=0
Ie(pu) + V- (pu@u) +Vp =0
Ot(pE) + V- [(pE + p)u] =0

where p, u = (u, v)t, E denote respectively the density, the
velocity vector and the total energy of the fluid.

Lete=E — % be the specific and 7 = 1/p the covolume
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Introduction

Introduction

We are especially interested in the design of numerical schemes
when the model depends on a parameter ¢ > 0 in the following
three flow regimes

Classical regime : ¢ = O(1)
Low € regime : e << 1
Limit regime : ¢ = 0

Our objective is to propose a numerical scheme that is

@ all-regime : uniform stability and uniform consistency w.r.t. ¢
@ able to deal with any equation of state
e multi-dimensional on (possibly) unstructured meshes

These requirements will be specified later on...
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Large friction and low Mach regimes

Large friction regime

We consider the following model with friction and gravity

Otp+ V- (pu)=0
d(pu) + V- (pu @ u) + Vp = p(g — ou)
Ot(pE) +V - [(pE + p)u] = pu.(g — au)

where g, a denote the gravity field and the friction coefficient.

The large friction regime is obtained by replacing o with
Otp+V - ( )
Ie(pu) + V- (pu® u) +Vp=p(g— *U)
Ot(pE) + V - [(pE + p)u] = pu.(g — *U)

with e << 1
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Large friction and low Mach regimes

Large friction regime

Setting
u=ug + eu; + O(c?)

Otp+ V- (pu)=0
Ou(pu) + V- (pu© u) + Vp = p(g — ~u)
O(pE) + V - [(pE + p)u] = pu.(g — “u)
the behaviour of the solutions is given by
up =20
Oep + €V - (pur) = O(e?)

Vp = p(g — aur)
O+(pE) + €V - [(pE + p)u1] = cpu1.(g — auy) + O(<?)
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Large friction and low Mach regimes

Large friction regime

Note that replacing t with £ in

Ug = 0

dep + €V - (pur) = O(¢%)

Vp = p(g — au)

O:(pE) + eV - [(pE + p)ui] = epur.(g — aur) + O(&%)

the long time behaviour is given by

Up = 0

dep+ V- (pur) = O(e)

Vp = p(g — auy)

9e(pe) + V - [(pe + p)u1] = pu1.(g — au) + O(¢)

see Hsiao-Liu, Nishihara, Junca-Rascle, Lin-Coulombel,
Coulombel-Goudon, Marcati-Milani... for rigorous proofs
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Large friction and low Mach regimes

Low Mach regime

Introducing the characteristic and non-dimensional quantities :

with up = vy = % €0 = popo and py = ,oocg, the non-dimensional
system is
Otp+V-(pu)=0
1
Ot(pu) + V- (pu @ u) + WVP =0
2
de(pe) + V - [(pe + p)u] + - (0¢(pu.u) + V - (pu.uu)) = 0

where M = ‘C’—g denotes the Mach number and plays the role of ¢
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Large friction and low Mach regimes

Low Mach regime

Otp+V-(pu)=0
1
Ot(pu) + V- (pu @ u) + WVP =0
2
de(pe) + V - [(pe + p)u] + - (0¢(pu.u) + V - (pu.uu)) = 0
Remark 1. The flow is said to be in the low Mach regime if
M << 1 and Vp = O(M?)

Remark 2. Using asymptotic expansions of p, u, p, c in powers of M
in the governing equations of p, u, p, together with boundary
conditions on a given domain D (global argument), we get

Otpo + V- (poug) =0
1
Orug + (ug - V)ug+ —Vpr =0
2]
V- Up = 0
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Large friction and low Mach regimes

Numerical issue in the Low Mach regime

Accurate time-explicit computations of solutions generally require
@ a mesh size h = o(M)
@ a time step At = O(hM)

which is out of reach in practice

More details can be found in the large body of literature on this
subject : A. Majda, E. Turkel, H. Guillard, C. Viozat, B. Thornber,
S. Dellacherie, P. Omnes, P-A. Raviart, F. Rieper, Y. Penel, P.
Degond, S. Jin, J.-G. Liu, P. Colella, K. Pao, E. Turkel, R. Klein,
J-P Vila, M.G., B. Després, M. Ndjinga, J. Jung, M. Sun, ...

General cure : change the treatment of acoustic waves in the low
Mach regime by centering the pressure gradient
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Large friction and low Mach regimes

Numerical issue in the large friction regime

Accurate time-explicit computations of solutions generally require

@ a mesh size h = o(e)
@ a time step At = O(e)

which is out of reach in practice

More details can be found in the large body of literature on this
subject : L. Hsiao, T.-P. Liu, S. Jin, L. Pareschi, L. Gosse, G.
Toscani, F. Bouchut, H. Qunaissa, B. Perthame, C. C., F. Coquel,
E. Godlewski, P.-A. Raviart, N. Seguin, C. Berthon, P.-G. LeFloch,
R. Turpault, F. Filbet, A. Rambaud, M. Girardin, S. Kokh, C.
Cances, H. Mathis, N. Seguin, S. Cordier, B. Després, E. Franck,
C. Buet, ...

General cure : upwinding of the source terms at interfaces (USI)
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Large friction and low Mach regimes

Numerical strategies

Several approaches can be envisaged to compute accurate
solutions when ¢ << 1

@ Use and discretize the limit model (the nature of which
changes)
@ Couple the original and limit models at moving interfaces

@ Design Asymptotic-Preserving schemes (consistency with the
limit model when ¢ — 0 and with the original model when
¢ — 0, no coupling)

e Consider all-regime stability and consistency properties (e is
kept constant in order to compute accurate solutions also in
intermediate regimes)
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Large friction and low Mach regimes

A couple of definitions

Uniform stability

A scheme is said to be stable in the uniform sense if the CFL
condition is uniform with respect to ¢

This avoids stringent CFL restrictions At = O(hM) or At = O(e)

Uniform consistency

A scheme is said to be consistent in the uniform sense if the
truncation error is uniform with respect to ¢

This avoids large numerical diffusion and mesh size restrictions
h=0o(M) or h= O(e)

All-regime scheme
A scheme is said to be all-regime if it is able to compute accurate
solutions with a mesh size h and a time step At independent of ¢
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Large friction and low Mach regimes

Objectives

Our objective is to propose a numerical scheme that is

@ all-regime : uniform stability and uniform consistency w.r.t. €

@ able to deal with any equation of state

e multi-dimensional on (possibly) unstructured meshes

How to do that...
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Numerical strategy

Outline

© Numerical strategy
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Numerical strategy

How to reach these objectives

How to get the uniform stability ?

- implicit treatment of the fast phenomenon

- explicit treatment of the slow phenomenon (sake of accuracy)
— Lagrange-Projection strategy Coquel-Nguyen-Postel-Tran

How to get the uniform consistency ?
- modify the numerical fluxes to reduce the numerical diffusion
— Truncation errors in equivalent equations

How to deal with any (possibly strongly nonlinear) pressure law p?
- overcome the non linearities, " linearization”
— Relaxation strategy Suliciu, Jin-Xin, Bouchut, C.-Coquel, C.-Coulombel

How to deal with unstructured meshes in multi-D 7
- work on a fixed mesh (no need to deform unstructured meshes)
— Operator splitting strategy and rotational invariance
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Numerical strategy

Lagrange-Projection strategy

Let us first focus on the 1D system

0to + Oxou =0
drou+ Ox(ou® + p) =0
Ot(0E) + Ox(0Eu+ pu) =0
Using chain rule arguments, we also have
Or0 + udxo + 00xu =0
Orou + uOxpu + pudxu + Oxp =0
0t 0E + udy0E + 0EOyu + Oxpu =0
so that splitting the transport part leads to

0ro+ 00xu =10 Oro+ udxo =0

Orou + oudyu+ Oxp =0 Orou + udyou =0

0t0E + 0EOxu + Oxpu =0 0r0E + udy0E =0
Lagrangian-step Transport-step
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Numerical strategy

Lagrange-Projection strategy

The Lagrangian-step

0t0 + 00xu =0 Ot — Omu =0
Orou + oudyu + Oxp =0 also writes O+ Omp =0
atQE + QE@XU + 8xpu =0 8tE + 8mpu =0

with 7 = 1/p and 70y = Om.
o Eigenvalues are given by —pc, 0, pc

@ Usual CFL conditions for time-explicit schemes write

At
- max(pc) <

N

The idea is to propose a time-implicit scheme to avoid this
time-step restriction (At = O(hM) in the low Mach regime)
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Numerical strategy

Lagrange-Projection strategy

The Transport-step is

0t0 + uds0 =0 0t0 + Oxou — 00xu =0
Orou + udyou =0 also writes drou + Oxou?® — pudyu =0
0+0E + uOx0E =0 0:0E + Ox0Eu — 0EOxu =0

@ Eigenvalues are given by u

@ Usual CFL conditions for time-explicit schemes write

At 1
e max(|uf) < 5

The idea is then to propose a standard time-explicit scheme to
keep accuracy on the slow phenomenon (At = O(h) in all regime)
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Numerical strategy

Operator splitting strategy

We will consider the following three-step numerical scheme :

First step (t" — t128) : solve implicitly the acoustic system with
the solution at time t” as initial solution

Second step (%8 — t"T17) solve implicitly the source terms
(when present) with the solution at time t-28 as initial solution

Third step ("1~ — t"*1) solve explicitly the transport system
with the solution at time t"t1~ as initial solution

Solving implicitly the source terms avoid the time-step restriction
At = O(e) when e << 1 (At = O(h) in all regime)
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Numerical strategy

A few words about the relaxation approach

The gas dynamics equations in Lagrangian coordinates :

0T — Oqu =10

O+ Omp =0

OtE + Ompu =10
with p = p(r, e) and

1

e=F — EUZ
Due to the nonlinearities of p, the Riemann problem is difficult to
solve. The relaxation strategy :

@ |dea : to deal with a larger but simpler system

@ Design principle : to understand p(r, €) as a new unknown
that we denote [1
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Numerical strategy

A few words about the relaxation approach

The gas dynamics in Lagrangian coordinates

81-7' — 8mU =0
3tu + 3mp =0
OtE + Ompu =0
The relaxation system
0T — Omu =10
3tu + 8,7-,” = 0

8tE + amnu =0
O:N + a®Opmu = A(p — 1)

At least formally, observe that

lim M=p (if a>pc(r,e))

A—400

(see e.g. Chalons-Coulombel for a rigorous proof)

24/63} Christophe Chalons All-regime Lagrangian-Remap numerical schemes



Numerical strategy

A few words about the relaxation approach

The time-explicit Godunov scheme applied to the relaxation system
with initial data at equilibrium writes

. At
7 % — T+ %In(uf-i-lﬁ - “f—l/z)

Lag _ n t * *
u "t =l — m(Pj.H/z - Pj—l/z)

L t
Ny =n; - azﬂ(“ﬁrm — i)

At

L * * * !

B = B = ;Plajetivae = Pioajatiog)

with M7 = p(77", e[') and

. 1
Uiyrye = 5 (07 + uig) = 5 (Mg = 17)

* 1 a
Pjt1/2 = 5(”}7 + M) - E(Ufﬂ - uf)
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Numerical strategy

A few words about the relaxation approach

The time-implicit Godunov scheme applied to the relaxation
system with initial data at equilibrium writes

L At
T =T+ %m(”ﬂrl/z — Ui 1)
Lag _ n t * *
ui™ = uf = (P2 — Piiyy)
L
”'ag =N7 - 32E(Uf+1/2 — Uji_1)2)
At
L * * * *
E* =E!— A Pie1/2Ui1/2 = Pio1y2Uj-1/2)

with M7 = p(77", e[') and

« 1, L L L
“j+1/2:§(ujag+ujﬁ) 53 (njﬁ ”jag)

« 1 L a, | L
Pit1/2 = §(njag + njjgl) 2(“;&{ uj *)
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Numerical strategy

A few words about the relaxation approach

The time-explicit scheme
@ deals with (possibly strongly nonlinear) pressure laws

@ is stable and satisfies a discrete entropy inequality provided
that a is chosen sufficiently large and under a CFL restriction

Emax( c)<1
Am Pel =3

In dimensionless form (low Mach regime), it writes

At ( c)< 1
7m —_ —
Am VM) =0
that is to say
At = O(hM)

27/63} Christophe Chalons All-regime Lagrangian-Remap numerical schemes



Numerical strategy

A few words about the relaxation approach

The time-implicit scheme
@ deals with (possibly strongly nonlinear) pressure laws
@ is free of CFL restriction !

@ is cheap in the sense that only a linear problem w.r.t. u and Il
has to be solved

In 1D, the following two equations are decoupled

O¢(M + au) + adx (M + au) =0
O¢(M — au) — adx(M — au) =0
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Numerical strategy

Formulation on unstructured meshes

On unstructured meshes, the time-explicit (§ = n) and
time-implicit (§ = Lag) schemes write

R RN ST,
keN(j) 1€

rleag =N7—7 At Y T k'(Jk)2
eniy 1Sl

e piaey o
keN()) 1€

Lag | |

E =5 -1At Z ] 7 Pik Uik
keN(j)

1 i 1 1 ik
Uy = 5 ﬁ(uq—l—u;{)—ﬂ(ﬂi—ﬂ?), Pix = 5(”?4‘“” é ﬁ(”i_uﬁ)
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Numerical strategy

Source terms

The time-implicit point-wise scheme for the gravity terms and
external forces writes

7_jn+17 — 7_jLag
uj’,’“* = uJ.Lag + At(g — ozuj’-’H*)

n+1— _ rlag n+1— _ n+1—
EJ- —Ej +Atuj (g au; )

It is free of CFL restriction
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Numerical strategy

Transport step

In order to approximate the solutions of the transport step

Otp+ (u-V)p =0 Otp+ V- (pu) —pV -u =0
Ot(pu) + (u-V)pu =0 < 0(pu)+V - -(pu®u)—puV-u =0
Ot(pE) + (u-V)pE =0 OtpE + V - (pEu) — pEV - u =0

we simply use the time-explicit upwind finite-volume scheme

n+l _  n+l— |rjk’ *  n+l— n+1— “_Jk| *
Pt =it oA Y AL +AtpIT u
)

; eyl
keN(j kEN())
= et >0
where © = p, pu, pE and 1" = ®j T Ujk
¢ = p,pu,p Pik {wzﬂ U, <0

This scheme is stable under a material CFL condition (At = O(h))
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Numerical strategy

Objectives

Our objective is to propose a numerical scheme that is

@ all-regime : uniform stability and uniform consistency w.r.t. ¢
@ able to deal with any equation of state

e multi-dimensional on (possibly) unstructured meshes

What about the first objective ?
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Numerical strategy

Uniform consistency in the large friction regime

Let us first focus on the first two steps of the time-explicit scheme
(the transport step is not a problem)

Tjnﬂ_ =7+ %m(“}kﬂ/z — 1))

UJHP =u — Tt(Pf+1/2 - Pf—1/2) + At(g - %Ujﬁli)

M- — Er - AT;((;)u);fﬂ 2= (P ) + Aty (g — %u}’"’l_)
with

. 1 1
Uity = §(Uj + Ujq) — Z(Pj—o—l - pj)

. 1 a
Pjt1/2 = §(Pj +Pjt1) — §(Uj+1 — uj)
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Numerical strategy

Uniform consistency in the large friction regime

7_‘I7+1* n >)< )
J %m J+1/2 Uji—1/2

+1— * S N .
Uf =uj — Am (PJ+1/2 ijl/z) + At(g — ?Uf )

. 1 1
Uiv1/2 = 5(“}7 + Uf+1) - Z(Pfﬂ - Pf)
1 a, , n
PJ+1/2 (PJ + pjli1) — 2(”j+1 —u)

Numerical asymptotic analysis. uj = u}o) + Eu}l) + O(e?)

@ Multiply the second equation by € and let € — 0 : uj(o) =0
@ Let € = 0 in the second equation : % =(g— au}l))

. 1 . , .
@ Let then insert u; =0+ eu} ) 4 O(€?) in the first equation :
o Y T T P ——prv—



Numerical strategy

Uniform consistency in the large friction regime

s =y 7m“( J(Jlr)l/z J(1)1/2)+O( )

* 1 n n 1 n n
Uiti0 = 2(”j + Uj+1) - 7(Pj+1 - Pj)

Numerical asymptotic analysis. u; = u(o) + eu( )+ 0O(€?)

e Multiply the second equation by € and let € — 0 : u}o) =0

@ Let € — 0 in the second equation : % =(g— au}l))
@ Let then ¢ — 0 in the first equation :
1 (1) e (1)
SO ()+”+1 _Ampipi—pp YUY +O(ﬂ)
G2 = 2 e 2alAm 2 €

which is clearly not consistent with 9;7 — eOmuy = O(€2),
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Numerical strategy

Uniform consistency in the large friction regime

The problem comes from the numerical diffusion in u? 1)

In order to obtain an uniform consistency with respect to € we
introduce the parameter ;1> and simply consider the following
definition of u?} 12

. Oiv1/2 n
Uit1/2 = (U +u +1)—7/ (P11 —p}')
e (1)
Then we get ”(1)1/2 5 5 ez i O( JH/: m)

Which gives the uniform consistency provided that 0,1/, = O(e)
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Numerical strategy

Uniform consistency in the low Mach regime

Let us focus on the first step of the time-explicit scheme (the
transport step is not a problem)

At
n+1— __ _n * *
T =77+ (U110 = Ui_12)

’ A7
qu’H* = uf’ — T(Pfﬂ/z - pf—1/2)

_ n t * x
Ejn+1 =E - M((pu)jH/g - (PU)j71/2)

with
. 1 1
Uirye = 5 (U + Ujpy) = Z(Pj—o—l - pj)

. 1 a
Pjt1/2 = §(Pj +Pjt1) — §(Uj+1 — uj)

37/63] Christophe Chalons All-regime Lagrangian-Remap numerical schemes



Numerical strategy

Uniform consistency in the low Mach regime

In dimensionless form we get

At
+1— * *
T =1+ %m(uj+1/2 —Uui_q))
un+17 — "= i( * ok )
i T T A, P2 T P12

n - t * :
P = B — o ((pu)fae — (PU);yy2)

with, since pjy1 — pj = O(M?)

u+ u; MAm (Pjy1—P;) U +u
* _ 1 J+1 i’ J+1
Uipy)p = 5 aMZ A > +O(MAm)

: Pt P _ aAm (Uj+1 - “j) _ Pt R O(ﬂ)
Pi+1/2 = ~Hup2 M Am  2M? M
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Numerical strategy

Uniform consistency in the low Mach regime

The problem comes from the numerical diffusion in p;.“+1/2

In order to obtain an uniform consistency with respect to M we
introduce the parameter 6;, 1/, and simply consider the following
definition of Pii1/2

N 1 a
Pii1j2 = E(Pf’ +pjli1) — 91+1/2§(Uf+1 —uf)

. P; + Pjt1 O0jy128m
Then we get p}\; ), = J2I\/Ié +0(~ I/W )

Which gives the uniform consistency provided that 0;;/,, = O(M)
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Numerical strategy

Remarks

The modifications give the uniform consistency and we recover the
classical scheme provided that 6;,,,, =1

The modifications apply directly on unstructured meshes

Considering the time-implicit treatment of the Lagrangian step
gives the uniform stability

The relaxation approach allows to consider any given pressure law
Recall that the unstructured mesh is fixed (not moving)

All the objectives are reached
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Numerical strategy

Remarks

Interestingly, we proved that operator splitting strategies are
compatible with asymptotic-preserving and all-regime properties !

How does the modifications affect the stability properties?
One are able to prove that the schemes are

- conservative (with no source terms and external forces)

- positive

- uniformly stable and uniformly consistent w.r.t. €

- entropy satisfying under a suitable definition of 6

6 = 0 is also possible! (numerical diffusion in the transport step)

High-order extension under progress using DG methods
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Numerical results

Outline

@ Numerical results
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Numerical results

Implementation of the numerical scheme

The numerical schemes have been implemented in YAFiVoC (Yet
Another Finite Volume Code)

A code that was developed by Mathieu Girardin and Samuel Kokh
to implement finite volume methods on unstructured meshes

Programming Language : C

Compilation : CMake
Linear problem solver : Petsc
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Numerical results

Numerical results

We want to assess the following properties of the numerical scheme :

@ Accuracy of the numerical scheme in the large friction regime if § = O(¢)
@ Accuracy of the numerical scheme in the low Mach regime if 6 = O(M)

@ Robustness of the numerical scheme with respect to the choice of 0 (resp.

0) in and outside the low Mach regime (resp. large friction regime)

@ Performance in terms of CPU time of the mixed implicit-explicit numerical
scheme
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Numerical results

ge friction modificati

Large friction modification
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Numerical results

test case : sensitivity w

The fluid is equipped with a perfect gas equation of state
p=(y—1pe, vy=14
We consider the domain Q = (0,1).
The initial condition is given by
(pyu,p) =(1.0,0,10000.0), if x € [0,0.35] N [0.65,1],
(pyu,p) =1(2.0,0,26390.2), if x € [0.35,0.65].
We impose periodic boundary conditions.

The friction parameter is given by o = 10°s !, so that we are in the large
fraction regime.
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Numerical results

flow speed (ms)

case : sensitivity w the space ste

We compute approximate solutions with a 100-cell, 1000-cell and a 10 000-cell

grid, with  =n

D2
I
—

LSPIMEX 100 cals o
LSP-IMEX 1000 cols  +
LSPLMEX 10000 cells @

flow speed

Christophe Chalol

é:min(

1)

2a
xAx

LSP-IMEXCOR 100cals o
LSP'IMEXCOR 1000 cels _+
eference solution

flow speed (m's)

All-regime Lag

x(m)

flow speed
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Numerical results

test case the space ste

We plot convergence curves in L' norm for

6 =1 (black), 6 =min (i, 1) (blue), 6 == (red)

xAx

R

LSP-IMEX ——
1 LSP-IMEX COR =
LSP-IMEX COR2 -

velocity L1 relative error

0.001

0.0001
001 0.001 0.0001 1e-05

Detta x (m)
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Numerical results

ow Mach modificatio

Low Mach modification
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Numerical results

rtex in a box : test case

The fluid is equipped with a perfect gas equation of state

p=(vy—1pe, y=14

We consider the domain QO = (0, 1).
The initial condition is given by

po(x,y)=1— %tanh (y — %) , uo(x,y) = 2sin?(mix)sin(mty)cos(mty)),
{ po(x,y) = 1000, vo(x, y) = —2sin(7tx) cos(mix)sin®(1y).

We impose a no-slip boundary condition.

This configuration leads to a Mach number of order 0.026, so that we are in
the low Mach regime.
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Numerical results

ex in a box (M : explicit scheme

We plot the flow speed magnitude at time T = 0.125s.

velocity Magnitude

explicit scheme explicit scheme reference solution
(86=1) (6=1) explicit scheme
Cartesian Mesh Cartesian Mesh (6=1)
50 * 50cells 400 * 400cells Triangular Mesh
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Numerical results

Vortex in a box (M#0.026) : modified explicit scheme

We plot the flow speed magnitude at time T = 0.125s.

velocity Magnitude

explicit scheme explicit scheme reference solution
(6=1) (05 = M) explicit scheme
Cartesian Mesh Cartesian Mesh (86=1)
50 * 50cells 50 * 50cells Triangular Mesh
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Numerical results

Vortex in a . : modified implicit scheme

We plot the flow speed magnitude at time T = 0.125s.

velocity Magnitude

implicit-explicit implicit-explicit reference solution
scheme (6 = 1) scheme (8; = M}) explicit scheme
Cartesian Mesh Cartesian Mesh (6=1)

50 x 50cells 50 * 50cells Triangular Mesh

53/63} Christophe Chalons All-regime Lagrangian-Remap numerical schemes



Numerical results

Vortex in a box (M#0.026) : CPU Time

EX:B=n IMEX:p = Lag.

Numerical scheme EX(0 =1) EX(6 =1) EX(0; = M)
(Mesh 400 = 400) (Mesh 50 % 50)  (Mesh 50 = 50)
Number of iterations 18 457 2 306 2 305
CPU time (s) 9 263.04 (2h34min) 17.14 19.3

Speed up (6 =1 — 0 = Mj;) =480

Numerical scheme IMEX(6 =1) IMEX(0; = Mj)
(Mesh 50 % 50)  (Mesh 50 = 50)

Number of iterations 43 56
CPU time (s) 3.75 5.77

Speed up (explicit— implicit-explicit)= 3.3
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Numerical results

We plot a 1D-cut at x = 0.5 of the flow speed magnitude at time T = 0.125s.

Velocity Magnitude - Cartesian Mesh Velocity Magnitude - Triangular Mesh

Cartesian Mesh Triangular Mesh
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Numerical results

2D-Riemann problem : test case

The fluid is equipped with a perfect gas equation of state
p=(y—1pe, y=14

We consider the domain Q = (0,1)?.
The initial condition corresponds to a 2D Riemann problem that consists of 4
shock waves. We impose Neumann boundary conditions.

This configuration leads to a Mach number that ranges from 107> to 3.15, so
that we have both low Mach and order 1 Mach values.
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Numerical results

2D-Riemann problem . : modified explicit scheme

We plot the flow speed magnitude at time T = 0.4s.

velocity Magnitude
716993
1.6
*51.2
—0.8
EU.A .'
0

explicit scheme explicit scheme reference solution
(6=1) (6=0) explicit scheme
Cartesian Mesh Cartesian Mesh (8=1)
50 * 50cells 50 x 50cells Triangular Mesh
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Numerical results

2D-Riemann problem M € (107°,3.15) : modified implicit scheme

We plot the flow speed magnitude at time T = 0.4s.

velocity Magnitude
716993
*1 2
0

implicit-explicit implicit-explicit reference solution
scheme (6 = 1) scheme (6 = 0) explicit scheme
Cartesian Mesh Cartesian Mesh (6=1)

50 * 50cells 50 * 50cells Triangular Mesh
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Numerical results

2D-Riemann problem M € (1073,3.15) : CPU time

Numerical scheme EX(6 =1) EX(6 =0)
(Mesh 50 % 50)  (Mesh 50 * 50)
Number of iterations 323 343
CPU time (s) 2.59 2.79

Speedup (6=1—-0=0)~1

Numerical scheme IMEX(6 = 1) IMEX(6 = 0)
(Mesh 50 % 50)  (Mesh 50 % 50)

Number of iterations 216 218
CPU time (s) 10.28 10.33

Speed up (explicit— implicit-explicit)= 0.25
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Numerical results

flow in a nnel with bump

The fluid is equipped with a mixture of two perfect gas with different adiabatic
coefficients equation of state : y1 =2, y» = 1.4.

We consider for the domain a channel with a 20% sinusoidal bump.

The initial condition corresponds to a constant state
(p, Y, pyu,v)=(7.81,0,3124,0,0).

We impose inlet/outlet and Wall boundary conditions.

This configuration leads to a subsonic flow for uj, = 0.2 and a transonic flow
for uj, = 12.
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Numerical results

flow in a channel with bump : subsonic flow

We plot the results obtained for the subsonic test case (uj, =0.2) on a 80 x 20
quadrangular mesh at time T = 2s with 3 = Lag and 0;; = Mj;

(a) velocity Magnitude (b)pressure
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Flow speed animation
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Numerical results

flow in a channel with bump ansonic flow
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We plot the results obtained for the transonic test case (uj» = 12) on a 80 x 20
quadrangular mesh at time T =2s with 3 =nand 0;; =0

(a) velocny Magnlfude (b)pressure
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Flow speed animation
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Numerical results
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