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Introduction

Motivation : numerical study of two-phase flows in nuclear
reactors

We consider the following model

∂tρ+∇ · (ρu) = 0
∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0
∂t(ρE ) +∇ · [(ρE + p)u] = 0

where ρ, u = (u, v)t , E denote respectively the density, the
velocity vector and the total energy of the fluid.

Let e = E − |u|
2

2 be the specific and τ = 1/ρ the covolume
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Introduction

We are especially interested in the design of numerical schemes
when the model depends on a parameter ε > 0 in the following
three flow regimes

Classical regime : ε = O(1)
Low ε regime : ε << 1
Limit regime : ε→ 0

Our objective is to propose a numerical scheme that is

all-regime : uniform stability and uniform consistency w.r.t. ε

able to deal with any equation of state

multi-dimensional on (possibly) unstructured meshes

These requirements will be specified later on...
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Large friction regime

We consider the following model with friction and gravity

∂tρ+∇ · (ρu) = 0
∂t(ρu) +∇ · (ρu⊗ u) +∇p = ρ(g − αu)
∂t(ρE ) +∇ · [(ρE + p)u] = ρu.(g − αu)

where g, α denote the gravity field and the friction coefficient.

The large friction regime is obtained by replacing α with α
ε

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ρ(g − α

ε
u)

∂t(ρE ) +∇ · [(ρE + p)u] = ρu.(g − α

ε
u)

with ε << 1
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Large friction regime

Setting
u = u0 + εu1 + O(ε2)

in
∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ρ(g − α

ε
u)

∂t(ρE ) +∇ · [(ρE + p)u] = ρu.(g − α

ε
u)

the behaviour of the solutions is given by

u0 = 0
∂tρ+ ε∇ · (ρu1) = O(ε2)
∇p = ρ(g − αu1)

∂t(ρE ) + ε∇ · [(ρE + p)u1] = ερu1.(g − αu1) + O(ε2)
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Large friction regime

Note that replacing t with t
ε in

u0 = 0
∂tρ+ ε∇ · (ρu1) = O(ε2)
∇p = ρ(g − αu1)

∂t(ρE ) + ε∇ · [(ρE + p)u1] = ερu1.(g − αu1) + O(ε2)

the long time behaviour is given by

u0 = 0
∂tρ+∇ · (ρu1) = O(ε)
∇p = ρ(g − αu1)
∂t(ρe) +∇ · [(ρe + p)u1] = ρu1.(g − αu1) + O(ε)

see Hsiao-Liu, Nishihara, Junca-Rascle, Lin-Coulombel,
Coulombel-Goudon, Marcati-Milani... for rigorous proofs
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Low Mach regime

Introducing the characteristic and non-dimensional quantities :

x =
x

L
, t =

t

T
, ρ =

ρ

ρ0
, u =

u

u0
,

v =
v

v0
, e =

e

e0
, p =

p

p0
, c =

c

c0

with u0 = v0 = L
T , e0 = p0ρ0 and p0 = ρ0c

2
0 , the non-dimensional

system is

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +
1

M2
∇p = 0

∂t(ρe) +∇ · [(ρe + p)u] + M2

2

(
∂t(ρu.u) +∇ · (ρu.uu)

)
= 0

where M = u0
c0

denotes the Mach number and plays the role of ε
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Low Mach regime

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +
1

M2
∇p = 0

∂t(ρe) +∇ · [(ρe + p)u] + M2

2

(
∂t(ρu.u) +∇ · (ρu.uu)

)
= 0

Remark 1. The flow is said to be in the low Mach regime if
M << 1 and ∇p = O(M2)

Remark 2. Using asymptotic expansions of ρ,u, p, c in powers of M
in the governing equations of ρ,u, p, together with boundary
conditions on a given domain D (global argument), we get

∂tρ0 +∇ · (ρ0u0) = 0

∂tu0 + (u0 · ∇)u0 +
1

ρ0
∇p2 = 0

∇ · u0 = 0
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Numerical issue in the Low Mach regime

Accurate time-explicit computations of solutions generally require

a mesh size h = o(M)

a time step ∆t = O(hM)

which is out of reach in practice

More details can be found in the large body of literature on this
subject : A. Majda, E. Turkel, H. Guillard, C. Viozat, B. Thornber,
S. Dellacherie, P. Omnes, P-A. Raviart, F. Rieper, Y. Penel, P.
Degond, S. Jin, J.-G. Liu, P. Colella, K. Pao, E. Turkel, R. Klein,
J-P Vila, M.G., B. Després, M. Ndjinga, J. Jung, M. Sun, ...

General cure : change the treatment of acoustic waves in the low
Mach regime by centering the pressure gradient
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Numerical issue in the large friction regime

Accurate time-explicit computations of solutions generally require

a mesh size h = o(ε)

a time step ∆t = O(ε)

which is out of reach in practice

More details can be found in the large body of literature on this
subject : L. Hsiao, T.-P. Liu, S. Jin, L. Pareschi, L. Gosse, G.
Toscani, F. Bouchut, H. Ounaissa, B. Perthame, C. C., F. Coquel,
E. Godlewski, P.-A. Raviart, N. Seguin, C. Berthon, P.-G. LeFloch,
R. Turpault, F. Filbet, A. Rambaud, M. Girardin, S. Kokh, C.
Cancès, H. Mathis, N. Seguin, S. Cordier, B. Després, E. Franck,
C. Buet, ...

General cure : upwinding of the source terms at interfaces (USI)
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Numerical strategies

Several approaches can be envisaged to compute accurate
solutions when ε << 1

Use and discretize the limit model (the nature of which
changes)

Couple the original and limit models at moving interfaces

Design Asymptotic-Preserving schemes (consistency with the
limit model when ε→ 0 and with the original model when
ε→ 0, no coupling)

Consider all-regime stability and consistency properties (ε is
kept constant in order to compute accurate solutions also in
intermediate regimes)
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A couple of definitions

Uniform stability
A scheme is said to be stable in the uniform sense if the CFL
condition is uniform with respect to ε
This avoids stringent CFL restrictions ∆t = O(hM) or ∆t = O(ε)

Uniform consistency
A scheme is said to be consistent in the uniform sense if the
truncation error is uniform with respect to ε
This avoids large numerical diffusion and mesh size restrictions
h = o(M) or h = O(ε)

All-regime scheme
A scheme is said to be all-regime if it is able to compute accurate
solutions with a mesh size h and a time step ∆t independent of ε
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Objectives

Our objective is to propose a numerical scheme that is

all-regime : uniform stability and uniform consistency w.r.t. ε

able to deal with any equation of state

multi-dimensional on (possibly) unstructured meshes

How to do that...
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How to reach these objectives

How to get the uniform stability ?
- implicit treatment of the fast phenomenon
- explicit treatment of the slow phenomenon (sake of accuracy)
→ Lagrange-Projection strategy Coquel-Nguyen-Postel-Tran

How to get the uniform consistency ?
- modify the numerical fluxes to reduce the numerical diffusion
→ Truncation errors in equivalent equations

How to deal with any (possibly strongly nonlinear) pressure law p ?
- overcome the non linearities, ”linearization”
→ Relaxation strategy Suliciu, Jin-Xin, Bouchut, C.-Coquel, C.-Coulombel

How to deal with unstructured meshes in multi-D ?
- work on a fixed mesh (no need to deform unstructured meshes)
→ Operator splitting strategy and rotational invariance
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Lagrange-Projection strategy

Let us first focus on the 1D system
∂t%+ ∂x%u = 0

∂t%u + ∂x(%u2 + p) = 0
∂t(%E ) + ∂x(%Eu + pu) = 0

Using chain rule arguments, we also have
∂t%+ u∂x%+ %∂xu = 0
∂t%u + u∂x%u + %u∂xu + ∂xp = 0
∂t%E + u∂x%E + %E∂xu + ∂xpu = 0

so that splitting the transport part leads to
∂t%+ %∂xu = 0
∂t%u + %u∂xu + ∂xp = 0
∂t%E + %E∂xu + ∂xpu = 0


∂t%+ u∂x% = 0
∂t%u + u∂x%u = 0
∂t%E + u∂x%E = 0

Lagrangian-step Transport-step
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Lagrange-Projection strategy

The Lagrangian-step
∂t%+ %∂xu = 0
∂t%u + %u∂xu + ∂xp = 0
∂t%E + %E∂xu + ∂xpu = 0

also writes


∂tτ − ∂mu = 0
∂tu + ∂mp = 0
∂tE + ∂mpu = 0

with τ = 1/% and τ∂x = ∂m.

Eigenvalues are given by −ρc , 0, ρc

Usual CFL conditions for time-explicit schemes write

∆t

h
max(ρc) ≤ 1

2

The idea is to propose a time-implicit scheme to avoid this
time-step restriction (∆t = O(hM) in the low Mach regime)
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Lagrange-Projection strategy

The Transport-step is
∂t%+ u∂x% = 0
∂t%u + u∂x%u = 0
∂t%E + u∂x%E = 0

also writes


∂t%+ ∂x%u − %∂xu = 0

∂t%u + ∂x%u
2 − %u∂xu = 0

∂t%E + ∂x%Eu − %E∂xu = 0

Eigenvalues are given by u

Usual CFL conditions for time-explicit schemes write

∆t

h
max(|u|) ≤ 1

2

The idea is then to propose a standard time-explicit scheme to
keep accuracy on the slow phenomenon (∆t = O(h) in all regime)
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Operator splitting strategy

We will consider the following three-step numerical scheme :

First step (tn → tLag ) : solve implicitly the acoustic system with
the solution at time tn as initial solution

Second step (tLag → tn+1−) solve implicitly the source terms
(when present) with the solution at time tLag as initial solution

Third step (tn+1− → tn+1) solve explicitly the transport system
with the solution at time tn+1− as initial solution

Solving implicitly the source terms avoid the time-step restriction
∆t = O(ε) when ε << 1 (∆t = O(h) in all regime)
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A few words about the relaxation approach

The gas dynamics equations in Lagrangian coordinates :
∂tτ − ∂mu = 0
∂tu + ∂mp = 0
∂tE + ∂mpu = 0

with p = p(τ, e) and

e = E − 1

2
u2

Due to the nonlinearities of p, the Riemann problem is difficult to
solve. The relaxation strategy :

Idea : to deal with a larger but simpler system

Design principle : to understand p(τ, e) as a new unknown
that we denote Π
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A few words about the relaxation approach

The gas dynamics in Lagrangian coordinates
∂tτ − ∂mu = 0
∂tu + ∂mp = 0
∂tE + ∂mpu = 0

The relaxation system
∂tτ − ∂mu = 0
∂tu + ∂mΠ = 0
∂tE + ∂mΠu = 0

∂tΠ + a2∂mu = λ(p − Π)

At least formally, observe that

lim
λ→+∞

Π = p (if a > ρc(τ, e))

(see e.g. Chalons-Coulombel for a rigorous proof)
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A few words about the relaxation approach

The time-explicit Godunov scheme applied to the relaxation system
with initial data at equilibrium writes

τLagj = τnj +
∆t

∆m
(u∗j+1/2 − u∗j−1/2)

uLagj = unj −
∆t

∆m
(p∗j+1/2 − p∗j−1/2)

ΠLag
j = Πn

j − a2 ∆t

∆m
(u∗j+1/2 − u∗j−1/2)

ELag
j = En

j −
∆t

∆m
(p∗j+1/2u

∗
j+1/2 − p∗j−1/2u

∗
j−1/2)

with Πn
j = p(τnj , e

n
j ) and

u∗j+1/2 =
1

2
(unj + unj+1)− 1

2a
(Πn

j+1 − Πn
j )

p∗j+1/2 =
1

2
(Πn

j + Πn
j+1)− a

2
(unj+1 − unj )
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A few words about the relaxation approach

The time-implicit Godunov scheme applied to the relaxation
system with initial data at equilibrium writes

τLagj = τnj +
∆t

∆m
(u∗j+1/2 − u∗j−1/2)

uLagj = unj −
∆t

∆m
(p∗j+1/2 − p∗j−1/2)

ΠLag
j = Πn

j − a2 ∆t

∆m
(u∗j+1/2 − u∗j−1/2)

ELag
j = En

j −
∆t

∆m
(p∗j+1/2u

∗
j+1/2 − p∗j−1/2u

∗
j−1/2)

with Πn
j = p(τnj , e

n
j ) and

u∗j+1/2 =
1

2
(uLagj + uLagj+1)− 1

2a
(ΠLag

j+1 − ΠLag
j )

p∗j+1/2 =
1

2
(ΠLag

j + ΠLag
j+1)− a

2
(uLagj+1 − uLagj )
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A few words about the relaxation approach

The time-explicit scheme

deals with (possibly strongly nonlinear) pressure laws

is stable and satisfies a discrete entropy inequality provided
that a is chosen sufficiently large and under a CFL restriction

∆t

∆m
max(ρc) ≤ 1

2

In dimensionless form (low Mach regime), it writes

∆t

∆m
max(ρ

c

M
) ≤ 1

2

that is to say
∆t = O(hM)
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A few words about the relaxation approach

The time-implicit scheme

deals with (possibly strongly nonlinear) pressure laws

is free of CFL restriction !

is cheap in the sense that only a linear problem w.r.t. u and Π
has to be solved

In 1D, the following two equations are decoupled{
∂t(Π + au) + a∂x(Π + au) = 0
∂t(Π− au)− a∂x(Π− au) = 0
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Formulation on unstructured meshes

On unstructured meshes, the time-explicit (] = n) and
time-implicit (] = Lag) schemes write

uLagj = unj − τnj ∆t
∑

k∈N(j)

|Γjk |
|Ωj |

Π∗jknjk

ΠLag
j = Πn

j − τnj ∆t
∑

k∈N(j)

|Γjk |
|Ωj |

(ajk)2u∗jk

τLagj = τnj + τnj ∆t
∑

k∈N(j)

|Γjk |
|Ωj |

u∗jk

ELag
j = En

j − τnj ∆t
∑

k∈N(j)

|Γjk |
|Ωj |

p∗jku
∗
jk

u∗jk =
1

2
nTjk(u]j+u]k)− 1

2ajk
(Π]

k−Π]
j ), p∗jk =

1

2
(Π]

j+Π]
k)−

ajk
2
nTjk(u]k−u

]
j )
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Source terms

The time-implicit point-wise scheme for the gravity terms and
external forces writes

τn+1−
j = τLagj

un+1−
j = uLagj + ∆t(g − αun+1−

j )

En+1−
j = ELag

j + ∆t un+1−
j .(g − αun+1−

j )

It is free of CFL restriction
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Transport step

In order to approximate the solutions of the transport step

∂tρ+ (u · ∇)ρ = 0
∂t(ρu) + (u · ∇)ρu = 0
∂t(ρE ) + (u · ∇)ρE = 0

⇔
∂tρ+∇ · (ρu)− ρ∇ · u = 0
∂t(ρu) +∇ · (ρu⊗ u)− ρu∇ · u = 0
∂tρE +∇ · (ρEu)− ρE∇ · u = 0

we simply use the time-explicit upwind finite-volume scheme

ϕn+1
j = ϕn+1−

j −∆t
∑

k∈N(j)

|Γjk |
|Ωj |

u∗jkϕ
n+1−
jk +∆tϕn+1−

j

∑
k∈N(j)

|Γjk |
|Ωj |

u∗jk

where ϕ = ρ, ρu, ρE and ϕn+1−
jk =

{
ϕn+1−
j if u∗jk > 0

ϕn+1−
k if u∗jk ≤ 0

This scheme is stable under a material CFL condition (∆t = O(h))

31/63 Christophe Chalons All-regime Lagrangian-Remap numerical schemes



Introduction
Large friction and low Mach regimes

Numerical strategy
Numerical results

Objectives

Our objective is to propose a numerical scheme that is

all-regime : uniform stability and uniform consistency w.r.t. ε

able to deal with any equation of state

multi-dimensional on (possibly) unstructured meshes

What about the first objective ?
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Uniform consistency in the large friction regime

Let us first focus on the first two steps of the time-explicit scheme
(the transport step is not a problem)

τn+1−
j = τnj +

∆t

∆m
(u∗j+1/2 − u∗j−1/2)

un+1−
j = unj −

∆t

∆m
(p∗j+1/2 − p∗j−1/2) + ∆t(g − α

ε
un+1−
j )

En+1−
j = En

j −
∆t

∆m

(
(pu)∗j+1/2 − (pu)∗j−1/2

)
+ ∆t un+1−

j .(g − α

ε
un+1−
j )

with

u∗j+1/2 =
1

2
(uj + uj+1)− 1

2a
(pj+1 − pj)

p∗j+1/2 =
1

2
(pj + pj+1)− a

2
(uj+1 − uj)
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Uniform consistency in the large friction regime

τn+1−
j = τnj +

∆t

∆m
(u∗j+1/2 − u∗j−1/2)

un+1−
j = unj −

∆t

∆m
(p∗j+1/2 − p∗j−1/2) + ∆t(g − α

ε
un+1−
j )

u∗j+1/2 =
1

2
(unj + unj+1)− 1

2a
(pnj+1 − pnj )

p∗j+1/2 =
1

2
(pnj + pnj+1)− a

2
(unj+1 − unj )

Numerical asymptotic analysis. uj = u
(0)
j + εu

(1)
j +O(ε2)

Multiply the second equation by ε and let ε→ 0 : u
(0)
j = 0

Let ε→ 0 in the second equation :
pj+1 − pj−1

2∆m
= (g − αu(1)

j )

Let then insert uj = 0 + εu
(1)
j +O(ε2) in the first equation :
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Uniform consistency in the large friction regime

τn+1−
j = τnj +

∆t

∆m
ε(u

(1)
j+1/2 − u

(1)
j−1/2) +O(ε2)

u∗j+1/2 =
1

2
(unj + unj+1)− 1

2a
(pnj+1 − pnj )

Numerical asymptotic analysis. uj = u
(0)
j + εu

(1)
j +O(ε2)

Multiply the second equation by ε and let ε→ 0 : u
(0)
j = 0

Let ε→ 0 in the second equation :
pj+1 − pj−1

2∆m
= (g − αu(1)

j )

Let then ε→ 0 in the first equation :

u
(1)
j+1/2 =

u
(1)
j + u

(1)
j+1

2
− ∆m

ε

pj+1 − pj
2a∆m

=
u

(1)
j + u

(1)
j+1

2
+O(

∆m

ε
)

which is clearly not consistent with ∂tτ − ε∂mu1 = O(ε2),
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Uniform consistency in the large friction regime

The problem comes from the numerical diffusion in u∗j+1/2

In order to obtain an uniform consistency with respect to ε we
introduce the parameter θj+1/2 and simply consider the following
definition of u∗j+1/2

u∗j+1/2 =
1

2
(unj + unj+1)−

θj+1/2

2a
(pnj+1 − pnj )

Then we get u
(1)
j+1/2 =

u
(1)
j + u

(1)
j+1

2
+O(

θj+1/2∆m

ε
)

Which gives the uniform consistency provided that θj+1/2 = O(ε)
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Uniform consistency in the low Mach regime

Let us focus on the first step of the time-explicit scheme (the
transport step is not a problem)

τn+1−
j = τnj +

∆t

∆m
(u∗j+1/2 − u∗j−1/2)

un+1−
j = unj −

∆t

∆m
(p∗j+1/2 − p∗j−1/2)

En+1−
j = En

j −
∆t

∆m

(
(pu)∗j+1/2 − (pu)∗j−1/2

)
with

u∗j+1/2 =
1

2
(uj + uj+1)− 1

2a
(pj+1 − pj)

p∗j+1/2 =
1

2
(pj + pj+1)− a

2
(uj+1 − uj)
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Uniform consistency in the low Mach regime

In dimensionless form we get

τn+1−
j = τnj +

∆t

∆m
(u∗j+1/2 − u∗j−1/2)

un+1−
j = unj −

∆t

∆m
(p∗j+1/2 − p∗j−1/2)

En+1−
j = En

j −
∆t

∆m

(
(pu)∗j+1/2 − (pu)∗j−1/2

)
with, since pj+1 − pj = O(M2)

u∗j+1/2 =
uj + uj+1

2
− M∆m

2aM2

(pj+1 − pj)

∆m
=

uj + uj+1

2
+O(M∆m)

p∗j+1/2 =
pj + pj+1

2M2
− a∆m

2M

(uj+1 − uj)

∆m
=

pj + pj+1

2M2
+O(

∆m

M
)
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Uniform consistency in the low Mach regime

The problem comes from the numerical diffusion in p∗j+1/2

In order to obtain an uniform consistency with respect to M we
introduce the parameter θj+1/2 and simply consider the following
definition of p∗j+1/2

p∗j+1/2 =
1

2
(pnj + pnj+1)− θj+1/2

a

2
(unj+1 − unj )

Then we get p∗j+1/2 =
pj + pj+1

2M2
+O(

θj+1/2∆m

M
)

Which gives the uniform consistency provided that θj+1/2 = O(M)
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Remarks

The modifications give the uniform consistency and we recover the
classical scheme provided that θj+1/2 = 1

The modifications apply directly on unstructured meshes

Considering the time-implicit treatment of the Lagrangian step
gives the uniform stability

The relaxation approach allows to consider any given pressure law

Recall that the unstructured mesh is fixed (not moving)

All the objectives are reached
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Remarks

Interestingly, we proved that operator splitting strategies are
compatible with asymptotic-preserving and all-regime properties !

How does the modifications affect the stability properties ?
One are able to prove that the schemes are
- conservative (with no source terms and external forces)
- positive
- uniformly stable and uniformly consistent w.r.t. ε
- entropy satisfying under a suitable definition of θ

θ = 0 is also possible ! (numerical diffusion in the transport step)

High-order extension under progress using DG methods
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1 Introduction

2 Large friction and low Mach regimes

3 Numerical strategy

4 Numerical results
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Implementation of the numerical scheme

The numerical schemes have been implemented in YAFiVoC (Yet
Another Finite Volume Code)

A code that was developed by Mathieu Girardin and Samuel Kokh
to implement finite volume methods on unstructured meshes

Programming Language : C
Compilation : CMake
Linear problem solver : Petsc
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