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STEADY-STATE CASE

m steady-state 1D convection-diffusion equation (€2 =]0, 1[)

(vg) — (kd')' = f, inQ

m boundary conditions (Z is a boundary point):
m Dirichlet: ¢(Z) = ¢p(Z)
a Newmann: o(2)$(z) — 5(@)(2) = $2(2)

m unknown ¢ : [0,1] - R

m data (regular)

m diffusion coefficient « : [0,1] - R*
m convection coefficient (=velocity) v: [0,1] > R
m source f:[0,1] - R

m boundary functions: ¢p, ¢T, ¢p



NOTATION

K, | K; | K;
X1 I xvl I Xr
T1 =0 T3 Ti-1 Tipl Tr-1 Try1 = 1
| i
hi
m K; —cell g

m [ — number of cells

m — boundary points of cell ¢

i— 1, x; 1
=3 i+3

m h; — length of cell ¢

m z; — centroid of cell 7
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FVM

m F'V formulation

1 i}
E(FH%—FFQ—f¢=0,i=1,...,1
(]

Fii = U(xzi%)(ﬁ(x@i%) - ﬂ(wii%)qﬁ'(a:ii%), fz = h% SKZ f(€)d¢g

m goal — to compute an approximation to the mean value of ¢ in

each cell of the mesh: ¢; ~ h% SKi ¢dx

1
2

m the approximation to the mean value of f over cell K;,
fi~ h% SKZ fdx, will be computed by gaussian quadrature
m the way that the numerical diffusive and convective fluxes are

computed characterize the FVM scheme



FVM

m F'V formulation

1
o (Fig = Ficg) = Fimti=t,
{2

Fii% = v(xli%)(ﬁ(xli%) - ﬂ(wii%)qﬁ'(a:ii%), fz = h% SKZ f(€)d¢g
m goal — to compute an approximation to the mean value of ¢ in

each cell of the mesh: ¢; ~ h% SKi odz

m the approximation to the mean value of f over cell K;,
fi~ h% SKZ fdx, will be computed by gaussian quadrature

m the way that the numerical diffusive and convective fluxes are
computed characterize the FVM scheme

m how to approximate numerically the fluxes with very-high

precision F, i+l N F;1: polynomial reconstructions

K\J



POLYNOMIAL RECONSTRUCTIONS

m conservative reconstruction: where there is an information
m cells:
1 ~ .
- ¢id$=¢)i,2=1...,f
hi Jk,
m Dirichlet outer interface(s):
$1(0) = ¢p(0) ¢r41(1) = ¢p(1)
m non-conservative reconstruction: where there is no information

m inner interfaces:

~



RECONSTRUCTIONS FOR CELLS

® polynomials
~ d ~ 1
¢l(xad) = ¢; + Z Ri,a (x_xi)a_.J‘ (LU—CZ‘)Q
a=1 hZ K;

m coefficients (determined by the stencils §l) arguments which
minimize the functional

2
. 1 N
Ei(Ri) = Z Wi j [hj L{ ¢i(w;d) dx — ¢j]

JES;



RECONSTRUCTIONS FOR DIRICHLET OUTER

m polynomial

d
$1(z;d) = ¢p(z1) + ) Ry o(e —21)”

1
2 2
a=1

m coefficients (determined by the stencil S
minimize the functional

2
1 ~
=D, Wy [hj ij ¢1(x;d)dz — qu]

3651

): arguments which

[N

w\»-‘
l\)\»—t

(we proceed in the same way for polynomial qg I+1)
2



RECONSTRUCTIONS FOR INNER INTERFACES

m polynomials
~ d ~
¢i+%(x;d) = ZORH;,a(x - xi+%)a
a=

m coefficients (determined by the stencil §Z +1): arguments which
2
minimize the functional
. 2
Ez+%(Rz+%) = Z Wirl [h] ij ¢z‘+%(x;d) dz — ¢j]

JeS. 1
z+7



NUMERICAL FLUXES

Fipr ~ Fy1 = vy

N
N

m left boundary interface (i = 0, D)
F1(®) = [0(0)]*¢p(0) + [0(0)]¢1(0; d) — £(0)¢) (0; )
m left boundary interface (i = 0, N)
F1(®) = ¢1(0)
m inner interfaces (i = 1,...,1 —1)
Fipn(®) = [l )] iy 13d) + [o(2s, )] Divi (i, 15d)
R CTRCARICANEL)

m right boundary interface (i = I): similar to i = 0



RESIDUAL FORM

m based on the linearity of the polynomial reconstructions, the
definition of the numerical fluxes, and the finite volume
formulation, we obtain an affine operator such that for any
® e R!, we associate G(®) € R! given component-wise by

1
Gi(®) = - (}_H;(‘I)) - }}_1(‘1’)) — fi
i 2 2
» the numerical solution is given by vector ®f = (qﬁg)i:l,m’ 7 which

is the solution of the linear problem

g(@"h =o,



TIME-DEPENDENT CASE

m time-dependent 1D convection-diffusion equation (£2 =]0, 1],
tr € R+)
01 + 0z (vP) — 0x (k) = f, in Qx]0, e[
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TIME-DEPENDENT CASE

m time-dependent 1D convection-diffusion equation (£2 =]0, 1],
tr € R+)
Orp + 0z(ve) — Ou(K0z¢) = f, in 2x]0, ¢
boundary conditions (Z is a boundary point):
m Dirichlet: ¢(Z,t) = ¢p(Z,t)
m Neumann: o(Z,t)¢(Z,t) — k(Z,t)0:H(T, t) = ¢7(ZT, 1)
® initial condition: ¢(z,0) = ¢°(z) in Q
unknown ¢ : [0,1] x [0,t] - R
data (regular)
m diffusion coefficient & : [0,1] x [0,¢] — R*
m convection coefficient (=velocity) v : [0,1] x [0,¢] — R
m source f:[0,1] x [0,¢] - R
boundary conditions ¢p(z,t) : {0,1} x [0,¢] - R
m initial condition ¢° : [0,1] — R



MOL — SPACE DISCRETIZATION




MOL — SPACE DISCRETIZATION

the time parameterized function

0f(t) = (6](t))i=1,..1
is the solution of the differential system

dg;
dt

where

Gt B(t)) = - (Fovy (0 B(0) = Fi_y (6,0(2) = £i(1)

1
2

with the initial conditions

6(0) f ()



TIME DISCRETIZATION

m (t")p—o,.. N time discretisation of [0,t; = tN], with

tn+1 — " 5n+%

m goal — to compute an approximation to the mean value of ¢ in

each cell of the mesh at each time t" (represented by ¢I'), i.e.,

1
o ~ f d(x,ty)de,i=1,...,I,n=0,...,N
hi Jk,
m ®" — the vector of unknowns at time t", i.e.,

o = (0. )T e R



RUNGE-KUTTA METHODS

1 |ai -+ Qs
Butcher Tableau for an s-stage
Runge-Kutta method
Cs | Qs1 -+ Qsg
TR

"k =" 4+ Atey,

S
OUF — " 4 At Y ag Gt ™M) =05, k=1,....s
/=1

(anrl = " — At Z bkg(tn,k7 (Dn,k)
k=1



(cLAssicAL) RK3

0 0 0 O
Butcher Tableau for the 11 o o
: 2| 2

classical 3-stage RK3 method 111 2 o
1z 1
6 3 ©

D+D I t2 z(zx — 1)t? cosh(x) exp(—t)

err  ord err  ord err ord

| with Butcher Tableau]
10 1.8E—-06 — 8.1E—-09 — 1.1E-06 —
20 1.1E-07 4.0 1.3E-10 6.0 6.8E—-08 4.0
30 22E-08 4.0  1.1E—11 6.0  1.3E-08 4.0

IP5(6)
At = 1h?




(cLAssicAL) RK3

At3 A3\ T
0,3 __ 2 2 2 2
03 = (2At + o7 2087, 282 24 +h2>
Attt At At AT
1 _ 2 T /s ar ey =y
o = A (1,1,1,...,1,1,1) +( 2h4,6h4,0,...,0, R 2h4>
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EXTENDED BUTCHER TABLEAU (D+D)

m to overcome the incompatibility problem, we shall consider a
relaxation of the discretization considering now that the time
discretizations for the source term and for the Dirichlet
condition can be different

m let

ok — ( ¢p(zL, 1) )

¢D (xRa tn7k)
m we re-qualify the residual operator setting
& S
grk = gk, ok Frk o) @ = N pp @R k=1, s
l=1

m Principle: The time discretizations of the source term and the
Dirichlet condition are compatible up to degree d if the scheme
exactly solves the solutions ™, m = 0,...,d, constant in space



EXTENDED BUTCHER TABLEAU (D+D)

m application of the Principle with k =1, v =0

S
d. T Nd T d+1,s nk nt
Q%" = Q% + E° OpF = pre®y
/=1
(c1)(1) (CS)(l) 0 . 0 . 1
S U T e R
(Cl.)d (Cs.)d d(cl.)dfl d(C;)dil 0
(d+1)xs (d+1)xs (d—\/—’+1)><1

m for the classical RK3, all coefficients ¢, are different
m for the classical RK3, s = d + 1, that is, the Vandermonde
matrix Q% is square and invertible, which implies the existence

and uniqueness of matrix p



(MODIFIED) RK3

Extended Butcher Tableau for 0 0 00 1 0 0
the classical 3-stage RK3 % % 0 0 —% 2 —%
method 1/-1 2 0| 2 -4 3
T2 1
6 3 6
D+D I t2 z(x — 1)t cosh(z) exp(—t)
err ord err  ord err ord
| with Butcher Tableau |
p,6) L018E-06 — 8IE-09 —  LIE-06 —
At > L2 20 1.1IE-07 40  1.3E-10 6.0  6.8E—-08 4.0
30 2.2E-08 40  1.1E-11 6.0 13E-08 4.0
|with Extended Butcher Tableau|
p,(6) L0 42E-17 — 8IE-09 —  73E-08 NA
At > L2 20 1.0E-16 —  1.3E-10 6.0  1.3E-09 5.9

30 2.2E-16 — 1.1E-11 6.0 1.1IE-10 5.9
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RK4

0j]0 0 0 O

1|1

200

1Mo oo

110 0 1 0

111 ‘
6 3 3 6

m since ¢y = c3, we can not directly apply the methodology
developed in the previous section because matrix Q* is singular
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m since ¢y = c3, we can not directly apply the methodology
developed in the previous section because matrix Q* is singular
m to overcome the problem, we introduce a new vector
z = (21,22, 23,24)7 and new time stages 7F = " + z, At,
k=1,...,s

m we choose z = (0, %, ,1)
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RK4

= = O
— Aol O

olH O OoOwN O
wH OoONI- O O
wH = O O O
oHO O O O

m since ¢y = c3, we can not directly apply the methodology
developed in the previous section because matrix Q* is singular

m to overcome the problem, we introduce a new vector
z = (21,22, 23,24)7 and new time stages 7F = " + z, At,
k=1,...,s

m we choose z = (0, %, %, 1)

m for the classical RK4, s = d + 1, that is, the Vandermonde
matrix Q% is square and now, with the new vector z, is also
invertible, which implies the existence and uniqueness of

matrix p



RK4

LRI T =t

— NN = O
(I

=N oY O

o Seoi06?| 55 o
|

— NIl O

— Aol O

olH O OoON O
wH O O O
wH = O O O
oHO O O O

m since ¢y = c3, we can not directly apply the methodology
developed in the previous section because matrix Q* is singular

m to overcome the problem, we introduce a new vector
z = (21,22, 23,24)7 and new time stages 7F = " + z, At,
k=1,...,s

m we choose z = (0, %, %, 1)

m for the classical RK4, s = d + 1, that is, the Vandermonde
matrix Q% is square and now, with the new vector z, is also
invertible, which implies the existence and uniqueness of
matrix p



RK4

D+D, k =1,v =0, ¢(x,t) = cosh(x) exp(—t)
I BT EBT

10 28E-06 — 3.5E-09 —
P7(8) 20 1.6E—07 41 5.2E-11 6.1
At = 1h? 40 1.0E—08 40 8.2E—13 6.0
80 6.4E—10 4.0 1.1E-14 63
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associated to a maximal rank matrix Q¢ — one has to develop a
strategy to determine a unique matrix p. We here propose two
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ESDIRK4

m if a;; = 0 for 7 < j and a1,; = 0 with all diagonal entries equal,
we have an explicit singly diagonally implicit Runge-Kutta —
ESDIRK

m if s > d+ 1 corresponds to an under-determined linear system
associated to a maximal rank matrix Q¢ — one has to develop a
strategy to determine a unique matrix p. We here propose two
ways to determine matrix p namely:

m LS-way: find p in the Least Square sense

m AC-way: Augment the number of Constraints adding polynomial
functions t?*1, ..., t*~! such that we get a invertible
Vandermonde square matrix Q!

738 193 _ 151 _ 490

0 0 (1) 0 0 0 0|1 —55935 —9366 1016 663 0

1 1 1 0 0 0o oflo o 0 0

& 8611 _ ahas 1 0 0 olo 895 1654 501 1703

0| 561389 _ aBep 174575 1 o olo 48 _'3b MM 23hE

9 | 1sH0Rae  _ AWAAD a5 20sBs0s 1 olo 1506 50103 16079 as78 0
20 | 1553703265600 120774400 902184768 8Q

1 Fris0n 0 S3664 1 710 1
‘ 82889 0 15625 6
524892 83664 1




ESDIRK4

D+D, k =1,v =0, ¢(x,t) = cosh(z) exp(—t)

I BT EBT (LS-way) EBT (AC-way)
20 1.3E-04 — 2.0E-05 — 22E-05 —

P3(4) 40 1.1E-05 3.6 1.1E-06 4.2 1.1E-06 4.3
At = 10h 80 1.2E-06 3.2 6.6E—-08 4.0 6.7E-08 4.1
160 1.3E-07 3.1 4.2E-09 4.0 4.0E-09 4.1

10 4.3E-08 —  3.6E-08 — 3.5E-08 —

Ps(6) 20 1.1E-09 54 6.0E-10 5.9 5.9E-10 5.9
At = b 40 3.4E-11 49 98E-12 5.9 9.7E—-12 5.9
80 1.4E-12 4.6  2.0E—-13 5.6 2.0E—-13 5.6




NEUMANN BOUNDARY CONDITIONS

m the principle proposed in the Dirichlet case can not be here
applied since a constant in space function gives rise to
homogeneous Neumann conditions

m therefore, we introduce a slightly different generic principle to
derive the two discretizations:

m Principle: The time discretizations of the source term and the
Neumann conditions are compatible up to degree d if the scheme
exactly solves the solutions xt"", m = 0,...,d, linear in space

m it can be deduced that we can use the same time discretization
both for the Dirichlet and the Neumann conditions

characterized by the same Extended Butcher Tableau.



NEUMANN BOUNDARY CONDITIONS + RK3

N+N, k =1, v =0, ¢(x,t) = cosh(z) exp(—t)

1 BT EBT
10 71E-09 — 35E-10 —
P,(8) 14 13E—0950 3.1E-11 7.2
At=1r?17 51E-10 50 8.1E-12 6.9
20 23E-10 50 29E-12 6.3
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high-order approximations for regular time-dependent case
convection-diffusion problem in 1D both with Dirichlet and

Neumann boundary conditions



FINAL REMARKS

m we have presented a finite volume method which provides very
high-order approximations for regular time-dependent case
convection-diffusion problem in 1D both with Dirichlet and
Neumann boundary conditions

m we are working in the generalization in order to consider
multi-step methods, namely methods like Adams-Bashforth and
Adams-Moulton



FINAL REMARKS

m we have presented a finite volume method which provides very
high-order approximations for regular time-dependent case
convection-diffusion problem in 1D both with Dirichlet and
Neumann boundary conditions

m we are working in the generalization in order to consider
multi-step methods, namely methods like Adams-Bashforth and
Adams-Moulton

m the same orders of convergence were already obtained for the 2D
and 3D steady-state convection-diffusion problems, so we want
to test the developed methodology for the 2D and 3D

time-dependent convection-diffusion problems



