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We want to construct numerical schemes for very general hyperbolic-parabolic 
time-dependent partial differential equations in multiple space dimensions 
of the following general form:  

(PDE) 

The nonlinear flux depends on the gradient of Q, to take into account  
also parabolic terms, such as viscous effects. 
The third term is a non-conservative term that is important in many 
multi-fluid and multi-phase models. 
The source term on the right hand side may also be stiff.  

Many of the mathematical models relevant for physics and engineering 
can be cast in the form of eqn. (PDE). 

Starting Point: Very General Form of the Governing PDE 
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First-order Godunov-type finite volume schemes for (PDE): 
 

   - Data u: piecewise constant cell averages.  
   - Interface fluxes: computed using the same data u.  
   

Basic Concept of PNPM Schemes in 1D 
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Higher-order extension of Godunov-type finite volume schemes for (PDE): 
 

    - Data u: piecewise constant cell averages;  
    - Interface fluxes: computed using higher order piecewise polynomials  
      w of degree M, computed from u using a reconstruction operator.   
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Basic Concept of PNPM Schemes in 1D 
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High-order Discontinuous Galerkin finite element schemes for (PDE): 
 

    - Data u: piecewise polynomials of degree N;  
    - Interface fluxes: computed using the same higher order piecewise polynomials  
      u of degree N.  
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High-order PNPM schemes for (PDE): 
 

    - Data u: piecewise polynomials of degree N;  
    - Interface fluxes: computed using higher order piecewise polynomials  
      w of degree M ≥ N. w is computed from u using reconstruction. 

;, Nkh Pu ∈Φ
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General PNPM Schemes on Unstructured Meshes 

Throughout this presentation the following three operators will be used: 

(OP1) 

(OP2) 

(OP3) 
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Stencil definition: 

Reconstruction equations (L2-projection): 

General PNPM Schemes on Unstructured Meshes 

The reconstruction equations are solved using constrained LSQ. 
Monotonicity is enforced using a nonlinear WENO reconstruction.  

1. Reconstruction of piecewise polynomials w of degree M from piecewise 
polynomials u of degree N using L2-projection on a stencil Si : 
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General PNPM Schemes on Unstructured Meshes 

1. Reconstruction of piecewise polynomials w of degree M from piecewise 
polynomials u of degree N using L2-projection on a stencil Si : 
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2. Local predictor that computes a solution in the small of the local  
    Cauchy-Problem for (PDE) with initial data wh. This allows the  
    construction of high order one-step schemes in time.  
 

•  Cauchy-Kovalewski procedure, based on Taylor series and  
  successive differentiation of the governing PDE. Disadvantages: 
  not able to treat stiff sources, not applicable to general PDE. 
 
•   Element-local discontinuous space-time Galerkin predictor. 
   Applicable to general PDE with stiff source terms.  

     

ξ	



η	


τ	



wh(x,y,z,tn) 

General PNPM Schemes on Unstructured Meshes 

qh(x,y,z,t) 
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Local Space-Time DG Predictor Method 
PDE transformed to the space-time reference element 

Element-local space-time ansatz 

Multiplication with a piecewise polynomial space-time test function  
of degree M and integration in space and time yields 

Integration by parts in time only 
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Inserting the polynomial ansatz yields 

Or, in more compact matrix-vector notation, we get the following  
element-local equation system 

For its solution, we use the following fixed-point iteration scheme: 

(FP) 

Local Space-Time DG Predictor Method 

In the stiff case, the source term is taken locally implicitly in (FP).  



M. Dumbser 
11 / 61 

High Order One-Step AMR & ALE  
Methods for Hyperbolic PDE 

Università degli Studi di Trento 
Laboratory of Applied Mathematics 

General PNPM Schemes on Unstructured Meshes 
3. Explicit global corrector scheme 

 
 

with a path-conservative jump term [Toumi 1992, Parés 2006, Castro et al. 2006],  
consistent with the theory of [Dal Maso, Le Floch and Murat, 1995].  
If the PDE is conservative (B(Q)=0), then the method reduces to a classical  
fully conservative scheme.  

Integration by parts in time yields then the fully-discrete PNPM scheme 

Multiply eqn. (PDE) with spatial test functions φk (piecewise polynomials  
of degree N) and integrate in space and time:  
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(1) Use the PNPM reconstruction operator at the current time tn to reconstruct  
the polynomials w of degree M from the polynomials u of degree N that are  
stored and evolved in each cell.  
 
 
(2) Use the local space-time DG predictor method to obtain for each cell a  
space-time predictor polynomial of degree M, valid in the time interval [tn ,tn+1]. 
 
 
(3) Use the globally explicit one-step corrector scheme to evolve the piecewise  
polynomial data u of degree N from time tn to time tn+1. 

Summary of the Algorithm 

Special cases: 
 

 N = 0: classical high order finite volume scheme 
 N = M: usual DG finite element scheme 
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The Fully-Discrete PNPM Scheme 

Using linear von Neumann stability analysis for the linear scalar advection 
equation in 1D yields the following stability limits for PNPM schemes: 

From these results, we conclude that it is the degree N of the polynomials 
representing the data that imposes the time step limit and not the degree M  
of the reconstruction polynomials.  
 

PNPM schemes have larger time steps than pure DG schemes of the same order 
of accuracy. 
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Compressible Navier-Stokes Equations 

This well-known governing PDE system is defined by  

Convective and 
viscous flux 

tensor 

Stress tensor of 
a Newtonian fluid 

Ideal gas EOS 

Sutherland‘s law 
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Convergence Study: Compressible Navier-Stokes Equations 
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Reference solution of Colonius et al. [JFM, 1997] 
M0 = 0.25, M1 = 0.5, Reδ = 500, Pr = 1  

Sixth order P0P5 finite volume scheme. 
Wallclock time: 14.75 h 

Sixth order P3P5 scheme. 
Wallclock time: 5 h 

Sixth order P5P5 discontinuous Galerkin scheme. 
Wallclock time: 8 h 

Compressible Mixing Layer 2D 
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Viscous & Resistive MHD Equations 

Conserved variables 

Convective and 
viscous flux 

tensor 

Stress tensor of 
a Newtonian fluid 

Here, the div B = 0 constraint may not be satisfied exactly on the discrete  
level, but the hyperbolic divergence cleaning strategy of Dedner et al. 
(2002) is used. Analogy with the method of artificial compressibility of 
Chorin (1967) for inc. NS. Divergence errors cannot accumulate locally.  

 
Asymptotic limit:                    ∞→→ 0   if    0div cB
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VRMHD Code Validation: Laminar Boundary Layer 

Unstructured mesh with 
1430 triangular elements  

Re = 106, Pr = 1, Prm = 10-1 

For further validation, we solve a high Reynolds number steady laminar boundary 
layer problem on a highly stretched unstructured triangular mesh. Reference 
solution computed by solving the nonlinear ODE system of [Shukhman, JFM 2002].  
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2D Kelvin-Helmholtz Instability 

P3P5 on unstructured mesh with 
140676 triangular elements (h=1/250) 

Setup of [Jeong et al. 2000] 
Re = 105, Pr = 1, Prm = 1 
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3D Kelvin-Helmholtz Instability 

P2P4 on unstructured mesh with 
655360 tetra elements (23e6 DOF).  

Setup of Keppens & Toth (1999)  

Re = 104, Pr = 1, Prm = 1 
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Governing PDE System 

To verify the order of accuracy, we use the resistive relativistic MHD (RRMHD) 
equations. In the stiff case ( σ → ∞ ) the system tends to the ideal relativistic MHD 
(RMHD) equations, for which exact solutions are known [Del Zanna et al. 2007].   

Conserved quantities 

Variables used in the fluxes 

Ohm‘s law (stiff source term) 

Convergence Study with Stiff Source Terms (RRMHD) 
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Convergence Study with Stiff Source Terms (RRMHD) 
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Asymptotic Preserving Property: 2D Blast Wave 

p 

Ez 

σ = 1.0 σ = 105 ideal RMHD 

Convergence of RRMHD to ideal RMHD for large values of σ. P0P2 scheme.  
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Can we extend these schemes also to  
    
   i)  space-time adaptive mesh refinement  (AMR)  
   ii) and to moving unstructured meshes? 
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An integral finite volume formulation of (PDE) reads 

and with the fluxes, jump and source terms defined as  

High-Order One-Step AMR 

with the cell average 
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High-Order One-Step AMR 
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The non-conservative products are treated again using a path-conservative 
approach [Parés 2006, Castro et al. 2006] 

With the straight-line segment path 

one obtains the discrete jump term...  

as well as a very natural formulation for an Osher-type numerical flux. 

All integrals are evaluated numerically using Gauss-Legendre quadrature. 

High-Order One-Step AMR 
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AMR Grid and Data Structure 

One refinement level & virtual cells Two refinement levels & virtual cells 
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AMR Grid and Data Structure 
Data are organized in a tree. There are real cells, as well as virtual coarse  
and fine cells, needed for the projection and averaging (prolongation and  
restriction) operators.   
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AMR with Time-Accurate Local Time Stepping (LTS) 

Update criterion:  
 
     Update the highest refinement level l (the smallest spatial scale) that satisfies  

Conservative and consistent flux evaluation:  
 
     Fluxes & jump terms are computed by the fine grid cell at a fine/coarse 
     boundary, and are summed to a memory variable of the coarse grid cell  
     (note that the space-time time boundary integral of the flux is additive).  
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AMR with Time-Accurate Local Time Stepping (LTS) 
Within our high order one-step predictor-corrector approach, LTS is almost trivial.   
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AMR with Time-Accurate Local Time Stepping (LTS) 
Within our high order one-step predictor-corrector approach, LTS is almost trivial.   
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Numerical Convergence Study with AMR 
Convergence rates obtained with third and fourth order schemes  
for a smooth problem solving the compressible BN multiphase model.  
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3D Explosion Problem 
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Double Mach Reflection Problem 
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2D Riemann Problems 
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Forward Facing Step Problem 
Why one should consider better than third order AMR: 
   i)  less numerical dissipation than AMR based on standard second 
                   order TVD schemes 
              ii)  more small-scale flow structures 
              iii) better preservation of physical features 



M. Dumbser 
38 / 61 

High Order One-Step AMR & ALE  
Methods for Hyperbolic PDE 

Università degli Studi di Trento 
Laboratory of Applied Mathematics 

Forward Facing Step Problem 

Third order AMR 
(ADER-WENO) 
visible rollup 

Second order  
AMR (TVD) 
no rollup 
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Sound Generation by a Co-Rotating Vortex Pair 

Simple model problem from computational aeroacoustics (CAA) 
 
-  Low Mach number problem 
-  Strong pressure amplitudes within the 
   vortex, very low pressure amplitudes 
   in the sound waves 
- Real multi-scale problem (vortex of size 1, 
  acoustic wavelength about 40) 
- Computational domain [500 x 500]  
-  Fourth order AMR scheme 
-  Three levels of refinement 
-  about 100.000 elements 
-  equivalent resolution 16000x16000 
  (256.000.000 cells) 
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Sound Generation by a Co-Rotating Vortex Pair 
An unphysical vortex merger is obtained with a second order AMR on a grid that 
is twice as fine (same number of DOF compared to the fourth order scheme), 
while the fourth order AMR reproduces the correct solution at the final time t=500.  

AMR with 
fourth order ADER-WENO 

AMR with 
second order TVD 
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Sound Generation by a Co-Rotating Vortex Pair 

Unphysical vortex merger with second order AMR on a twice as fine grid (same 
number of DOF compared to the fourth order scheme)  
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MHD Orszag-Tang Vortex 
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MHD Rotor Problem 
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1.  Local Space-Time Galerkin Predictor:  
 
Iso-parametric mapping of the physical space-time-element (left) to the  
space-time reference element (right) 
 
 
 

High-Order Lagrangian Schemes on Unstructured Meshes 
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1.  Local Space-Time Galerkin Predictor:  
 
Iso-parametric mapping of the physical space-time-element to the space-time 
reference element 
 
 
 
with the Jacobian matrix and its inverse given by  
 
 
 
 
 
PDE in the reference system   

High-Order Lagrangian Schemes on Unstructured Meshes 



M. Dumbser 
46 / 61 

High Order One-Step AMR & ALE  
Methods for Hyperbolic PDE 

Università degli Studi di Trento 
Laboratory of Applied Mathematics 

1.  Local Space-Time Galerkin Predictor:  
 
Using the abbreviation  
 
 
 
 
and inserting the discrete space-time solution one obtains the following element  
local algebraic system:  

High-Order Lagrangian Schemes on Unstructured Meshes 
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1.  Local Space-Time Galerkin Predictor:  
 
Space-time predictor solution of the local mesh velocity:   
 
 
 
 
 

 
 
 
 

2.  Node update (average according to Cheng & Shu, or...) 

High-Order Lagrangian Schemes on Unstructured Meshes 
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Node Solvers 
1.  Cheng & Shu :  
 

  Simple arithmetic average. No upwinding!    
 

2. Maire (2011), Després:  
  Solution of half-Riemann  
  problems around a vertex 

 
 
 

 
 
3.  Multi-D HLL Riemann solver  

 (Balsara 2010, 2012, Balsara et al. 2013) 
  Integrate the conservation law over an  
  expanding 3D space-time control  
  volume and extract a multi-d HLL  
  averaged state, which determines the 
  mesh velocity.   

 
In a cell-centered Lagrangian framework,  

the computation of the velocity at the mesh vertices  
requires  

the solution of a multi-dimensional Riemann problem,  
or something equivalent. 

 



M. Dumbser 
49 / 61 

High Order One-Step AMR & ALE  
Methods for Hyperbolic PDE 

Università degli Studi di Trento 
Laboratory of Applied Mathematics 

3.  Finite Volume Scheme  
 
Formulation in space-time:  
 
 
 
 
 

 
 
Integration over a space-time control volume yields 
 
 
 
 
Integration by parts of the flux and integration of the non-conservative product: 
 

High-Order Lagrangian Schemes on Unstructured Meshes 
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3.  Finite Volume Scheme 

 
 
 
 
 

Geometric conservation law (GCL) satisfied by construction: 
 
 
 
 
Bi-linear parametrization  of the space time faces 

High-Order Lagrangian Schemes on Unstructured Meshes 
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3.  Finite Volume Scheme  
 
Path-conservative approach [Parés 2006, Castro et al. 2006]  
for the non-conservative jump terms: 
 
 
 
 

 
Final high-order one-step ALE Finite volume scheme: 
 
 
 
 
 
Osher-type scheme: 

High-Order Lagrangian Schemes on Unstructured Meshes 
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Direct One-Step ALE with Rezoning 
 

The present formulation allows for rezoning without remapping, in a 
consistent, conservative and high order manner: 
 

 
Reconstruction 

Time-Evolution 

Node solver 

Preliminary mesh at time tn+1 

Rezoning and final mesh at time tn+1 

One-step time update of the discrete  
solution to time tn+1 using the high-order  

space-time formalism. 
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Numerical Convergence Results (MHD Vortex) 
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Numerical Convergence Results (MHD Vortex) 
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Saltzmann Problem 
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Saltzmann Problem 
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Sedov Problem 
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MHD Rotor 
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MHD Blast Wave 
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•  High order accurate schemes for the solution of very general time-dependent  
PDE on unstructured meshes in multiple space dimensions. 
 

•  High order finite volume and DG schemes are special cases of the new  
general class of reconstructed PNPM DG schemes 
 

•  Extension to space-time adaptive Cartesian grids 

•  Extension to unstructured moving meshes 

•  Use of multi-dimensional Riemann solver to compute the vertex velocity in the 
ALE framework.  

Conclusions 
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Still interested in high order methods? 

 Visit  www.unitn.it/event/nm2014  
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The Baer-Nunziato Model of Compressible Multi-Phase Flows 
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For the gas phase, we suppose p=0=const. and the liquid phase is modeled 
by the usual Tait equation of state (weakly compressible approximation, k0 is  
chosen so that the Mach number is about M=0.1)  
 
 
 
 
The pressure does not depend on energy, so the energy equations can  
be dropped.  
 
The interface velocity is supposed to be the one of the liquid phase. 
 
 
 
The interface pressure is supposed to be the one of the gas phase. 

Special Case of the Baer-Nunziato Model 
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Special Case of the Baer-Nunziato Model 
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These assumptions yield the following simplified three-equation model:  

Special Case of the Baer-Nunziato Model 

(SBN) can be interpreted as a weakly compressible formulation of the volume-of 
fluid (VOF) method [Hirt & Nichols].  

(SBN) 
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Overtopping flow over a sharp-crested weir 

Density contour lines. The thick solid  
line indicates the experimental  

reference solution of [Scimemi, 1930]. 

Pressure contours. Note the pressure 
distribution in the reservoir, in the 

free jet and at the stagnation point.  

2D Test Problems 
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3D Dambreak problem [Fraccarollo & Toro 1995]  

3D Test Problems 



M. Dumbser 
68 / 61 

High Order One-Step AMR & ALE  
Methods for Hyperbolic PDE 

Università degli Studi di Trento 
Laboratory of Applied Mathematics 

3D Dambreak problem [Fraccarollo & Toro 1995]  

3D Test Problems 
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3D Dambreak problem [Fraccarollo & Toro 1995]  

3D Test Problems 
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3D Test Problems 

3D Dambreak against obstacle [Kleefsman et al. 2005]  
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3D Dambreak against obstacle [Kleefsman et al. 2005]  

3D Test Problems 
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