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Model

Find ¢ = (¢1, ¢») on the bounded open domain 2 such that

V.(Vigr —kiVor) = fi,
V.(Vagy —kaVn) = fo,
kiVg1.nr = koVey.nr,
¢ = ¢p,

in Qp, (
in Q, (
onT, (

(

OHFD,

¢p1=¢0onT
or

kiVéy.nr = h(¢2 — ¢1)



Discretization

J (V.ng — kN ¢.n)ds — f fdx = 0. (divergence theorem)
oc; <

c; dig,r

Z |elj| 2 Cr[ qU r nzﬁb qij, P = k(‘]ij,r)vqs(qij,r)'nij]

Jjev(i) r=1
—|cilfi = O(R2R). (Gauss Points)



Residual formulation

Based on the previous expression: the residual formulation is

R
€jij
Gi= ), il 2 G Fir = fis
e
jev(i) r=1
where
‘FUJ & V(qij,”)'nijgb(qij,r) - k(QIj,r)v¢(QIj,r)-nlja

approximation of the flux at the Gauss point g;; ,.

s Sixth-order approximation for Fj; ,.



Polynomial reconstructions |




Conservative reconstruction for cells

¢;: cell of mesh 7,

d: the polynomial degree, "v
S(ci,d): the associated stencil, ‘ .

¢;: mean value on c;.
¢ Z mda{ X — ) Moz}

1<|al<d

a = (a1, ), |a] = a; + az, x = (x1,x2), b; the centroid of cell ¢;

1
ww Set M}* = el ). (x — b;)® dx to provide the conservation.



Coefficients for @,-

R¢ vector gathering coefficients Z)f{f’“

Assume mean values ¢, on cells ¢, ¢ € S(c;, d) are known,

R4 minimizes the functional

B = 3 o] dwddi—ol

ZeS( i,d)

= Lead to an over-determined linear system AY9:¢ = b where
bf represents the variations ¢, — ¢;, £ € S(c;; d)



Preconditioning and solving

Determine the Moore-Penrose pseudo-inverse matrix for
system (AYP)(P4)~I\¢ = b with the diagonal matrix

P = diag(|ci|’|°“/2)1<|a‘<d.
Motivation: the .A¢ matrix coefficients are
1 1
@ L (x — b;)%dx — m ] (x — b;)%dx.
1= Strongly reduces the effect of the power «.

We compute the pseudo inverse matrix (A¢P4)T and get

R = PAIPH TS,



Conservative reconstruction for T’

e;j  I': edge on the interface,
cj the cell on the €2, side,
d: the polynomial degree,
S(cj,d): the associated stencil.

&(x + 3w u-p)-mpl.

1<|al<d

b; the centroid of cell ¢;.

1 . .
s Set Mj* = ol (x — bj)™ dx to provide the conservation.
¢l Je

iz Only use the cells on the 7" side.



Coefficients for ¢;

i)%;f vector gathering coefficients SRJ‘.”Q

Assume mean values ¢, on cells ¢, ¢ € S(e;;,d) and ¢;; the
mean value on ¢; are known,

9%]‘.’ minimizes the functional

Ej(R%;d) = J &i(xid) dx — ¢g]
ZeS(
+wl~,-[|jy_| sy ds o

with w;; a positive weight.



Conservative reconstruction for I'p

eip: edge on the boundary T'p,
d: the polynomial degree,
S(eip,d): the associated stencil,
¢ip=——1| op(s) ds.

lein| Jey

QgiD(X; d) = ¢ip + Z %?ba{(x —mip)* — M,%}»

1<|e|<d

m;p the centroid of edge e;p

1 . .
w Set M, = Teml (x —m;p)® ds to provide the conservation.
i eip



Coefficients for @,-D

27% vector gathering coefficients i)fij’ba

Assume mean values ¢, on cells ¢;, £ € S(eip, d) are known,

R4, minimizes the functional

1 ~ 2
Eip(Rip; d) = 2 Wi, ¢ cdj Gin(x; d) dx—qbg] ;
ce

EES(e,[) d)

with w;p ¢ positive weights.

i Coefficients w;p ¢ are very important to provide "good”
properties.



Non conservative reconstruction for inner edges

e;j: inner edge of the mesh, ‘.
d: the polynomial degree, m
S(e;j,d): the associated stencil, ‘
no value associated to e;;.
Gilsd) = D7 RG (e —my)®
0<|al<d
my; the centroid of edge ¢;;

e Coefficient % for |a| = 0 is also unknown.



Coefficients for ¢

%Z- vector gathering coefficients m;jn“

Assume mean values ¢, on cells ¢, £ € S(e;;,d) are known,

9%1‘5. minimizes the functional

(mga)_ Z Wij e |C|J¢UXd ﬁbé]a

0eS(ejj,d)

where w;; , are positive weights.

i One more time: coefficients w;; , are very important.



Polynomial Reconstruction Operators

e & = (¢;)iec the mean values vector.
« Operators ® — ¢;, ¢;, ¢ip, and ¢; are linear.

e ¢ polynomial function of degree d, ¢, the exact mean values.

d-exact reconstruction if

~

$i(x;d) = §j(x;d) = dip(x;d) = yj(x;d) = $(x), x € R,

iz The finite volume method associated to the polynomial
reconstruction is a d + 1”-order method.



The flux on edge (except I')

1. e; is aninner edge (noton I'),
Fijr = V(gir) il * ¢ilqij.rs d) + [V(qij.r)nig] ™ 6i(qir; d)

—k(qW)Vgg,-j(q,-j,,; d) .I’lij.
2. e;p belongs to T'p,

Fivr = [V(gip.,)-nip]* di(giv.r; d) + [V{(gip.r)-nip]~ép(qin.r)

_k(QiD,r)V(EiD(CIiD,rQ d).nip.



The flux on edge of ¢;; = T’

« Transfer condition: F;;, = h(q;j..)[6i(qi.r; d) — 6i(qij.r: d)]-

¢ Continuity condition: we perform three steps

Step 1: compute the reconstructions quSi(x; d) for all ¢; ¢ Q.

1 ~
y €jj

Step 3: Fj, = ka(gij,) Vi(gys ).y



Resolution

® The polynomial reconstruction operators are linear.
@ The flux computations are linear.
@ The residual expression is linear: ® — G;(®).

We get a linear operator & — G(®) = (G(P), ..., G/(P)).
Problem: Find & such that G(®) = 0.

@« Matrix-free problem: use GMRES method.

Preconditioning is very very important: P preconditioning matrix

substitute & — G(®) by & — PG(P).



Preconditioning matrix

1w G(P) = A® — b but we do not have matrix A: ILU not possible.

Diagonal preconditioning matrix P = D, with

3 |2|l,|[

Jjev(i)

(mij)-nij]+:| :

More sophisticated preconditioning matrix, Ap = Dp for the
diagonal coefficients and

lej] [_k(mij)

Ap(i i) =
P(l7.]) |Ci| |b,b]|

¥ [V(m,-j>.n,.,.]] > 20k



Incomplete inverse of Ap

Preconditioning matrix is supposed to be P = A;l

Substitute with the incomplete inverse AI, with the same
non-null entries of Ap.

Taking advantage of the structure of Ap and AI, provides explicit
construction of A},

AL(i, i)
AP(jvj) ’

Jjev(i

Ap(i.J) = =Ap(i.))
with 1

Ab(iyi) =

Jev(i)



Curved boundary treatment

1= Problem: we set the boundary condition on the edge while it
is prescribed on the curve.

* ¢ip,» Gauss points on e;p,

* pip, Gauss points on the
curve,

e ¢p is evaluated using
¢p(gip,r) and not ¢p(pip,,)-

1= |dea: modify the mean value ¢;p = Z ¢op(gip,r) ds but ¢ip
r=1

is still associated to edge e;p.



Curved boundary treatment

Find ¢;p approximation on edge ¢;p < I'p such that
ép(pin,r) — bip (pip.) is minimal.

1. Initialize ¢9, = 2f=1 ¢op(qip,) and evaluate $?D
2. Do

» Compute &, = ép(pin,r) — &% (pin.r) (ooundary default),

> Update ¢ip with ¢l := oy + Z B

> Evaluate ¢ ' with new mean value ¢,
While(|git! — ¢k, | < Tol)
3. Compute the flux on boundary with the update bip.



Examples and numerical
simulations




M-matrix

e The underlying matrix A must be an M-matrix (stability and
positivity preserving).

e Number of non negative coefficients: w = 2 gives 46%,

w = 2.5 gives 25%, w = 3. gives 0%.
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Convection Diffusion
Smooth solution with low and high Peclet number.
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Ll-norm convergence curves Ll-norm convergence curves: high Peclet number

10008




Pure convection

Revolution of a smooth pattern.
Velocity V = (—y, x)
Dirichlet condition for the inflow boundary.

Ll-norm convergence curves: circular shape

error




Pure diffusion with discontinuous coefficients
k\Voi = h(¢py — ¢1) é1 =

1os-02

error




Convection diffusion with discontinous coefficients
k\Vor = h(pz — ¢1) b1 =




The ring problem

A¢p =0,

¢ =25 at R = 1000e — 09,
¢ =0at 100.e — 09,
Exact solution a + b1n(r).

Ll-norm convergence curves: rough Dirichlet condit:Ll-norm convergence curves: acccurate Dirichlet
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The cooler
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Preconditioning

Residual histogram for the three preconditioning matrices
versus the order method.

Simulations of the cooler with a 23616 triangles mesh .

residual histogram curves: fourth-order method residual histogram curves: sixth-order method




Conclusions

¢ Very high-order is achieved even for discontinuous
coefficients or discontinuous function at the interface.

e Control of the M-matrix via the weights

e no spurious oscillation, high Peclet number.
e Curved boundaries seems resolved.

e 3D is in progress (curved boundary?)

o Non-stationary problem in progress.

o Next steps: non linear case, Stokes, Navier-Stokes (MOQOD)



