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Motivation

Motivations

Modeling of non equilibrium gas flows (plasma, hypersonic flow)

Kinetic equations extremely difficult to solve numerically (7
dimensions)

FKS

G. Dimarco, R. Loubère, Towards an ultra efficient kinetic
scheme. Part I: basics on the BGK equation, J. Comput. Phys., Vol.
255, 2013, pp 680-698.

G. Dimarco, R. Loubère, Towards an ultra efficient kinetic
scheme. Part II: the high order case, J. Comput. Phys., Vol. 255,
2013, pp 699-719.

Goal

Parallelize FKS
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Problem formulation

Boltzmann-BGK equation

∂t f + V · ∇Xf =
1

τ
(Mf − f ),

f = f (X,V, t) distribution od particles, τ relaxation time.
Collisions modeled by relaxation towards the local thermodynamical
equilibrium defined by the Maxwellian distribution

Mf = Mf [ρ,U,T ] (V) =
ρ

(2πθ)3/2
exp

(
−‖U− V‖2

2θ

)
,

θ = TR ρ,U,T ,R — density, mean velocity, temperature and gas
constant
Macroscopic moments

ρ =

∫
R3

f dV, U =
1

ρ

∫
R3

Vf dV, θ =
1

3ρ

∫
R3

‖V −U‖2 f dV,

Total energy

E =
1

2

∫
R3

‖V‖2f dV =
1

2
ρ‖U‖2 +

3

2
ρθ
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The limit of τ → 0

If number of collisions goes to infinity, then τ → 0 and f → Mf . One
retrieves compressible Euler equations

∂ρ

∂t
+∇X · (ρU) = 0,

∂(ρU)

∂t
+∇X · (ρU⊗U + pI ) = 0,

∂E

∂t
+∇X · ((E + p)U) = 0,

p = ρθ, E =
3

2
ρθ +

1

2
ρ‖U‖2,

where I is the identity and p the pressure given by a perfect equation of
state with gas constant γ = 5/3 in 3D.

This is the fluid/macroscopic model.
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Fast Kinetic Scheme

Semi-Lagrangian scheme for Discrete Velocity Model (DVM)
approximation of Boltzmann-BGK equation.

DVM

Let K be a bounded set of N3
v multi-indices of N3. Let V be a Cartesian

grid given by
V = {Vk = k∆v + W, k ∈ K} ,

where ∆v is the grid step in the velocity space. The generic cell in the
velocity space is ωk+1/2 = [Vk ;Vk+1]. We denote the discrete collision
invariants on V by

mk =

(
1,Vk ,

1

2
‖Vk‖2

)t
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Fast Kinetic Scheme

Semi-Lagrangian scheme for Discrete Velocity Model (DVM)
approximation of Boltzmann-BGK equation.

DVM

The continuous distribution function f is replaced by a vector

fK(X, t) = (fk(X, t))k , fk(X, t) ≈ f (X,Vk , t).

Fluid quantities:

F (X, t) =
∑
k∈K

mk fk(X, t) ∆v .
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Fast Kinetic Scheme

Set of N3
v evolution equations

∂t fk + Vk · ∇Xfk =
1

τ
(Ek [F ]− fk)

Space and time discretization

Cartesian uniform grid X = {Xj = j∆x + Y, j ∈ J }, ∆x is the grid
step, Y is a vector in R3 and J is a subset of N3.
tn+1 = tn + ∆t, time step ∆t defined by a CFL condition.

Splitting

Transport stage −→ ∂t fk + Vk · ∇Xfk = 0,

Relaxation stage −→ ∂t fk =
1

τ
(Ek [F ]− fk).
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Fast Kinetic Scheme

f
k,j

n

Vk+1

f
k+1,j

n

f
k+2,j

n f
k+2,j

n+1

f
k+1,j

n+1

f
k,j

n+1

Vk

j

j

k

Vk+2

j

Vk

j

j

k

Vk+2

j

Vk+1

Let f nj,k be the pointwise approximation at discrete time tn of the distribution f :
f nj,k = f (Xj ,Vk , t

n) and Enj,k [F ] be the equilibrium distribution approximation of
Mn

j,k = Mf (Xj ,Vk , t
n) defined at any point Xj of space at discrete time t = tn.

Let f
n
k be a piecewise constant function associated with velocity Vk at time tn

defined at each space cell by

f
n
k,j =

1

|Ωj |

∫
Ωj

f (X,Vk , t
n) dX

Exact transport during ∆t:

f
∗,n+1
k = f

n
k(X− Vk∆t), ∀X ∈ Ω
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Fast Kinetic Scheme

Relaxation step

∂t fj,k =
1

τ
(Ej,k [F ]− fj,k)

Initial data is given by the result of the transport step

f ∗,n+1
j,k = f

∗,n+1

k (Xj).
Maxwellian computed using macroscopic quantities

F n+1
j = F ∗,n+1

j =
∑
k∈K

mk f ∗,n+1
j,k ∆v

Preservation of macroscopic quantities: moments before (F ∗,n+1
j ) and

after (F n+1
j ) unchanged. Then

f n+1
j,k = exp(−∆t/τ)f ∗,n+1

j,k + (1− exp(−∆t/τ))Ek [F n+1
j ],

New value of f n+1 only in the cell centers, we need f n+1 in whole domain
for the transport step.

G. Dimarco, J. Narski, R. Loubère Towards an ultra efficient kinetic scheme : High-Performance Computing



Fast Kinetic Scheme

Relaxation step

∂t fj,k =
1

τ
(Ej,k [F ]− fj,k)

Define Ek as the equilibrium function with the discontinuities located in
the same positions as fk

En+1
k (X)[F ] = En+1

j,k [F ], ∀X such that f
∗,n+1

k (X) = f
∗,n+1

k (Xj)

Finally

f
n+1

k (X) = f k(X, tn+∆t) = exp(−∆t/τ)f
∗
k(X)+(1−exp(−∆t/τ))En+1

k (X)[F ]
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HOFKS - high order extension

Second order in time

Time splitting with Strang splitting strategy. CFL:

∆t max
K

||Vk ||
Lc

≤ 1

performs well in collisionless regimes

scheme stable for ∆t > CFL

projection over the equilibrium of first order → loss of accuracy close
to fluid regime
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HOFKS - high order extension

f
n+1

k (X) = exp(−∆t/τ)f
∗
k(X) + (1− exp(−∆t/τ))En+1

k (X)[F ]

Solve the equilibrium part with of the distribution function with a
macroscopic scheme instead of kinetic.

Moments from the transport stage are replaced by a solution of Euler
equations. We use MUSCL scheme. Stability condition:

∆t <
1

2

∆x

αmax

In the limit of τ → 0 scheme corresponds to a high order shock capturing
scheme.

Second order close to the fluid limit.
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Efficient implementation

j−δ

j+ δ

p leaving for

p’ entering fromp j

x

y

p

p p

p

for celljparticle leaving cell j+ δ

particle entering cell j from cell j− δ

Particle implementation: Initially N3
v particles are positioned at the cell

center

X0
p = (∆x/2,∆y/2,∆z/2)t

each particle has a unique constant velocity Vp from the velocity space,
p = 1, · · · ,N3

v . The transport of these particles during ∆t follows

X̃
n+1

p = Xn
p + ∆t Vp.

Same set of particles in every space cell, only positions and velocities of
particles in generic cell kept in memory.
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Particle mass

Each particle p in cell j carries its “mass” which is updated defined at tn

thanks to the previous mass mn−1
j,p and updated moments ρnj ,U

n
j , θ

n
j as

mn
j,p = exp(−∆t/τ)mn−1

j,p + (1− exp(−∆t/τ))Mf [ρnj ,U
n
j , θ

n
j ](Vp)

= exp(−∆t/τ)mn−1
j,p + (1− exp(−∆t/τ))

(∆v)3ρnj
(2πθnj )3/2

exp

(
−‖Vp −Un

j ‖2

2θnj

)
Because the fluid quantities are obtained through discrete summations on
particles in cell j :

F n
j =

N3
v∑

p=1

mn
j,p ∆v

the updated fluid quantities are therefore obtained after the transport
step following

F n+1
j = F n

j −
∑

p, X̃
n+1

p /∈Ωj

mn
j,p ∆v

︸ ︷︷ ︸
Leaving particles

+
∑

p′, X̃
n+1

p′ ∈Ωj

mn
j−δ,p′ ∆v

︸ ︷︷ ︸
Entering particles

.

Recall that these conservative cell centered fluid quantities are
constituted of mass, momentum and total energy whereas primitive ones
are density, velocity and temperature. Then a mapper from conservative
F n+1
j = (F1,F2,F3)n+1

j to primitive (ρ,U,T )n+1
j variables is defined as

ρn+1
j = Fn+1

1 , (1)

Un+1
j = Fn+1

2 /Fn+1
1 , (2)

θn+1
j =

2

3

(
Fn+1

3 − ‖F
n+1
2 ‖2

2Fn+1
1

)
/Fn+1

1 . (3)
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Generic algorithm

1 Relaxation step. Compute masses of N3
v particles, store them in an

array of the size N3
v × N3

2 Transport of particles. Displace N3
v particles, produce a list of Nout

particles escaping the generic cell and store the δ determining the
destination and provenance of associated sister particles.

3 Update conservative variables F n+1
j

4 Update primitive variables
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OpenMP algorithm

1 Relaxation step. Compute in parallel masses of N3
v particles with,

parallelization is performed on the external loop over N3
v particles.

2 Transport of particles. Move in parallel N3
v particles

3 Update conservative variables. Test in a parallel loop over N3
v

particles if a particle has escaped from the generic cell. If so, add a
contribution to F n+1

j for every space cell. Update the particle
position and exchange particle mass with the associated sister
particle.

4 Update primitive variables

G. Dimarco, J. Narski, R. Loubère Towards an ultra efficient kinetic scheme : High-Performance Computing



GPU algorithm

1 Copy from CPU to GPU. Copy to the GPU memory all primitive and
conservative variables.

2 Loop over particles

1 Transport step Move every particle and test if it has escaped the
generic cell. If so, store the provenance of the sister cell.

2 Relaxation step Compute relaxed masses of particles for every space
cell using CUDA. Store the result on GPU.

3 Update conservative variables. If the particle has escaped the generic
cell, add contribution to conservative variables and assign mass to he
one of the incoming sister particle.

4 Copy from GPU to CPU. Copy the resulting mass array from the
GPU memory to the CPU memory.

3 Update primitive variables in parallel on GPU.

4 Copy from GPU to CPU. Write to the CPU memory the updated
conservative variables.

Easily extendable to multi GPU architectures
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Machines

HOFKS and HOFKS-OMP

Serial version implemented in C++ compiled with gcc 4.7.2 and -Ofast
optimization flag

Computational server with 4 Intel(R) Xeon(TM) E5-4650 processors running at
2.7 GHz (giving a total of 32 physical cores and 64 logical) with 512GB of
RAM running under Debian Wheezy

HOFKS-GPU

GPU version implemented in CUDA 5.5 and gcc 4.7.2 and -Ofast optimization
flag

Computational server with dual Intel(R) Xeon(TM) E5-2650 processor running
at 2.0 GHz (16 physical and 32 virtual cores) with 128GB and 2 Nvidia GTX
780 units (3GB of memory, 2304 CUDA cores at 900MHz each) running under
Debian Wheezy

Decent card for gaming, not designed for professional applications (lack of
memory error correction, double precision, worse copy engine than
Tesla/Quadro)
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Machines

CUDA architecture

Massively parallel : 12 multiprocessors consisting of 192 CUDA cores

Functions executed on GPU (kernels) are executed in warps
involving 32 threads

Parallelization strategy : replace every loop over space cells by a call
to suitable CUDA kernel

Slow CPU ↔ GPU memory transfer (8Gb/s at most)

Example: 2003 × 153 particles equals to 100Gb of data (mass
vector) — 25s lost on transfer from and to GPU

Sometimes better to recompute some values than to copy them from
CPU memory

Not really possible in this case

Possibility to use two concurent copy engine (Tesla/Quadro) : mass
array of 1 particle is copied to GPU, second particle is processed by
GPU and the updated masses of third particle are transfered back to
CPU at the same time ⇒ time lost on transfered reduced to 0.
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SOD

Parallelization test only

Ω = [0, 2]3, ball centered at (1, 1, 1), radius r = 0.2, number of
space cells N3 = 25, 50, 100, 200, velocity space [−15, 15]3

discretized with NV = 153 points

The relaxation parameter τ = 10−4

∆t fixed at maximal time step

Convergence tests in

G. Dimarco, R. Loubère, Towards an ultra efficient kinetic
scheme. Part I: basics on the BGK equation, J. Comput. Phys., Vol.
255, 2013, pp 680-698.

G. Dimarco, R. Loubère, Towards an ultra efficient kinetic
scheme. Part II: the high order case, J. Comput. Phys., Vol. 255,
2013, pp 699-719.
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SOD

Cell # Cycle Time T/cycle T/cell Mem
Nc × N3

v Ncycle T (s) Tcycle (s) Tcell (s) (GB)

253 × 153 13 204s (3.5mn) 15.69 1× 10−3 0.23
= 52.7× 106 6.77s 0.52 33× 10−6

6.1s 0.47 30× 10−6

503 × 153 25 3244s (54mn) 129.76 1× 10−3 1.6
= 421.9× 106 86.6s (1.43mn) 3.46 27.7× 10−6

46s 1.84 14.7× 10−6

1003 × 153 50 46408s (13h) 928 0.9× 10−3 12
= 3.4× 109 1102s (18.4mn) 22.04 22.04× 10−6

486s (8.1mn) 9.7 9.7× 10−6

2003 × 153 98 784× 103s (9d) 8000 1× 10−3 101
= 27× 109 17036s (4.73h) 174 21.7× 10−6

9353s (2.6h) 95 12× 10−6
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OpenMP scalability

# of Time Time/cycle Time/cell Speed
cores T (s) Tcycle (s) Tcell (s) up

1 46408 928 928 × 10−6 1

2 23573 471 471 × 10−6 1.96

4 12395 248 248 × 10−6 3.74

8 6674 133.5 133.5 × 10−6 6.95

16 3536 70.7 70.7 × 10−6 13.12

32 1735 34.7 34.7 × 10−6 26.74

64 1102 22.04 22.04 × 10−6 42.11
 100
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m
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Nv
3

real acceleration
ideal scaling

Smaller speed-up when no. of threads exceeds no. of physical cores

The HOFKS is “embarrassingly parallel”
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GPU scalability

SOD test again, N = 1003, Nv varies from 153 to 303
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Computational time grows linearly with number of particles

2 GPUs almost twice as fast as single GPU
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Kelvin-Helmholtz instabilities

Cubic domain Ω = [0, 1]3, N3 = 2003, N3
v = 103

Three layers : Ω1 = {X ∈ Ω, 0 ≤ z < 0.25},
Ω2 = {X ∈ Ω, 0.25 ≤ z ≤ 0.75}, and Ω3 = Ω\{Ω1 ∪ Ω2}
Initial conditions

Ω1 and Ω3 Ω2

ρ0 1 2
p0 2.5 2.5

U0

 1
2
0
0

+ a(x , y)

 1
1
1

  − 1
2

0
0

+ a(x , y)

 1
1
1


with a(x , y) = 0.01 sin(2πx) sin(2πy) and γ = 1.4.
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Time step : 0 CPU time : 0h
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Time step : 1000 CPU time : 4h
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Time step : 2000 CPU time : 8h
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Time step : 3000 CPU time : 12h
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Time step : 4000 CPU time : 16h
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Time step : 5000 CPU time : 20h
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Time step : 6000 CPU time : 24h
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Time step : 7000 CPU time : 28h
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Time step : 8000 CPU time : 32h
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Time step : 9000 CPU time : 36h
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Time step : 10000 CPU time : 40h
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Time step : 11000 CPU time : 44h

G. Dimarco, J. Narski, R. Loubère Towards an ultra efficient kinetic scheme : High-Performance Computing



Time step : 12000 CPU time : 48h
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Time step : 13000 CPU time : 52h
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Time step : 14000 CPU time : 56h
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Time step : 15000 CPU time : 60h
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