Very high-order finite volume scheme for the 2D linear convection-diffusion problem

S. Clain^{1,3}, G.J. Machado¹, J.M. Nobrega², R.M.S. Pereira¹, A. Boularas⁴

¹Mathematical Centre, University of Minho, Portugal ²Institute for Polymers and Composites/I3N, University of Minho, Portugal ³Mathematical Institute, Paul Sabatier University, France ⁴Laplace centre, Paul Sabatier University, France

Ofir, 2014 april-28th may-2nd

Outline

- 2D linear convection-diffusion with finite volume
- Discretization and residual formulation
- Polynomial reconstructions
- Scheme design
- Numerical tests

Model

Find $\phi = (\phi_1, \phi_2)$ on the bounded open domain Ω such that

$$\nabla \cdot (V_1 \phi_1 - k_1 \nabla \phi_1) = f_1, \qquad \text{in } \Omega_1, \qquad \text{(1a)}$$

$$\nabla \cdot (V_2 \phi_2 - k_2 \nabla \phi_2) = f_2, \qquad \text{in } \Omega_2, \qquad \text{(1b)}$$

$$k_1 \nabla \phi_1 . n_{\Gamma} = k_2 \nabla \phi_2 . n_{\Gamma},$$
 on Γ , (1c)

$$\phi = \phi_D,$$
 on $\Gamma_D,$ (1d)

$$\phi_1=\phi_2$$
 on Γ or
$$k_1
abla \phi_1.n_\Gamma=h(\phi_2-\phi_1) \; .$$

Discretization

$$\int_{\partial c_i} (V.n\phi - k
abla \phi.n) ds - \int_{c_i} f \, dx = 0.$$
 (divergence theorem)

Residual formulation

Based on the previous expression: the residual formulation is

$$G_i = \sum_{j \in \nu(i)} \frac{|e_{ij}|}{|c_i|} \sum_{r=1}^R \zeta_r \mathcal{F}_{ij,r} - f_i,$$

where

$$\mathcal{F}_{ij,r} \approx V(q_{ij,r}).n_{ij}\phi(q_{ij,r}) - k(q_{ij,r})\nabla\phi(q_{ij,r}).n_{ij}$$

approximation of the flux at the Gauss point $q_{ij,r}$.

■ Sixth-order approximation for $\mathcal{F}_{ii,r}$.

Polynomial reconstructions

Conservative reconstruction for cells

 c_i : cell of mesh \mathcal{T}_h , d: the polynomial degree, $S(c_i,d)$: the associated stencil, ϕ_i : mean value on c_i .

$$\widehat{\phi}_i(x;d) = \phi_i + \sum_{1 \leq |\alpha| \leq d} \mathfrak{R}_i^{d,\alpha} \left\{ (x - b_i)^{\alpha} - M_i^{\alpha} \right\}$$

$$\alpha=(\alpha_1,\alpha_2),\, |\alpha|=\alpha_1+\alpha_2,\, x=(x_1,x_2),\, b_i$$
 the centroid of cell c_i

Set
$$M_i^{\alpha} = \frac{1}{|c_i|} \int_{c_i} (x - b_i)^{\alpha} dx$$
 to provide the conservation.

Coefficients for $\widehat{\phi}_i$

 \mathfrak{R}_i^d vector gathering coefficients $\mathfrak{R}_i^{d,\alpha}$

Assume mean values ϕ_{ℓ} on cells c_{ℓ} , $\ell \in S(c_i, d)$ are known,

 $\widehat{\mathfrak{R}}_i^d$ minimizes the functional

$$E_i(\mathfrak{R}_i^d;d) = \sum_{\ell \in S(c_i,d)} \left[\frac{1}{|c_\ell|} \int_{c_\ell} \widehat{\phi}_i(x;d) \ dx - \phi_\ell \right]^2,$$

Lead to an over-determined linear system $\mathcal{A}_i^d\mathfrak{R}_i^d=\mathfrak{b}_i^S$ where \mathfrak{b}_i^S represents the variations $\phi_\ell-\phi_i,\ \ell\in S(c_i;d)$

Preconditioning and solving

Determine the Moore-Penrose pseudo-inverse matrix for system $(\mathcal{A}_i^d\mathcal{P}_i^d)(\mathcal{P}_i^d)^{-1}\mathfrak{R}_i^d=\mathfrak{b}_i^S$ with the diagonal matrix

$$\mathcal{P}_i^d = \operatorname{diag}(|c_i|^{-|\alpha|/2})_{1 \leqslant |\alpha| \leqslant d}.$$

Motivation: the A_i^d matrix coefficients are

$$\frac{1}{|c_{\ell}|}\int_{c_{\ell}}(x-b_i)^{\alpha}dx-\frac{1}{|c_i|}\int_{c_i}(x-b_i)^{\alpha}dx.$$

Strongly reduces the effect of the power α .

We compute the pseudo inverse matrix $(\mathcal{A}_i^d \mathcal{P}_i^d)^\dagger$ and get

$$\mathfrak{R}_i^d = \mathcal{P}_i^d (\mathcal{A}_i^d \mathcal{P}_i^d)^{\dagger} \mathfrak{b}_i^S.$$

Conservative reconstruction for Γ

 $e_{ij} \subset \Gamma$: edge on the interface, c_j the cell on the Ω_2 side, d: the polynomial degree, $S(c_j,d)$: the associated stencil.

$$\check{\phi}_j(x;d) = \phi_j + \sum_{1 \leq |\alpha| \leq d} \mathfrak{R}_j^{d,\alpha} \Big\{ (x - b_j)^{\alpha} - M_j^{\alpha} \Big\}.$$

 b_j the centroid of cell c_j .

Set
$$M_j^{lpha}=rac{1}{|c_j|}\int_{c_j}(x-b_j)^{lpha}\;dx$$
 to provide the conservation.

 \square Only use the cells on the "j" side.

Coefficients for $\check{\phi}_j$

 \mathfrak{R}^d_j vector gathering coefficients $\mathfrak{R}^{d, lpha}_j$

Assume mean values ϕ_ℓ on cells c_ℓ , $\ell \in S(e_{ij},d)$ and ϕ_{ij} the mean value on e_{ij} are known,

 $\widecheck{\mathfrak{R}}_{i}^{d}$ minimizes the functional

$$E_{j}(\mathfrak{R}_{j}^{d};d) = \sum_{\ell \in S(c_{j},d)} \left[\frac{1}{|c_{\ell}|} \int_{c_{\ell}} \widecheck{\phi}_{j}(x;d) \, dx - \phi_{\ell} \right]^{2}$$
$$+\omega_{ij} \left[\frac{1}{|e_{ij}|} \int_{e_{ij}} \widecheck{\phi}_{j}(x;d) \, ds - \phi_{ij} \right]^{2}$$

with ω_{ij} a positive weight.

Conservative reconstruction for Γ_D

 e_{iD} : edge on the boundary Γ_D , d: the polynomial degree, $S(e_{iD}, d)$: the associated stencil, $\phi_{iD} = \frac{1}{|e_{iD}|} \int_{a_{iD}} \phi_D(s) \ ds$.

$$\widehat{\phi}_{iD}(x;d) = \phi_{iD} + \sum_{1 \le |\alpha| \le d} \mathfrak{R}_{iD}^{d,\alpha} \left\{ (x - m_{iD})^{\alpha} - M_{iD}^{\alpha} \right\},\,$$

 m_{iD} the centroid of edge e_{iD}

Set
$$M_{iD}^{\alpha} = \frac{1}{|e_{iD}|} \int_{e_{iD}} (x - m_{iD})^{\alpha} ds$$
 to provide the conservation.

Coefficients for $\widehat{\phi}_{iD}$

 \mathfrak{R}^d_{iD} vector gathering coefficients $\mathfrak{R}^{d, lpha}_{iD}$

Assume mean values ϕ_{ℓ} on cells c_{ℓ} , $\ell \in S(e_{iD}, d)$ are known,

 $\hat{\mathfrak{R}}^{d}_{i\!D}$ minimizes the functional

$$E_{iD}(\mathfrak{R}_{iD}^d;d) = \sum_{\ell \in S(e_{iD},d)} \omega_{iD,\ell} \left[\frac{1}{|c_{\ell}|} \int_{c_{\ell}} \widehat{\phi}_{iD}(x;d) \ dx - \phi_{\ell} \right]^2,$$

with $\omega_{iD,\ell}$ positive weights.

 $^{\text{\tiny ISP}}$ Coefficients $\omega_{iD,\ell}$ are very important to provide "good" properties.

Non conservative reconstruction for inner edges

 e_{ij} : inner edge of the mesh, d: the polynomial degree, $S(e_{ij},d)$: the associated stencil, no value associated to e_{ij} .

$$\widetilde{\phi}_{ij}(x;d) = \sum_{0 \le |\alpha| \le d} \mathfrak{R}_{ij}^{d,\alpha} (x - m_{ij})^{\alpha}$$

 m_{ij} the centroid of edge e_{ij}

ightharpoons Coefficient $\mathfrak{R}_{ij}^{d,\alpha}$ for $|\alpha|=0$ is also unknown.

Coefficients for $\widetilde{\phi}_{ij}$

 \mathfrak{R}^d_{ij} vector gathering coefficients $\mathfrak{R}^{d,\alpha}_{ij}$

Assume mean values ϕ_{ℓ} on cells c_{ℓ} , $\ell \in S(e_{ij},d)$ are known,

 $\widetilde{\mathfrak{R}}^d_{ij}$ minimizes the functional

$$E_{ij}(\mathfrak{R}_{ij}^d;d) = \sum_{\ell \in S(e_{ij},d)} \omega_{ij,\ell} \left[\frac{1}{|c_{\ell}|} \int_{c_{\ell}} \widetilde{\phi}_{ij}(x;d) \ dx - \phi_{\ell} \right]^2,$$

where $\omega_{ij,\ell}$ are positive weights.

 \square One more time: coefficients $\omega_{ii,\ell}$ are very important.

Polynomial Reconstruction Operators

- $\Phi = (\phi_i)_{i \in \mathcal{C}}$ the mean values vector.
- Operators $\Phi \to \widehat{\phi}_i, \, \widecheck{\phi}_i, \, \widehat{\phi}_{iD}, \, \text{and} \, \widetilde{\phi}_{ij}$ are linear.
- ϕ polynomial function of degree d, $\overline{\phi}_i$ the exact mean values.

d-exact reconstruction if

$$\widehat{\phi}_i(x;d) = \widecheck{\phi}_j(x;d) = \widehat{\phi}_{iD}(x;d) = \widetilde{\phi}_{ij}(x;d) = \phi(x), \ x \in \mathbb{R}^2.$$

The finite volume method associated to the polynomial reconstruction is a $d + 1^{th}$ -order method.

The flux on edge (except Γ)

1. e_{ij} is an inner edge (not on Γ),

$$\mathcal{F}_{ij,r} = [V(q_{ij,r}).n_{ij}]^{+} \hat{\phi}_{i}(q_{ij,r};d) + [V(q_{ij,r}).n_{ij}]^{-} \hat{\phi}_{j}(q_{ij,r};d)$$
$$-k(q_{ij,r}) \nabla \tilde{\phi}_{ij}(q_{ij,r};d).n_{ij}.$$

2. e_{iD} belongs to Γ_D ,

$$\mathcal{F}_{iD,r} = [V(q_{iD,r}).n_{iD}]^{+} \hat{\phi}_{i}(q_{iD,r};d) + [V(q_{iD,r}).n_{iD}]^{-} \phi_{D}(q_{iD,r})$$
$$-k(q_{iD,r}) \nabla \hat{\phi}_{iD}(q_{iD,r};d).n_{iD}.$$

The flux on edge of $e_{ij} \subset \Gamma$

• Transfer condition: $\mathcal{F}_{ij,r} = h(q_{ij,r})[\hat{\phi}_i(q_{ij,r};d) - \hat{\phi}_j(q_{ij,r};d)].$

• Continuity condition: we perform three steps

Step 1: compute the reconstructions $\hat{\phi}_i(x;d)$ for all $c_i \subset \Omega_1$.

Step 2: compute
$$\phi_{ij}=rac{1}{|e_{ij}|}\int_{e_{ij}}\widehat{\phi}_i(x;d)ds$$
 for all $e_{ij}\subset\Gamma.$

Step 3:
$$\mathcal{F}_{ij,r} = k_2(q_{ij,r}) \nabla \widecheck{\phi}_j(q_{ij,r};d).n_{ij}.$$

Resolution

- ① The polynomial reconstruction operators are linear.
- ② The flux computations are linear.
- ③ The residual expression is linear: $\Phi \to G_i(\Phi)$.

We get a linear operator $\Phi \to G(\Phi) = (G_1(\Phi), ..., G_I(\Phi))$.

Problem: Find $\overline{\Phi}$ such that $G(\overline{\Phi}) = 0$.

Matrix-free problem: use GMRES method.

Preconditioning is very very important: P preconditioning matrix

substitute
$$\Phi \to G(\Phi)$$
 by $\Phi \to PG(\Phi)$.

Preconditioning matrix

 $G(\Phi) = A\Phi - b$ but we do not have matrix A: ILU not possible.

Diagonal preconditioning matrix $P = D_P^{-1}$ with

$$D_P(i,i) = \frac{1}{|c_i|} \sum_{j \in \nu(i)} |e_{ij}| \left[\frac{k(b_i)}{|b_i b_j|} + [V(m_{ij}).n_{ij}]^+ \right].$$

More sophisticated preconditioning matrix, $A_P = D_P$ for the diagonal coefficients and

$$A_P(i,j) = \frac{|e_{ij}|}{|c_i|} \left[-\frac{k(m_{ij})}{|b_ib_j|} + \left[V(m_{ij}).n_{ij} \right]^- \right], \ j \in \nu(i).$$

Incomplete inverse of A_P

Preconditioning matrix is supposed to be $P = A_P^{-1}$

Substitute with the incomplete inverse A_P^{\dagger} with the same non-null entries of A_P .

Taking advantage of the structure of A_P and A_P^\dagger provides explicit construction of A_P^\dagger

$$A_P^{\dagger}(i,j) = -A_P(i,j) \frac{A_P^{\dagger}(i,i)}{A_P(j,j)}, \ j \in \nu(i)$$

with

$$A_P^{\dagger}(i,i) = \frac{1}{A_P(i,i) - \sum_{j \in \nu(i)} \frac{A_P(i,j)A_P(j,i)}{A_P(j,j)}}.$$

Curved boundary treatment

Problem: we set the boundary condition on the edge while it is prescribed on the curve.

- $q_{iD,r}$ Gauss points on e_{iD} ,
- $p_{iD,r}$ Gauss points on the curve,
- ϕ_{iD} is evaluated using $\phi_D(q_{iD,r})$ and not $\phi_D(p_{iD,r})$.

Is still associated to edge e_{iD} .

Curved boundary treatment

Find ϕ_{iD} approximation on edge $e_{iD} \subset \Gamma_D$ such that

$$\phi_D(p_{iD,r}) - \widehat{\phi}_{iD}(p_{iD,r})$$
 is minimal.

- 1. Initialize $\phi_{iD}^0 = \sum_{r=1}^R \zeta_r \phi_D(q_{iD,r})$ and evaluate $\widehat{\phi}_{iD}^0$
- 2. Do
 - Compute $\delta^k_{iD,r} = \phi_D(p_{iD,r}) \hat{\phi}^k_{iD}(p_{iD,r})$ (boundary default),
 - Update ϕ_{iD} with $\phi_{iD}^{k+1} := \phi_{iD}^k + \sum_{r=1}^R \zeta_r \delta_{iD,r}^k$,
 - Figure $\hat{\phi}_{iD}^{k+1}$ with new mean value ϕ_{iD}^{k+1} ,
 - While $(|\phi_{iD}^{k+1} \phi_{iD}^k| < Tol)$
- 3. Compute the flux on boundary with the update $\hat{\phi}_{iD}$.

Examples and numerical simulations

M-matrix

- The underlying matrix A must be an M-matrix (stability and positivity preserving).
- Number of non negative coefficients: w = 2 gives 46%, w = 2.5 gives 25%, w = 3. gives 0%.

■ I have to check if $a_{ii} \leq 0$ with $i \neq j$.

Convection Diffusion

Smooth solution with low and high Peclet number.

Pure convection

Revolution of a smooth pattern.

Velocity V = (-y, x)

Dirichlet condition for the inflow boundary.

Pure diffusion with discontinuous coefficients

error

$$k_1 \nabla \phi_1 = h(\phi_2 - \phi_1)$$
 $\phi_1 = \phi_2$

Li-norm convergence curves: transfer condition Li-norm convergence curves: continuity condition library convergence curves: convergence curves: convergence curves: convergence curves: converge

Convection diffusion with discontinous coefficients

$$k_1 \nabla \phi_1 = h(\phi_2 - \phi_1) \qquad \qquad \phi_1 = \phi_2$$

The ring problem

$$\begin{split} \Delta\phi &= 0,\\ \phi &= 25 \text{ at } R = 1000e - 09,\\ \phi &= 0 \text{ at } 100.e - 09,\\ \text{Exact solution } a + b \ln(r). \end{split}$$

The cooler

Preconditioning

Residual histogram for the three preconditioning matrices versus the order method.

Simulations of the cooler with a 23616 triangles mesh .

Conclusions

- Very high-order is achieved even for discontinuous coefficients or discontinuous function at the interface.
- Control of the M-matrix via the weights
- no spurious oscillation, high Peclet number.
- Curved boundaries seems resolved.
- 3D is in progress (curved boundary?)
- Non-stationary problem in progress.
- Next steps: non linear case, Stokes, Navier-Stokes (MOOD)