A multi-scale fast semi-Lagrangian method for rarefied gas dynamics

<u>V. Rispoli</u>¹, G. Dimarco², R. Loubère¹,

¹Institut de Mathématique de Toulouse (IMT), France

²Dipartimento di matematica ed informatica, Ferrara, Italy.

www.math.univ-toulouse.fr/~vrispoli/
 vrispoli@math.univ-toulouse.fr

SHARK-FV 2014 Conference - Ofir, Portugal 30.04.2014

V	Ris	noli i	ΊM	T)
۷.	1 113		ושוו	

FKS with Dom. Decomp.

SHARK-FV 14 1 / 33

Motivations

Non equilibrium and multi-scale

- Many applications involve non equilibrium gas flows (hypersonic objects, plasmas)
- Breakdowns of fluid models (Euler or NS) ⇒ connection between equilibrium and non equilibrium regions
- Combine macroscopic/fluid numerical schemes with microscopic/kinetic ones

Euler or NS region Boltzmann region

Possible solutions

- These problems involve mutli-scale solutions in time and/or space
- Construct numerical methods which address the multi-scale nature of solutions (AP).
- Exploit physical properties of the system via <u>Domain</u> <u>Decomposition</u> techniques

SHARK-FV 14 2 / 33

Kinetic - Fluid models

Boltzmann-BGK description of rarefied gaz dynamics

$$\partial_t f + \boldsymbol{V} \cdot \nabla_{\boldsymbol{X}} f = rac{1}{\tau} (M_f - f), \qquad \boldsymbol{X} \in \Omega \subset \mathbb{R}^3, \, \boldsymbol{V} \in \mathbb{R}^3$$

 $f = f(\mathbf{X}, \mathbf{V}, t)$ density of particles, $\tau > 0$ is the relaxation time. BGK-type collisions

$$M_{f} = M_{f}[\rho, \boldsymbol{U}, T](\boldsymbol{V}) = \frac{\rho}{(2\pi\theta)^{3/2}} \exp\left(\frac{-\|\boldsymbol{U} - \boldsymbol{V}\|^{2}}{2\theta}\right)$$

where $\rho \in \mathbb{R}$, $\rho > 0$ and $\boldsymbol{U} = (u, v, w)^t \in \mathbb{R}^3$ are the density and mean velocity, θ defined as $\theta = RT$ with T the temperature, R gas constant.

Macroscopic moments

Moments ρ , **U** and T are related to f in 3D by

$$\rho = \int_{\mathbb{R}^3} f \, d\boldsymbol{V}, \qquad \boldsymbol{U} = \frac{1}{\rho} \int_{\mathbb{R}^3} \boldsymbol{V} f \, d\boldsymbol{V}, \qquad \theta = \frac{1}{3\rho} \int_{\mathbb{R}^3} \|\boldsymbol{V} - \boldsymbol{U}\|^2 f \, d\boldsymbol{V}$$

with total energy $E = \frac{1}{2} \int_{\mathbb{R}^3} \|\boldsymbol{V}\|^2 f \, d\boldsymbol{V} = \frac{1}{2} \rho \|\boldsymbol{U}\|^2 + \frac{3}{2} \rho \theta$

Coupling of the models

Boltzmann-BGK description when $\tau \rightarrow 0$

If number of collisions tends to ∞ then $\tau \to 0$ therefore $f \to M_f$ and from Boltzmann-BGK one retrieves Euler compressible gas dynamics

$$\frac{\partial \rho}{\partial t} + \nabla_{\mathbf{X}} \cdot (\rho \mathbf{U}) = 0$$
$$\frac{\partial \rho \mathbf{U}}{\partial t} + \nabla_{\mathbf{X}} \cdot (\rho \mathbf{U} \otimes \mathbf{U} + \rho l) = 0$$
$$\frac{\partial E}{\partial t} + \nabla_{\mathbf{X}} \cdot ((E + \rho)\mathbf{U}) = 0$$

Pressure $p = \rho \theta$ is given by a perfect gas equation of state with gas constant $\gamma = 2/3 + 1 = 5/3$. Set $F = (\rho, \rho \boldsymbol{U}, E)^t$.

Coupling strategy

Kinetic/microscopic model is Boltzmann-BGK - Fluid/macroscopic model is Euler system.

V. Rispoli	(IN	٩T
------------	-----	----

General first order scheme: Equations

Prelims

Semi-Lagrangian scheme for Discrete Velocity Model (DVM) approximation of the kinetic equation. Kinetic equation + velocity grid \implies linear hyperbolic system with source terms. However <u>particle</u> or <u>lattice Boltzmann</u> interpretations are also possible.

DVM

Let \mathcal{K} be a set of N multi-indices of \mathbb{N}^3 with bounds. Then the Cartesian grid \mathcal{V} of \mathbb{R}^3

$$\mathcal{V} = \{ \mathbf{V}_k = k \Delta \mathbf{v} + \mathbf{W}, \ k \in \mathcal{K} \}$$

 Δv the grid step in velocity space. Discrete collision invariants: $m_k = \left(1, V_k, \frac{1}{2} ||V_k||^2\right)^t$. Continuous distribution *f* is replaced by

$$f_{\mathcal{K}}(\boldsymbol{X},t) = (f_k(\boldsymbol{X},t))_k, \qquad f_k(\boldsymbol{X},t) \approx f(\boldsymbol{X},\boldsymbol{V}_k,t)$$

Fluid quantities are retrieved back from f_k using

$$F(\boldsymbol{X},t) = \sum_{k \in \mathcal{K}} m_k f_k(\boldsymbol{X},t) \, \Delta v$$

V. Rispoli (IMT)

SHARK-FV 14 5 / 33

イロト イポト イヨト イヨト

General first order scheme: DVM

Discrete velocity BGK model

Set of N evolution equations in \mathcal{V} where $\mathcal{E}_k[F]$ is a suitable approximation of M_f .

$$\partial_t f_k + \boldsymbol{V}_k \cdot \nabla_{\boldsymbol{X}} f_k = \frac{1}{\tau} (\mathcal{E}_k[\boldsymbol{F}] - f_k), \ k = 1, .., N$$

Space/Time discretization

Cartesian uniform grid \mathcal{X} of \mathbb{R}^{d_x} : $\mathcal{X} = \{\mathbf{X}_j = j\Delta x + \mathbf{Y}, j \in \mathcal{J}\}$, \mathbf{Y} is a vector of \mathbb{R}^3 and Δx is the grid step in the physical space. Time discretization: $t^{n+1} = t^n + \Delta t$ with Δt the time step that is defined by a CFL condition.

Time splitting procedure

The fully discretized system is solved by a time splitting. Transport stage solves the LHS, Relaxation stage solves the RHS (using solution from transport stage)

 $\begin{array}{lll} \textit{Transport stage} & \longrightarrow & \partial_t f_k + \boldsymbol{V}_k \cdot \nabla_{\boldsymbol{X}} f_k = 0 \\ \textit{Relaxation stage} & \longrightarrow & \partial_t f_k = \frac{1}{\tau} (\mathcal{E}_k[F] - f_k) \end{array}$

General first order scheme: Transport stage

Let $f_{j,k}^0$ be the pointwise data at t^0 at any point X_j : $f_{j,k}^0 = f(X_j, V_k, t^0)$ and $\mathcal{E}_{j,k}^0[F]$ the equilibrium distribution approximation of $M_{j,k}^0 = M_f(X_j, V_k, t^0)$

We denote $\overline{f}_k^0(X)$ a piecewise continuous function for all $X \in \Omega$ associated with mesh \mathcal{X} at the time t^0 and for velocity V_k in finite volume sense

$$\overline{f}_{k,j}^0 = \frac{1}{|\Omega_j|} \int_{\Omega_j} f(\boldsymbol{X}, \boldsymbol{V}_k, t^0) \, d\boldsymbol{X}, \quad \text{on} \quad \Omega_j = [\boldsymbol{X}_{j-1/2}; \boldsymbol{X}_{j+1/2}]$$

Exact transport during Δt

$$\bar{\boldsymbol{t}}_k^* = \bar{\boldsymbol{t}}_k^n (\boldsymbol{X} - \boldsymbol{V}_k \Delta \boldsymbol{t}), \qquad \forall \boldsymbol{X} \in \Omega$$

V. Rispoli (IMT)

General first order scheme: Relaxation stage

Relaxation step solution locally resolved on the grid

$$\partial_t f_{j,k} = \frac{1}{\tau} (\mathcal{E}_{j,k}[F] - f_{j,k})$$

with initial data coming from the transport step given by $f_{j,k}^* = \overline{f}_k^*(X_j)$, for all k, j. Macroscopic quantities needed to compute the Maxwellian

$$F_j^n = F_j^* = \sum_{k \in \mathcal{K}} m_k f_{j,k}^* \Delta v$$

Moments before (F_i^n) and after (F_i^*) are unchanged: preservation of macroscopic quantities.

Then

$$f_{j,k}^{n+1} = \exp(-\Delta t/\tau)f_{j,k}^* + (1 - \exp(-\Delta t/\tau))\mathcal{E}_k[F_j^*]$$

• • • • • • • • • • • • •

Conservation of macroscopic quantities

Constrained optimization formulation ($d_x = 3$)

- let $\hat{f} = (\hat{f}_1, \hat{f}_2, \dots, \hat{f}_N)^t$ be the pointwise distribution vector and $f = (f_1, f_2, \dots, f_N)^t$ be the unknown which fulfill the conservation of moments
- $C_{(d_x+2)\times N} = ((\Delta v)^3, V_k(\Delta v)^3, \|V_k\|^2/2(\Delta v)^3)^t$ a constant in time matrix
- $F_{(d_x+2)\times 1} = (\rho, \rho \boldsymbol{U}, \boldsymbol{E})^t$ be the vector of the conserved quantities.

Conservation can be imposed solving^a:

Given
$$\hat{f} \in \mathbb{R}^N$$
, $C \in \mathbb{R}^{(d_x+2) \times N}$, and $F \in \mathbb{R}^{(d_x+2) \times 1}$,
find $f \in \mathbb{R}^N$ that minimizes $\|\hat{f} - f\|_2^2$ under constraints $Cf = F$.

Using a Lagrange multiplier $\lambda \in \mathbb{R}^{d_x+2}$, the objective function to be optimized is $L(f, \lambda) = \sum_{k=1}^{N} |\hat{f}_k - f_k|^2 + \lambda^T (Cf - F)$. Exactly solved by

$$f = \hat{f} + C^T (CC^T)^{-1} (F - C\hat{f}).$$

Also done for the equilibrium distribution $\mathcal{E}[F]$ starting from $M_f[F]$.

^aGamba et al JCP, 228 (2009)

Fast Kinetic Scheme (FKS) Properties

Properties

- Globally conservative, unconditionally positive (if constrained optimization is)
- When rarefied → dense regimes ⇒ projection over the equilibrium becomes important. Accuracy diminishes in fluid regime because the <u>projection</u> is first order accurate.
- Δt under CFL (but stability $\forall \Delta t$). However splitting error is of the order of Δt .

Towards an ultra efficient kinetic scheme. Part I: basics on the BGK equation, G. Dimarco and R. Loubère, Journal of Computational Physics, vol. 255, pp. 680–698 (2013)

Extension 1: second order in time

Time step is solved using a Strang splitting strategy. Δt follows a CFL condition

$$\Delta t \max_{k} \left(\frac{\|\boldsymbol{V}_{k}\|}{\Delta x} \right) < 1$$

< ロ > < 同 > < 回 > < 回 >

High Order Fast Kinetic Scheme (HOFKS)

High order in space extension

Recall

$$f_{j,k}^{n+1} = \exp(-\Delta t/\tau)f_{j,k}^* + (1 - \exp(-\Delta t/\tau))\mathcal{E}_k[F_j^*]$$

High-Order Fast Kinetic Scheme (HOFKS): second order in space

Idea: solve the equilibrium part of the distribution function with a macroscopic scheme instead of a kinetic scheme.

Moments at t^* from the transport stage are now computed by a High Order shock capturing scheme (MUSCL here).

- In the limit au
 ightarrow 0 HOFKS corresponds to the HO shock capturing scheme
- Nominally second order in the fluid limit
- higher accuracy and efficiency in 3D (smaller # of cell for same accuracy)

Reference

Towards an ultra efficient kinetic scheme Part II: The High-order case, G. Dimarco and R. Loubère, Journal of Computational Physics, Volume 255, pp 699-719 (2013)

V. Rispoli	(IMT
------------	------

< ロ > < 同 > < 回 > < 回 >

SHARK-EV 14

12/33

HOFKS with Domain Decomposition

Automatic Domain Decomposition

Motivation

- Not the entire domain may need the expensive kinetic (microscopic) description
- Idea: reduce as much as possible the "kinetic region", improving efficiency at same accuracy

Reference

V. Rispoli (IMT)

A multiscale fast semi-Lagrangian method for rarefied gas dynamics, G. Dimarco, R. Loubère and V. Rispoli, submitted to JCP (2014)

FKS with [om. Decom	ρ.
------------	-----------	----

Automatic Domain Decomposition

Automatic Domain Decomposition ingredients

- A: fluid zone, B: buffer zone, C: kinetic zone
- all regions evolve in time
- carefully treat transition regions
- Inside the buffer zone B, use a kinetic model with a <u>sparser</u> grid (fewer particles in PIC) Think of it as an intermediate region!

Transition cells

Using the HOFKS we can use

$$f_{j,k}^{n+1} = \exp(-\Delta t/\tau)f_{j,k}^* + (1 - \exp(-\Delta t/\tau))\nabla_j F^n$$

thus making the scheme very efficient also at the interfaces.

V. Rispoli	(IMT)
------------	-------

SHARK-FV 14 13 / 33

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Breakdown criterium [Kolobov et al, JCP 231 (2012)]

Define in Ω , depending on macroscopic velocity $\boldsymbol{U} = (u, v, w)^t$ and pressure p

$$S(\boldsymbol{X}) = \tau \sqrt{\left(\frac{\nabla p}{p}\right)^2 + \frac{1}{\|\boldsymbol{U}\|^2} \left[\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial z}\right)^2\right]}$$

Update system's description: fix a threshold $\beta > 0$. Then, for every cell in space Ω_i

> if $S(\mathbf{X}_j) < \beta$ then model A is assigned to cell Ω_j if $S(\mathbf{X}_j) \ge \beta$ then model C is assigned

We chose $\beta = 10^{-3}$ for 2D simulations and $\beta = 10^{-2}$ for 3D ones

	V.	Rispo	li (IN	1T)
--	----	-------	--------	-----

< ロ > < 同 > < 回 > < 回 >

"Reduced kinetic" buffer

Algorithm

- Set a contour buffer <u>around</u> the kinetic region (fixed size!) This could be done everywhere indeed
- Solve the "sparser" kinetic model
- Compare solutions and <u>correct</u> if necessary

Plus and something to do

- + computations can be reused
- ? How to choose the small grid size
- ? What error do we accept to tolerate
- detect when to apply this strategy

Numerical results

Threshold parameter study, I

2D wing- (ellipse-) like test case

- [0; 1]² (100² cells), velocity space [-5, 5]² (16² points)
- $\rho^0 = 1$, $U^0 = (2,0)$, $T^0 = 1$ and $\tau = 10^{-3}$
- Varying $\beta = K, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, H$

Mass, Domain Decomposition and Temperature evolution

		• • • • • • • •	(코) ★ 코 > _ 코	$\mathcal{O} \mathcal{Q} \mathcal{O}$
V. Rispoli (IMT)	FKS with Dom. Decomp.		SHARK-FV 14	16 / 33

Numerical results

Threshold parameter study, II

Test how β threshold influences the error (with respect to kinetic results) and the CPU time. Run kinetic, fluid models (extreme cases) and DD with different values of β

#	β	CPU (s)	Error L ¹	Error L^{∞}
1	K	83.31	0.00	0.0000
2	10 ⁻⁵	59.77	65.82	0.0685
3	10-4	32.66	83.74	0.0697
4	10 ⁻³	29.86	197.48	0.1185
5	10-2	27.46	212.59	0.1344
6	10-1	19.42	479.91	0.3273
7	Н	7.40	575.65	0.3411

< 6 b

Numerical results: 2D re-entry capsule

Initialization: re-entry capsule-like object

- $\Omega = [0; 2] \times [0; 1.5]$ (200 × 150 cells), velocity space $[-5, 5]^2$ (16² points)
- $\rho^0 = 1$, $U^0 = (2,0)$, $T^0 = 1$ and $\tau = 3 \cdot 10^{-4}$ Inflow on west boundary, outflow elsewhere

Mass, Domain Decomposition and Temperature evolution

Observable

- Detached shock wave to occur upfront the capsule
- Complex wave pattern behind the capsule

V. Rispoli (IMT)

Numerical results: 2D wing with varying profile

Initialization: wing-like object 1

- $\Omega = [0; 2] \times [0; 1.5]$ (200 × 150 cells), velocity space $[-5, 5]^2$ (16² points)
- $\rho^0 = 1$, $U^0 = (2,0)$, $T^0 = 1$ and $\tau = 3 \cdot 10^{-3}$. Inflow on west boundary, outflow elsewhere

Mass, Domain Decomposition and Temperature evolution

Observable

- Detached shock wave to occur upfront the wing
- Complex wave pattern behind. Asymmetric flow.

V. Rispoli (IMT)

Numerical results: 2D wing with varying profile + vortex

Initialization: wing-like object 2

- $\Omega = [0; 2] \times [0; 1.5]$ (200 × 150 cells), velocity space $[-5, 5]^2$ (16² points)
- $\rho^0 = 1$, $U^0 = (2,0)$, $T^0 = 1$ and $\tau = 10^{-5}$. Inflow on west boundary, outflow elsewhere

Mass, Domain Decomposition and Temperature evolution

Observable

- Detached shock wave to occur upfront the wing
- Complex wave pattern behind. Asymmetric flow and vortexes appear

V. Rispoli (IMT)

Numerical results: 3D Sod test

Initialization: 3D Sod test

- $\Omega = [0; 1]^3$ (100³ cells), velocity space is $[-10, 10]^3$ (13³ points), $\tau = 2.5 \times 10^{-4}$
- $\rho_L = 1, \ \boldsymbol{U}_L = \mathbf{0}, \ T_C = 5$
- $\rho_R = 0.125, \ \boldsymbol{U}_R = \boldsymbol{0}, \ T_R = \boldsymbol{4}$
- Reflecting or outflow boundary conditions

Times table

N _v	\mathcal{V}	Cell # $(N_x \times N_v)$	Cycle	Time	Time/cycle	Time/cell	Ratio
	0] ³	$\frac{\textbf{KINETIC}}{100^3 \times 13^3}$	250	29.15h	419.7s	418 × 10 ⁻⁶	—
13 ³	-10,1	$\begin{array}{c} \textbf{DOMAIN DEC.} \\ 100^3 \times 13^3 \end{array}$	250	3.87h	55.80s	56 × 10 ⁻⁶	7.5
	<u> </u>	HYDROD. 100 ³	191	0.25h	4.72s	5 × 10 ⁻⁶	89

Gain in terms of memory is also very important

V. Rispoli (IMT)

SHARK-FV 14 21 / 33

3

Numerical results: 3D explosion problem

Mass density and Domain Decomposition evolution

V Die	noli	7 IN AT
v. mis	JUUII	

SHARK-FV 14 22 / 33

4 6 1 1 4

HOFKS with HPC

Extensions 3

High Performance computing: parallelization with OpenMP and CUDA (GPU)

- No matter how well designed a 3D×3D kinetic scheme is, it is not possible to rely only on sequential machines.
- Parallelization using OpenMP and CUDA (on GPUs) is to be implemented to show how //-friendly the scheme is.

Towards an ultra efficient kinetic scheme. Part III: High-Performance-Computing, G. Dimarco, R. Loubère and J. Narski, submitted to JCP (2014)

HOFKS codes

Comparison of 3 versions of the code: Sequential, OpenMP parallel and CUDA parallel

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Work really in progress... (the Noh test in 1D)

Work really in progress...

y. U=(u,v)t>0 **U=(0,0)** x shock

Noh test in 2D

FKS with Dom. Decomp.

SHARK-FV 14 26 / 33

э

< 回 > < 回 > < 回 >

Adaptive Velocity Mesh Refinement

The solution in the x - v phase space

SHARK-FV 14 27 / 33

3 > 4 3

Solution Maxwellians for different temperatures

What happens in 2D

Initial condition for the Noh test in 2D: velocity distribution (Maxwellian type) at some point

Problem: cover the full domain with the finer grid requires $N_v > 5000 \Rightarrow$ Adaptive grid

SHARK-FV 14 30 / 33

Adaptive Velocity Mesh Refinement Moving the grid

Velocity cells concentrate in regions of stronger gradients

Cell velocities

V. Rispoli (IMT)

FKS with Dom. Decomp.

SHARK-FV 14 32 / 33

Perspectives

What to do

- going Higher Order
- solve a wider class of models (beyond BGK): Vlasov, Boltzmann, etc.
- simulate more realistic problems \leftrightarrow optimization in velocity space
- more computational optimization

Problems

- admissible techniques must be efficient and accurate
- mandatory parallel implementation

Solutions (in theory!)

- dynamic setting of the velocity numerical domain (similar to AMR)
- collisions more complex than BGK
- High Order might help
- ideas??

V. Rispoli (IMT)

FKS with Dom. Decomp.

SHARK-FV 14 33 / 33