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Motivations

Non equilibrium and multi-scale

Many applications involve non equilibrium gas flows
(hypersonic objects, plasmas)

Breakdowns of fluid models (Euler or NS)⇒ connection
between equilibrium and non equilibrium regions

Combine macroscopic/fluid numerical schemes with
microscopic/kinetic ones

Possible solutions

These problems involve mutli-scale solutions in time
and/or space

Construct numerical methods which address the
multi-scale nature of solutions (AP).

Exploit physical properties of the system via Domain
Decomposition techniques
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Kinetic - Fluid models

Boltzmann-BGK description of rarefied gaz dynamics

∂t f + V · ∇X f =
1
τ

(Mf − f ), X ∈ Ω ⊂ R3,V ∈ R3

f = f (X ,V , t) density of particles, τ > 0 is the relaxation time. BGK-type collisions

Mf = Mf [ρ,U,T ] (V ) =
ρ

(2πθ)3/2
exp

(
−‖U − V‖2

2θ

)

where ρ ∈ R, ρ > 0 and U = (u, v ,w)t ∈ R3 are the density and mean velocity, θ defined as
θ = RT with T the temperature, R gas constant.

Macroscopic moments

Moments ρ, U and T are related to f in 3D by

ρ =

∫
R3

f dV , U =
1
ρ

∫
R3

V f dV , θ =
1
3ρ

∫
R3
‖V − U‖2 f dV

with total energy E = 1
2

∫
R3
‖V‖2f dV =

1
2
ρ‖U‖2 +

3
2
ρθ
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Coupling of the models

Boltzmann-BGK description when τ → 0

If number of collisions tends to∞ then τ → 0 therefore f → Mf and from Boltzmann-BGK one
retrieves Euler compressible gas dynamics

∂ρ

∂t
+∇X · (ρU) = 0

∂ρU
∂t

+∇X · (ρU ⊗ U + pI) = 0

∂E
∂t

+∇X · ((E + p)U) = 0

Pressure p = ρθ is given by a perfect gas equation of state with gas constant
γ = 2/3 + 1 = 5/3. Set F = (ρ, ρU,E)t .

Coupling strategy

Kinetic/microscopic model is Boltzmann-BGK – Fluid/macroscopic model is Euler system.
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Fast Kinetic Scheme (FKS)
General first order scheme: Equations

Prelims

Semi-Lagrangian scheme for Discrete Velocity Model (DVM) approximation of the kinetic
equation. Kinetic equation + velocity grid =⇒ linear hyperbolic system with source terms.
However particle or lattice Boltzmann interpretations are also possible.

DVM

Let K be a set of N multi-indices of N3 with bounds. Then the Cartesian grid V of R3

V = {V k = k∆v + W , k ∈ K}

∆v the grid step in velocity space. Discrete collision invariants: mk =
(

1,V k ,
1
2‖V k‖2

)t
.

Continuous distribution f is replaced by

fK(X , t) = (fk (X , t))k , fk (X , t) ≈ f (X ,V k , t)

Fluid quantities are retrieved back from fk using

F (X , t) =
∑
k∈K

mk fk (X , t) ∆v
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Fast Kinetic Scheme (FKS)
General first order scheme: DVM

Discrete velocity BGK model

Set of N evolution equations in V where Ek [F ] is a suitable approximation of Mf .

∂t fk + V k · ∇X fk =
1
τ

(Ek [F ]− fk ), k = 1, ..,N

Space/Time discretization

Cartesian uniform grid X of Rdx : X = {X j = j∆x + Y , j ∈ J}, Y is a vector of R3 and ∆x is the
grid step in the physical space.
Time discretization: tn+1 = tn + ∆t with ∆t the time step that is defined by a CFL condition.

Time splitting procedure

The fully discretized system is solved by a time splitting. Transport stage solves the LHS,
Relaxation stage solves the RHS (using solution from transport stage)

Transport stage −→ ∂t fk + V k · ∇X fk = 0

Relaxation stage −→ ∂t fk =
1
τ

(Ek [F ]− fk )
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Fast Kinetic Scheme (FKS)
General first order scheme: Transport stage

f
k,j

n

Vk+1

f
k+1,j

n

f
k+2,j

n f
k+2,j

n+1

f
k+1,j

n+1

f
k,j

n+1

Vk

j

j

k

Vk+2

j

Vk

j

j

k

Vk+2

j

Vk+1

Let f 0
j,k be the pointwise data at t0 at any point X j : f 0

j,k = f (X j ,V k , t0) and E0
j,k [F ] the equilibrium

distribution approximation of M0
j,k = Mf (X j ,V k , t0)

We denote f
0
k (X) a piecewise continuous function for all X ∈ Ω associated with mesh X at the

time t0 and for velocity V k in finite volume sense

f
0
k,j =

1
|Ωj |

∫
Ωj

f (X ,V k , t0) dX , on Ωj = [X j−1/2; X j+1/2]

Exact transport during ∆t

f
∗
k = f

n
k (X − V k ∆t), ∀X ∈ Ω
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Fast Kinetic Scheme (FKS)
General first order scheme: Relaxation stage

Relaxation step solution locally resolved on the grid

∂t fj,k =
1
τ

(Ej,k [F ]− fj,k )

with initial data coming from the transport step given by f∗j,k = f
∗
k (X j ), for all k , j .

Macroscopic quantities needed to compute the Maxwellian

F n
j = F∗j =

∑
k∈K

mk f∗j,k ∆v

Moments before (F n
j ) and after (F∗j ) are unchanged: preservation of macroscopic quantities.

Then

f n+1
j,k = exp(−∆t/τ)f∗j,k + (1− exp(−∆t/τ))Ek [F∗j ]
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Fast Kinetic Scheme (FKS)
Conservation of macroscopic quantities

Constrained optimization formulation (dx = 3)

let f̂ =
(

f̂1, f̂2, . . . , f̂N
)t

be the pointwise distribution vector and f = (f1, f2, . . . , fN )t be the
unknown which fulfill the conservation of moments

C(dx +2)×N =
(
(∆v)3,V k (∆v)3, ‖V k‖2/2(∆v)3)t a constant in time matrix

F(dx +2)×1 = (ρ, ρU,E)t be the vector of the conserved quantities.

Conservation can be imposed solvinga:

Given f̂ ∈ RN , C ∈ R(dx +2)×N , and F ∈ R(dx +2)×1,

find f ∈ RN that minimizes ‖f̂ − f‖2
2 under constraints Cf = F .

Using a Lagrange multiplier λ ∈ Rdx +2, the objective function to be optimized is
L(f , λ) =

∑N
k=1 |̂fk − fk |2 + λT (Cf − F ). Exactly solved by

f = f̂ + CT (CCT )−1(F − Cf̂ ).

Also done for the equilibrium distribution E[F ] starting from Mf [F ].

a
Gamba et al JCP, 228 (2009)
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Fast Kinetic Scheme (FKS)
Properties

Properties

Globally conservative, unconditionally positive (if constrained optimization is)

When rarefied→ dense regimes =⇒ projection over the equilibrium becomes important.
Accuracy diminishes in fluid regime because the projection is first order accurate.

∆t under CFL (but stability ∀∆t). However splitting error is of the order of ∆t .

Towards an ultra efficient kinetic scheme. Part I: basics on the BGK equation, G. Dimarco and R.
Loubère, Journal of Computational Physics, vol. 255, pp. 680–698 (2013)

Extension 1: second order in time

Time step is solved using a Strang splitting strategy. ∆t follows a CFL condition

∆t max
k

(
‖V k‖
∆x

)
< 1
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High Order Fast Kinetic Scheme (HOFKS)
High order in space extension

Recall
f n+1
j,k = exp(−∆t/τ)f∗j,k + (1− exp(−∆t/τ))Ek [F∗j ]

High-Order Fast Kinetic Scheme (HOFKS): second order in space

Idea: solve the equilibrium part of the distribution function with a macroscopic scheme instead of
a kinetic scheme.
Moments at t∗ from the transport stage are now computed by a High Order shock capturing
scheme (MUSCL here).

In the limit τ → 0 HOFKS corresponds to the HO shock capturing scheme

Nominally second order in the fluid limit

higher accuracy and efficiency in 3D (smaller # of cell for same accuracy)

Reference

Towards an ultra efficient kinetic scheme Part II: The High-order case, G. Dimarco and R.
Loubère, Journal of Computational Physics, Volume 255, pp 699-719 (2013)
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HOFKS with Domain Decomposition
Automatic Domain Decomposition

Motivation

Not the entire domain may need the expensive kinetic (microscopic) description

Idea: reduce as much as possible the “kinetic region”, improving efficiency at same
accuracy

Reference

A multiscale fast semi-Lagrangian method for rarefied gas dynamics, G. Dimarco, R. Loubère
and V. Rispoli, submitted to JCP (2014)
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HOFKS with Domain Decomposition
Automatic Domain Decomposition

Automatic Domain Decomposition ingredients

A: fluid zone, B: buffer zone, C: kinetic zone

all regions evolve in time

carefully treat transition regions

Inside the buffer zone B, use a kinetic model with a sparser grid (fewer particles in PIC)
Think of it as an intermediate region!

Transition cells

Using the HOFKS we can use

f n+1
j,k = exp(−∆t/τ)f∗j,k + (1− exp(−∆t/τ))∇j F n

thus making the scheme very efficient also at the interfaces.
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HOFKS with Domain Decomposition

Breakdown criterium [Kolobov et al, JCP 231 (2012)]

Define in Ω, depending on macroscopic velocity U = (u, v ,w)t and pressure p

S(X) = τ

√√√√(∇p
p

)2
+

1
‖U‖2

[(
∂u
∂x

)2
+

(
∂v
∂y

)2
+

(
∂w
∂z

)2
]

Update system’s description: fix a threshold β > 0.
Then, for every cell in space Ωj

if S(X j ) < β then model A is assigned to cell Ωj

if S(X j ) ≥ β then model C is assigned

We chose β = 10−3 for 2D simulations and β = 10−2 for 3D ones
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HOFKS with Domain Decomposition
“Reduced kinetic” buffer

Algorithm

Set a contour buffer around the kinetic region (fixed size!)
This could be done everywhere indeed

Solve the “sparser” kinetic model

Compare solutions and correct if necessary

Plus and something to do

+ computations can be reused

? How to choose the small grid size

? What error do we accept to tolerate

- detect when to apply this strategy
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HOFKS with Domain Decomposition
Numerical results

Threshold parameter study, I

2D wing- (ellipse-) like test case

[0; 1]2 (1002 cells), velocity space [−5, 5]2 (162 points)

ρ0 = 1, U0 = (2, 0), T 0 = 1 and τ = 10−3

Varying β = K , 10−5, 10−4, 10−3, 10−2, 10−1,H

Mass, Domain Decomposition and Temperature evolution
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HOFKS with Domain Decomposition
Numerical results

Threshold parameter study, II

Test how β threshold influences the error (with respect to kinetic results) and the CPU time. Run
kinetic, fluid models (extreme cases) and DD with different values of β

# β CPU (s) Error L1 Error L∞

1 K 83.31 0.00 0.0000
2 10−5 59.77 65.82 0.0685
3 10−4 32.66 83.74 0.0697
4 10−3 29.86 197.48 0.1185
5 10−2 27.46 212.59 0.1344
6 10−1 19.42 479.91 0.3273
7 H 7.40 575.65 0.3411
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HOFKS with Domain Decomposition
Numerical results: 2D re-entry capsule

Initialization: re-entry capsule-like object

Ω = [0; 2]× [0; 1.5] (200× 150 cells), velocity space [−5, 5]2 (162 points)

ρ0 = 1, U0 = (2, 0), T 0 = 1 and τ = 3 · 10−4 Inflow on west boundary, outflow elsewhere

Mass, Domain Decomposition and Temperature evolution

Observable

Detached shock wave to occur upfront the capsule

Complex wave pattern behind the capsule
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HOFKS with Domain Decomposition
Numerical results: 2D wing with varying profile

Initialization: wing-like object 1

Ω = [0; 2]× [0; 1.5] (200× 150 cells), velocity space [−5, 5]2 (162 points)

ρ0 = 1, U0 = (2, 0), T 0 = 1 and τ = 3 · 10−3. Inflow on west boundary, outflow elsewhere

Mass, Domain Decomposition and Temperature evolution

Observable

Detached shock wave to occur upfront the wing

Complex wave pattern behind. Asymmetric flow.
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HOFKS with Domain Decomposition
Numerical results: 2D wing with varying profile + vortex

Initialization: wing-like object 2

Ω = [0; 2]× [0; 1.5] (200× 150 cells), velocity space [−5, 5]2 (162 points)

ρ0 = 1, U0 = (2, 0), T 0 = 1 and τ = 10−5. Inflow on west boundary, outflow elsewhere

Mass, Domain Decomposition and Temperature evolution

Observable

Detached shock wave to occur upfront the wing

Complex wave pattern behind. Asymmetric flow and vortexes appear
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HOFKS with Domain Decomposition
Numerical results: 3D Sod test

Initialization: 3D Sod test

Ω = [0; 1]3 (1003 cells), velocity space is [−10, 10]3 (133 points), τ = 2.5× 10−4

ρL = 1, UL = 0, TC = 5

ρR = 0.125, UR = 0, TR = 4

Reflecting or outflow boundary conditions

Times table

Nv V Cell # (Nx × Nv ) Cycle Time Time/cycle Time/cell Ratio

133

[−
10
,1

0]
3

KINETIC 250 29.15h 419.7s 418× 10−6 —
1003 × 133

DOMAIN DEC. 250 3.87h 55.80s 56× 10−6 7.5
1003 × 133

HYDROD. 191 0.25h 4.72s 5× 10−6 89
1003

Gain in terms of memory is also very important
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HOFKS with Domain Decomposition
Numerical results: 3D explosion problem

Mass density and Domain Decomposition evolution
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HOFKS with Domain Decomposition
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HOFKS with HPC
Extensions 3

High Performance computing: parallelization with OpenMP and CUDA (GPU)

No matter how well designed a 3D×3D kinetic scheme is, it is not possible to rely only on
sequential machines.

Parallelization using OpenMP and CUDA (on GPUs) is to be implemented to show how
//-friendly the scheme is.

Towards an ultra efficient kinetic scheme. Part III: High-Performance-Computing, G. Dimarco, R.
Loubère and J. Narski, submitted to JCP (2014)

HOFKS codes

Comparison of 3 versions of the code: Sequential, OpenMP parallel and CUDA parallel
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Adaptive Velocity Mesh Refinement
Work really in progress... (the Noh test in 1D)

x

shocked region

Initial profile Initial profile

Initial profile Initial profile

ρ

t=0

t>0

4

1

for “realistic” initial data, the computation may become “impossible”V. Rispoli (IMT) FKS with Dom. Decomp. SHARK-FV 14 25 / 33



Adaptive Velocity Mesh Refinement
Work really in progress...

Noh test in 2D
shock

y

x

U=(0,0)

U=(u,v)

r
t>0
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Adaptive Velocity Mesh Refinement

The solution in the x − v phase space

Shock position
1D Cut
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Adaptive Velocity Mesh Refinement
Solution Maxwellians for different temperatures
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Adaptive Velocity Mesh Refinement
What happens in 2D
Initial condition for the Noh test in 2D:
velocity distribution (Maxwellian type) at some point
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Adaptive Velocity Mesh Refinement
Problem: cover the full domain with the finer grid requires Nv > 5000⇒ Adaptive grid
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Adaptive Velocity Mesh Refinement
Moving the grid

Velocity cells concentrate in regions of stronger gradients
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Adaptive Velocity Mesh Refinement

Cell velocities
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Perspectives

What to do

going Higher Order

solve a wider class of models (beyond BGK): Vlasov, Boltzmann, etc.

simulate more realistic problems↔ optimization in velocity space

more computational optimization

Problems

admissible techniques must be efficient and accurate

mandatory parallel implementation

Solutions (in theory!)

dynamic setting of the velocity
numerical domain (similar to AMR)

collisions more complex than BGK

High Order might help

ideas??

V. Rispoli (IMT) FKS with Dom. Decomp. SHARK-FV 14 33 / 33


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PlayPauseLeft: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PlayPauseLeft: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	anm3: 
	3.EndLeft: 
	3.StepLeft: 
	3.PlayPauseLeft: 
	3.PlayPauseRight: 
	3.StepRight: 
	3.EndRight: 
	3.Minus: 
	3.Reset: 
	3.Plus: 
	4.0: 
	4.1: 
	4.2: 
	4.3: 
	anm4: 
	4.EndLeft: 
	4.StepLeft: 
	4.PlayPauseLeft: 
	4.PlayPauseRight: 
	4.StepRight: 
	4.EndRight: 
	4.Minus: 
	4.Reset: 
	4.Plus: 
	5.0: 
	5.1: 
	5.2: 
	5.3: 
	anm5: 
	5.EndLeft: 
	5.StepLeft: 
	5.PlayPauseLeft: 
	5.PlayPauseRight: 
	5.StepRight: 
	5.EndRight: 
	5.Minus: 
	5.Reset: 
	5.Plus: 
	6.0: 
	6.1: 
	6.2: 
	6.3: 
	6.4: 
	6.5: 
	6.6: 
	6.7: 
	6.8: 
	6.9: 
	6.10: 
	6.11: 
	6.12: 
	6.13: 
	anm6: 
	6.EndLeft: 
	6.StepLeft: 
	6.PlayPauseLeft: 
	6.PlayPauseRight: 
	6.StepRight: 
	6.EndRight: 
	6.Minus: 
	6.Reset: 
	6.Plus: 
	7.0: 
	7.1: 
	7.2: 
	7.3: 
	7.4: 
	7.5: 
	7.6: 
	7.7: 
	7.8: 
	7.9: 
	7.10: 
	7.11: 
	7.12: 
	7.13: 
	anm7: 
	7.EndLeft: 
	7.StepLeft: 
	7.PlayPauseLeft: 
	7.PlayPauseRight: 
	7.StepRight: 
	7.EndRight: 
	7.Minus: 
	7.Reset: 
	7.Plus: 
	8.0: 
	8.1: 
	8.2: 
	8.3: 
	8.4: 
	8.5: 
	8.6: 
	8.7: 
	8.8: 
	8.9: 
	8.10: 
	8.11: 
	8.12: 
	8.13: 
	anm8: 
	8.EndLeft: 
	8.StepLeft: 
	8.PlayPauseLeft: 
	8.PlayPauseRight: 
	8.StepRight: 
	8.EndRight: 
	8.Minus: 
	8.Reset: 
	8.Plus: 
	9.0: 
	9.1: 
	9.2: 
	9.3: 
	9.4: 
	9.5: 
	9.6: 
	9.7: 
	9.8: 
	9.9: 
	9.10: 
	9.11: 
	anm9: 
	9.EndLeft: 
	9.StepLeft: 
	9.PlayPauseLeft: 
	9.PlayPauseRight: 
	9.StepRight: 
	9.EndRight: 
	9.Minus: 
	9.Reset: 
	9.Plus: 
	10.0: 
	10.1: 
	10.2: 
	10.3: 
	10.4: 
	10.5: 
	10.6: 
	10.7: 
	10.8: 
	10.9: 
	10.10: 
	10.11: 
	anm10: 
	10.EndLeft: 
	10.StepLeft: 
	10.PlayPauseLeft: 
	10.PlayPauseRight: 
	10.StepRight: 
	10.EndRight: 
	10.Minus: 
	10.Reset: 
	10.Plus: 
	11.0: 
	11.1: 
	11.2: 
	11.3: 
	11.4: 
	11.5: 
	11.6: 
	11.7: 
	11.8: 
	11.9: 
	11.10: 
	11.11: 
	anm11: 
	11.EndLeft: 
	11.StepLeft: 
	11.PlayPauseLeft: 
	11.PlayPauseRight: 
	11.StepRight: 
	11.EndRight: 
	11.Minus: 
	11.Reset: 
	11.Plus: 
	12.0: 
	12.1: 
	12.2: 
	12.3: 
	12.4: 
	12.5: 
	anm12: 
	12.EndLeft: 
	12.StepLeft: 
	12.PlayPauseLeft: 
	12.PlayPauseRight: 
	12.StepRight: 
	12.EndRight: 
	12.Minus: 
	12.Reset: 
	12.Plus: 
	13.0: 
	13.1: 
	13.2: 
	13.3: 
	13.4: 
	13.5: 
	anm13: 
	13.EndLeft: 
	13.StepLeft: 
	13.PlayPauseLeft: 
	13.PlayPauseRight: 
	13.StepRight: 
	13.EndRight: 
	13.Minus: 
	13.Reset: 
	13.Plus: 
	14.0: 
	14.1: 
	14.2: 
	14.3: 
	14.4: 
	14.5: 
	14.6: 
	14.7: 
	14.8: 
	14.9: 
	anm14: 
	14.EndLeft: 
	14.StepLeft: 
	14.PlayPauseLeft: 
	14.PlayPauseRight: 
	14.StepRight: 
	14.EndRight: 
	14.Minus: 
	14.Reset: 
	14.Plus: 


