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Prologue and general introduction

This prologue is intended to provide some guide lines in order for the reader to follow my
peregrinations, my collaborations and recast the publication list within this historical context.

Institut de physique fondamentale de Bordeaux, France
Centre d’Etude Lasers Intenses et Applications (CELIA)

November 2002 - January 2003

After the defense of a PhD from the University in Bordeaux in October 2002 [1] with R. Abgrall
(INRIA Bordeaux) and J. Ovadia (retired fellow from CEA-CESTA) as supervisors, I have spent
three months at the Fundamental Physics department under the supervision of V. Tikhonchuk
(University of Bordeaux, CELIA laboratory). During this time I mostly interacted with S. Weber.
The development of the cell-centered Lagrangian numerical scheme from [1, 2] has been pursued in
a laser-plasma interaction context. This scheme has been coupled during this time to physics models
in order to build a parallel transport simulation code for Inertial Confinement Fusion (ICF) [3, 4].

Los Alamos National Laboratory (LANL), New Mexico, U.S.A
Theoretical division - Mathematical, Modelisation and Analysis Group

February 2003 - December 2005

In February 2002 I have started a postdoctoral position at the Los Alamos National Laboratory
(LANL) in New Mexico, U.S.A, under the supervision of M. Shashkov (a.k.a Misha). Most of my
coauthors from this period are/were staff members at LANL or long/short term visitors (summer
students, PhD students, postdocs) or invited professors.
Prior to my arrival at LANL a former postdoc of Misha, J. Campbell had developed a com-
patible staggered Lagrangian scheme in 2D on unstructured meshes. I have used this code to
build an Arbitrary-Lagrangian-Eulerian simulation code for hydrodynamics equations called ALE
INC(ubator) [5, 6]. More precisely I have implemented the untangling and rezone capabilities and
developed with Misha a conservative remap module [7] and associated repair methods [8] with
M. Staley and B. Wendroff (a.k.a. Burt). With B. Despres, summer visitor at LANL we have also
written a 1D analysis of repair methods in [9].
In parallel E. J. Caramana associated me to his research on the compatible staggered Lagrangian
scheme implemented in ALE INC(ubator). We have investigated the treatment of exceptional points
(known also as T junction, dendritic zones) [10] and a vorticity damping artificial viscosity [11].
Later a joint effort with A. L. Bauer, D. E. Burton, M. J. Shashkov and P. P. Whalen gave birth to an
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2 Prologue and general introduction

article dealing mostly with the analysis of this Lagrangian scheme in term of consistency, stability
and accuracy in [12].
While developing multi-material capability into ALE INC(ubator) I have faced the situation of in-
adequate interface reconstruction method when three or more materials are present within the
same mixed cell. Consequently with some of my colleagues of the ex-T-7 group at LANL, namely
S.P. Schofield, R.V. Garimella and M.M. Francois, we have developed a material order independent
interface reconstruction method using power diagrams in [13] which has however been published
only in 2008.
Using the Czech connection of M. Shashkov I was lucky enough to meet M. Kuchařík, R. Liska and
P. Váchal during their summer visits and we have started a never-ending (up to now) collaboration
on ALE and Lagrangian numerical methods [14].
In December 2005, at the end of this postdoctoral position at LANL, I was involved in three main
subjects of research : unstructured ALE simulation code development [5,6] (meshing, rezoning,
remapping, repair), staggered Lagrangian scheme analysis and advanced interface reconstruction
methods.

CNRS and Institut de Mathématiques de Toulouse (IMT), France
Mathématiques pour l’Industrie et la Physique (MIP) group

January 2006 - now

In January 2006 I was appointed as researcher at the Centre National de Recherche Scientifique
(CNRS) at the Mathematics Institut in Toulouse (IMT).
For the first years I have mainly pursued research with colleagues from LANL. I also reconnected
with former colleagues and advisors from Bordeaux and CEA researchers or postdocs appointed
to CELIA laboratory, namely P.-H. Maire, J. Breil and S. Galera. The connection with the Czech
team has been also strengthened with two EGIDE grants called Partenariats-Hubert-Curien (P.H.C)
“Barrande” for 2007-2008 and 2010-2011. These grants consist of enhancing already existing col-
laborations by funding two short term visits of French researchers in Czech Republic and Czech
researchers in France.
Concerning the analysis of Lagrangian scheme, B. Wendroff, A.L. Bauer and I have written the arti-
cle [15] dealing with the proof of a conjectured stability result that was only numerically observed
in [12]. Further with M. Shashkov and B. Wendroff we have analysed the problem of volume consis-
tency of the staggered grid Lagrangian hydrodynamics scheme in [16]. The interface reconstruction
method via power diagrams has been extended by the same team from Los Alamos (as in [13]) to a
second-order accurate material-order-independent method in [17]. Recently in a collaboration with
J.M. Ghidaglia (CMLA, ENS-Cachan) and J.P. Braeunig (CEA-DIF), we have adapted some tech-
niques used for Lagrangian schemes and classical interface reconstruction to improve their Eulerian
scheme in [18]. Moreover dealing with filament and structures smaller than the cell size is difficult
with classical interface reconstruction techniques. As a consequence, following an idea from J. Ova-
dia (retired fellow from CEA-CESTA), C. Fochesato, R. Motte from the CEA-DIF and I have built an
interface reconstruction method devoted to filament in [19].
The exchanges between IMT, CELIA and CTU gave also rise to several publications. We have inves-
tigated the comparison between staggered and cell-centered Lagrangian and ALE hydrodynamical
methods in [20]. Following an idea of P.-H. Maire of recasting some technics used for cell-centered
Lagrangian schemes into staggered Lagrangian schemes, P.-H. Maire, P. Váchal and I have de-
veloped a set of articles dealing with this general formalism to derive artificial viscosity and its
second-order accurate version in 2D in [21, 22, 23]. Recently we also have extended this approach
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to 3D with the same co-authors in [24]. Still surfing on the Czech connection I paired up with
L.Bednarik, M. Kucharik and R. Liska to study to the concept of slide-line for the 2D compatible
staggered Lagrangian scheme in [25].
Back in 2008 the ALE formalism in ALE INC(ubator) and in the CELIA ALE code CHIC did not
allow any change of mesh connectivity while rezoning. Consequently with M. Shashkov and the
CELIA team (P.-H. Maire, J. Breil and S. Galera) we have extended the ALE formalism to allow topol-
ogy modifications of the mesh during the computation [26, 27]. This approach is called “ReALE”
standing for Reconnection-based ALE.
In Toulouse at IMT with P. Degond we shared a PhD student (L. Carballal-Perdiz) from Septem-
ber 2007 up to November 2010 the subject of the PhD was the development of a multi-scale finite
element method dedicated to the prediction of air contaminant transport on multiple scales [28].
The team involved in this research was also constituted of F. Deluzet, A. Lozinski and J.-M. Rovarch
through a collaboration with DGA (“Direction Générale de L’Armement”).
More recently a collaboration with S. Clain (a former colleague at IMT now appointed associate Pro-
fessor at the Universidade do Minho, Guimaraẽs in Portugal) and our shared PhD student S. Diot
brought by the opportunity to explore the world of very-high order Eulerian finite volume schemes
and develop the MOOD method (Multi-dimensional Optimal Order Detection) for unstructured
meshes in 2D in [29, 30, 31, 32] and in 3D in article [33]. This method is based on an unlimited high-
degree polynomial reconstruction leading to a high-order accurate scheme complemented with an
a posteriori polynomial order reduction on problematic detected cells. This method has shown very
promissing behaviors both on advection and Euler equations on unstructured, non-regular 2D and
3D meshes. The PhD has been defended in August 2012. Meanwhile we won a P.H.C grant (program
“Pessoa”) for 2012-2013 to exchange researchers and students between the Portuguese institution
and IMT which has already led to a common proceedings [31] and fruitful and promissing discus-
sions.
Since 2006 I also have a very fruitful collaboration with researchers from CEA-DIF that led to
many studies the topic of which covers staggered Lagrangian schemes and ALE methodology in
[34, 35, 36, 37, 38].
A brand new collaboration with G. Dimarco (IMT) at the end of year 2011 led to the development
of a fast discrete velocity method for kinetic equations in [39]. This method has been implemented
on a mono-processor machine and we have shown that this method is efficient even in full dimen-
sions : 3D in space and 3D in velocity, leading to the effective discretization of six dimensions. A
second-order accurate extension of this method is under review in [40].
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∼
This thesis mainly focuses on works related to the domain of Lagrangian numerical schemes

and Arbitrary-Lagrangian-Eulerian methods. Most of them are already published in international
journals. Para-phrasing these publications would be of little interest for the readers. Instead I have
tried to state the main contribution brought by some publications and to articulate them together
in order to clarify the unity behind the scene.
Nevertheless I have borrowed some sentences and rephrased paragraphs from some of my papers
which have been written with co-authors. Unavoidably some of the phrases the reader will find in
this habilitation have been produced by some of my co-authors to whom I am very grateful. Finaly
some descriptions in this thesis are freely inspired by seminal papers and books which are cited at
the begining of each associated paragraph.

Undoubtedly my work is led by the constant desire to improve the code ALE INC(ubator) de-
veloped at LANL and still maintained at IMT. Also, due to my natural tendency to interact with
people, I have had a lot of golden opportunities for collaboration. . . which I took without any
hesitation.

∼
At the time of the publication of this habilitation the number of articles published in international

peer review journals is 25, the number of proceedings in international conference with review is 4,
the number of unpublished work made for National laboratories (Los Alamos National Laboratory
or CEA-DAM) is 12. All are cited at the begining of the bibliography.
Moreover the following articles are discussed and reproduced in this thesis :

1. Lagrangian chapter
– [12] entitled The internal consistency, accuracy and stability of the discrete compatible Formulation

of Lagrangian Hydrodynamics (pages 33-39)
– [15] entitled On stabiliy analysis of staggered schemes (pages 41-45)
– [16] entitled Volume consistency in a staggered grid Lagrangian hydrodynamics scheme (pages

47-49)
– [11] entitled “Curl-q” : A vorticity damping artificial viscosity for essentially irrotational La-

grangian hydrodynamics calculations. (pages 52-54)
– [10] entitled The Force/Work Differencing of Exceptional Points in the Discrete, Compatible Formu-

lation of Lagrangian Hydrodynamics (pages 57-62)
– [25] entitled Enhancement of Lagrangian slide lines as a combined force and velocity boundary

condition. (pages 65-70)
– [23] entitled Staggered Lagrangian discretization based on cell-centered Riemann solver and associ-

ated hydro-dynamics scheme (pages 77-87)
– [24] 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver based arti-

ficial viscosity (pages 87-93)

2. ALE chapter
– [7] entitled A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-

Eulerian methods (pages 106-115)
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– [8] entitled The Repair Paradigm : New Algorithms and Applications to Compressible Flow (pages
118-123) and paper [9] entitled Convergence and Sensitivity Analysis of Repair Algorithms in 1D
(pages 124-129)

– [26] entitled ReALE : a reconnection-based arbitrary-Lagrangian-Eulerian method (pages 146-159)
and paper [27] entitled ReALE : a Reconnection Arbitrary-Lagrangian-Eulerian method in cylin-
drical geometry (pages 161-164)

– [13, 17] entitled Material order independent interface reconstruction using power diagrams and
A second-order accurate material-order-independent interface reconstruction technique for multi-
material flow simulations (pages 174-179 and pages 179-184 respectively)

3. Miscellaneous chapter
– [29, 32, 33] entitled A high-order finite volume method for hyperbolic systems : Multi-dimensional

Optimal Order Detection (MOOD) (pages 191-197) Improved Detection Criteria for the Multi-
dimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order poly-
nomials (pages 197-203) The MOOD method in the three-dimensional case : Very-High-Order Finite
Volume Method for Hyperbolic Systems (pages 203-212)

– [39] entitled Towards an ultra efficient kinetic scheme. Part I : basics on the BGK equation (pages
219-227)

– [18] A totally Eulerian Finite Volume solver for multi-material fluid flows : Enhanced Natural Inter-
face Positioning (ENIP) (pages 232-235) and [41] entitled Dealing with more than two materials
in FVCF-ENIP method (pages 235-241)

Finally some presentations of the conferences and minisymposia organized by the “MULTIMAT
community” can be downloaded under the conferences’ links at
http://www.math.univ-toulouse.fr/HYDRO. This web site maintained by myself in Toulouse
is intended to create links for this specific community. This community revolves around developers
of ALE type of numerical methods and meets every other year during an international week of con-
ference appropriately called “MULTIMAT conference”. Successful conferences held in Paris in 2002,
in Oxford in 2005, in Prague in 2007, in Pavia in 2009 and Arcachon 2011 aim at bringing together
researchers from universities and research labs to discuss the state of the art for multi-material
hydrodynamics simulations. As far as I can tell the custom of these meetings started thanks to a
minisymposium organized by Mikhail Shashkov during a SIAM Annual Meeting in San Diego in
2001. Nowadays the community is also trying to meet during ’less crowded’ workshops organized
by some of the main characters, the last one was held during ECCOMAS conference in Vienna in
September 2012.

These meetings are of great importance to maintain some alive, dynamical and friendly competitive
atmosphere between the members of the community.



1Compatible staggered Lagrangian

schemes

Contents

1.1 History and presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Presentation of the compatbile staggered Lagrangian scheme . . . . . . . . 10

1.2.1 Governing equations and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Compatible discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Subcell forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.4 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.6 Cylindrical r− z geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3.1 Internal consistency, accuracy and stability . . . . . . . . . . . . . . . . . . . . . . 31

1.3.2 Stability (again) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.3.3 Volume consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.4 Special additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.4.1 Vorticity damping artificial viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.4.2 Dealing with exceptional points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.4.3 Slide-lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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While new cell-centered Lagrangian schemes devoted to ALE simulations have been developed in
the first 10 years of this centrury, see [42] for an exhaustive historical background presentation

and most of all for the detailed description of the schemes developed in [43, 44, 45, 46, 47, 48, 49,
50, 51, 42], the literature on staggered Lagrangian numerical methods dates back to the origin of
computers. Nonetheless it is still very much alive these days in a finite difference context [52, 53, 54,
12, 11, 10, 55, 56, 57, 46] or in a finite element context [58, 59, 60, 61, 62].
This chapter more specifically deals with the so-called compatible staggered Lagrangian numer-

ical scheme dedicated to solve hydrodynamics equations on general polygonal/polyhedral grid.
This method has been popularized by E. J. Caramana et al. in a series of articles in the late 90’s
[55, 63, 64, 12].
We first present the historical background of this venerable numerical method and then describe the
version one considers for solving the compressible hydrodynamics equations. Apart from different
notation and alternative ways of presenting the scheme, the results presented in these first two sec-
tions have not been obtained by myself. Contrarily in sections 1.3 and 1.4 are presented some of

7
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the contributions obtained by my colleagues and myself concerning the developement, understand-
ing and analysis of this numerical method. However an exhaustive presentation of the scheme is
mandatory to genuinely enlight the difficulties and features of this numerical scheme.

1.1 History and presentation

The origins of this compatible staggered Lagrangian numerical scheme are probably to be found
in classified document from the Los Alamos National Laboratory, NM, U.S.A, during World War II
and the Manhattan project where the “calculation of certain time-dependent fluid flows played an
important part in the wartime work of the laboratory” (preface to the first edition of [65]).
Indeed the Lagrangian formulation of the equations of hydrodynamics has a very old and vener-

able history. The very first numerical calculations that resemble modern computer simulations in
the numerical issues considered utilized fluid equations in the Lagrangian frame of reference in 1D
[66].
Newton’s second law of motion, which is central to any Lagrangian frame of reference relates the
force Fp acting on a point of mass Mp and its acceleration Ap computed as the second derivative in
time of its position Xp : Fp = mpAp. The discretization by respect to time quite naturaly involves
three time levels denoted n− 1, n and n + 1 and a three-level leap-frog scheme with the force cen-
tered at time level n. All early Lagrangian schemes in 1D [66] or 2D [65] utilized such a staggered
discretization in time. Although this forms a simple and intuitive numerical integration scheme,
it leaves the velocity of a mass point defined as the difference between its displacement vector at
two different time levels, and therefore the velocity is trully defined only at the n + 1/2 time levels.
When one then considers the total energy of a fluid as a sum of kinetic energy and internal energy
that can be exchanged between each other by the action of forces, this sum is difficult to conserve
exactly in discrete form owing to the fact that the two components that comprise it are defined at
different time levels. Quoting Caramana in [12] When velocity dependent forces are explicitly added to
this model, as with the artificial viscosity [67], this type of time integration becomes somewhat clumsy and
looks even contrived [68], since the artificial viscosity terms must be lagged in time to preserve numerical
stability. The spatial discretization of the force in all early versions of Lagrangian hydrodynamics
[65, 69] is some form of what is presently known as finite-volume differencing. That is, these various
forms calculate the force as a stress (scalar pressure plus deviators) times a normal surface-area
vector. The most modern of these older force calculations is the diamond differencing scheme due
to Wilkins [69], which uses closed surface area contours to calculate the force acting on a point, and
thus properly conserves linear momentum. Other authors arrange the force contributions together
in various ways to form the total force acting on each fluid element such that strict conservation of
linear momentum may, or may not, be obtained. Most Lagrangian hydrodynamics codes employ
a spatially staggered placement of dependent variables with stress, density, and specific internal
energy given in cells surrounded by points that have associated position and velocity vectors. This
enables the calculation of forces by means of various kinds of finite-volume differencing, with
masses and volumes ascribed to both cells and points in an interleaved manner. A difficulty with
the older work is that there was no agreement amongst the various authors of these different
algorithms as to how these schemes, aside from the noted common features, should be constructed.
The choices made were largely arbitrary and not derived from solid mathematical concepts.
An early attempt to remedy this lack of a sound theoretical basis is the work of Goad [70], who
used the method of virtual work to derive a form of finite-volume force differencing of the stress
in 2D cylindrical geometry. This work was little noted, partly because this type of scheme does not
yield the limit of 1D spherical geometry from 2D cylindrical geometry.
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Up to our knowledge the work that first places this type of finite-volume algorithm on a firm
theoretical basis is due to Favorskii [71], and independently, Margolin and Adams [72]. The first
paper shows that the discrete equations in Lagrangian form can be generally derived from a varia-
tional principle. It also justifies the use of the surface area vectors of closed volumes as appropriate
discretization objects, a practice which was previously employed, but not always correctly, because
the surface areas about a point did not in all cases sum to zero. The second paper parallels this
work. Its central thrust is to use the continuity equation in discrete form to derive finite-volume
differencing given a discrete expression for the volume of a cell. This results in, and also justifies
the use of surface areas to calculate the force. It emphasizes that the difference formulas that are
derived are “operator” expressions that can be used to calculate discrete derivatives of any function,
and not just of the velocity field. It is the discrete form of the continuity equation as emphasized
in [72] that is central to the internal consistency of the scheme. A further extension of the work
of Favorskii is nowadays known as the “method of support operators” [73]. Although this work
is more general than just its application to the equations of Lagrangian hydrodynamics, it is this
system of equations that is used in its original exposition. This method also utilizes the continuity
equation in discrete form to derive the divergence operator and then uses the vector identities in
summation form to derive discrete versions of all other operators. It emphasizes the relation in
discrete form of the divergence and gradient operators as negative adjoints of each other as in the
continuum case.
These publications all revolve around the central idea that the discrete equations must obey the
global properties of the continuum ones in order to be considered as valid discretizations that will
then mirror continuum conservation properties in their discrete analogs. As such they remove the
arbitrary and heuristic formulations of the previous codes based on the older work [69]. Somewhat
after the previously cited developments is the seminal work of Burton [74, 75], which discretizes
the fluid equations in Lagrangian form on a staggered spatial grid utilizing subgrid quantities
termed subcell masses and subcell forces, from which the cell and point masses, and the total
force acting on a point, are constructed. A two-level time integration scheme is also utilized so that
both kinetic energy and internal energy are defined at the same time level. The basic reasoning
used by Burton to demonstrate conservation of total energy is the same as that employed in the
method of support operators [73], and thus incorporates the important features of the previous
works [73, 72, 74]. However, Burton’s formulation is more general in that he does not consider
forces, or differential operators, of any specific origin. Instead, he utilizes an arbitrary subcell force
that allows the specification of forces of any forces from functional form. The associated work is
completely defined, and, total energy is also exactly conserved. The only restriction on the discrete
form of the subcell force is constraint of momentum conservation. He also notes [75] that this
formulation of the Lagrangian hydrodynamics equations contains two distinct definitions of cell
volume, and considers this difference to be a form of entropy error. It is this latter work of Burton
that we refer as the “discrete, compatible formulation of Lagrangian hydrodynamics”, and which
was initially constructed on arbitrary polyhedral grids [75]. The word “discrete” has been inserted
in [12] to emphasize that these equations are essentially created in discrete form, as opposed to
being the discretization of a system of PDE’s. As such, one may or may not be able to rigorously
take the continuum limit to obtain the latter ; this depends on the kinds of forces that are employed,
as instance artificial viscosity and anti-hourglass forces.
Finally, the discrete, compatible formulation of Lagrangian hydrodynamics was developed to be an
algebraic identity : this identity consists of two arbitrary scalars, the cell and point masses, and one
arbitrary vector, the subcell force, such that given the usual definition of total energy conservation is
always fulfilled. As such, it describes a priori truth that cannot be confuted, since in primitive form
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it makes no assertion about any physical system. The quality with which the discrete, compatible
formulation of Lagrangian hydrodynamics may describe certain physical situations is mostly, if not
entirely, dependent on the quality of the specification of the three abstract quantities that compose it.

In next section we state the governing equation, notation and derive the compatible staggered
Lagrangian scheme and some of its associated properties.

1.2 Presentation of the compatbile staggered Lagrangian scheme

1.2.1 Governing equations and notation

In this chapter we mainly focus on two dimension space IR2 paved with polygonal cells. The model
equations under consideration are the hydrodynamics equations for which we neglect viscous stress
and heat conduction. In other words we mainly focus on the gas dynamics equations expressed as
conservation laws of mass, momentum and total energy.
In Lagrangian framework, the two-dimensional gas dynamics equations write

ρ
d
dt

(
1
ρ

)
−∇ ·U = 0, (1.1)

ρ
d
dt
U +∇P = 0, (1.2)

ρ
d
dt

E +∇ · (PU ) = 0, (1.3)

where ρ is the density, U the velocity, E the specific total energy and
d
dt

denotes the material deriva-
tive. The first equation expresses the volume conservation equation, whereas the second and third
ones are the momentum and total energy conservation equations. Volume conservation equation is
often referred to as the Geometric Conservation Law (GCL). The previous system is equipped with
a thermodynamics closure (equation of state EOS) P = P(ρ, ε), where the specific internal energy is
given by ε = E− U2

2 . Note that for smooth solutions energy equation can be rewritten as

ρ
d
dt

ε + P∇ ·U = 0, (1.4)

and, substituting volume equation yields

ρ
d
dt

ε + Pρ
d
dt

(
1
ρ

)
= 0. (1.5)

Recalling Gibbs relation for temperature T and specific entropy S : TdS = dε + Pd
(

1
ρ

)
, and the

second law of thermodynamics, namely T
dS
dt
≥ 0, implies that for non-smooth flows the following

relation holds :

ρ
d
dt

ε + P∇ ·U ≥ 0. (1.6)

As a consequence, internal energy equation can be viewed as an entropy evolution equation since

ρ
d
dt

ε + Pρ
d
dt

(
1
ρ

)
≥ 0. (1.7)
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Figure 1.1 – Fragment of a polygonal grid. Position and velocity are defined at grid points while thermodynamic
variables are located at cell centers. A polygonal cell, Ωc, is subdivided into subcells Ωcp. Points are denoted by subscript
p and counterclockwise ordered p−, p, p+.

The previous system (1.1-1.3) can therefore be rewritten as a non-conservative system by replacing
the energy equation by (1.6). The last equations are the trajectory equations

dX
dt

= U (X(t), t), X(0) = x, (1.8)

expressing the Lagrangian motion of any point initially located at position x.
We use a staggered placement of variables in which position and velocity are defined at grid points

while thermodynamic variables are located at cell centers, refer to Fig. 1.1. An unstructured grid
consisting of a collection of non-overlapping polygons is considered. Each polygonal cell is assigned
a unique index c and is denoted Ωc. Each vertex/point of the mesh is assigned a unique index p and
we denote C(p) the set of cells sharing a particular vertex p. Each polygonal cell is subdivided into
a set of subcells ; each being uniquely defined by a pair of indices c and p and denoted Ωcp. This
subcell is constructed by connecting the cell center of Ωc to the mid-points of cell edges impinging at
point p. The union of subcells Ωcp that share a particular vertex p allows to define the dual vertex-
centered cell Ωp related to point p with Ωp =

⋃
c∈C(p) Ωcp. Using the previous notation, we can

define the primary grid
⋃

c Ωc and the dual grid
⋃

p Ωp. The volumes of the primary and dual cells
are functions of time t. For a vertex p of cell Ωc we denote its previous and next vertices by p− and
p+. Here, following [55], we make the fundamental but questionable assumption that the subcells
are Lagrangian volumes. This means that the subcell mass mcp is constant in time. Therefore, being
given the initial density field ρ0(x) one deduces the initial mean density in cell c

ρ0
c =

∫

Ωc(0)

ρ0(x)dx/V0
c , (1.9)

where V0
c is the volume of cell Ωc at time t = 0. Subcell mass is defined as mcp = ρ0

c V0
cp, where

V0
cp is the initial volume of subcell Ωcp. By summation of Lagrangian subcell masses one defines
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Lagrangian cell/point masses as

mc = ∑
p∈P(c)

mcp, mp = ∑
c∈C(p)

mcp, (1.10)

where P(c) is the set of counterclockwise ordered vertices of cell c.

1.2.2 Compatible discretization

We construct staggered Lagrangian schemes using the well known methodology of compatible
discretization which has been presented in [74, 55, 12]. The cornerstone of this type of discretiza-
tion is the subcell force that acts from subcell cp onto point p, see Fig. 1.1. In this approach, the
discretization of the internal energy equation in terms of subcell forces is deduced from total en-
ergy conservation. Here, we reproduce the derivation of Maire [42] starting from a generic abstract
form of the subcell force so that an entropy inequality is satisfied, which ensures that kinetic en-
ergy is dissipated into internal energy through shock waves. The subcell force writes as a pressure
contribution plus a viscous contribution also known as artificial viscosity or pseudo-viscosity.

Geometric Conservation Law (GCL). Here, we use a discretization of the volume equation (1.1)
that is compatible with the GCL. By GCL compatibility we mean that we are deriving a discrete
divergence operator for the volume equation by requiring consistency of the divergence of the
velocity field with the time rate of change of volume of the cell, refer to [76]. By noticing that
mc = ρcVc, where ρc = ρc(t) and Vc = Vc(t) are the cell density and volume, we can write

mc
d
dt

(
1
ρc

)
=

d
dt

Vc,

using the fact that the cell mass is constant in time. Moreover, remarking that the cell volume can
be expressed as a function of the position vectors of its vertices as follows

Vc(t) = ∑
p∈P(c)

1
2
(
Xp ×Xp+

)
· ez,

where ez is the unit vector of the canonical basis in z direction. We deduce that the time rate of
change of the cell volume writes

d
dt

Vc = ∑
p∈P(c)

∇Xp Vc ·
d
dt
Xp.

Here, we have simply applied the chain rule differentiation. Setting d
dtXp = Up where Up is the

vertex velocity, we rewrite this last equation as

d
dt

Vc − ∑
p∈P(c)

LcpNcp ·Up = 0, (1.11)

where LcpNcp, with N 2
cp = 1, stands for the corner vector defined by

LcpNcp = ∇Xp Vc. (1.12)
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This corner vector is a fundamental geometric object which is nothing but the gradient of the cell
volume at point p. Its explicit expression in terms of points coordinates writes

LcpNcp =
1
2

(
Yp+ −Yp−

−(Xp+ − Xp−)

)
,

where (Xp, Yp) denote the coordinate of the position vector Xp. This kind of formalism is well
known and has been used in staggered and cell-centered (free Lagrange) discretizations long time
ago [76, 77]. We note that (1.11) is compatible with the discrete version of the trajectory equation
(1.8)

d
dt
Xp = Up, Xp(0) = xp.

This leads to a compatible definition of the discrete divergence operator over cell c as

(∇ ·U )c =
1
Vc

∑
p∈P(c)

LcpNcp ·Up. (1.13)

We also emphasize that the corner vector LcpNcp satisfies the fundamental geometric identity

∑
p∈P(c)

LcpNcp = 0, (1.14)

which is equivalent to the result that the summation of the outward normals to a closed polygonal
contour is equal to zero.
Finally, we have obtained a compatible discretization of the volume equation (1.1) which writes

mc
d
dt

(
1
ρc

)
− ∑

p∈P(c)
LcpNcp ·Up = 0. (1.15)

Momentum equation. The semi-discrete momentum equation over the dual cell Ωp writes

mp
d
dt
Up + ∑

c∈C(p)
Fcp = 0. (1.16)

Here, Fcp is the subcell force from cell c that acts on point p, which is defined by

Fcp =
∫

∂Ωp(t)∩Ωc(t)

PNdl, (1.17)

where dl is an infinitesimal length. Momentum equation (1.16) is nothing but the Newton law
applied to particle of mass mp moving with velocity Up.

Specific internal energy equation. Here we derive a semi-discrete internal energy equation that
ensures total energy conservation using the concept of subcell force, following the approach initially
described in [55]. Let us introduce total kinetic energy and total internal energy

K(t) = ∑
p

1
2

mpU
2
p (t), (1.18)

E(t) = ∑
c

mcεc(t), (1.19)
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where εc is the cell averaged specific internal energy. Total energy is then defined as

E(t) = K(t) + E(t). (1.20)

The conservation of total energy without taking into account boundary conditions simply writes

d
dt

E =
d
dt
K+

d
dt
E = 0. (1.21)

The substitution of kinetic and internal energies recalling that cell/point masses are Lagrangian
objects, i.e. they not depend on time, yields

d
dt
K+

d
dt
E = ∑

c
mc

d
dt

εc + ∑
p

mp
d
dt
Up ·Up,

then using (1.21) one deduces

∑
c

mc
d
dt

εc + ∑
p

mp
d
dt
Up ·Up = 0.

Using the semi-discrete momentum equation (1.16) yields

∑
c

mc
d
dt

εc −∑
p

∑
c∈C(p)

Fcp ·Up = 0,

and interchanging the order in the double sum one finally gets

∑
c


mc

d
dt

εc − ∑
p∈P(c)

Fcp ·Up


 = 0. (1.22)

A sufficient condition for total energy conservation is obtained by requiring the previous equation
to hold in each cell c

mc
d
dt

εc − ∑
p∈P(c)

Fcp ·Up = 0. (1.23)

Notice that this choice is not unique and other discretizations would provide the total energy con-
servation given a definition of total enery such as (1.20). Any of such discretization is refered to
as a “compatible discretization” under Caramana’s appelation. The word “discrete” also used in
Caramana’s phrasing refers to the fact that the discrete equations are rather deduced than derived
from the constinuous equations.
Once the subcell force is known, then momentum and internal energy can be updated using equa-
tions (1.16) and (1.23).

Summary of the compatible discretization. We summarize the semi-discrete equations that gov-
ern the time rate of change of the primary variables ( 1

ρ c
,Up, εc)

mc
d
dt
(

1
ρ c
)− ∑

p∈P(c)
LcpNcp ·Up = 0, (1.24)

mp
d
dt
Up + ∑

c∈C(p)
Fcp = 0, (1.25)

mc
d
dt

εc − ∑
p∈P(c)

Fcp ·Up = 0. (1.26)
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We point out that the mesh motion is given by the trajectory equations

d
dt
Xp = Up(Xp(t), t), Xp(0) = xp, (1.27)

which is compatible with the GCL. The thermodynamic closure is given by the equation of state
which writes Pc = P(ρc, εc). We emphasize that this subcell-based compatible discretization ensures
total energy conservation regardless of the subcell force form.
Although our description of the staggered compatible Lagrangian scheme is different from the
descriptions of Burton [74, 78] or Caramana [55, 12] it shares with them the same fundamental
objects : Cell/point masses and subcell force such that the compatible discretization intrinsically
leads to the conservation of total energy by construction. What must be the components of a sucell
force is almost left to the developer (or user). Under this subcell force concept many different
physical or numerical effects are in fact gathered. First the pressure force takes into account the
∇P term in (1.2). Then the artificial viscosity force is designed to handle shock wave and steep
fronts and as such stabilizes the scheme. It also assures (1.6) to hold. The anti-hourglass force is a
pure numerical concept which is meant to fight back parasitical grid motion known as “hourglass
modes” [56]. Elasto-plasticity terms can be expressed into this force formalism [79], slide-line [80,
25] or internal boundary conditions also. In fact many physical models can be recast into this
fruitful compatible discretization 1, and, no matter what is put under this definition, conservation is
preserved.

1.2.3 Subcell forces

Let us provide in this section a definition of the subcell force invoking Galilean invariance and
thermodynamic consistency. Subcell pressure force is then deduced and several artificial viscous
forces and anti-hourglass subpressure force are further described.

Galilean invariance is a principle of relativity which states that the fundamental laws of physics are
the same in all inertial frames. It is one of the key requirements of many physical models adopted
in theoretical and computational mechanics. To fulfill Galilean invariance, the previously derived
specific internal energy equation (1.23) must remain unchanged under a uniform translation of
frame. Let A denote the uniform translation velocity. Then equation (1.23) transforms into

mc
d
dt

εc − ∑
p∈P(c)

Fcp · (Up +A) = 0.

By substituting (1.23) into this last equation leads to

∑
p∈P(c)

Fcp ·A = 0,

which must hold for all vectors A. Therefore, specific internal energy equation remains invariant
under uniform translation if and only if

∑
p∈P(c)

Fcp = 0. (1.28)

1. This is probably one reason why this discretization has been successful amongst physicists from national labora-
tories along with the fact that using artificial viscosity methods are inherently simpler than operator splitting methods
(such as Godunov methods) in that the level of numerical complexity does not increase as the number of dimensions
and/or the amount of physics included increases.
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We note that this result has been already quoted in [12] page 576 and probably elsewhere before.
This condition also implies total momentum conservation without taking into account boundary
conditions. To demonstrate this, it suffices to time-differentiate the global momentum defined as

Q = ∑
p

mpUp, (1.29)

to obtain

d
dt
Q = ∑

p
mp

d
dt
Up

= −∑
p

∑
c∈C(p)

Fcp, thanks to momentum equation,

= −∑
c

∑
p∈P(c)

Fcp, by interchanging the double sums. (1.30)

Thus, d
dtQ = 0 due to condition (1.28), which completes the proof.

A corollary of the Galilean invariance condition is that specific internal energy equation (1.23) can
also be rewritten into

mc
d
dt

εc − ∑
p∈P(c)

Fcp · (Up −Uc) = 0, (1.31)

where Uc is any arbitrary piecewise constant cell based velocity. This equation will be used in the
next section.

Subcell pressure force

Let us investigate the thermodynamic consistency of the semi-discrete scheme by computing the
time rate of change of entropy in a cell c. Using Gibbs formula, one gets

mcTc
d
dt

Sc = mc

[
d
dt

εc + Pc
d
dt

(
1
ρc

)]
, (1.32)

where Sc and Tc are the specific entropy and temperature of cell c. Substituting into (1.32) the specific
internal energy equation (1.23) and the volume equation (1.15) yields

mcTc
d
dt

Sc = ∑
p∈P(c)

Fcp ·Up + Pc


 ∑

p∈P(c)
LcpNcp ·Up


 (1.33)

= ∑
p∈P(c)

(Fcp + LcpPcNcp) ·Up. (1.34)

For smooth flow the right hand side of the last equation must be zero leading to the form of the
subcell pressure force as

F
press
cp = −Lcp Pc Ncp, (1.35)

which corresponds to the discretization of (1.17). One trivially verifies that

∑
p∈P(c)

F
press
cp = −Pc ∑

p∈P(c)
LcpNcp = 0, (1.36)

thanks to identity (1.14), which, as a side effect implies that momentum conservation is ensured.
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Artificial viscous force

While cell-centered Lagrangian schemes rely on some sort of Riemann solvers to add numerical
viscosity [43, 50, 51], staggered Lagrangian schemes historicaly rely on artificial viscosity [67]. The
artificial viscosity, otherwize called pseudo-viscosity, is historically refered to as the ’q’ term. The
illuminating idea of von Neumann and Richtmyer was to introduce a purely artificial dissipative
mechanism of such a form and strength that the shock transition would be a smooth one extending
over a small number of cell length, and then to include this dissipation into the finite difference
equations, [67] page 312 chap. 12 SEC. 12.10. Only a linear term introduced by Landshoff in [81]
was present in the form of the original artificial viscosity. As a consequence the thickness of the
’transition layer’ (i.e. the shock spreading) was varying with the shock strength approaching zero
for a very strong shock and tending to infinity for a very weak one. However their wish was to have
a constant thickness of the shock spreading, so von Neumann and Richtmyer added a quadratic
term which they interpret to be as “using a small viscosity coefficient for weak shocks” ([67] page
312). In an unpublished work from Los Alamos from the 50’s Rosenbluth suggested that the artificial
viscosity should be zero when the fluid is undergoing an expansion, this ’trick’ is nowadays known
as the ’artificial viscosity switch’.
Since the seminal work of von Neumann and Richtmyer there is still no universally satisfactory form
of the artificial viscosity suitable for all problems although many authors contributed to the subject.
As instance Schultz [82, 83] introduced the nowadays known “edge-based” artificial viscosity further
popularized by Caramana in [57], Richards [84], Wilkins analysed the viscosity coefficients [85] in
the U.S.A, this work was also previously achieved by Kurapatenko in Soviet Union [86], Christensen
interpreted the artificial viscosity as a Riemann solver [87] related to the works of Dukowicz [88, 89],
Noh studied the errors that arise when using artificial viscosity in [90], Benson revised most of these
works in the review paper [52] and also contributed to flux-limited shock viscosity in [91], Shashkov
proposed a tensor extension of the artificial viscosity using mimetic finite difference method in
[53, 92] even if several attempts of ’tensorization’ have been tried before [93, 83] and, more recently,
by Rieben and Kolev [62] and Owen [94] contributed to the subject in slighly different contexts 2

The fact that different forms for this force are often utilized depending on the type of problem being
studied is the major remaining deficiency of this class of hydrodynamics methods. In the following
we briefly present three models to compute artificial viscous subcell forces.

Bulk viscosity based on original works [67, 81] considers a cell centered “pseudo-pressure”

qc = c1ρca∗c |∆U |+ c2ρc(∆U )2, (1.37)

where c1 ≤ c2 are two constants of the order of unity and ∆U is a measure of the velocity
difference over the cell and a∗c and ρc are respectively the sound-speed and density in cell c.
However the Kurapatenko combinaison [86] of linear and non-linear terms for material with
ratio of specific heats γ is often used instead of (1.37)

qKur
c = ρc


c2

γ− 1
4
|∆U |+

√
c2

2

(
γ− 1

4

)2

(∆U )2 + c2
1(a∗c )2


 |∆U |. (1.38)

This expression has been derived for an ideal equation of state to determine the form of the
term that, quoting Caramana in [57] “must be added to the pressure in front of a steady-state

2. This list of published works is not entended to be exhautive, rather the works have been chosen to spread along the
years from the 50’s up to now and the authors have been cited as to give to the reader key names in the field. Following
the cited works from these researchers surely provides an almost exhaustive view of the artificial viscosity quest, the rest
being unpublished and classified works kept in library of national laboratories.
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Figure 1.2 – Notation involved for the artificial viscosity models — Left : the edge viscous force is first computed related
to the triangular zone associated to an edge e (green triangle). Then this edge-based viscous force is associated to subcell
cp with a + sign and cp′ with a minus sign — Right : three tensor viscous force

shock in order to achieve the pressure behind the shock, using the jump conditions. In this
instance ρc and a∗c are the density and sound speed ahead of the shock, and ∆U is the velocity
jump across it”. The use of (1.37) or (1.38) consists of adding the ’q’ force to the pressure force
(1.35) to get the following viscous subcell force

F
q
cp =

{ −Lcp qKur
c Ncp if (∇ ·U )c ≤ 0

0 else
(1.39)

Note that either q or qKur are positive constants over the cell. This form of artificial viscosity
is dissipative because recalling (1.34) with the artificial viscous force (1.39) we have that for
a non-smooth flow the right hand side of this equation must be positive (that is to say the
scheme must be dissipative), and we convince ourselves that

mcTc
d
dt

Sc = ∑
p∈P(c)

F
q
cp ·Up

= ∑
p∈P(c)

−Lcp qKur
c Ncp ·Up

= −qKur
c ∑

p∈P(c)
LcpNcp ·Up

= −qKur
c Vc(∇ ·U )c ≥ 0,

due to the fact that (∇ ·U )c ≤ 0.
This formulation has been widely used but its main drawbacks lay in its inability to vanish
for rigid rotation or uniform compression or (sometimes depending on the implementation)
along a front of constant phase, see discussion in [57] page 85 for more details.

Edge viscosity based on [82, 83] and popularized in [57] is based on the computation of a ’q’ term
for each edge of a cell. A clear description of the edge viscosity forces is provided in Appendix
A of [57]. Here we only para-phrase this Appendix. Let us consider one edge e defined by two
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succesive points p, p + 1 of cell c, see Fig.1.2, such that the velocity difference over this edge
is ∆Ue = Up+1 −Up and the associated unit vector is ∆̂U e. Let us first define the edge-based
viscous force as

Fe =

{
(1− ψe)qKur

e (∆Ue ·N⊥p+1/2)∆̂U e if ∆Ue ·N⊥p+1/2 ≤ 0,
0 if ∆Ue ·N⊥p+1/2 > 0

(1.40)

where

qKur
e = ρe


c2

γ− 1
4
|∆Ue|+

√
c2

2

(
γ− 1

4

)2

(∆Ue)2 + c2
1(a∗e )2


 , (1.41)

and Np+1/2 =
Xp+1−Xp

|Xp+1−Xp| is the unit normal along the edge direction and N⊥p+1/2 is the perpen-
dicular unit vector to Np+1/2. ρe and a∗e are edge-based density and sound-speed respecively
which can be computed as

ρe =
2ρpρp+1

ρp + ρp+1
, a∗e = min(a∗p, a∗p+1). (1.42)

Moreover 0 ≤ ψe ≤ 1 is the edge limiter dedicated to make the artificial viscosity to vanish
for uniform compression, rigid rotation, and along a front of constant phase. We refer the
reader to [57] for the exact definition and calculation of ψe. Finally the sign of (∆Ue ·N⊥p+1/2)

represents the “switch” to turn off the artificial viscosity for expansion seen from the edge e.
For a zone under compression, (∇ ·U )c ≤ 0, for the triangular subzonal edge of cell c to be
under compression we postulate the condition ∆Ue ·N⊥p+1/2 ≤ 0. To build a subcell viscous
force it remains to distribute Fe between the two subcells cp and cp + 1, this is brought about
by setting F q

cp+1 = −Fe and F q
cp = +Fe noticing that a contribution with a minus sign from

left neighbor edge is also associated to subcell force F q
cp, see Fig.1.2-left.

Dissipativity in this semi-discrete form is ensured because

mcTc
d
dt

Sc = ∑
p∈P(c)

F
q
cp ·Up

= ∑
p∈P(c)

(F
right
e −F left

e ) ·Up ←− two edges imping. on p

= ∑
e∈E(c)

Fe · (Up −Up+1) ←− switch to sum over edges

= ∑
e∈E(c)

(1− ψe)qKur
e (∆Ue ·N⊥p+1/2)∆̂U e · (−∆Ue)

= − ∑
e∈E(c)

(1− ψe)qKur
e

|∆Ue|︸ ︷︷ ︸
≥0

(∆Ue ·N⊥p+1/2)︸ ︷︷ ︸
≤0

←− because ∆̂U e =
∆Ue

|∆Ue|

≥ 0.

The main drawback of the artificial viscosity model is the occurence of “spurious jets” along
axes as instance in the Noh problem on Cartesian grid, see Fig.1.8 left panel in section 1.4.1.
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Tensor viscosity based on [53] where the entire theory is described. Instead of reproducing the
derivation of such tensorial subcell based artificial viscosity force we give its final form

F
q
cp = Vc

[
1

Lp+1/2

{
Rp+1 +Rp

}
− 1

Lp−1/2

{
Qp +Qp−1

}]
, (1.43)

where

Rp+1 =
Wc,p+1

sin2 θc,p+1

(
µc,p+1Gp+1/2 + cos θc,p+1 µc,p+1Gp+3/2

)
,

Rp =
Wc,p

sin2 θc,p

(
µc,pGp+1/2 + cos θc,p µc,pGp−1/2

)
,

Qp =
Wc,p

sin2 θc,p

(
µc,pGp−1/2 + cos θc,p µc,pGp+1/2

)
,

Qp−1 =
Wc,p−1

sin2 θc,p−1

(
µc,p−1Gp−1/2 + cos θc,p−1 µc,p−1Gp−3/2

)
.

Here the notation is relative to point p which is a vertex of cell c, see Fig. 1.2-right, the previous
points are indexed p− 2, p− 1, the next ones p + 1, p + 2. The edge connecting p and p + 1 is
indexed p + 1/2 and the unit vector along this edge is refered to as Tp+1/2 and its length is
Lp+1/2. θc,p is the angle between the two edges of cell c meeting at point p. Moreover for all
edge we define

Gp+1/2 =
Up+1 −Up

Lp+1/2
, (1.44)

and W’s are some weights satisfying Wc,p ≥ 0 and ∑
p∈P(c)

Wc,p = 1. Usually, for a quadrilateral

cell, Wc,p is defined as one half the area of the triangle in cell c which contains the angle at
point p divided by the cell volume. For non-quadrilateral cells normalization is needed. It
remains to define the µs which are some viscosity coefficients, a kind of Kurapatenko q term,

µcp = (1− ψcp)ρcp


c2

γ + 1
4
|∆Ucp|+

√
c2

2

(
γ + 1

4

)2

(∆Ucp)2 + c2
1(a∗c )2


 lcp. (1.45)

This expression requires the definition of a velocity jump ∆Ucp and a characteristic length lcp in
subcell cp. The definition of these values is a major source of difficulties for multi-dimensional
artificial viscosity. Naive definitions result in instabilities for large aspect ratio cells. In [53] the
authors have found a length definition that does not cause any problem for large aspect ratios,
nor when a small change in velocity or geometry can result in large change in the length of
velocity terms,

lcp =





2
√

Vcp

√
|∆1|
|∆2| if ∆̂1 · Ûav > ∆̂2 · Ûav

2
√

Vcp

√
|∆2|
|∆1| if ∆̂1 · Ûav ≤ ∆̂2 · Ûav

(1.46)

where ∆1, ∆2 are the lengths across the subcell and the hat symbol refers to the associated unit
vectors, see Fig. 1.2-right. Moreover we define Uav = 1

4 (Up−1/2 +Up +Up+1/2 +Uc) where
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Up+1/2 = 1
2 (Up +Up+1) and the cell-centered velocity is given by Uc =

1
|P(c)| ∑

p∈P(c)
Up. Finally

the velocity jump is taken as the maximum velocity jump across the subcell

∆Ucp = 2 max(|∆U1|, |∆U2|), (1.47)

where ∆U1,2 are the velocity jumps along ∆1,2 respectively. Finally a switch is added the fol-
lowing way

∆Ucp =

{
2 max(|∆U1|, |∆U2|) if (∇ ·Ucp) ≤ 0
0 else

, (1.48)

where ∇ ·Ucp is a measure of the velocity divergence within subcell cp. The brute force proof
of dissipativity of tensor viscosity is demanding and we end up with conditions which are not
explicitely set in the original work [53]

mcTc
d
dt

Sc = ∑
p∈P(c)

F
q
cp ·Up

= − ∑
e∈E(c),e=[Xp,Xp+1]

(Up+1 −Up) ·
(

(Up −Up−1)
Wcpµcp cos θcp

Lp−1/2 sin2 θcp

+(Up+1 −Up)

[
Wcpµcp cos θcp

Lp+1/2 sin2 θcp

Wcp+1µcp+1 cos θcp+1

Lp−1/2 sin2 θcp+1

]

+(Up+2 −Up+1)
Wcp+1µcp+1 cos θcp+1

Lp+3/2 sin2 θcp+1

)
,

which is positive for each edge only if simultaneously

(Up+1 −Up) · (Up −Up−1) ≤ 0, and (Up+1 −Up) · (Up+2 −Up+1) ≤ 0, (1.49)

because all terms Wµ cos θ

L sin2 θ
are positive. Reasonnably we adopt (1.49) as definition of the switch

(∇ ·Ucp) ≤ 0 which appears in (1.48).
In the last two models of artificial viscosity, edge based and tensorial, a limiter ψ has been introduced
to fulfill the wave-front invariance property. However, it has been shown in [95] that such a limiter,
even very well adapted when the grid is aligned with the flow, produces some numerical artifacts
for grids non aligned with the flow. Such artifacts generaly leads to numerical instabilities and
evident loss of symmetry. The design of a valid limiter for non-aligned grid is still an open problem
for such artificial viscosity models.

Anti-hourglass subcell force

As already quoted, following [55], we make the fundamental assumption that the subcells are
Lagrangian volumes. Consequently following the compression or expansion of the cell, the subcell
volume Vcp(t) may change. Being Lagrangian, the subcell preserves its mass mcp, hence its density
varies as : ρcp(t) = mcp/Vcp(t). As the cell-centered specific internal energy εc is constant inside the
cell, we use the equation of a state to define the subcell pressure as

Pcp = P(ρcp, εc), with ρcp = mcp/Vcp. (1.50)
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Figure 1.3 – Physical and unphysical modes of a quadrilateral cell. Top : translations, extensions and shears (considering
symmetry) — Bottom : unphysical hourglass modes. All but the two hourglass modes are physical but only for the
hourglass modes do the subcell densities differ from the cell density.

Subcell pressure force has been initially introduced by Caramana and Shashkov [56] to control
artificial grid distortions, such as the hourglass modes 3. In order to illustrate this effect let us recall
that a quadrilateral cell has eight degrees of freedom : two translations, two extensions, two shears
and two hourglass modes, see figure 1.3. All but the two hourglass modes are physical but only for
the hourglass modes does the subcell density differ from the cell density to which it belongs. Within
a cell we observe ρcp > ρc for several subcells and ρcp < ρc for others. The subcell pressures Pcp
also differ from the cell pressure Pc. The subcell pressure method uses this effect to calculate subcell
forces that are proportional to the difference between the subcell and the cell pressures, and oppose
the hourglass motion. In this approach, the subcell anti-houglass force is defined as

F ∆P
cp = Lcp(Pcp − Pc)Ncp +

1
2

[(
Pcp − Pcp−

)
L−cpN

−
cp +

(
Pcp − Pcp+

)
L+

cpN
+
cp

]
(1.51)

where Pcp− and Pcp+ are the previous and next neighbor subcell pressures with respect to subcell
cp and L±cpN

±
cp are the internal geometrical vector to subcell cp see Fig. 1.1. The subcell force F ∆P

cp is
usually multiplied by a merit factor zmerit which ranges from 0 to 1.
Recall that conservation of global momentum, Q see (1.29), is implied by the relation on subcell
forces (1.28), that is to say ∑p∈P(c) Fcp = 0. Let us prove that anti-hourglass subcell forces also verify

∑
p∈P(c)

F ∆P
cp = 0. (1.52)

3. Other attempts to damp such artificial grid distortions can be found with artificial viscosity-like terms in Wilkins
or using SUPG stabilized formulation [96].
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Let us start by summing (1.51) for all points p of cell c

∑
p∈P(c)

F ∆P
cp = ∑

p∈P(c)
Lcp(Pcp − Pc)Ncp +

1
2

[(
Pcp − Pcp−

)
L−cpN

−
cp +

(
Pcp − Pcp+

)
L+

cpN
+
cp

]

= ∑
p∈P(c)

LcpPcpNcp +
1
2


 ∑

p∈P(c)

(
Pcp − Pcp−

)
L−cpN

−
cp + ∑

p∈P(c)

(
Pcp − Pcp+

)
L+

cpN
+
cp


 ,

(1.53)

where we have used the geometrical identity (1.14) to deduce ∑p∈P(c) LcpPcNcp = 0. Let us focus on
the square bracket terms

SB =
1
2


 ∑

p∈P(c)
Pcp

(
L−cpN

−
cp + L+

cpN
+
cp

)
− ∑

p∈P(c)
Pcp−L−cpN

−
cp − ∑

p∈P(c)
Pcp+ L+

cpN
+
cp


 ,

Assuming periodic boundary conditions we can use index shifts in the second and third sums (p−

becomes p and p+ becomes p) to obtain

SB =
1
2


 ∑

p∈P(c)
Pcp

(
L−cpN

−
cp + L+

cpN
+
cp

)
− ∑

p∈P(c)
−PcpL+

cpN
+
cp − ∑

p∈P(c)
−PcpL−cpN

−
cp


 ,

= ∑
p∈P(c)

Pcp

(
L−cpN

−
cp + L+

cpN
+
cp

)

= − ∑
p∈P(c)

LcpPcpNcp. (1.54)

Back substituting this last equation into (1.53) yields the expected result

∑
p∈P(c)

F ∆P
cp = 0.

Total subcell/nodal force

The total subcell force that applies onto point p from cell c is constituted of the pressure, artificial
viscosity and anti-hourglass forces

Fcp = F
press
cp +F

q
cp +F

∆P
cp . (1.55)

Recall that many other physical models could be added to the system of equations and, thanks to
the compatible discretization, this would induce other types of subcell forces to be added to (1.55).
By summation of subcells cp around a point p we construct the total nodal force that applies onto p
as

Fp = ∑
c∈C(p)

Fcp, (1.56)

which is further used in (1.25) to compute the evolution of the momentum equation.
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Init Predictor step

compute subcell forces compute subcell forces

Corrector step

and geometrical vectors
predict pressure

update variables update variables

(pressure, viscous, subpressure) (pressure, subpressure)

update geometry

Figure 1.4 – Simplistic view of the predictor-corrector temporal scheme used in the compatible staggered Lagrangian
stage. See the algorithm in the text for an exhaustive description.

1.2.4 Time discretization

The time discretization is obtained by means of a classical two-step predictor-corrector scheme to
gain second-order accuracy as presented in Fig. 1.4 and in the following algorithm.
Being given geometric quantities and physical variables at time tn, we first predict the time centered
geometrical quantities and pressures that are later used in the corrector step to update physical and
geometric variables. There exist several other ways to exhibit a predictor-corrector scheme for this
system, each having some interesting properties and drawbacks (as instance one can avoid to call
the equation of state routine in the predictor phase or one can avoid to update the velocity in the
predictor phase). Nevertheless this algorithm is symmetric (apart from steps 0. and 9. which are spe-
cific to the predictor step) which simplifies its implementation and the associated code maintenance.
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Predictor step.

0. Compute subcell artificial viscous force
F

q,n
cp , deduce the time step ∆t

1. Compute subcell pressure force F press,n
cp =

−Ln
cpPn

c N
n
cp

2. Compute subcell anti-hourglass force F ∆P,n
cp

3. Compute total subcell forces

F n
cp = F

press,n
cp +F

q,n
cp +F ∆P,n

cp

4. Update momentum equation

mp

(
U n+1

p −U n
p

)
= −∆t ∑

c∈C(p)
F n

cp

U n+1/2
p =

1
2

(
U n+1

p +U n
p

)

5. Update internal energy equation

mc

(
εn+1

c − εn
c

)
= ∆t ∑

p∈P(c)
F n

cp ·U n+1/2
p

6. Update vertex position

Xn+1
p = Xn

p + ∆t U n+1/2
p

7. Recompute cell/subcell volumes, geomet-
rical entities and densities at tn+1

ρn+1
c =

mc

Vn+1
c

, ρn+1
cp =

mcp

Vn+1
cp

8. Compute updated pressures

Pn+1
c = P

(
ρn+1

c , εn+1
c

)

Pn+1
cp = P

(
ρn+1

cp , εn+1
cp

)

9. Compute time centered geometrical enti-
ties and predicted pressures

Pn+ 1
2

c =
1
2

(
Pn+1

c + Pn
c

)

Pn+ 1
2

cp =
1
2

(
Pn+1

cp + Pn
cp

)

Corrector step.

0. —

1. Compute subcell pressure force
F

press,n+1/2
cp = −Ln+1/2

cp Pn+1/2
c N n+1/2

cp

2. Compute subcell anti-hourglass force
F ∆P,n+1/2

cp

3. Compute total subcell forces

F n+1/2
cp = F

press,n+1/2
cp +F

q,n
cp +F ∆P,n+1/2

cp

4. Update momentum equation

mp

(
U n+1

p −U n
p

)
= −∆t ∑

c∈C(p)
F n+1/2

cp

U n+1/2
p =

1
2

(
U n+1

p +U n
p

)

5. Update internal energy equation

mc

(
εn+1

c − εn
c

)
= ∆t ∑

p∈P(c)
F n+1/2

cp ·U n+1/2
p

6. Update vertex position

Xn+1
p = Xn

p + ∆t U n+1/2
p

7. Recompute cell/subcell volumes, geometri-
cal entities and densities at tn+1

ρn+1
c =

mc

Vn+1
c

, ρn+1
cp =

mcp

Vn+1
cp

8. Compute updated pressures

Pn+1
c = P

(
ρn+1

c , εn+1
c

)

Pn+1
cp = P

(
ρn+1

cp , εn+1
cp

)

End of time step.
Final data ρn+1

c , ρn+1
cp , εn+1

c and Pn+1
c , then

U n+1
p , Xn+1

p and mesh related entities (vol-
umes, lengths, corner vectors, etc.).

In the following we focus on important details of several steps of the algorithm.
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0. Compute subcell artificial viscous force F q,n
cp and deduce the time step ∆t.

This step is only performed for the prediction. The time step is constrained by the classical
CFL condition which roughly states that any information can not travel across more than one
cell during the time step. In other words

∆t ≤ min
c

(
Lcharacteristic

c
Sc

)
, (1.57)

where Lcharacteristic
c is a cell-based characteristic length. We take Lcharacteristic

c = mine∈E(c) Le
where E(c) is the set of edges of cell c. Moreover Sc is the characteristic sound-speed of cell
c which is constituted of ac the actual sound-speed in cell c and a “viscous” sound speed ob-
tained from the artificial viscous model aviscous

c , therefore Sc =
√

a2
c + (aviscous

c )2. The occurence
of a “viscous” sound speed is mandatory to allow a valid definition of a time step when the
initial specific internal energy is zero or close to zero, which in the case of a perfect gas leads
to a sound-speed ac close to zero, hence a time step tending to infinity. In addition to this we
classicaly multiply the time step with a security coefficient of 1/4 hence the time step is given
by

∆t ≤ 1
4

min
c

(
mine∈E(c) Le√
a2

c + (aviscous
c )2

)
. (1.58)

We notice that the viscous subcell forces are only computed at time tn and not updated for the
corrector step. Up to our knowledge there is no rigorous reason to justify this point. The fact
that updating the viscous force does not drastically modify the results and the relative cost of
such step seem two acceptable points in favour of such legacy.
Finally in order to avoid too violent cell volume change during one single time step, ∆t is not
allowed to increase by more than 20% percents compared to its previous value.

1- Compute subcell pressure force F press,∗
cp = −L∗cpP∗c N ∗cp.

Note that the time centering of the geometrical entities −L∗cpN
∗
cp and the pressure P∗c are the

same. This is the reason why at the end of the predictor step all geometrical entities must
be recomputed to match the time centering of the predicted pressure (at time tn+1/2 in our
algorithm).

5- Update internal energy equation

mc

(
εn+1

c − εn
c

)
= ∆t ∑

p∈P(c)
F ∗cp ·U n+1/2

p . (1.59)

Using U n+1/2
p = 1

2

(
U n+1

p +U n
p

)
in the equation above is mandatory to fulfill the total energy

conservation. To prove it let us start from the momentum equation

mp

(
U n+1

p −U n
p

)
= −∆t ∑

c∈C(p)
F ∗cp. (1.60)

Multiplying (1.60) by 1
2

(
U n+1

p +U n
p

)
yields the evolution of the kinetic energy equation for

point p

1
2

mp

(
U n+1

p −U n
p

) (
U n+1

p +U n
p

)
= −∆t ∑

c∈C(p)
F ∗cp ·

1
2

(
U n+1

p +U n
p

)
,

1
2

mp

(
U n+1

p

)2
=

1
2

mp

(
U n

p

)2
− ∆t ∑

c∈C(p)
F ∗cp ·U n+1/2

p .
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By suming over all points p (and neglecting boundary conditions or assuming periodic bound-
ary conditions) one gets

1
2 ∑

p
mp

(
U n+1

p

)2
=

1
2 ∑

p
mp

(
U n

p

)2
− ∆t ∑

p
∑

c∈C(p)
F ∗cp ·U n+1/2

p . (1.61)

On the other hand rewritting (1.59) under the form

mcεn+1
c = mcεn

c + ∆t ∑
p∈P(c)

F ∗cp ·U n+1/2
p ,

and suming over all cells c yields

∑
c

mcεn+1
c = ∑

c
mcεn

c + ∆t ∑
c

∑
p∈P(c)

F ∗cp ·U n+1/2
p . (1.62)

At last adding (1.61) and (1.62) gives

∑
c

mcεn+1
c +

1
2 ∑

p
mp

(
U n+1

p

)2
= ∑

c
mcεn

c +
1
2 ∑

p
mp

(
U n

p

)2

−∆t


∑

p
∑

c∈C(p)
F ∗cp ·U n+1/2

p −∑
c

∑
p∈P(c)

F ∗cp ·U n+1/2
p




switching the sum signs in one of the two terms in parenthesis (i.e. ∑
p

∑
c∈C(p)

≡∑
c

∑
p∈P(c)

) must

convince the reader that the term in parenthesis is indeed equal to zero. Therefore the previous
equation reduces to

∑
c

mcεn+1
c +

1
2 ∑

p
mp

(
U n+1

p

)2
= ∑

c
mcεn

c +
1
2 ∑

p
mp

(
U n

p

)2
,

which clearly states that if total energy is defined as E = ∑
c

mcεc +
1
2 ∑

p
mp
(
Up
)2, then this

quantity is conserved only if the subcell force is dot-producted with U n+1/2
p in equation (1.59).

8- Compute updated pressures

Pn+1
c = P

(
ρn+1

c , εn+1
c

)
, Pn+1

cp = P
(

ρn+1
cp , εn+1

cp

)
.

The subcell pressures could instead be computed in steps 2. if the anti-hourglass forces F ∆P,n
cp

are to be evaluated. (The subcell densities can be also computed during this step as both
subcell densities and subcell pressures are only utilized to compute anti-hourglass forces).
Consequently, depending on implementation or efficiency reasons the computation of subcell
entities can be removed from steps 7. and 8. and moved to steps 2. of the algorithm.

9- Compute time centered geometrical entities and predicted pressures

Pn+ 1
2

c =
1
2

(
Pn+1

c + Pn
c

)
, Pn+ 1

2
cp =

1
2

(
Pn+1

cp + Pn
cp

)
.

The goal of the prediction step is to center all entities at time tn+1/2 which are later used
to compute forces and advance point position (and by association geometrical entities like
cell volume and cell density), point velocity and cell centered specific internal energy. These
pressures contribute to the subcell pressure forces computed in step 1. of the corrector stage.
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1.2.5 Boundary conditions

Boundary conditions in a Lagrangian formulation are of two different types : prescribed normal
velocity or pressure.
If a prescribed normal velocity is enforced along two edges impinging at a boundary point p,
say ν∗p = Up ·Np where Np is a unit outward normal at point p, then it is usually considered
as sufficient to add a velocity correction between the two equations of step 4. in the algorithm of
section 1.2.4 both for predictor and corrector steps. This sub-step consists of modifying the point
velocity U n+1

p after its evaluation in such a way that its normal component be equal to ν∗p and its
tangential component remain unchanged. Indeed if we call Tp the unit tangential vector at point p,
this amounts to find the components of velocity Ûp such that :

Ûp ·Np = ν∗p , (1.63)

Ûp · Tp = U n+1
p · Tp, (1.64)

knowing ν∗p , U n+1
p , Np and Tp. The boundary condition friendly velocity Ûp is given by

Ûp = ν∗pNp − (U n+1
p · Tp)Tp. (1.65)

For pressure boundary condition P∗ we usually define ghost subcells around boundary points for
which we set the pressure to be P∗. This modification is to be operated before the update of mo-
mentum equation, say between step 3. and 4. This amounts to modify (1.35) for any subcell having
an edge on the boundary line as if a subcell from a ghost cell c′ is present

F
press
cp = −Lcp Pc Ncp − Lc′p P∗ Nc′p. (1.66)

By construction of the ghost subcell we have Lc′pNc′p = −LcpNcp, hence

F
press
cp = −Lcp (Pc − P∗) Ncp. (1.67)

Obviously ν∗ and P∗ may be space/time dependent boundary conditions so that accelerated piston,
spacial varying pressure boundary conditions as well as no-slip boundary conditions and constant
pressure can be easily applied.

Note that most of the previous proofs (conservation, Galilean invariance, etc) where periodic
boundary conditions were assumed can be revamped using more complex boundary conditions,
the principles of the proof being the same, only the equations are more involved, see [42] as in-
stance.

1.2.6 Cylindrical r− z geometry

This compatible staggered Lagrangian scheme has also been extended to 2D r− z cylindrical geom-
etry either using a so-called control volume (CV) discretization, which does not maintain cylindrical
symetry, or a so-called area-weighted (AW) discretization which can [55]. Note that our section is
freely inspired from Section 3 of paper [55], and, undoubtedly, the reader must compulse the afore-
mentioned paper.
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Control volume formulation

The description of control volume (CV) formulation can be found in [55] but its formulation surely
dates back to the 50’s. Let us provide a brief description of this formulation. First we call rp, zp the
coordinates of a point Xp. The formulation starts with a true cylindrical cell volume definition

Vc =
∫

Ωc

r dr dz. (1.68)

This volume integral is indeed a function of point positions. Any geometrical entities such as length,
normals, surfaces can be also derived in cylindrical geometry. (A more advanced description of all
algebraic manipulations involved in this formulation can also be found in [97].) Then using (1.13),
a discrete divergence operator can be defined. Accordingly the associated discrete gradient can be
derived. This essentially determines the form of the geometrical corner vector LcpNcp. Subcell mass
is also computed taking into account the cylindrical volumes which following (1.10) determines the
cell and point masses. Nodal force can then be constructed and finally the energy equation is up-
dated in a compatible way. As we can observe the same ’volume’ definition is used both to compute
density and cell volume but also the work within the energy equation. Consequently total energy
and momentum are conserved.
The problem of CV formulation is that it will not preserve two-dimensional cylindrical r− z symetry
of a spherical flow. As quoted by Caramana in [55] and further observed in simple numerical ex-
amples, one can specify one-dimensional, spherically symmetric initial and boundary conditions and the
numerical solution, computed with the control volume scheme described above, will not remain spherical in
time. Spherical symmetry CV formulation is violated because the areas along the angular direction
are not equal even when the angles between the radial lines are equal. Therefore for symmetric
pressure distribution along radius the calculated force can not be radial, leading to symmetry vio-
lation. However for an equal angular mesh, 2D cylindrical symmetry is preserved as in Cartesian
geometry because the lengths along the angular direction are equal. Consequently the computed
nodal force perpendicular to the radial direction vanishes for a spherically symmetric distribution
of pressures [63].

Area-weighted formulation

The description of area-weighted (AW) formulation can be found in [55] but it dates back to the
time of the Green Book [69, 98, 82] and revamped in [99, 100]. This method is an example of dis-
cretization of axisymetrical equations which preserves spherical symmetry of the numerical solution
on equal angular mesh. As a consequence AW is often the prefered Lagrangian discretization for
problem with cylindrical geometry. For this type of scheme one begins by postulating the form of
the gradient operator, based on physical reasoning of what is necessary for symmetry preservation
for an equal angular mesh. This implicitly determines the zone volume definition. Strictly speaking
such schemes violate momentum conservation ; in compatible form they may give rise to entropy
errors. As seen previously for an equal angular mesh, 2D cylindrical symmetry is preserved in
Cartesian geometry. This property is used to construct the area-weighted schemes in cylindrical
geometry focusing on preserving this spherical symmetry. To obtain the area-weighted schemes one
simply multiplies the vector lengths, as deïňĄned in Cartesian geometry, of the entire force contour
defined with respect to a given point, p, by the value of the radius rp. Then the Lagrangian nodal
mass mp is also defined at point p as an effective local inertia (ρA)p times rp

mp = rp(ρA)p, (1.69)
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so that the momentum equation (1.16) in cylindrical geometry becomes

rp(ρA)p
d
dt
Up = − ∑

c∈C(p)
rpFcp,

where Fcp is the subcell Cartesian force. Then rp cancels in the previous equation yielding

(ρA)p
d
dt
Up + ∑

c∈C(p)
Fcp = 0, (1.70)

which is essentially the same as (1.16) for Cartesian geometry. The area inertia is further defined
using the true cylindrical initial mass mp using definition (1.69). Caramana provides in [55] a simple
way to compute nodal, cell and subcell masses and volumes in cylindrical geometry : in short the
cell volume is split into P(c) Cartesian triangular volumes 4 denoted App′ multiplied by the “radius”
1
3 (rp + rp′ + rc), so that the AW cylindrical cell volume is

Vc = ∑
p∈P(c)

App′
1
3
(rp + rp′ + rc). (1.71)

Finally the specific internal energy evolution is computed by the work obtained by multiplying each
subcell force by the nodal radius times the nodal velocity

mc
d
dt

εc − ∑
p∈P(c)

rpFcp ·Up = 0, (1.72)

where once again Fcp is the subcell Cartesian force. Due to the presence of rp in front of Fcp in (1.72)
one deduces that momentum can not be conserved 5

Unfortunately keeping in mind the future use of this Lagrangian scheme within a conservative ALE
code the AW formulation can not be considered. Because the conservative remapping step relies
on integral definition of volume and mass, but, as already seen, the AW cell volume (1.71) can not
be reinterpreted into a proper integral formula contrarily to CV formulation. This enforces us to
abandon the AW formulation in favour of the CV formulation for a conservative ALE code.

1.2.7 Discussion

The central feature of this more modern form of Lagrangian hydrodynamics is its ability to exactly
conserve mass, momentum, and total energy without the need to use these quantities directly as
variables. It instead retains density, velocity, and specific internal energy as dependent variables
as did the earlier version of this algorithm [65]. Total energy conservation is ensured by the use
of a “compatible” discretization while the conservation of momentum is obtained by assuring that
subcell forces, no matter which physical process they may represent, do sum to zero within a cell.
Finally mass conservation is trivially fulfilled due to the Lagrangian formalism.
Even if this is not presented in this short description, many different physical models can and have
been coupled to this staggered Lagrangian scheme : elasto-plasticity, radiative transport, diffusion
equation, multi-material treatment, etc. Consequently this Lagrangian scheme has been used and
still is in many Lagrangian or ALE simulation codes. Nevertheless analysis and understanding of
its intricate nature is still an on-going work even if the scheme is ancient.
Some of such investigations are presented in the next section.

4. Such triangle is the zone defined with two adjacent points p and p′ and the cell center c.
5. Indeed because of factor rp, (1.28) turns into ∑p∈P(c) rpFcp 6= 0, in general.
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1.3 Numerical analysis

This section presents some results on the numerical analysis of the compatible staggered La-
grangian scheme. More specifically the internal consistency, accuracy and stability issues are ad-
dressed in the first subsection as paper [12] is presented. Then the proof of a result from [12] which
has been published in [15] is summarized in the second subsection. Finally in the third subsection
the volume consistency of the scheme is investigated by briefly reviewing the results of paper [16].

1.3.1 Internal consistency, accuracy and stability

Led by E.J. Caramana, a joined effort with several colleagues from LANL gave rise in 2006 to
paper [12] the title of which is “The internal consistency, accuracy and stability of the discrete compatible
Formulation of Lagrangian Hydrodynamics”. The goals of this work were

To study the internal consistency of the scheme by analyzing the difference between the two defi-
nitions of cell volume the scheme utilizes : A compatible cell volume Vcomp

c deduced from the
discrete version of the divergence of the velocity (1.11) and a cell volume obtained from point
coordinates Vcoord

c = f
(
X1, . . . ,X|P(c)|

)
6 The derivatives of the cell volume with respect to its

coordinate dependence is used to define the geometrical vectors (1.12) associated with point
p, as was done in the work of Favorskii [71], and Margolin and Adams [72]. Thus the geomet-
rical vectors used to construct the subcell forces are not arbitrarily specified, as with the older
versions of this type of hydrodynamics [69], but are a consequence of the chosen volume defi-
nitions. The analysis in the article shows that if the geometrical vectors are time-centered and
for zero force then the two volumes in 2D Cartesian geometry are equal, a posteriori justifying
the tn+1/2 time centering at the end of the predictor phase (step 9. of the predictor stage of the
algorithm in section 1.2.4). When the forces are not zero then it is shown that the difference in
coordinate and compatible volumes is of order ∆t3 on a single timestep and the time accuracy
(globally integrated up to a final time tn) is of the order ∆t2. It was shown that this difference
can be used to ascertain many properties of a simulation, and as such has direct and practical
significance.

To construct non-dimensional internal consistency norms based on the difference in these two
aforementioned volumes. These can be used to operationally measure the non-dimensional
magnitude of the truncation error of a calculation by placing the geometrical vectors from
which the subcell force is calculated at the fully advanced time level on the corrector step, that
is to say tn+1 instead of tn+1/2.

To validate the error indicators on a set of numerical tests (Guderley, Noh, Sedov in 2D cylindrical
geometry and also in 3D). They also serve to illustrate how they can be utilized to assess the
quality of numerical simulations. We have demonstrated that the size of the error associated
with the coordinate and compatible volumes is significant only when severe numerical dif-
ficulties, such as numerical instability, arise. The accuracy in both space and time were also
measured, and results were found to correspond to the first or second order accuracy that one
expects in space or time with the type of finite-volume differencing employed.

To analyse the numerical stability of the two level predictor-corrector time integration scheme
employed : First with a simplified set of model equations using standard Fourier stability
analysis, and then using a properly constructed test problem that verifies this analysis for the

6. In the article a cell is refered to as a “zone” z, a subcell to a “corner”, and these two volumes are denoted Vcrd
z and

Vcmp
z .
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Figure 1.5 – Numerical results from paper [12]. Maximum CFL number as a function of parameter α.

actual system of equations in all three spatial dimensions. In this stability analysis we studied
the effect of the time centering parameter α of the pressure on the corrector step (step 9. of the
predictor step of the algorithm in section 1.2.4) when written as :

Pn+ 1
2

c = αPn+1
c + (1− α)Pn

c .

We numerically showed that our compatible system of equations with predictor-corrector time
integration is stable for CFL number CFL ≤ 1/

√
2α with α ≥ 1/2 ; otherwise, it is uncondi-

tionally unstable (see the Fig. 1.5). This somewhat justifies the optimal choice of α = 1/2
which maximizes the usable CFL coefficient.

This paper is reproduced in the following pages.
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Abstract

This work explores the somewhat subtle meaning and consequences of the salient properties of the discrete, compatible
formulation of Lagrangian hydrodynamics. In particular, since this formulation preserves total energy to roundoff error,
the amount of error in the conservation of total energy cannot be used to gauge the internal consistency of calculations, as
is often done with the older forms of this algorithm. However, the compatible formulation utilizes two definitions of zone
volume: the first is the usual definition whereby the volume of a zone is defined as some prescribed function of the coor-
dinates of the points that define it; the second is given as the integration in time of the continuity equation for zone volume
as expressed in Lagrangian form. It is the use of this latter volume in the specific internal energy equation that enables total
energy to be exactly conserved. These two volume definitions are generally not precisely equal. It is the analysis of this
difference that forms the first part of this study. It is shown that this difference in zone volumes can be used to construct
a practical internal consistency measure that not only takes the place of the lack of total energy conservation of the older
forms of Lagrangian hydrodynamics, but is more general in that it can be defined on a single zone basis. It can also be used
to ascertain the underlying spatial and temporal order of accuracy of any given set of calculations. The difference in these
two definitions of zone volume may be interpreted as a type of entropy error. However, this entropy error is found to be
significant only when a given calculation becomes numerically unstable, otherwise it remains at or far beneath truncation
error levels. In fact, it can be utilized to provide an upper bound on the size of the spatial truncation error for a stable
computation. It is also shown how this volume difference can be used as an indicator of numerical difficulties, since exact
local conservation of total energy does not guarantee numerical stability or the quality of any numerical calculation. The
discrete, compatible formulation of Lagrangian hydrodynamics utilizes a two level predictor/corrector-type of time inte-
gration scheme; a stability analysis, both analytical and numerical, is given. This analysis reveals a novel stability diagram
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1. Introduction

The Lagrangian formulation of the equations of hydrodynamics has a very old and venerable history.
Indeed, the very first large-scale numerical calculations that resemble modern computer simulations in both
complexity and in the numerical issues considered utilized fluid equations in the Lagrangian frame of reference
in one-dimension [1]. If one considers an arbitrary fluid velocity v and distinct sound speed cs, then in one-
dimension the characteristic trajectories of the fluid equations have associated eigenvalues v ± cs and v. In
the Lagrangian frame that follows the fluid velocity v, these eigenvalues transform into the Galilean invariant
values Dv ± cs and Dv, where Dv is the difference in velocity between two adjacent discrete spatial locations in
the flow field. Thus, the Lagrangian frame of reference is unique, and one characteristic is chosen and followed
exactly, except for spatial gradients in the velocity field. The fact that the Lagrangian description of fluid
dynamics is automatically adaptive makes it the preferred representation in one-dimension. Newton’s second
law of motion, ~F ¼ M~a, where M is the mass of a point particle (or fluid element), ~F is the total force acting on
it, with the acceleration~a given as the second derivative with respect to time of its displacement vector~r, is a
statement set in the Lagrangian frame of reference. Discretizing this equation directly with respect to time uti-
lizing~r as a dependent variable results quite naturally in the three-level leapfrog scheme. These time levels are
usually denoted as n � 1, n, and n + 1, with the force ~F spatially differenced in some manner but placed at time
level n. All early Lagrangian algorithms in both 1D [2] and in 2D [3] utilized this kind of discretization with
respect to time. Although this forms a simple and intuitive numerical integration scheme, it leaves the velocity
of a mass point or fluid element defined only as the difference between its displacement vector at two different
time levels, and therefore the velocity is defined only at the n� 1

2
time levels. When one then considers the total

energy of a fluid as a sum of both kinetic energy and internal energy that can be exchanged between each other
by the action of forces, this sum is difficult to conserve exactly in discrete form owing to the fact that the two
components that comprise it are defined at different time levels. When velocity dependent forces are explicitly
added to this model, as with the artificial viscosity [4], this type of time integration becomes somewhat clumsy
and looks even contrived [2], since the artificial viscosity terms must be lagged in time to preserve numerical
stability.

The spatial discretization of the force in all early versions of Lagrangian hydrodynamics [2,3] is some form
of what is presently known as finite-volume differencing. That is, these various forms calculate force as a stress
(scalar pressure plus deviators) times a normal surface-area vector. The most modern of these older force cal-
culations is the diamond differencing scheme due to Wilkins [3], which uses closed surface area contours to
calculate the force acting on a point, and thus properly conserves linear momentum in a trivial manner. Others
piece the force contributions together in various ways to form the total force acting on each fluid element such
that strict conservation of linear momentum may, or may not, be obtained. Most Lagrangian hydrodynamics
codes employ a spatially staggered placement of dependent variables with stress, density, and specific internal
energy given in zones surrounded by points that have associated position and velocity vectors. This enables
the calculation of forces by means of the various kinds of finite-volume differencing referenced above, with
masses and volumes ascribed to both zones and points in an interleaved manner. This also avoids the
‘‘grid-decoupling’’ instability that is the bane of non-staggered forms of this algorithm. A difficulty with
the older work is that there was no agreement amongst the various authors of these different algorithms as
to how these schemes, aside from the noted common features, should be constructed. The choices made were
largely arbitrary and not tied to solid mathematical concepts.

An early attempt to remedy this lack of a sound theoretical basis is the work of Goad [5], who used the
method of virtual work to derive a form of finite-volume force differencing of the stress in 2D cylindrical
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geometry. This work was little noted, partly because this type of scheme does not yield the limit of 1D spher-
ical geometry from 2D cylindrical geometry that is important in some applications [6]. Next, finite element
spatial discretizations were utilized. However, these must be of low order accuracy to prevent the occurrence
of non-physical oscillations about shock discontinuities that appear if the support of the basis functions is too
large. Thus, finite element spatial representations only give the appearance of a rigorous foundation while sac-
rificing the flexibility that a finite-volume discretization affords.

The work that first places this type of finite-volume algorithm on a firm theoretical basis is that of Favor-
skii [7], and independently, Margolin and Adams [8]. The first paper shows that the discrete equations in
Lagrangian form can be generally derived from a variational principle. It also justifies the use of the surface
area vectors of closed volumes as proper discretization objects, a practice that was previously employed, but
not always correctly, in that the surface areas about a point did not in all cases sum to zero. The second paper
parallels this work. Its central thrust is to use the continuity equation in discrete form to derive finite-volume
differencing given a discrete expression for the volume of a zone. This again results in, and justifies, the sur-
face areas utilized to calculate the force employed. It emphasizes that the difference formulas that are derived
are ‘‘operator’’ expressions that can be used to calculate discrete derivatives of any function, and not just of
the velocity field that they originally act upon. It is the discrete form of the continuity equation as emphasized
in [8] that is central to our discussion of internal consistency. A further extension of the work of Favorskii
results in what has become known as the ‘‘method of support operators’’ [9]. Although this work is more gen-
eral than just its application to the equations of Lagrangian hydrodynamics, it is this system of equations that
is used in its original exposition. This method also utilizes the continuity equation in discrete form to derive
the divergence ‘‘operator’’ and then uses the vector identities in summation form to derive discrete versions of
all other operators. It emphasizes the relation in discrete form of the divergence and gradient operators as
negative adjoints of each other as in the continuum case. The paper of Margolin and Tarwater [10] again par-
allels this work. It derives the gradient operator from the divergence operator by using the same requirement
– that they must be negative adjoints. This is done in the context of deriving a compatible expression for the
diffusion operator as the direct product of gradient and divergence, and requires additionally that this diffu-
sion operator be exact for a linear function. These publications all revolve around the central idea that the
discrete equations must obey the global properties of the continuum ones in order to be considered as valid
discretizations that will then mirror continuum conservation properties in their discrete analogs. They thus
remove the arbitrary and heuristic formulations of the previous, but well-used, codes based on the older work
[3].

Somewhat after the previously cited developments is the seminal work of Burton [11,12], which discretizes
the fluid equations in Lagrangian form on a staggered spatial grid utilizing subgrid quantities termed corner
masses and corner forces, from which the zone and point masses, and the total force acting on a point, are
constructed. A two-level time integration scheme is also utilized so that both kinetic energy and internal
energy are defined at the same time level. The basic reasoning used by Burton to demonstrate conservation
of total energy is the same as that employed in the method of support operators [9], and thus incorporates
the important features of the previous works [8–10]. However, Burton’s formulation is more general in that
he does not consider forces, or differential operators, of any specific origin. Instead, he utilizes an arbitrary
corner force that allows the specification of forces of any functional form, with the work that they perform
completely defined and total energy exactly conserved. The only restriction on the discrete form of the corner
force is the relatively mild physical constraint of momentum conservation. He also notes [12] that this formu-
lation of the Lagrangian hydrodynamics equations contains two distinct definitions of zone volume, and
considers this difference to be a form of ‘‘entropy’’ error.

It is this latter work of Burton that we refer to herein as the ‘‘discrete, compatible formulation of Lagrang-
ian hydrodynamics’’, and which was initially constructed on arbitrary polyhedral grids [12]. The word ‘‘dis-
crete’’ has been inserted to emphasize that these equations are essentially created in discrete form, as
opposed to being the discretization of a system of PDE’s. As such, one may or may not be able to rigorously
take the continuum limit to obtain the latter; this depends on the kinds of forces that are employed to resolve
shocks and to counteract spurious grid motions. It is the subject of this paper to explore important conse-
quences of this formulation. To this end a very brief statement of it is given that includes the definition of
the two zone volumes that are central to investigating its internal consistency. A study of this novel internal
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consistency feature is then developed theoretically and illustrated with numerical examples. A stability analysis
of the time integration scheme utilized follows; last, our principal conclusions are briefly summarized.

2. Discrete, compatible Lagrangian hydrodynamics

Since the numerical algorithm that we term the discrete, compatible formulation of Lagrangian hydrodynam-
ics has been given elsewhere [12,13], we repeat only that skeleton portion that is necessary to explore the features
of it that are the subject of this work. To this end, consider the momentum equation given in discrete form as

Mpð~vnþ1
p �~vn

pÞ ¼
X

z

~f p;�
z Dt � ~F �pDt. ð2:1Þ

To define the terms that occur in this equation we make reference to Fig. 1. This shows a small section of a
quadrilateral grid in 2D Cartesian geometry with a single zone labelled by the integer index z, and with its four
defining points labelled by the integer index p; these indices range over all zones and points in the computa-
tional domain, respectively. Unique to each zone and each point, considered together as a pair-object, is a cor-
ner mass mp

z and a corner force ~f p
z . The indices of these objects are placed so that the lower one is always

summed with the upper one fixed; the asterisk used as a superscript on the force in Eq. (2.1) denotes time-
centering, an issue discussed further on. The point mass Mp is formed by summing all mp

z ’s that have the same
index p, where a particular mp

z corresponds to the grey region in Fig. 1; likewise, the zone mass Mz that enters
Eq. (2.2), is defined as the sum of all mz

p that have the same zone index z. On this staggered spatial grid the
points p carry a velocity~vp that, when multiplied by the point mass Mp, represents an average momentum over
the median mesh volume, depicted in Fig. 1 as the closed, dashed curve. The position vector~rp of the point p is
advanced from time level n to time level n + 1 in a timestep Dt as, D~rp � ð~rnþ1

p �~rn
pÞ ¼ ð~vnþ1

p þ~vn
pÞDt=2, a form

that is unique [14]. As is seen in Eq. (2.1) the total force ~F �p that acts on mass Mp is made up of the sum of all

corner forces ~f p;�
z with common point index p. The corner force ~f p;�

z mediates the exchange of kinetic energy
and internal energy between a zone z and a point p; its construction is at this stage completely general.

The most important result of this hydrodynamics formulation, and that which is termed ‘‘compatible’’, is
that if at any time tn a definition of total energy is given as, ETðtnÞ � 1

2

P
pMpð~vn

pÞ
2 þ

P
zMzen

z , then in conjunc-
tion with the momentum equation, Eq. (2.1), an equation in discrete form for the evolution of the specific
internal energy ez, defined in the zones z, results and is given as

Mzðenþ1
z � en

z Þ � �
X

p

~f z;�
p � D~rp. ð2:2Þ

In Eq. (2.2) the corner force~f z;�
p is the same as that used in the momentum equation above except that it is now

summed with respect to fixed zone index z; all other quantities in Eq. (2.2) have been defined. As noted in
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Fig. 1. Notation for a given quadrilateral zone z (solid line) with points p = 1, 2, 3, 4. The median mesh is drawn with a dashed line.~S1,~S2

are the median mesh vectors. The gray region is a corner subcell whose associated mass and force are mp
z and ~f p

z , respectively.
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previous work [13,14], this formulation of Lagrangian hydrodynamics consists of three discrete equations:
momentum, specific internal energy, and total energy, such that the specification of any two results in the
third. These three equations form an algebraic identity. Also, as discussed previously [13,14], for these equa-
tions to make physical sense the arbitrary corner force ~f z;�

p must sum to zero in any zone z; this represents
Galilean invariance of the discrete equations.

The primary quantity that must be computed with this form of hydrodynamics to advance the dependent
variables in time is the corner force. To advance a timestep Dt this force is first calculated at the n time level
where all quantities are known; the dependent variables are then advanced to the n + 1 time level. However, to
obtain numerical stability, as discussed in Section 4, this cycle is repeated with the corner forces recalculated at
some time level between half-forward or time centered ð� ¼ nþ 1

2
Þ, and full-forward (* = n + 1). The exact

functional form of the corner forces can be quite complicated, and is not at all unique. This has been discussed
in depth elsewhere [6,12,14–17]. Here we are concerned with Eq. (2.2) for pressure forces, and how it repre-
sents a discrete form of what is generally known as P dV work; that is, how does this equation calculate
the work done by a zone pressure P �z that is constant throughout the given zone z? The work performed by
the ‘‘generic’’ RHS of Eq. (2.2) can be written for pressure forces as:

�
X

p

~f z;�
p � D~rp � �P �z ðDV Þz ¼ �P �z V zðr �~vÞzDt; ð2:3Þ

where (DV)z is the change in volume of zone z in timestep Dt. That this second term is equal to the third term in
the above equation is a consequence of the continuity equation for volume in Lagrangian form. More explicitly,
if we consider the equation of continuity for the zone density (where zone density qz is defined as qz ” Mz/Vz(t))
as oq=ot þr � q~v ¼ 0, then using the definition given for qz one obtains

dV z

dt
¼ V zðr �~vÞz; ð2:4Þ

which in the ‘‘support operators’’ terminology [9] yields a ‘‘discrete’’ definition of ðr �~vÞz, or of the divergence
operator. To see this, consider that the zone volume depends on some arbitrary number of coordinates d
(p = 1, . . . ,d), so that V n

z ¼ V zð~rn
1; . . . ;~rn

dÞ; putting this form into Eq. (2.4) results in

dV z

dt
¼
Xd

p¼1

X3

i¼1

oV z

oxp;i
vp;i �

Xd

p¼1

~az
p �~vp ¼ V zðr �~vÞz; ð2:5Þ

where in the first part of this equation~rp consists of the three Cartesian components xp,i, and the velocity com-
ponents vp,i are defined by the fact that the points are Lagrangian, vp,i ” dxp,i/dt. The derivatives of the zone
volume with respect to its coordinate dependence is used to define the surface vectors associated with point p,
as was done in the work of Favorskii [7], and Margolin and Adams [8]. Thus the grid vectors used to construct
the corner forces are not arbitrarily specified, as with the older versions of this type of hydrodynamics [3], but
are a consequence of the chosen volume definitions. (One interesting case is area-weighted differencing, see
[13].) Under this construction, we can write the equations for the grid vector and corner force associated with
P dV work of point p and zone z as

az
p;i ¼

oV z

oxp;i
; ~f p

z ¼ P z~az
p. ð2:6Þ

Referring to the definitions illustrated in Fig. 1 for point p = 2 of zone z we have that~az
p¼2 ¼~a2 þ~a3, where for

the quadrilateral shown the~aj vectors (j = 1, . . . , 8) are outward normal to zone z with a magnitude of one-half
of their respective edge length.

The preceding discussion justifies the claim that the work done by a zone pressure is a proper differencing
of P dV. However, Eq. (2.2) calculates the work done by all zone forces of any origin. This is an important
generalization when one needs to calculate the work done by the artificial stresses used with this kind of hydro-
dynamics. Defining the surface area vectors of a prescribed volume as given by the derivative of that volume
with respect to coordinates is essentially a generalization of the result in elementary calculus where the deriv-
ative of the area of a circle, or of the volume of a sphere, yields its surface area to the case where the volume in
question does not have a simply differentiable boundary.
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That the use of two different definitions of zone volume results in what may be described as an entropy
error can be seen by considering the first law of thermodynamics for a zone z, written as

MzDez ¼ �P zðqz ¼ Mz=V crd
z ; ezÞDV cmp

z þ ðTDSÞz; ð2:7Þ
where S is the entropy and T is the temperature. In this equation the density dependence of the zone pressure is
a function of the coordinate volume V crd

z , while the P dV work term involves the change in compatible volume
V cmp

z on a timestep. The entropy term completes the equation, and for adiabatic flow will not be exactly zero
unless V crd

z ¼ V cmp
z . The magnitude and implications of this difference are explored in the next section.

However, it will be shown that using V cmp
z to compute the density in Eq. (2.7) is not a valid way to make this

equation internally consistent.
What has been demonstrated is that the volume change utilized in the discrete version of the specific internal

energy written in compatible form is not the change in volume deduced from the difference in a zone volume cal-
culated from its coordinates at two different times; but rather, this change in zone volume is calculated from the
discrete evolution in time of the continuity equation for volume, Eq. (2.5). These two definitions of zone volume
are not generally equal. The zone volume that is computed directly from its coordinates is hereon referred to as
the ‘‘coordinate volume’’, while that computed from integrating Eq. (2.5) in time is termed the ‘‘compatible vol-
ume’’. How these two volumes differ and the consequences of this difference are the subject of the next section.

3. Internal consistency and accuracy

Given the previous discussion, it is convenient for the analysis that follows to contrast the change in volume
of a zone calculated from its coordinates at two different times to that of the increment in zone volume as cal-
culated from the evolution equation for volume. To this end, the change in coordinate zone volume ðDV Þcrd

z
during a timestep, where the coordinates are incremented by an amount D~rp and p = 1, . . . ,d, is defined as

ðDV Þcrd
z � V nþ1

z � V n
z ¼ V z½ð~rn

1 þ D~r1Þ � � � ð~rn
d þ D~rdÞ� � V z½~rn

1 � � �~rn
d �. ð3:1Þ

From the previous arguments, the change in compatible zone volume ðDV Þcmp
z is given by

ðDV Þcmp
z ¼

Xd

p¼1

~az;�
p � D~rp; ð3:2Þ

where the time centering of the surface vectors~az;�
p of a zone remains to be specified. Since we are interested in

only the change in compatible zone volume on the final corrector step, these vectors are centered somewhere
between time levels � ¼ nþ 1

2
and * = n + 1, and not at time level * = n as is the case for the predictor step.

Note that the displacement vectors D~rp of the grid points are the same in both of these equations.
A global internal consistency criterion can be constructed from a knowledge of both the coordinate and

compatible zone volumes at any given time. The coordinate zone volume, V crd
z ðtnÞ, is always given as a known

function of the coordinates; however, the compatible zone volume must be constructed as a diagnostic on each
timestep. That is, to obtain V cmp

z ðtnÞ the continuity equation (2.5) must be integrated with respect to time, and
V cmp

z ðtnÞ updated at the end of every timestep as an additional dependent variable. Thus we have that

V cmp
z ðtnÞ ¼ V crd

z ðt ¼ 0Þ þ
Xn

k¼1

ðDV Þcmp
z;k ; ð3:3Þ

where the sum is over all timesteps k to time tn. Given these volume definitions, two useful norms can be de-
fined as

E1ðtnÞ �
XNz

z¼1

jV crd
z ðtnÞ � V cmp

z ðtnÞj=V crd
z ðtnÞ

 !,
N z; ð3:4Þ

EmaxðtnÞ � max
z
jV crd

z ðtnÞ � V cmp
z ðtnÞj=V crd

z ðtnÞ; ð3:5Þ

where the sum in the first equation above, and the max operation in the second, is over all Nz zones of the grid.
The average norm E1(tn) and the max norm Emax(tn) serve to measure different and complimentary properties
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of a computation. Also note that the kernel, jV crd
z ðtnÞ � V cmp

z ðtnÞj=V crd
z ðtnÞ, of these two norms is the same and

is defined for every zone z. These values can be contoured spatially at any given time to yield additional
detailed information about any simulation.

Our discussion of the difference in these two volume definitions begins in one dimension. Consider a set of
zones in 1D with a numerical index j that ranges over the entire domain, where a single zone z (with index j) is
defined by boundary points with index labels j and j + 1 that lie to the left and right, respectively. Next the
difference in these two volumes is considered in 1D Cartesian, cylindrical, and spherical geometry. The case
of 1D Cartesian geometry is trivial in that, in this instance, the grid vectors az;�

p are equal to unity and fixed
in time. Thus both definitions of zone volume are exactly equal.

The first non-trivial case is 1D cylindrical geometry. Let the grid point coordinates be denoted as Rj, then
for a zone with index z = j it follows from Eq. (3.1) that the change in coordinate volume in a timestep is given
by

DV crd
z ¼ p ðRnþ1

jþ1 Þ
2 � ðRnþ1

j Þ
2 � ðRn

jþ1Þ
2 þ ðRn

j Þ
2

h i
¼ 2p Rn

jþ1DRjþ1 þ ðDRÞ2jþ1=2� Rn
j DRj � ðDRÞ2j=2

h i
; ð3:6Þ

where we have used the fact that Rnþ1
j ¼ Rn

j þ DRj. To compute the corresponding compatible volume using
Eq. (3.2), we specify the grid vectors as az;�

p¼j ¼ 2pR�j ¼ 2pðRn
j þ aDR�j Þ, where DR�j is the displacement of point

j from the predictor step, and 0 6 a 6 1. This yields the result

DV cmp
z ¼ az;�

jþ1DRjþ1 � az;�
j DRj ¼ 2p ðRn

jþ1DRjþ1 � Rn
j DRjÞ þ aðDR�jþ1DRjþ1 � DR�j DRjÞ

h i
. ð3:7Þ

By inspection these two equations are equal only if a = 1/2 and DR�j ¼ DRj for all points j. The first condition
says that the grid vectors should be time-centered on the corrector step; the second is more severe and requires
that the forces be exactly equal on both the predictor and corrector steps of a timestep cycle. This latter
requirement is only true if the force is zero, since roundoff error in the calculation of the force will prevent
this equality from holding in the case of non-zero forces.

If 1D spherical geometry is considered with the volume of a spherical zone given by 4pðR3
jþ1 � R3

j Þ=3, and
with time-centered grid vectors az;�

j ¼ 4pðRn
j þ DR�j=2Þ2, then repeating the calculation given above one finds

that the change in these volumes is also not identical; their difference is given by

DV crd
z � DV cmp

z ¼ �4p DRjþ1ððDR�Þ2jþ1=4� ðDRÞ2jþ1=3Þ � DRjððDR�j Þ
2
=4� ðDRjÞ2=3Þ

h i
. ð3:8Þ

This difference is seen to arise from terms that are cubic in DRj. In the case of 1D spherical geometry, this
defect can be remedied by a direct decomposition of the volume change of a spherical zone between time levels
n and n + 1 to yield an alternative form for the grid vectors in Eq. (3.8) as

az;�
j ¼ 4p½ðRnþ1;�

j Þ2 þ Rnþ1;�
j Rn

j þ ðRn
j Þ

2�=3. ð3:9Þ

In the above equation, Rnþ1;�
j is the value of the coordinate of grid point j at the end of the predictor step,

Rnþ1;�
j ¼ Rn

j þ DR�j . So if DR�j ¼ DRj, then Rnþ1;�
j ¼ Rnþ1

j and the compatible volume calculated by using the grid
vectors defined in Eq. (3.9) exactly matches the coordinate volume. The type of truncation error manipulation
involved in the derivation of Eq. (3.9) cannot always be effected in the multi-dimensional case. The fact that
coordinate and compatible volume definitions are not always equal for uniform drift is not a real defect with
compatible Lagrangian hydrodynamics since, as will be shown, this difference remains at very small values,
and both volumes are by themselves exactly conserved.

Next we continue our comparison of coordinate and compatible volume definitions by considering the case
of 2D Cartesian geometry with quadrilateral zones. For coordinates~rn

p, the volume of a quadrilateral using the
notation of Fig. 1 is ð~r2 �~r4Þ � ð~r3 �~r1Þ. From Eq. (3.1) this results in

DV crd
z � V nþ1

crd � V n
crd

¼ 1

2
½ð~r2 �~r4Þn � D~r3 þ ð~r4 �~r2Þn � D~r1 þ ð~r3 �~r1Þn � D~r4 þ ð~r1 �~r3Þn � D~r2�

þ 1

2
fD~r2 � ðD~r3 � D~r1Þ þ D~r4 � ðD~r1 � D~r3Þg. ð3:10Þ
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Using Eq. (3.2), where the grid vectors ~az;�
p are shown in Fig. 1 (~ap¼1 ¼~a1 þ~a8, etc.), results in

DV cmp
z �

X4

p¼1

~az;�
p � D~rp

¼ 1

2
½� � � same as above � � �� þ a

2
fðD~r�2 � D~r3 þ D~r2 � D~r�3Þ � ðD~r�2 � D~r1 þ D~r2 � D~r�1Þ

þ ðD~r�4 � D~r1 þ D~r4 � D~r�1Þ � ðD~r�4 � D~r3 þ D~r4 � D~r�3Þg; ð3:11Þ

where the terms in square brackets are the same in both equations. Thus it is once again seen that if the grid
vectors are time-centered (a = 1/2), and also for zero force, then these equations and their associated time
integrated volumes are identical.

In order to examine the difference in these two volumes further, consider how coordinates are advanced in
time. With D~r�p ¼ ð~vnþ1;�

p þ~vn
pÞDt=2 we can write

D~r�p ¼~vn
pDt þ~F n

pðDtÞ2=ð2MpÞ;
D~rp ¼~vn

pDt þ~F �pðDtÞ2=ð2MpÞ:
ð3:12Þ

Now let us pick out the first term in curly brackets in Eq. (3.10) and in Eq. (3.11) that refer to the points 2 and
3 of the quadrilateral in Fig. 1, and subtract these terms with a = 1/2 to obtain

½D~r2 � D~r3 �
1

2
ðD~r�2 � D~r3 þ D~r2 � D~r�3Þ�

¼ ðDtÞ3

4M
~vn

2 � ð~F �3 �~F n
3Þ �~vn

3 � ð~F �2 �~F n
2Þ

� �
þ ðDtÞ4

4M2
~F �2 �~F �3 �

1

2
ð~F n

2 �~F �3 þ~F �2 �~F n
3Þ

� �
.

This shows that the difference in coordinate and compatible volumes for 2D Cartesian geometry is of order
(Dt)3 on a single timestep. When integrating this difference to some global time tn one factor of Dt is absorbed
into the multiplying constant so that we deduce that the accuracy in time should be of order (Dt)2.

The preceding arguments justify writing the average error norms defined in Eqs. (3.4), (3.5) in an approx-
imate global form as

E1ðtnÞ 	 O
XNz

z¼1

ðDtÞq ðDxÞr

V z

 !,
N z; ð3:13Þ

EmaxðtnÞ 	 O max
z
ðDtÞq ðDxÞ

V z

� �
. ð3:14Þ

In the above expressions, the powers q and r denote global orders of accuracy in space and time, respectively;
notice that for the max-norm, r is set to unity in anticipation of the expected result. The zone dimensions may
not be even close to uniform, so one may have quite different values of Dx and zone volume Vz across the grid
at any given time. Because of how the truncation error enters in the preceding discussion, the approximate
error estimators given in Eq. (3.13) are a product of space and time error, instead of a separate sum of such
terms as usually results from a direct Taylor series expansion of a system of PDE’s. The operational use of
these error estimators requires some further explanation. As will be seen, although they can indicate the rel-
ative quality of one or a set of simulations, they do not always yield an unambiguous value for the spatial
accuracy r, and thus require some care in their utilization.

To determine the powers in the error indicators defined above one performs a series of computations for a
set of problems with different space and time resolution. Then by comparing the values of a given error norm
at the same time for a given computation, one can calculate the values of the power law dependence, the values
of q and r. There are essentially three different strategies for doing this calculation. First, with spatial resolu-
tion fixed, one scales the CFL number down by factors of two (starting with CFL = 0.25) and runs each sim-
ulation to the same final time; this freezes any dependence on the spatial factors in our error norms. Second,
the Dt factors in this equation can be effectively held fixed by increasing the CFL number by a factor of two
(while staying beneath the 0.25 level) and decreasing the grid spacing by a factor of two in the spatial direction
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that determines the CFL number. Then one compares the values of Eq. (3.13) for different runs at the same
final time; these runs will have executed approximately the same number of time cycles. Third, one can scale
the spatial dimensions holding the CFL number fixed. Next we detail what one must consider when imple-
menting these three strategies.

The first of the above strategies is the only one that is straightforward. By fixing the spatial resolution and
scaling the CFL number, each time decreasing the CFL number by a factor of two, usually yields decreasing
values of Eq. (3.13) on each iteration by two or four indicating a value of q of one or two, respectively. This is
expected from the previous arguments that show that one should obtain either first or second order accuracy
in time depending upon whether the grid vectors are placed full-forward or time-centered on the corrector
step. The second strategy attempts to eliminate time dependence from our error estimators; however, for most
Lagrangian calculations, the timestep varies significantly throughout any run, so what is fixed is the cycle
number to reach a final time, and it is assumed that this eliminates the time dependence between runs. One
must then carefully consider how the zone volume Vz changes with the scaled dimensions in order to conclude
an order of spatial accuracy r. For instance, if the zone size decreases as (Dx)2 and E1(tn) remains constant,
then one concludes second order spatial accuracy (r = 2). Alternatively, if E1(tn) increases by the same factor
that is used to decrease Dx, then one would conclude first order accuracy in space(r = 1). The third strategy
requires the most scrutiny in its use in that changing a spatial dimension may or may not affect timestep; addi-
tionally, the timestep may be determined first by one dimension and later by another, as can happen when a
center of convergence is approached by a shock front. However, if the scaled dimension does determine the
timestep and if the order of accuracy with respect to time is known (usually second order for centered grid
vectors), then one can cancel a factor of (Dt/Dx)2 in E1(tn) and use the remainder to determine r. Again,
one must carefully consider how Vz changes with the scaled spatial dimensions.

Before proceeding to the numerical tests, we wish to note that the local spatial accuracy of the type of finite-
volume differencing used with Lagrangian hydrodynamics calculations is usually first order, and never higher
than second order. This has been demonstrated previously in the appendix of [13] for 2D Cartesian geometry,
but applies generally in any number of dimensions. A geometric illustration of this can be seen in 1D by refer-
ring to Fig. 2, in which is depicted a simple 1D grid that is uniform but with different zone spacing to the right
and left of a central displacement. Such a grid represents a shock wave travelling from right to left with the
shock position at the central two zones that are non-uniform. The spatial gradients that are calculated in this
simple case are just spatial differences of quantities such as density and velocity centered at zones and points
on a uniform grid, and are thus second order accurate for simple two-point differences. Where the grid is non-
uniform the accuracy drops to first order, which is the shock position S in Fig. 2. This simple case often
extends quite naturally to 2D and 3D in the case where the velocity field is said to be grid-aligned. Here
the velocity difference D~v between any two adjacent grid points is parallel (or possibly zero) to the displace-
ment vector between them. Configurations of this type in 2D or in 3D often have approximately uniform grid
spacing except near the location of shocks. In these cases one can often operationally observe second order
spatial accuracy with respect to the E1 error indicator. Theoretically, these calculations are still first order
in space with respect to any part of the grid that a shock wave has traversed, since a shock acts as an internal
boundary condition applied by means of the artificial viscosity with first order spatial accuracy.

While it has been noted that the order of accuracy of Lagrangian calculations is usually low, it is not the
case that our error estimators are meant to simply verify the obvious. They may do this to the extent that they
verify that runs are reasonable in this regard. However, their most common use (mainly E1(tn)) is to indicate
when numerical problems arise, and to show in more detail how convergence to a solution is reached. Some
examples are given in the next section that illustrate these points.

V

Fig. 2. 1D path of a shock (gray region) travelling from right to left with velocity ~V . The left part of the domain is unperturbed, whereas
the right part has been compressed due to the shock wave.
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3.1. Numerical tests

A set of numerical tests are given to validate the error indicators previously defined, and to illustrate how
they can be utilized to assess the quality of numerical simulations. These also serve to demonstrate that the size
of the entropy error associated with the coordinate and compatible volumes is significant only when severe
numerical difficulties, such as numerical instability, arise. The discussion is meant to show that the error esti-
mators are of both a practical and a pedagogical utility. The test problems employed have all been published
elsewhere, and thus their setups are not repeated; instead, the previously published results are referenced. Only
enough detail is given to make the discussion of the tables given herein intelligible.

Our first example shows how the internal consistency estimator E1(t) can be used as a highly sensitive indi-
cator of the development of numerical difficulties during any calculation. For this purpose the Guderley
implosion problem is chosen with a resolution of 1000 zones radially and three 30� angles on a 90� quadrant
in cylindrical geometry. We use area-weighted differencing to preserve 1D spherical symmetry (see Fig. 3 of [6]
for both setup and results), and a CFL number of 0.25. For such resolution this problem has very long-thin
zones that eventually develop hourglass difficulties that result in run termination unless subzone pressure
forces that counteract this instability are employed [16]. Table 1 gives the cycle number, time, timestep,
E1(t) norm, and total energy balance for this test case: first, using no stabilizing subzone pressure forces,
and then with stabilizing forces and a merit factor of unity. The fact that the calculation has developed numer-
ical difficulties in the first instance can be seen by the sudden increase in E1(t) by an order of magnitude, from
10�9 to 10�8, between the time of 0.3 and 0.4; E1(t) then increases by three additional orders of magnitude at a
time of 0.5, and the run terminates with timestep collapse about 1300 cycles later. Notice that the value of total
energy balance, given in non-dimensional form in the last column of this table, remains at roundoff error level
and that E1(t) never reaches a magnitude of order unity. In the second part of Table 1, the results are shown
for the case where subzone pressure forces are utilized. This case runs to the final time of 0.8 without any hour-
glass problems. Although E1(t) starts out with a slightly larger value than that of the first run at an earlier
time, it shows only a gradual increase as the shock wave travels inward, activating more cells of the grid which
can then contribute a non-zero value to E1(t). When the shock wave reflects from the center of convergence
just after a time of 0.75, the value of E1(t) increases by approximately an order of magnitude, and remains
close to constant at the final value shown as the shock wave moves outward. In these runs the grid vectors
are time-centered on the corrector step. Therefore, the magnitude of E1(t) is small compared to what one
would expect the spatial truncation error to be for this grid resolution.

Table 1
Guderley problem in cylindrical geometry with CFL = 1/4

Cycle Time t Dt E1(t) Total energy balance

Without anti-hourglass forces

1709 0.2 1.113E � 4 3.242E � 9 �5.276E � 16
2635 0.3 1.046E � 4 3.835E � 9 5.921E � 17
3627 0.4 0.969E � 4 3.204E � 8 �2.419E � 15
4713 0.5 0.867E � 4 1.187E � 5 �3.612E � 16
6092 0.558 0.97E � 12 8.330E � 4 �1.827E � 15
� � � � � � Fails � � � � � �

With anti-hourglass forces

1708 0.2 1.113E � 4 6.353E � 9 7.912E � 16
2634 0.3 1.046E � 4 7.260E � 9 2.368E � 15
3626 0.4 9.698E � 5 9.221E � 9 2.329E � 15
4710 0.5 8.744E � 5 1.153E � 8 3.106E � 15
..
. ..

. ..
. ..

. ..
.

13,122 0.8 1.515E � 5 5.526E � 5 7.332E � 16

We show results with and without anti-hourglass subzone pressure forces: without these forces the problem fails at time t . 0.558; with
them the problem runs to completion. That the calculation develops numerical difficulties in the first instance is seen by the increase in
E1(t). Total energy balance remains at roundoff error level.
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In Fig. 3 the log of E1(t) versus time is plotted for the cases given in Table 1. The unstable case without anti-
hourglass forces increases sharply, and eventually with a large linear slope, indicating exponential growth of
the instability after t 	 0.4. The stable case shows only linear growth (approximately constant on a semi-log
plot), and increases significantly only after shock reflection from the center of convergence, an expected behav-
ior that is due to the wall heating difficulty of all forms of artificial viscosity. Thus the E1(t) error norm should
be monitored closely for all simulations. Any sudden increase in its value very often indicates a developing
numerical problem that is cause for closer scrutiny. Subzone anti-hourglass pressure forces with merit factor,
Mf = 1, are employed in all remaining simulations detailed in this paper.

The next example illustrates how the E1(t) error norm varies in both magnitude and in scaling when the grid
vectors are time-centered or full-forward on the corrector step, and with varying CFL number between runs.
Again the Guderley implosion problem is used with 400 radial zones and three 30� angles. In Table 2 results
are given for four different runs. The left side of this table shows the approximate time and number of cycles
for CFL numbers 0.25 and 0.125, and the E1(t) error norm for the case where the grid vectors are centered at
the nþ 1

2
time level on the corrector step; on the right E1(t) is given when the grid vectors are full-forward at

the n + 1 time level on the corrector step. Note that there is approximately a three to four order of magnitude
increase in the size of E1(t) between these two cases. This is expected from the analysis given earlier that
showed that for grid vectors placed full-forward, the two definitions of zone volume differ at spatial truncation
error level without consideration of any applied forces; the magnitude of E1(t) in this case gives an operational
measure of spatial truncation error. Also, from the preceding analysis we expect to observe first order scaling
in time with grid vectors placed full-forward, and second order accuracy in the time-centered case. Table 2
shows the ratio of the values of E1(t) between runs where the CFL number has been halved (cycle number
to same final time doubled). One expects a ratio of about two for first order accuracy, and about four for
second order accuracy. It is seen that for full-forward grid vectors, this is what is obtained; for grid vectors
time-centered, values somewhat larger than four are observed. In general, and with other test problems,
one sees this type of behavior as well, usually very close to factors of two or factors of four for these respective
grid vector time centerings. The general conclusion is that if the grid vectors are time centered on the corrector
step, second order accuracy in time is achieved. It is the spatial accuracy that invariably dominates and deter-
mines the quality of the solutions in Lagrangian hydrodynamics calculations. In the remaining simulations,

Fig. 3. Semi-log plot of the E1 norm in time for the Guderley problem in cylindrical geometry (CFL = 1/4). Without anti-hourglass forces,
the E1 norm increases sharply showing exponential growth of the instability after t 	 0.4. With anti-hourglass forces, the stable case,
growth is linear and a significant increase in E1(t) occurs only after shock reflection from the center of convergence.
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the grid vectors are always time-centered on the corrector step. The data presented throughout this paper con-
stitute a representative sample taken from many simulations.

Before proceeding, we wish to mention that in the context of area-weighted differencing, multiple correctors
can and have been used to advance a timestep. In this instance the forces used to compute both D~r�p and D~rp in
Eq. (3.13) are formally at the nþ 1

2
time level, and we observe a decrease in the values of E1(t) by about a factor

of two with two correctors over that seen with one time-centered corrector step. The use of more than two
correctors does not result in any further decrease in E1(t) as roundoff error is always present to seed this error.
The use of multiple correctors in this context has not been found to improve the quality of any numerical
results and is not recommended.

Our third example contrasts the scaling of the E1(t) error norm for the Noh (see [15] for setup) and Guder-
ley problems with time-centered grid vectors but with increasing radial resolution and increasing CFL number
so that the number of cycles to run the Guderley problem to the quoted time of 0.74 is about 12,000, and the
Noh problem to a time of 0.05 is about 1000. This is an example of the second manner in which E1(t) can be
utilized, in this case with the dependence on timestep frozen out. Here we attempt to assess the order of spatial
accuracy by considering the scaling of the E1(t) error norm. In cylindrical geometry the grid is scaled in the
radial direction, using 400, 800, and 1600 radial zones, respectively, with three fixed 30� angles. It is seen from
Table 3 that the E1(t) error norm increases only modestly as the grid is refined radially for the Guderley prob-
lem, while it increases by somewhat more than a factor of two for the Noh problem. The Guderley problem is
a running shock wave that has not reflected by a time of 0.74, while the Noh problem is a stagnation shock
that shows a severe wall heating problem at the center of convergence of the grid. If one looks at the value of
the kernel of the error norm E1(t) defined for each zone, one finds that as the Noh problem is refined in the
radial direction, this error is constant as a function of logical radial index number from the origin. This is a
numerical example of non-uniform spatial convergence, and we expect this problem to show only first order
spatial accuracy with respect to the E1(t) error norm. Thus, if we conclude that the zone volume Vz in E1(t)

Table 2
Guderley problem in cylindrical geometry

CFL Cycle Time t Centered grid vectors Forward grid vectors

E1(t) Ratio E1(t) Ratio

1/4 2960 0.7 1.71E � 7 – 1.17E � 3 –
3433 0.75 3.00E � 6 – 5.13E � 3 –
5054 0.8 1.01E � 5 – 1.03E � 2 –

1/8 5922 0.7 2.97E � 8 5.75 5.54E � 4 1.37
6874 0.75 4.73E � 7 6.34 2.55E � 3 2.01

10087 0.8 1.34E � 6 7.53 5.12E � 3 2.01

P4 
2

When the grid vectors are time-centered, the ratios E1(CFL = 1/4)/E1(CFL = 1/8) are larger than four (e.g., Ratio = 1.71E � 7/2.97E �
8 = 5.75). Whereas when the grid vectors are full-forward, the ratios are approximately two.

Table 3
Guderley and Noh problems in cylindrical geometry

Grid CFL Cycle Time t E1(t) Ratio

Guderley problem

400 · 3 1/16 
12,000 0.74 1.90E � 8 1.26

800 · 3 1/8 2.39E � 8 1.39
1600 · 3 1/4 3.32E � 8 –

Noh problem

400 · 3 1/32 
1000 0.05 3.18E � 7 2.37
800 · 3 1/16 7.53E � 7 2.43
1600 · 3 1/8 1.83E � 6 –

The grid is refined as the CFL increases such that the same number of time steps is performed to reach the final time (12,000 for Guderley
problem, 1000 for Noh). Ratios are computed by dividing two consecutive norms.
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decreases as the square of the radial zone spacing, then for first order accuracy of the force differencing in the
Noh problem (r = 1), one expects that E1(t) should increase by factors of two as the number of radial zones is
successively doubled. Likewise, if the force is effectively calculated with second order spatial accuracy (r = 2),
then it is expected that E1(t) should remain approximately constant. This is close to what is seen for the Guder-
ley problem; these results are given in Table 3. We conclude that this running shock wave problem shows
approximate second order spatial accuracy with respect to the E1(t) error norm. This is because the zones that
contain the shock wave contribute a negligible contribution to E1(t) because they are few in number. Order of
accuracy is always a function of the norm used to measure it [2].

In the following example we employ the third strategy that was mentioned for utilizing our internal con-
sistency estimators. The Guderley problem is computed in 2D cylindrical geometry with a CFL number of
0.25; the number of radial zones is scaled from 800 to 1600 with three 30� angles. The scaling of both the
E1(t) and the Emax(t) norms is examined; these results are given in Table 4. Notice that the number of cycles
needed to reach a given time has doubled with an increase in grid size since it is the radial spacing of grid
points that determines the timestep for 30� angles before the shock wave intersects the center of convergence.
If we make the the same assumption as in the previous example regarding the scaling of the zone size Vz with
the number of radial zones, then the spatial part of the E1(t) norm should be close to constant. Thus a factor of
approximately four in the ratio of these norms comes from their (Dt)2 time dependence. This reasoning and the
results in Table 4 indicate second order accuracy in both space and time. Likewise, the decrease in the Emax(t)
norm by about a factor of two indicates a situation where there is second order accuracy in time but only first
order in space, since the growth in the spatial part of this norm cancels one-half of the decrease due to second
order time dependence. First order accuracy is what one expects with respect to the Emax(t) norm. If one
locates the position in the grid where the value of the max-norm is achieved, one finds that it tracks the shock
location exactly. That is, the value of the kernel that makes up these norms has its maximum at the shock
location, and for a given zone, relaxes in magnitude by about a factor of 20 after the shock wave has heated
this zone and moved by it. The type of reasoning just employed must be used carefully in that the conclusions
depend on both the scaling of Vz with grid dimensions, and that the timestep is determined by the scaled
dimension, which is certainly not always the case.

The Sedov blast wave problem is now considered. The precise setup used is given in [13]; it is run in 2D
cylindrical geometry using area-weighted differencing with grids consisting of square zones of size 45 · 45
and 90 · 90, and with CFL numbers of 0.25 and 0.125. The internal energy is zero in all zones except the single
zone at the origin. This zone contains the same total internal energy in all four cases, so the specific internal
energy is a factor of eight larger when going from a 45 · 45 to a 90 · 90 grid size. The Sedov problem has
always represented a particular challenge for all of the older non-energy-preserving Lagrangian algorithms
in that they show a loss of total energy of about 10%. This energy is lost in the first few timesteps and is large
enough to raise serious questions about the quality of the solution. For our compatible formulation, total
energy conservation is achieved, but the Emax(t) norm has a relatively high value for these cases. If we consider
only the error kernel for the inner zone where all internal energy is initially located, we find that this norm
oscillates in time with an approximate period of about 100 cycles and an amplitude of about 1–0.5% and does
not rapidly decay. This is a rather large value for this quantity compared to our other cases; however this inner

Table 4
Guderley problem in cylindrical geometry for CFL = 1/4

Grid CFL Cycle Time t E1(t) Ratio Emax(t) Ratio

800 · 3 1/4 5973 0.7 6.13E � 8 – 1.52E � 5 –
6964 0.75 8.43E � 7 – 2.77E � 4 –

10,367 0.8 3.60E � 6 – 1.14E � 3 –

1600 · 3 1/4 14,992 0.7 1.15E � 8 5.33 8.74E � 6 1.74
14,027 0.75 1.92E � 7 4.39 1.44E � 4 1.92
21,211 0.8 9.28E � 7 3.88 8.41E � 4 1.36


4 
2

The results show that when the grid is refined, the ratios of E1 norms (Ratio = 6.13E � 8/1.15E � 8 = 5.33) are near four, whereas they are
approximately two for the ratios of the Emax norms.
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zone expands by about a factor of ten in size (103 in volume), so interpreting this difference as a measure of
local truncation error about this zone is not unreasonable. If we investigate the error kernel of other zones in
the grid it is found that they all oscillate in time with an amplitude that decreases with radial location from the
origin, but is constant with respect to logical grid index number when the number of initial zones is doubled in
each dimension.

The results of this problem for the four cases mentioned are detailed for the E1(t) error norm in Table 5.
Unlike in the other examples considered, it is seen that this norm does not change as the CFL number is
halved for a fixed initial grid size. This appears to be connected to the oscillation of this error at all grid points,
something that is not seen in our other calculations. There is a decrease in the E1(t) norm by a factor of
between two and three when going from 45 · 45 to 90 · 90 zones with the CFL number held fixed. Notice
from Table 5 that it also takes about three times the number of cycles in this instance to reach the same final
time. So just as for the older Lagrangian algorithms, this problem is still somewhat of an engima.

The last example that is considered is the Guderley implosion problem in 3D Cartesian geometry. This is
run with a spherical initial grid on an octant with three 30� angles in both h and /, and with 100 zones in the
radial coordinate with unit initial domain. The relevance of this problem is to show what happens when the
symmetry correction factors given in [18] are turned on and off. Corrections to the grid vectors are necessary if
a calculation in 3D Cartesian geometry is to preserve 1D spherical symmetry when present in the initial and
boundary conditions, as is true for this case. The results from two simulations that are identical except for this
symmetry correction procedure are given in Table 6. There it is seen that the magnitude of the E1(t) norm is
about three to four orders larger for the case where the symmetry corrections are not utilized. With symmetry
corrections off, the flow field deviates from being 1D spherical, the velocity vectors are no longer grid-aligned,
and the grid distorts in space. This can be seen from the grid and density contours shown in Fig. 4.

Table 5
Sedov problem in cylindrical geometry

Grid CFL Cycle Time t E1(t) Ratio CFL Ratio grid

45 · 45 1/4 369 0.5 5.60E � 5 – –
551 1.0 7.38E � 5 – –

45 · 45 1/8 677 0.5 5.43E � 5 1.03 –
996 1.0 6.80E � 5 1.09 –

90 · 90 1/4 1031 0.5 2.23E � 5 – 2.51
1590 1.0 2.56E � 5 – 2.88

90 · 90 1/8 1846 0.5 2.07E � 5 1.08 2.62
2843 1.0 2.37E � 5 1.08 2.87

Ratio CFL (Grid) is the ratio between the E1 norms obtained for the same grid (CFL number) at the same time but for two different CFL
numbers (grids). Notice that Ratio CFL is approximately one and does not improve.

Table 6
Guderley problem in 3D Cartesian geometry for CFL = 1/4

Cycle Time t Dt E1(t) Total energy balance

With symmetry corrections

297 0.30 1.012E � 3 2.757E � 7 �3.257E � 15
636 0.60 7.386E � 4 7.645E � 7 �4.312E � 15
897 0.75 0.510E � 4 1.215E � 5 �4.332E � 15

Without symmetry corrections

299 0.30 1.000E � 3 8.839E � 4 �4.764E � 16
666 0.60 0.521E � 3 2.313E � 3 �9.746E � 16
1044 0.75 0.574E � 4 1.960E � 2 3.726E � 15

Although total energy is conserved to round-off error, the E1 norm shows relatively large values when no symmetry corrections are
applied; these numbers reflect the fact that 1D symmetry is broken, as seen in Fig. 4.
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The lack of 1D symmetry preservation in 3D Cartesian geometry with an initially spherical grid is not a
numerical instability, as was the hourglassing case of our first example. This is seen by the fact that although
the E1(t) norm is about three to four orders of magnitude larger with symmetry corrections off, compared to
the case with them on, these norms scale with time in the same manner. These calculations illustrate the ability
of the internal consistency error norms to detect numerical problems of differing origins with respect to any
given simulation.

4. Numerical stability

For any computational algorithm to be useful it must be numerically stable. By numerical stability one
means that if the underlying set of continuum of equations is stable, which says that the continuum system
has no growing solutions, then the differenced form of this system should also contain no growing solutions.
This is a necessary condition for a useful numerical algorithm. If the underlying continuum system of equa-
tions has energy source terms that allow growing solutions, then these terms are omitted from the stability
analysis. That is, a numerical stability analysis only makes sense for a continuum system of equations that
is already stable. For terms that produce growth of a solution one is only interested in the numerical accuracy
with which these terms are differenced. Often very simple subsystems of equations yield the correct numerical
stability results for much more complex ones; however, the selection of a proper subsystem can be a bit of an
art form. In our case, the simple second order wave equation in one space dimension, written as two coupled
first order equations, is utilized for this purpose. These equations are discretized in the next subsection, and the
stability of the two-step predictor–corrector scheme described earlier is analyzed using Fourier analysis [2].
The results reveal a stability diagram for constant space step and time step that has not been given previously.

It is difficult to empirically observe a precise stability boundary for a Lagrangian hydrodynamics algorithm
because such calculations are typically run with a constant CFL number, but with a grid spacing and a time-
step that can vary greatly during a simulation. Also, the definition of the scale length used in computing the
CFL number with respect to non-uniform zones is not unique. In order to verify the results of the stability
analysis derived using Fourier analysis of our simple system of equations, a numerical test problem is

Fig. 4. 3D Guderley problem at t = 0.75 in Cartesian geometry. The mesh is 100 · 3 · 3 on an octant of the unit sphere. Grid and density
contours are shown. Left: 1044 time steps with symmetry corrections off (the loss of 1D symmetry is quantified in Table 6 where the E1

norm is of truncation error size). Right: 897 time steps with symmetry corrections on.
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constructed that eliminates the above noted difficulties. This test problem is then used to substantiate the ana-
lytical results for the full system of equations in all three spatial dimensions.

4.1. Stability utilizing the 1D second order wave equation

The 1D second order wave equation written as a coupled first order system with unit velocity is given by

ou
ot
¼ ov

ox
;

ov
ot
¼ ou

ox
; ð4:1Þ

where u = u(x, t) can be thought of as the velocity, so that the first equation is that for momentum, and
v = v(x, t) is the pressure or density in the more general system given by Eqs. (2.1), (2.2). Note that in our sim-
plified model there is no equation of state (EOS), so that if this model yields meaningful results we expect these
results to be independent of the form of the EOS of the more general equations.

On a 1D domain X = [xmin,xmax], a mesh is defined by Nz zones/cells and Np = Nz + 1 points such that
xj = xmin + (j � 1)Dx where Dx = xj+1 � xj is the size of a cell jþ 1

2
. Time is discretized using a time step

Dt = tn+1 � tn and we define the CFL number as r ” Dt/Dx. For our stability analysis, we assume that Dx

and Dt are constant in time. The velocity u is discretized on node j at time tn = nDt as un
j , whereas v is placed

at the center of the cell jþ 1
2

as vn
jþ1

2
. The numerical scheme is denoted by Sa, where 0 6 a 6 1, and is defined by

the following equations

� Predictor step: u�j , v�jþ1 at time tn + Dt; �v�
jþ1

2
at time tn + aDt

u�j ¼ un
j þ r vn

jþ1
2
� vn

j�1
2

� 	
; ð4:2Þ

v�jþ1
2
¼ vn

jþ1
2
þ r

1

2
ðu�jþ1 þ un

jþ1Þ �
1

2
ðu�j þ un

j Þ
� �

; ð4:3Þ

�v�jþ1
2
¼ av�jþ1

2
þ ð1� aÞvn

jþ1
2
. ð4:4Þ

� Corrector step: uses the * values to increment un and vn

unþ1
j ¼ un

j þ r �v�jþ1
2
� �v�j�1

2

� 	
; ð4:5Þ

vnþ1
jþ1

2
¼ vn

jþ1
2
þ r

1

2
ðunþ1

jþ1 þ un
jþ1Þ �

1

2
ðunþ1

j þ un
j Þ

� �
. ð4:6Þ

This is a two parameter system: the CFL number r, and the parameter a that time-averages the pressure
from the predictor step to the momentum equation on the corrector step. With a = 0 the predictor and cor-
rector steps are the same and the scheme is known to be unconditionally unstable. A few additional remarks
on this discretization are in order; first, in the equations used to advance v�jþ1=2 and vnþ1

jþ1=2 in time, an average
of the values of u at the advanced and old time levels is used on the RHS of Eqs. (4.3), (4.6) instead of a full-
forward value. This is due to the fact that in the equations that are actually solved numerically, Eq. (2.2),
also uses an average of old and advanced velocity to form the displacement D~rp. This time centering is
necessary if we expect the simple model to accurately represent the compatible hydrodynamics equations
that we wish to solve. The time centering parameter a in the corrector step, that is used in Eq. (4.5), has
two important values: a = 1/2 is referred to as time-centered, and a = 1 is referred to as full-forward.

By substituting Eqs. (4.2)–(4.4) into (4.5) and (4.6) we obtain explicit formulas for u and v at time tn+1:

unþ1
j ¼ un

j þ r vn
jþ1

2
� vn

j�1
2

� 	
þ ar2ðun

jþ1 � 2un
j þ un

j�1Þ þ
1

2
ar3 vn

jþ3
2
� 3vn

jþ1
2
þ 3vn

j�1
2
� vn

j�3
2

� 	
; ð4:7Þ

vnþ1
jþ1

2
¼ vn

jþ1
2
þ rðun

jþ1 þ un
j Þ þ

1

2
r2 vn

jþ3
2
� 2vn

jþ1
2
þ vn

j�1
2

� 	
þ 1

2
ar3ðun

jþ2 � 3un
jþ1 þ 3un

j � un
j�1Þ

þ 1

4
ar4 vn

jþ5
2
� 4vn

jþ3
2
þ 6vn

jþ1
2
� 4vn

j�1
2
þ vn

j�3
2

� 	
: ð4:8Þ
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A convenient way to analyze such schemes, and which is due to Von Neumann [2], is to assume a solution of
the form: un

j ¼ u0kneihjDx and vn
jþ1

2
¼ v0kneihðjþ1

2ÞDx where h is a real parameter, and i ¼
ffiffiffiffiffiffiffi
�1
p

. The quantity
k = k(h) is determined by substituting these forms into Eqs. (4.7) and (4.8). After some algebraic manipula-
tion, these equations can be written as the linear system

M
u0

v0

� �
�

kþ A iC

iC kþ B

� �
u0

v0

� �
¼

0

0

� �
; ð4:9Þ

where A, B, C are defined by

A ¼ �1þ 4ar2s2; B ¼ �1þ 2r2s2ð1� 2ar2s2Þ; C ¼ 2rsð1� 2ar2s2Þ
and s = sin(h/2). If this system is to be solved for any vector (u0,v0), the determinant of the matrix M must be
zero, that is, det(M) = k2 + k(A + B) + AB � C2 = 0. Thus, det(M) is a polynomial in k, the complex roots of
which are

k� ¼ �Aþ B
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� BÞ2

4
þ C2

s
. ð4:10Þ

For numerical stability the solution vector must not increase in magnitude with time, or j(un+1,vn+1)j 6
j(un,vn)j, must hold. Thus we require that jk±j 6 1. Our objective is to characterize the maximum value of
the CFL number r such that, given a particular value of a, jk±j 6 1.

k� 2 C: In this case ðA�BÞ2
4
þ C2 < 0, and we can instead consider

jk�j2 ¼ Aþ B
2

� �2

� ðA� BÞ2

4
� C2 ¼ AB

2
� C2 ¼ 1� 2ð2a� 1Þr2s2 � 4ar4s4.

Two cases must be considered:

� if a < 1/2, then �2(2a � 1)r2s2 > 0 and there exists r small enough such that �2(2a � 1)r2s2 > 4ar4s4 for any
s leading to jk±j2 > 1; the scheme Sa<1/2 is therefore unconditionally unstable;
� if a P 1/2, then �2(2a � 1)r2s2 � 4a r4s4

6 0 for any s resulting in jk±j2 6 1 independent of r.

k� 2 R: In this case ðA�BÞ2
4
þ C2 P 0, and we need only to focus on the case a P 1/2, as the case a < 1/2 has

just been shown to be unconditionally unstable (see above). Several examples are depicted in Fig. 5, where the
discriminant (thick line) and k� 2 R (thin lines) are plotted. These plots show for which h the discriminant is
positive. Moreover, for stability we need �1 6 k±

6 1. It can easily be shown that the maximum value of jk±j
is always reached for the largest wave number h = ±p. Therefore, we compute the eigenvalues when
s ¼ sinðh

2
Þ ¼ 1.

� a = 1: the eigenvalues are given by (see Fig. 6 left curve)

k� ¼ 1� r2ð3� 2r2Þ � r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4þ 17r2 � 12r4 þ 4r6

p
;

using r = 1, we obtain jk�j ¼ j �
ffiffiffi
5
p
j > 1. The scheme is unstable in this case. On this other hand, choosing

the value r ¼ 1=
ffiffiffi
2
p
¼ 1=

ffiffiffiffiffi
2a
p

yields jk±j = 1. (In fact, if r > 1=
ffiffiffi
2
p

, then jk±j > 1 resulting in instability.)
Therefore, for a = 1 and k� 2 R one expects stability for the CFL condition: r 6 1=

ffiffiffi
2
p

.
� a = 3/4: the eigenvalues are given by (see Fig. 6 middle curve)

k� ¼ 1� r2

2
ð5� 3r2Þ � r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16þ 49r2 � 30r4 þ 9r6

p
;

which is exactly equal to ±1 if r ¼ 1=
ffiffiffiffiffiffiffiffi
2=3

p
¼ 1=

ffiffiffiffiffi
2a
p

. (Again if r >
ffiffiffiffiffiffiffiffi
2=3

p
, then jk±j > 1.) Therefore, for

a = 3/4 and k� 2 R one expects stability for the CFL condition: r 6
ffiffiffiffiffiffiffiffi
2=3

p
.

� a = 1/2: the eigenvalues are given by (see Fig. 6 right curve)

k� ¼ 1� r2ð2� r2Þ � r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4þ 8r2 � 4r4 þ r6

p
;
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which is exactly equal to ±1 if r ¼ 1 ¼ 1=
ffiffiffiffiffi
2a
p

. (As is now expected, if r > 1, then jk±j > 1, which results in
numerical instability.) Therefore, for a = 1/2 and k� 2 R one expects stability for the classical CFL condi-
tion: r 6 1.

In summary, the schemes Sa are unconditionally unstable if a < 1/2, and stable if a P 1/2 and if the CFL
condition r 6 1=

ffiffiffiffiffi
2a
p

is obeyed (see Fig. 7). Typically, a CFL number less than the maximum allowed for sta-
bility is used, most commonly the CFL number r = 1/4. In Fig. 8, jk+j (for three schemes a = 1, 3

4
, 1

2
) is plotted
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as a function of h 2 [�p,p] for the fixed CFL number r ¼ 1
4
. This plot shows that the scheme defined by

a = 1/2, which lies on the stability boundary, is the least dissipative of the family a P 1/2. The full-forward
scheme S1 damps more than any other.

4.2. Stability of the compatible hydrodynamics equations

The previous stability analysis has been performed for the 1D coupled system of wave equations using a
discretization that, although simplified, does indeed correspond to that utilized for the more general system.
In order to verify that these results are valid in the more general case, the full compatible hydrodynamic sys-
tem of equations are solved for the following model problem. Consider the fluid equations in 1D, 2D, and 3D
Cartesian geometry with the initial conditions: uniform density q = 1, ideal gas law EOS with c = 5/3, a sound
speed of cs = 1, and velocity~v ¼ 0. A unit domain with uniform zone size is constructed: 10, 102, 103 zones
typically, but we also use slightly larger values to rule out surface effects since reflective boundary conditions
are imposed on all faces of the domain. In 1D only, the pressure is seeded with a random perturbation at the
10�15 level whenever the EOS is called; in 2D and in 3D, the roundoff error that automatically occurs when
calculating the grid vectors that are used to construct the corner force for each predictor and corrector stage of
a timestep is sufficient to seed numerical instability (in 1D Cartesian geometry these are fixed at unity). Since
for this problem no velocity should develop, simulations are run for a very large number of time cycles, typ-
ically 105, and with varying values for the CFL number r, and time-centering parameter a, in the corrector
step. A sensitive gauge that provides a useful way to monitor the stability of any given simulation is to track
the total kinetic energy KCFLðtnÞ � 1

2

P
pMpð~vn

pÞ
2. Since the density and domain size are scaled to unity, this

number should remain at the square of machine precision, about 10�28–10�30 in our case. For an unstable
scheme it is observed that KCFL(tn) grows by several orders of magnitude long before the 105 cycle limit is
reached. Using this test one can very accurately scope out the stability boundary in r and a space for all three
dimensions. The 1D results are found to exactly match those produced by our analysis of the simplified 1D
system of equations (4.1) (see Fig. 7); the 2D and 3D results are also found to be identical to those of the sim-
plified 1D system of equations. Thus we conclude that the stability analysis performed on the 1D simplified
system of equations is valid for the full hydrodynamic equations in all spatial dimensions. Although the arti-
ficial viscosity is turned off in this test problem, this term acts only as an addition to the pressure as far as
stability is concerned. This point is stressed in the original paper that introduced this concept [4]. We also note
that the same stability diagram (Fig. 7) is obtained for this test problem using an isothermal EOS, and further
supports our conclusion that the numerical stability of the compatible Lagrangian hydrodynamics equations is
EOS independent.

5. Conclusions

The theme of this paper is to clarify numerical issues concerning the internal consistency, stability, and
accuracy of a recent discretization of the equations of fluid dynamics cast into Lagrangian form that we refer
to as the discrete, compatible formulation. The proper resolution of the issues mentioned are central to the
understanding of any numerical algorithm. Although Lagrangian hydrodynamics algorithms are very old,
they languished until recently as attention in computational fluid dynamics turned to broader areas and
domains of interest. The central feature of this more modern form of Lagrangian hydrodynamics is its ability
to exactly conserve mass, momentum, and total energy without the need to use these quantities directly as
dependent variables. It instead retains density, velocity, and specific internal energy as dependent variables
as did the earlier version of this algorithm; these variables are more appropriate to compressible high speed
flow calculations.

The internal consistency of this algorithm was investigated by analyzing the difference between the two
definitions of zone volume that it utilizes. This difference comes about because of the subtle relationship of
surface area to volume that characterizes any closed volume, and thus is seen to arise quite generally and
naturally. It was shown that this difference can be used to ascertain many properties of a simulation, and thus
has direct and practical significance. Non-dimensional internal consistency norms were constructed based
on the difference in these two volumes. These can be used to operationally measure the non-dimensional
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magnitude of the truncation error of a calculation by placing the grid vectors from which the corner force is
calculated at the fully advanced time level on the corrector step. The accuracy in both space and time can also
be measured, and results were found to correspond to the first or second order accuracy that one expects in
space or time with the type of finite-volume differencing employed with Lagrangian schemes. It was also
shown that some care must be exercised in the use and interpretation of these norms/estimators. More impor-
tantly, the difference in these two definitions of zone volume, which can be interpreted as a form of entropy
error, was demonstrated to be significant only when numerical instability occurs, or other numerical difficul-
ties, such as a loss of lower dimensional symmetry, appear. A precipitous increase in this quantity during any
calculation is a sensitive indication of the development of numerical difficulties. Otherwise this difference
remains at or far below truncation error levels. A numerical stability analysis of the two level predictor/cor-
rector time integration scheme employed was also performed: first with a simplified set of model equations
using standard Fourier stability analysis, and then using a properly constructed test problem that verifies this
analysis for the actual system of equations in all three spatial dimensions. This stability analysis showed that
our compatible system of equations with predictor–corrector time integration is stable for CFL number
r 6 1=

ffiffiffiffiffi
2a
p

and a P 0.5, where a is the time centering parameter of the pressure on the corrector step; other-
wise, it is unconditionally unstable.

The principal conclusion of this study is that the corner force, which is the central feature of this numerical
scheme, should be placed at the time-centered nþ 1

2
time level on the corrector step of a cycle. This centering

should be performed with respect to both the grid vectors, to minimize the difference in the two zone volumes
used in this formulation, and with respect to the total stress (pressure plus deviators, and artificial stresses such
as viscosity and anti-hourglass forces). Corner force time-centering results in the least amount of numerical
dissipation and the largest stability margin. However, this is also seen to be just at the stability boundary,
and is thus a somewhat different choice than is often made with numerical schemes (particularly ODE solvers)
where the timestep is chosen from within the stability region.
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1.3. Numerical analysis 39

1.3.2 Stability (again)

A non-classical stability bound has been uprised in [12]. However we were not able to rigorously
prove it and we had to resort to numerical sampling only at the very end of the proof to validate
this stability bound cleverly conjectured by B. Wendroff. This was unfortunate. Consequently with
the help of B. Wendroff we attacked this proof again in paper [15] entitled On stabiliy analysis of
staggered schemes.
Some years ago, M. Shashkov, proposed a simple problem for the purpose of testing the stability
of Lagrangian hydrodynamics codes. The initial data are given as zero velocity, constant pressure
and constant density. One then computes the total kinetic energy, which should be zero for all time.
We have discovered in [12] that it was unstable for certain mesh ratios that “folklore” indicated
should be otherwise — the instability manifested itself as an explosive growth of kinetic energy.
The surprise here is not that a 1D symmetry preserving 2D code could be unstable for 1D data ;
the surprise lies in the contradiction of the “folklore". Briefly, the compatible staggered Lagrangian
scheme has two parameters, α and β 7 such that if α = β = 1/2, the scheme resembles a time
centered (Crank-Nicolson) scheme, while if α = β = 1, it looks like backward Euler. For the
Courant-Friedrichs-Lewy (CFL) condition CFL = 1, the scheme is stable for α = β = 1/2. However,
for α = 1, β = 1/2 the scheme is unstable for CFL > 0.71, indicating that as α increases, the CFL
limit decreases.

In [12] we have created a 1D problem using the same data ; we seed a 1D staggered-grid predictor-
corrector compatible Hydrodynamics Lagrangian code with a small random perturbation of the
pressure. Moreover, we have created the multi-dimension version of the problem and have run our
2D and Caramana’s 3D code as well. We observed the same phenomenon in 1D, 2D, and 3D [12].
The stability limit was conjectured by B. Wendroff to be CFL = 1/(2

√
αβ), and numerical tests in

[12] using the full nonlinear equations show that this is true provided α ≥ 1/2 and β ≥ 1/2. In this
paper we prove the above conjecture in 2D, which contains 1D as a special case. Of course, there
is no possibility of doing this for the full nonlinear problem - the Euler equations. Ultimately, one
applies a von Neumann analysis to the linearized system. In [12] we almost succeeded in doing this
theoretical analysis in 1D. In this paper we have succeeded in 2D, by using the numerical radius of
the amplification matrix as a tool, an idea apparently first applied in [101]. This proof is the goal of
this paper.
We showed on wave equations as a model equation that the staggered implicit scheme is uncondi-
tionally stable for α ≥ 1/2, β ≥ 1/2 ; moreover we showed that the predictor-corrector staggered
scheme is stable for α ≥ 1/2, β ≥ 1/2 and CFL ≤ 1/(2

√
αβ). In a specific paragraph we demon-

strated on a specific 1D example that the schemes for α < 1/2 or β < 1/2 can not be stable as some
Fourier components are amplified. Finally, we have showed 2D numerical results for the wave and
Euler equations using a compatible Lagrangian Hydrodynamics code. In Fig. 1.6 we reproduce the
graphics from [15] showing the numerical experiments made with the wave equations (panel (a))
and the hydrodynamics equation (panel (b)). The exact and experimental maximal CFL number as
a function of α, β and only α are in perfect agreement.

This paper is reproduced in the following pages.

7. One parameter for each ’entity location’, that is to say α for cell-centered variables, β for node-centered ones.
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Figure 1.6 – Numerical results from paper [15]. Maximum CFL number λ as a function of α (β fixed) for the kinetic
energy to remain on the order of machine precision for the stability test case of M.Shashkov — (a) Wave equations. The
vertical dashed line is the α = 1/2 limit, the horizontal one is the CFL = 1 limit. The Theorem predicts the continuous
thick lines, the code produces the data for different β. Any scheme defined by a value α ≥ 1/2 and β ≥ 1/2 is stable
with the following CFL number λ ≤ 1/(2

√
αβ) — (b) Hydrodynamics equations for β = 1/2. The therorem predicts

the dashed line ; the 2D code produces the continuous line. Any scheme defined by a value α ≥ 1/2 is stable with the
CFL number λ ≤ 1/

√
2α and is unstable otherwise.
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Abstract. This paper investigates the theoretical stability bound of a Lagrangian staggered
scheme used to solve hydrodynamics equations. We present the two-dimensional (2D) wave equation
as a possible model for this study and, by using the numerical radius of the amplification matrix,
we prove that the family of schemes defined with two time-centering parameters is limited by a non-
classical stability bound limit defined with an analytical curve. We further show that 2D numerical
experiments agree with this theoretical result.
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1. Introduction. The concept of stability was first introduced in the seminal pa-
per [1] of Courant, Friedrichs, and Lewy in 1928 where they discussed finite-difference
methods for solving partial differential equations. Amazingly in the very same paper
they studied one of the first staggered numerical schemes for the one-dimensional (1D)
wave equation vt = cwx, wt = cvx, which was further developed in 1967 by Richtmyer
and Morton in [6] and cast in its “modern” form as:

vn+1
j − vnj

Δt
= c

wn
j+1/2 − wn

j−1/2

Δx
,

wn+1
j−1/2 − wn

j−1/2

Δt
= c

vn+1
j − vn+1

j−1

Δx
.

By considering these works as the genesis for numerical analysis and computational
fluid dynamics, one would expect the stability of staggered numerical schemes to
be at present well understood. However, this is far from being the case. Although
staggered schemes have since been widely employed computationally, not much is
known analytically about the stability of staggered schemes.

The use of staggered schemes also dates back to the inception of Los Alamos Na-
tional Laboratory where the “calculation of certain time-dependent fluid flows played
an important part in the wartime work of the laboratory” (preface to the first edition
of [6]). Staggered schemes have frequently been used to solve the compressible fluid
dynamics equations in their Lagrangian formulation. In this case, a staggered spatial
placement of variables is used, where the position and velocity are defined at grid
points and density, internal energy, and the pressure are defined at cell centers. Since
this time, other Lagrangian hydrodynamics staggered numerical codes have been de-
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veloped around the globe, but again little advancement has been made towards a
deeper understanding and analytical proof of the stability of such schemes.

Some years ago, Shashkov proposed a simple problem for the purpose of testing
the stability of Lagrangian hydrodynamics codes. The initial data are given as zero
velocity, constant pressure, and constant density. One then computes the total kinetic
energy, which should be zero for all time. Caramana recently tried this problem with
his two-dimensional (2D) staggered grid Lagrangian code and discovered that it was
unstable for certain mesh ratios that “folklore” indicated should be otherwise—the
instability manifested itself as an explosive growth of kinetic energy. The surprise
here is not that a 1D symmetry-preserving 2D code could be unstable for 1D data;
the surprise lies in the contradiction of the folklore.

The precise numerical scheme we are referring to and which is the focus of our
investigation is the staggered-grid predictor-corrector compatible Lagrangian hydro-
dynamics scheme. We refer the reader to [3], [4] for the details of this scheme which
we omit here. Briefly, there are two parameters α and β such that, if α = β = 1/2,
the scheme resembles a time-centered (Crank–Nicolson) scheme, while if α = β = 1,
it looks like backward Euler. For the Courant–Friedrichs–Lewy (CFL) condition CFL
= 1, the scheme is stable for α = β = 1/2. However, for α = 1, β = 1/2 the scheme
is unstable for CFL > 0.71, indicating that, as α increases, the CFL limit decreases.
Bauer et al. then created a 1D problem by using the same data; they seed their 1D
staggered-grid predictor-corrector compatible hydrodynamics Lagrangian code with a
small random perturbation of the pressure. Moreover, they created the multidimen-
sion version of the problem and ran their 2D and Caramana’s 3D code as well. They
observed the same phenomenon in 1D, 2D, and 3D [3]. The stability limit was conjec-
tured to be CFL = 1/(2

√
αβ), and numerical tests using the full nonlinear equations

show that this is true provided α ≥ 1/2 and β ≥ 1/2 [3].
We prove the above conjecture in 2D, which contains 1D as a special case. Of

course, there is no possibility of doing this for the full nonlinear problem—the Euler
equations. Ultimately, one applies a von Neumann analysis to the linearized system.
Bauer et al. [3] almost succeeded in doing this theoretical analysis in 1D, resorting
to numerical sampling only at the very end of the proof. We have succeeded in
2D, by using the numerical radius of the amplification matrix as a tool, an idea
apparently first applied in [2]. This proof is the goal of this paper, which is articulated
as follows: First we present the Lagrangian coordinates and justify the use of the
wave equation as a possible linear model for the Euler equations in 1D and 2D;
second, we introduce the notation; third, we show that the staggered implicit scheme
is unconditionally stable for α ≥ 1/2, β ≥ 1/2; fourth, we show that the predictor-
corrector staggered scheme is stable for α ≥ 1/2, β ≥ 1/2, and CFL ≤ 1/(2

√
αβ).

In a paragraph we show on a specific 1D example that the schemes for α < 1/2 or
β < 1/2 cannot be stable as some Fourier components are amplified. Finally, we show
2D numerical results for the wave and Euler equations using a compatible Lagrangian
hydrodynamics code.

2. Lagrangian coordinates and wave equation models.

2.1. 1D. The hydrodynamic equations in 1D Lagrangian coordinates, expressed
in mass variables m, are

du

dt
= − ∂p

∂m
,

dτ

dt
=

∂u

∂m
,

de

dt
= −p

∂u

∂m
,
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where u is the velocity, τ is the specific volume, e is the specific internal energy, and
p = p(τ, e) is the pressure.

Total energy E and entropy S are conserved:

dE

dt
=

1

2

du2

dt
+

de

dt

= −u
∂p

∂m
− p

∂u

∂m
= −∂pu

∂m
,

and

T
dS

dt
=

de

dt
+ p

dτ

dt
= 0.

Therefore for smooth flows the exact differential equations for u, p are

du

dt
= − ∂p

∂m
,

dp

dt
=

dp

dτ

dτ

dt
+

dp

de

de

dt
=

(
dp

dτ
− p

dp

de

)
∂u

∂m
,

and taking the coefficients p, dp
dτ , and dp

de to be constant yields a linear system with

constant coefficients. Now assume that dp
dτ < 0 and dp

de > 0. As

c =

√∣∣∣∣
dp

dτ

∣∣∣∣ + p
dp

de

is the sound speed, the linearization of the system with constant coefficients is obtained
by freezing the sound speed; that is, c is assumed to be constant in space and time.
Consequently, the resulting system is just the wave equation

du

dt
= − ∂p

∂m
,

dp

dt
= −c2

∂u

∂m
.

By using the new variables u = u′/c and dm/c = −da and dropping the prime
notation, this linearized system can be written as

du

dt
=

∂p

∂a
,(2.1)

dp

dt
=

∂u

∂a
.(2.2)

2.2. 2D. The same linearized reduction can be performed for Lagrangian coor-
dinates in 2D, but it is not quite as straightforward. In 2D the Euler equation system
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is

ρ
du

dt
= −∂p

∂x
,

ρ
dv

dt
= −∂p

∂y
,

ρ
dτ

dt
=

∂u

∂x
+

∂v

∂y
,

ρ
de

dt
= −p

(
∂u

∂x
+

∂v

∂y

)
,

dx

dt
= u,

dy

dt
= v.

By following [7], [8] we make the change of variables:

x = x(a, b, t),

y = y(a, b, t),

with the choice

a = x(a, b, 0),

b = y(a, b, 0).

The Jacobian matrix of the transformation (x, y) ↔ (a, b) is given by

J =

(
∂x
∂a

∂x
∂b

∂y
∂a

∂y
∂b

)
,

the determinant of which is the Jacobian

J =
∂x

∂a

∂y

∂b
− ∂y

∂a

∂x

∂b
.

For the two velocity equations we now have

Jρ
du

dt
=

∂y

∂a

∂p

∂b
− ∂y

∂b

∂p

∂a
,

Jρ
dv

dt
=

∂x

∂b

∂p

∂a
− ∂x

∂a

∂p

∂b
.

But then, by starting the linearization by freezing the entries of the Jacobian, we
obtain

Jρ
d

dt

(
u
∂x

∂a
+ v

∂y

∂a

)
= −J

∂p

∂a
,

Jρ
d

dt

(
u
∂x

∂b
+ v

∂y

∂b

)
= −J

∂p

∂b
.

Thus, by letting

u′ = u
∂x

∂a
+ v

∂y

∂a
,

v′ = u
∂x

∂b
+ v

∂y

∂b
, 41
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we obtain

ρ
du′

dt
= −∂p

∂a
,

ρ
dv′

dt
= −∂p

∂b
.

We next need to evaluate ∂u
∂x + ∂v

∂y in the energy equation. First,

Ju =
∂y

∂b
u′ − ∂y

∂a
v′,

−Jv =
∂x

∂b
u′ − ∂x

∂a
v′.

Then taking the derivative of u and v yields

J2 ∂u

∂x
=

∂y

∂b

(
∂y

∂b

∂u′

∂a
− ∂y

∂a

∂u′

∂b

)
− ∂y

∂a

(
∂y

∂b

∂v′

∂a
− ∂y

∂a

∂v′

∂b

)
,

J2 ∂v

∂y
=

∂x

∂b

(
∂x

∂b

∂u′

∂a
− ∂x

∂a

∂u′

∂b

)
− ∂x

∂a

(
∂x

∂b

∂v′

∂a
− ∂x

∂a

∂v′

∂b

)
.

Summing the previous equations gives

J2 ∂u

∂x
+ J2 ∂v

∂y
=

((
∂x

∂b

)2

+

(
∂y

∂b

)2
)

∂u′

∂a
−

(
∂x

∂a

∂x

∂b
+

∂y

∂a

∂y

∂b

)
∂u′

∂b

−
(
∂x

∂a

∂x

∂b
+

∂y

∂a

∂y

∂b

)
∂v′

∂a
+

((
∂x

∂a

)2

+

(
∂y

∂a

)2
)

∂v′

∂b
,

and in order to cancel the cross terms, we are forced to assume here that

∂x

∂a

∂x

∂b
+

∂y

∂a

∂y

∂b
= 0,(2.3)

so that

∂u

∂x
+

∂v

∂y
= d1

∂u′

∂a
+ d2

∂v′

∂b
,

d1 =
1

J2

((
∂x

∂b

)2

+

(
∂y

∂b

)2
)
,

d2 =
1

J2

((
∂x

∂a

)2

+

(
∂y

∂a

)2
)
.

So

ρ
du′

dt
= −∂p

∂a
,

ρ
dv′

dt
= −∂p

∂b
,

ρ
dτ

dt
= d1

∂u′

∂a
+ d2

∂v′

∂b
,

ρ
de

dt
= −p

(
d1

∂u′

∂a
+ d2

∂v′

∂b

)
.
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Now ρ can be scaled into a, b, and as before, a simple substitution yields

du′

dt
= −∂p

∂a
,

dv′

dt
= −∂p

∂b
,

dp

dt
= −c2

(
d1

∂u′

∂a
+ d2

∂v′

∂b

)
.

Finally, returning to (u, v, a, b), set

u = −c
√
d1u

′, v = −c
√

d2v
′,

a = c
√
d1 ã, b = c

√
d2 b̃,

to obtain the 2D wave equation as a model:

du

dt
=

∂p

∂ã
,

dv

dt
=

∂p

∂b̃
,

dp

dt
=

∂u

∂ã
+

∂v

∂b̃
.(2.4)

However, this formulation critically depends on (2.3), so ultimately we present this
as only a potential model.1

3. Notation. This section defines the notation that will be used throughout the
rest of this paper.

The standard inner product on a complex vector space of dimension N is 〈f ,g〉 =∑N
i=1 fi ḡi for two complex vectors f = (fi)i=1,...,N and g = (gi)i=1,...,N .

Time. We will assume equal time steps; that is, the temporal interval [0, T > 0]
is discretized into equal intervals [tn, tn+1], with tn+1 = tn + Δt.

Space. In 2D we define uniform rectangles with vertices xi,j , yi,j , where xi+1,j =
xi,j + Δx and yi,j+1 = yi,j + Δy. Nodal quantities are indexed by (i, j), while cell
quantities are indexed by (i + 1

2 , j + 1
2 ).

Discretization. The ratio of time step to space step in each dimension is given by
λx = Δt

Δx , λy = Δt
Δy .

Hence, any quantity P at some point (i, j) at time tn is represented as Pn
i,j .

Similarly, any cell-based quantity C at time tn+1 is represented as Cn+1
i+ 1

2 ,j+
1
2

.

For any variable w defined at two time levels tn+1 > tn on a point or in a cell, we
define its interpolated value at an intermediate time n + κ as:

wn+κ = κwn+1 + (1 − κ)wn, 0 ≤ κ ≤ 1.

We further define a vector w = (u,v,p)
t

and wα,β = (un+α,vn+α,pn+β)t, where

u = {ui,j : ∀ (i, j)} , v = {vi,j : ∀ (i, j)} , and p =
{
pi+ 1

2 ,j+
1
2

: ∀ (i, j)
}
.

1The Jacobian matrix J contains information relating to the volume, shape, and orientation of
an element after the transformation (a, b) → (x, y). Λ = JTJ is the associated metric tensor:

Λ =

(
λ11 λ21

λ12 λ22

)
=

⎛
⎝

(
∂x
∂a

)2
+

(
∂x
∂b

)2
∂x
∂a

∂x
∂b

+ ∂y
∂a

∂y
∂b

∂x
∂a

∂x
∂b

+ ∂y
∂a

∂y
∂b

(
∂y
∂a

)2
+

(
∂y
∂b

)2

⎞
⎠ ,

Λ is a symmetric matrix, and moreover the constraint (2.3) states that λ12 = 0: The metric tensor
Λ is diagonal, meaning that the implied system of coordinates is orthogonal.
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Boundary conditions. We assume throughout that all sums exist and that Fourier
transforms can be taken. Also, in the usual way, it is supposed that effectively there
are no boundaries and therefore that indices can be shifted in a sum without changing
its value. For example, for all integers k

∑

i

ui,j pi+ 1
2 ,j

=
∑

i

ui+k,j pi+ 1
2+k,j .

Operators. There are two sets of data: nodal quantities and cell quantities. Con-
sider the operator Qx that maps cell data to nodal data given by

(Qxp)i,j =
1

2

(
pi+ 1

2 ,j+
1
2

+ pi+ 1
2 ,j− 1

2
− pi− 1

2 ,j+
1
2

− pi− 1
2 ,j− 1

2

)
.

By using the usual scalar product in both nodal and cell spaces, the adjoint Q∗
x maps

nodal data to cell data and is defined by

〈Q∗
xu, p〉 = 〈u,Qxp〉 =

1

2

∑
ui,j

(
pi+ 1

2 ,j+
1
2

+ pi+ 1
2 ,j− 1

2
− pi− 1

2 ,j+
1
2

− pi− 1
2 ,j− 1

2

)

=
1

2

∑
pi+ 1

2 ,j+
1
2

(
ui,j + ui,j+1 − ui+1,j − ui+1,j+1

)
;

that is,

(Q∗
xu)i+ 1

2 ,j+
1
2

=
1

2

(
ui,j + ui,j+1 − ui+1,j − ui+1,j+1

)
.

Similar definitions exist for Qy and Q∗
y.

The notation for a staggered scheme on a rectangular grid for the 2D wave equa-
tion is depicted in Figure 3.1, where p is defined at the center of each cell and
u and v are defined at nodes. For this scheme p has fractional indices, whereas
u and v have integer indices. Moreover, one defines interpolated values at each
midedge point; for example, for a midedge point defined with indices i + 1

2 , j + 1
one has pi+ 1

2 ,j+1 = 1
2 (pi+ 1

2 ,j+
3
2

+ pi+ 1
2 ,j− 1

2
) and ui+ 1

2 ,j+1 = 1
2 (ui,j+1 + ui+1,j+1),

whereas for a midedge point i, j + 1
2 one has pi,j+ 1

2
= 1

2 (pi+ 1
2 ,j+

1
2

+ pi+ 3
2 ,j+

1
2
) and

ui,j+ 1
2

= 1
2 (ui,j+1 + ui+1,j).

By using this notation, a fully implicit staggered scheme applied to system (2.4)
can be written as

un+1
i,j = un

i,j + λx

(
pn+α
i+ 1

2 ,j
− pn+α

i− 1
2 ,j

)
,

vn+1
i,j = vni,j + λy

(
pn+α
i,j+ 1

2

− pn+α
i,j− 1

2

)
,(3.1)

pn+1
i+ 1

2 ,j+
1
2

= pni+ 1
2 ,j+

1
2

+ λx

(
un+β

i+1,j+ 1
2

− un+β

i,j+ 1
2

)
+ λy

(
vn+β

i+ 1
2 ,j+1

− vn+β

i+ 1
2 ,j

)
.

The difference operator is given by the matrix

M =

⎛
⎝

0 0 Qx

0 0 Qy

−Q∗
x −Q∗

y 0

⎞
⎠ ,

together with

Λ =

⎛
⎝

λx 0 0
0 λy 0
0 0 1

⎞
⎠ .
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u i+1, j+1u i, j+1
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p p p

p p p

i+1/2, j+3/2

i−1/2, j−1/2 i+1/2, j−1/2

i+3/2, j+3/2

i+3/2, j−1/2

j+1

i i+1

j

j+1/2

i+1/2

*

*

* *
i−1/2, j+1/2

p
i+1/2, j+1/2

p
i+3/2, j+1/2

i−1/2, j+3/2

p

v i+1, j+1/2

u
i+1, j+1/2

p
i+1, j+1/2

v
u
p

i+1/2, j+1

i+1/2, j+1

i+1/2, j+1

v i, j−1/2

u
i, j−1/2

p
i, j−1/2

Fig. 3.1. Rectangular staggered scheme. p is defined at cell centers with fractional indices:
pi+ 1

2
,j+ 1

2
, whereas u, v are defined at nodes with integer indices: ui,j . Moreover u, v, p are in-

terpolated at each midedge point ∗. For example, pi+ 1
2
,j+1 = 1

2
(pi+ 1

2
,j+ 3

2
+ pi+ 1

2
,j− 1

2
) and

ui+ 1
2
,j+1 = 1

2
(ui,j+1 + ui+1,j+1), and similarly for v.

Thus, the implicit difference scheme (3.1) has the form

wn+1 = wn + ΛMΛwα,β .

Theorem 3.1. The staggered implicit scheme is stable for any λx, λy if α ≥ 1
2

and β ≥ 1
2 .

Proof. Throughout the proofs, all sums are taken over both indices i and j.
Applying the energy method yields

H(α, β) =
∑(

un+1
i,j − un

i,j

)
un+β
i,j +

∑(
vn+1
i,j − vni,j

)
vn+β
i,j

+
∑(

pn+1
i+ 1

2 ,j+
1
2

− pni+ 1
2 ,j+

1
2

)
pn+α
i+ 1

2 ,j+
1
2

= 0.

This follows from the fact that

M∗ = −M

and therefore for real w

〈Mw,w〉 = 0 .42
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Now let us define U(β), V (β), P (α) such that H(α, β) = U(β) + V (β) + P (α) and

U (β) =
∑(

un+1
i,j − un

i,j

)
un+β
i,j

= β
∑(

un+1
i,j

)2 − (1 − β)
∑(

un
i,j

)2 − (2β − 1)
∑(

un+1
i,j un

i,j

)
,

V (β) =
∑(

vn+1
i,j − vni,j

)
vn+β
i,j

= β
∑(

vn+1
i,j

)2 − (1 − β)
∑(

vni,j
)2 − (2β − 1)

∑(
vn+1
i,j vni,j

)
,

P (α) =
∑(

pn+1
i+ 1

2 ,j+
1
2

− pni+ 1
2 ,j+

1
2

)
pn+α
i+ 1

2 ,j+
1
2

= α
∑(

pn+1
i+ 1

2 ,j+
1
2

)2

− (1 − α)
∑(

pni+ 1
2 ,j+

1
2

)2

− (2α − 1)
∑(

pn+1
i+ 1

2 ,j+
1
2

pni+ 1
2 ,j+

1
2

)
.

We detail the steps in the proof by using U and comment that the steps in the proof
for V and P are similarly obtained.

Differentiating U with respect to β gives

U ′ (β) =
∑(

un+1
i,j

)2
+

∑(
un
i,j

)2 − 2
∑(

un+1
i,j un

i,j

)
.

Then by the Schwarz inequality

U ′ (β) > 0

(U ′ = 0 only in the trivial case that the initial data are constant). Since

U

(
1

2

)
=

1

2

(∑(
un+1
i,j

)2 −
∑(

un
i,j

)2)
,

it follows that for β ≥ 1
2

U (β) ≥ 1

2

(∑(
un+1
i,j

)2 −
∑(

un
i,j

)2)
,

while for β < 1
2

U (β) <
1

2

(∑(
un+1
i,j

)2 −
∑(

un
i,j

)2)
.

By applying the same reasoning to V and P we see that for β ≥ 1
2 and α ≥ 1

2

∑((
un+1
i,j

)2 −
(
un
i,j

)2)
+

∑((
vn+1
i,j

)2 −
(
vni,j

)2)

+
∑((

pn+1
i+ 1

2 ,j+
1
2

)2

−
(
pni+ 1

2 ,j+
1
2

)2
)

≤ 0;

that is, we have stability because

∑(
un+1
i,j

)2
+

∑(
vn+1
i,j

)2
+

∑(
pn+1
i+ 1

2 ,j+
1
2

)2

≤
∑(

un
i,j

)2
+

∑(
vni,j

)2
+

∑(
pni+ 1

2 ,j+
1
2

)2

.
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4. Rectangular predictor-corrector scheme. The predictor-corrector
scheme in 2D [4] for the wave equation can now be described.

Predictor step.

ũ n+1
i,j = un

i,j + λx (Qxp
n)i,j ,

ṽ n+1
i,j = vni,j + λy (Qyp

n)i,j ,

p̃ n+1
i+ 1

2 ,j+
1
2

= pni+ 1
2 ,j+

1
2

− λx

(
Q∗

xu
n+β

)
i+ 1

2 ,j+
1
2

− λy

(
Q∗

yv
n+β

)
i+ 1

2 ,j+
1
2

;

recall that wn+β = βw̃ n+1 + (1 − β)wn for w = u, v.
Corrector step.

un+1
i,j = un

i,j + λx

(
Qxp

n+α
)
i,j

,

vn+1
i,j = vni,j + λy

(
Qyp

n+α
)
i,j

,

pn+1
i+ 1

2 ,j+
1
2

= pni+ 1
2 ,j+

1
2

− λx

(
Q∗

xu
n+β

)
i+ 1

2 ,j+
1
2

− λy

(
Q∗

yv
n+β

)
i+ 1

2 ,j+
1
2

;

recall that pn+α = αp̃ n+1 + (1 − α)pn and now wn+β = βwn+1 + (1 − β)wn for
w = u, v.

By substituting the equation resulting from the predictor step into the corrector
step, we obtain the following difference scheme:

wn+1 = Swn.

Rather than write this out in terms of the difference operators, we immediately move
to the Fourier transforms of the variables and operators.

The Fourier transform employs a substitution of variables; for instance, for p we
have

pni+ 1
2 ,j+

1
2

	−→ p0e
θ(nΔt)+i(2δ((i+ 1

2 )Δx)+2γ((j+ 1
2 )Δy)),

where θ is complex and δ, γ are real. After factoring we obtain:

(
Q̂xp

)
i,j

= p0e
θ(nΔt)+i(2δ(iΔx)+2γ(jΔy)) 1

2
(2i sin(δΔx))

(
eiγΔy + e−iγΔy

)

= p0e
θ(nΔt)+i(2δ(iΔx)+2γ(jΔy)) (2i sin(δΔx) cos(γΔy)) ,

with i =
√

−1. Then if one denotes ξ = δΔx, and η = γΔy, the dimensionless wave
numbers in the x and y directions, respectively, on an uniform mesh, the Fourier
transforms of the operator Qx, Qy are

(
Q̂xp

)
i,j

= p0e
θ(nΔt)+2i(iξ+jη) (2i sin ξ cos η) ,(4.1)

(
Q̂yp

)
i,j

= p0e
θ(nΔt)+2i(iξ+jη) (2i cos ξ sin η) .(4.2)

The same formulas can be similarly obtained for Q∗.
By setting

Φx = 2λx sin ξ cos η and Φy = 2λy sin η cos ξ,
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and dropping the hat notation, we obtain

S =

⎛
⎜⎜⎝

1 − αΦ2
x −αΦxΦy iΦx

(
1 − αβ(Φ2

x + Φ2
y)

)

−αΦxΦy 1 − αΦ2
y iΦy

(
1 − αβ

(
Φ2

x + Φ2
y

))

iΦx

(
1 − αβ(Φ2

x + Φ2
y)

)
iΦy

(
1 − αβ(Φ2

x + Φ2
y)

)
1 + αβ2(Φ2

x + Φ2
y)

2 − β
(
Φ2

x + Φ2
y

)

⎞
⎟⎟⎠ .

The Lax–Richtmyer stability theory [6] tells us that we must show that the amplifica-
tion factor S has uniformly bounded powers. First, observe that SS∗ �= S∗S, so it is
not sufficient to show that the eigenvalues of S are less than 1. We shall show instead
that the numerical radius of S is bounded by 1, since this implies that the powers
of S are uniformly bounded by 2. A survey of results about the numerical radius is
given in [5] along with a direct proof that, if the numerical radius is bounded by one,
the powers are bounded by 2. We remark that the Kreiss matrix theorem implies a
weaker result, namely, that the powers are bounded by a constant that depends on
the size of the matrix [6]. The numerical radius was apparently first used as a stability
analysis tool in [2], and here we use the basic ideas of that work.

We henceforth use the same symbols for grid functions and their Fourier trans-
forms, realizing that this is an abuse of the notation, but hoping that no confusion
will occur. The numerical radius of S, denoted R(S), is

R(S) = sup
w

| 〈Sw,w〉 |, with 〈w,w〉 = 1.

The matrix S can be split into real and imaginary parts as

S = A + iB,

where

A =

⎛
⎝

1 − αΦ2
x −αΦxΦy 0

−αΦxΦy 1 − αΦ2
y 0

0 0 1 + αβ2(Φ2
x + Φ2

y)
2 − β

(
Φ2

x + Φ2
y

)

⎞
⎠ ,

B =
(
1 − αβ(Φ2

x + Φ2
y)
)
⎛
⎝

0 0 Φx

0 0 Φy

Φx Φy 0

⎞
⎠ .

Now let

r = 〈Aw,w〉 , j = 〈Bw,w〉 .

Since A and B are real and symmetric, r and j are real. Then

| 〈Sw,w〉 |2 = | 〈Aw,w〉 + i 〈Bw,w〉 |2 = |r + ij|2 = r2 + j2.

Theorem 4.1. The 2D staggered rectangular scheme is stable if α ≥ 1
2 , β ≥ 1

2 ,
and 4αβ max(λ2

x, λ
2
y) ≤ 1.

Proof. Suppose that α ≥ 1
2 , β ≥ 1

2 , and 4αβ max(λ2
x, λ

2
y) ≤ 1. Let

x =
√

αβ Φx, y =
√

αβ Φy.

First note that

z2 = x2 + y2 ≤ 1,
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since

z2 = x2 + y2 = αβ
(
Φ2

x + Φ2
y

)

= αβ
(
4λ2

x sin2 ξ cos2 η + 4λ2
y sin2 η cos2 ξ

)

≤ 4αβ max
(
λ2
x, λ

2
y

)
︸ ︷︷ ︸

≤1

[
(cos η sin ξ)2 + (cos ξ sin η)2

]

≤ (cos η sin ξ)2 + (cos ξ sin η)2 ≤ 1.

Recall that |u|2 + |v|2 + |p|2 = 1, and note that

|xu + yv|2 ≤
(
1 − |p|2

) (
x2 + y2

)
,(4.3)

since

|xu + yv|2 = (xu + yv) (xu + yv) = x2uu + y2vv + xy (uv + vu)

≤ x2uu + y2vv + x2|v|2 + y2|u|2
=

(
|u|2 + |v|2

) (
x2 + y2

)
(4.4)

≤
(
1 − |p|2

) (
x2 + y2

)
.

Also, by setting

a = 1/α, b = 1/β,

we have that a,b are positive and bounded by 2. Then

r = 1 − b|xu + yv|2 − a
(
x2 + y2

)
|p|2 + a

(
x2 + y2

)2 |p|2,
j = 2

√
abR (p (xu + yv))

(
1 −

(
x2 + y2

))
,

where R(q) is the real part of q, and

r2 =
(
1 − b|xu + yv|2 − az2

(
1 − z2

)
|p|2

)2
,

j2 ≤ 4ab
(
1 − z2

)2 |p|2|xu + yv|2.
Now set

|xu + yv|2 = z2
(
1 − |p|2

)
γ.

By (4.3), 0 ≤ γ ≤ 1. We thus have that

r2 =
(
1 − γbz2

(
1 − |p|2

)
− az2

(
1 − z2

)
|p|2

)2
,

j2 ≤ 4a
(
γb

)
z2

(
1 − z2

)2 |p|2
(
1 − |p|2

)
.

Also note that, for all 0 ≤ p ≤ 1,

|p|2
(
1 − |p|2

)
≤ 1

4
.

Since γb has the same range as b, we can replace γb by b. What we need to show
then is that

g
(
z, p, a,b

)
=

[
1 − bz2

(
1 − |p|2

)
− az2

(
1 − z2

)
|p|2

]2

+ abz2
(
1 − z2

)2 ≤ 1

for 0 ≤ a,b ≤ 2, and 0 ≤ z, p ≤ 1. 43
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Lemma 4.2. The function g(z, p, a,b) ≤ 1 for 0 ≤ a,b ≤ 2, and 0 ≤ z, p ≤ 1.
Proof: Let

q = |p|2, t = z2.

Then

g =
[
1 − bt (1 − q) − at (1 − t) q

]2
+ abt (1 − t)

2
.

We first show that g ≤ 1 on the boundary of the (t, q) domain. Consider the t
boundary values:

g (t = 0) = 1,

and since b(1 − q) ≤ 2,

g (t = 1) ≤ 1.

For the q boundary values:

g (q = 0) − 1 = bt
[
−2 + bt + a (1 − t)

2
]

≤ bt
[

− 2 + bt + a (1 − t)
]

≤ bt
[

− 2 + 2 (t + 1 − t)
]

= 0,

while

g (q = 1) − 1 = at (1 − t)
[

− 2 + at (1 − t) + b (1 − t)
]

≤
[

− 2 + at + b (1 − t)
]

≤ 0.

To finish the proof, we need only to show that, for each fixed t, g (a quadratic function
in q) does not have a maximum for 0 < q < 1. This is achieved by showing that either
∂g
∂q (q = 1) ≥ 0, in which case g is either monotone nondecreasing or has a minimum

in 0 < q < 1, or that ∂g
∂q (q = 0) ≤ 0 and ∂g

∂q (q = 1) ≤ 0, in which case g is monotone
nonincreasing in 0 < q < 1. We proceed as follows:

∂g

∂q
= 2κ

[
1 − bt + κq

]
,

where

κ = bt − at + at2.

Note that

1 − bt + κ = 1 − at(1 − t) ≥ 1 − a
1

4
≥ 1

2
.(4.5)

• Case a ≤ b (α ≥ β):2 In this case κ ≥ 0, so by (4.5)

∂g

∂q
(q = 1) = 2κ

(
1 − bt + κ

)
≥ 2κ

1

2
≥ 0.

• Case a ≥ b (α ≤ β): Then κ ≤ 0 if t ≤ t0 = 1 − b
a , and κ ≥ 0 if t ≥ t0.

– If t ≥ t0 (k ≥ 0). Then as in the case above, ∂g
∂q (q = 1) > 0.

– If t ≤ t0 (k ≤ 0). Then by (4.5), both ∂g
∂q (q = 1) < 0 and ∂g

∂q (q = 0) < 0.
Thus ends the proof of the lemma and completes the proof of the theorem.

2This case is the most important, since for the compatible Lagrangian hydrodynamics scheme
applied to the Euler equations one must necessarily have β = 1

2
for the scheme to conserve total

energy.
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5. Instability for α < 1/2 or β < 1/2. Both the fully implicit and the
predictor-corrector schemes are unstable if either α < 1/2 or β < 1/2, for any mesh
ratios. We just need to show this in 1D for the special case of p = u, for then the
schemes are being applied to du

dt = ∂u
∂x , with one set of difference equations used to

advance u at half-integer indexes i + 1/2 and a different set at integer indexes i.
Instability occurs if some Fourier component is amplified. So by setting Φy = 0 in the
amplification factor S for the predictor-corrector factor, we need only to show first
that |1 − αΦ2

x + iΦx(1 − αβ(Φ2
x))| > 1 if α < 1/2. This is clearly the case if |Φx| is

positive and sufficiently small since

∣∣1 − αΦ2
x + iΦx

(
1 − αβ(Φ2

x)
)∣∣2 = 1 + Φ2

x (1 − 2α)︸ ︷︷ ︸
>0

+ Φ4
x α2β2

(
1

β2
+ Φ2

x − 2

αβ

)

︸ ︷︷ ︸
∼o(Φ4

x)

.

A similar argument works for the second row of S if β < 1/2. The fully implicit
scheme yields to the same kind of analysis; we omit the details.

6. Numerical results. We solve the simple problem already described in [3]
where, on a unit domain using a quadrangular mesh of 100 × 100, velocity is set to
zero, density and sound speed are set to unity by using a perfect equation of state
with γ, the ratio of specific heats, equal to 5/3 and reflective boundary conditions.

Since for this problem no velocity should develop, simulations are run for a very
large number of time cycles, typically 105, and with varying values for the CFL number
λ = λx = λy and parameters α, β. A sensitive gauge of instability is to keep track of
the total kinetic energy Kλ(tn) = 1

2

∑
[(un

i,j)
2 + (vni,j)

2] for a given CFL number λ at
a given time tn. Since the density and domain size are scaled to unity, this number
should remain at the square of machine precision, about 10−28–10−30 in our case. For
an unstable scheme, it is observed that Kλ(tn) grows by several orders of magnitude
long before the 105 cycle limit is reached. In this way, one can accurately identify the
stability boundary in the CFL number and α space for a given β.

2D wave equations. We solve the 2D wave equations with the rectangular
predictor-corrector scheme. From Theorem 4.1 we have that

4αβ max
(
λ2
x, λ

2
y

)
≤ 1 =⇒ λ ≤ 1

2
√
αβ

,

provided that λ = λx = λy. Thus, the maximum CFL number achievable, denoted
CFLmax, therefore depends on α and β and is described by the following function:

(6.1) CFLmax = CFLmax(α, β) =
1

2
√
αβ

.

In Figure 6.1, we plot the maximal CFL as a function of α for a sample of five β values:
β = {0.5, 0.6, 0.75, 0.9, 1.0}. The maximum CFL numbers obtained numerically with
the code for a pair of α, β are superimposed; + for β = 0.5, ∗ for β = 0.6, � for
β = 0.75, � for β = 0.9, and ◦ for β = 1.0. As expected they perfectly match the
theoretical CFL limit (6.1) given by Theorem 4.1.

2D Euler equations. We present the results obtained with our 2D Lagrangian
predictor-corrector code for the Euler equations by using Lagrangian coordinates. In
this context (see [3], for example) the conservation of total energy is ensured provided
that β = 1

2 . In Figure 6.2, we plot seven data points (symbol +) obtained by the code
which represent the maximum CFL number that can be used for a given α for which
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β=0.5

0.6
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max CFL = 1

Fig. 6.1. 2D wave equations—maximum CFL number λ as a function of α (β fixed) for the
kinetic energy to remain on the order of machine precision for the test case. The vertical dashed
line is the α = 1/2 limit, and the horizontal one is the CFL = 1 limit. The theorem predicts the
continuous thick lines, and the code produces the data: + for β = 0.5, ∗ for β = 0.6, � for β = 0.75,
� for β = 0.9, and ◦ for β = 1.0. Any scheme defined by a value α ≥ 1/2 and β ≥ 1/2 is stable
with the following CFL number: λ ≤ 1/(2

√
αβ).
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Fig. 6.2. Hydrodynamics equations—maximum CFL number λ as a function of α (β = 1/2)
for the kinetic energy to remain on the order of machine precision for the test case. The theorem
predicts the continuous line; the 2D code produces the dashed line. Any scheme defined by a value
α ≥ 1/2 is stable with the CFL number λ ≤ 1/

√
2α and is unstable otherwise.
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numerical stability is preserved. The exact function CFL (dashed line) predicted
by (6.1) is superimposed.3 We can easily see that any scheme defined by a value
α ≥ 1/2 is stable with the CFL number λ ≤ 1/

√
2α and is unstable otherwise. We

comment that for α = 1/2 one exactly reaches the maximum CFL number λ = 1.
The scheme with α = β = 1/2 is the only staggered predictor-corrector scheme
that reaches the maximum CFL number. Therefore the choice of using this scheme
in several Lagrangian simulation codes, at least for this “optimal stability reason,”
seems justified. The results of our simulations perfectly match the predicted curve;
this is also true of our 1D and 3D codes.

7. Conclusion. We have proposed the 2D wave equation as a linear constant
coefficient model for 2D Lagrangian hydrodynamics, and we have established a suf-
ficient stability condition for the standard staggered-grid numerical scheme. The 1D
case is concurrently obtained as a special case of the 2D analysis.

This stability boundary has been tested with the 2D compatible Lagrangian hy-
drodynamics scheme for the wave equations and the Euler equations in Lagrangian
coordinates. The numerical results fit the theoretical curve, showing that

• the general belief that for such numerical schemes “the more implicit, the
more stable” is not always true,

• the classical choice made by several generations of Lagrangian code developers
to use the α = β = 1/2 scheme is reasonable as it leads to optimal stability
results (at least for the artificial test case presented).

For the Euler equations these numerical results have been obtained in 1D, 2D, and
3D.

Acknowledgment. The authors thank Misha Shashkov for many fruitful dis-
cussions.
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1.3. Numerical analysis 45

1.3.3 Volume consistency

One annoying feature of the compatible staggered Lagrangian scheme is the existence of two
different cell volumes as pointed out in [12]. Although this difference was involved in a measure
of consistency for numerical simulations, the conclusion of this work left a sour taste and a feeling
of incompleteness. With M. Shashkov and B. Wendroff we further investigated this point and this
work has led to paper [16] entitled Volume consistency in a staggered grid Lagrangian hydrodynamics
scheme.
Let us remind that the classic compatible staggered Lagrangian compressible hydrodynamics
scheme involves a choice of how internal energy is advanced in time. The options depend on two
ways of defining cell volumes : an indirect one, that guarantees total energy conservation, and a
direct one that computes the volume from its definition as a function of the cell vertices. It is shown
that the motion of the vertices can be defined so that the two volume definitions are identical. In this
note we construct a modification of the scheme such that we remove the ambiguity in the definition
of cell volume that results from requiring both total energy conservation and the modeling of the
internal energy advance from the differential equation dε

dt + p d(1/ρ)
dt = 0. This is brought about by

appropriately relating the motion of cell vertices to the cell volume change. This approach is purely
algebraic.

More precisely we showed that the two volume definitions are equivalent if and only if certain ma-
trices are equal. We explicitly gave the form of these matrices. The classical explicit discretizations of
the scheme are such that these matrices are not equal. We have therefore developed a modification
of the scheme involving an “inner consistency iterative procedure” 8 for the matrices to match at
convergence. This procedure uniquely implies the discretizations of momentum equation and inter-
nal energy equation in order to get volume consistency and total energy conservation. Then we have
tested this modification in 2D axisymetric geometry (r− z) on the Coggeshall adiabatic compression
problem [57]. These results compare the inconsistent Control Volume (iCV) scheme, say the classical
scheme and the proposed consistent Control Volume (CV) scheme. They are reproduced in Fig 1.7.
We observed that in addition to energy conservation the cell entropies are almost exactly conserved.

This paper is reproduced in the following pages.

8. From an implementation point of view this consists in an inner loop within the usual predictor-corrector loop.
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Figure 1.7 – Numerical results from paper [16]. Coggeshall problem on a quarter of a disk in r − z geometry —
Entropy (left panels), Density (middle panels), Energy (right panels) — L1 errors as functions of time for successively
refined meshes 11× 51 up to 81× 401 for a CFL condition 1/4. — Top line : Inconsistent control Volume (iCV) scheme
— Bottom line : Consistent control Volume (CV) scheme. The scales for the entropy error plots are different as the
consistent control volume scheme exhibits a quasi-exact entropy conservation.
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Abstract

Staggered grid Lagrangian schemes for compressible hydrodynamics involve a choice of how internal energy is
advanced in time. The options depend on two ways of defining cell volumes: an indirect one, that guarantees total energy
conservation, and a direct one that computes the volume from its definition as a function of the cell vertices. It is shown
that the motion of the vertices can be defined so that the two volume definitions are identical. A so modified total energy
conserving staggered scheme is applied to the Coggeshall adiabatic compression problem, and now also entropy is basically
exactly conserved for each Lagrangian cell, and there is increased accuracy for internal energy. The overall improvement as
the grid is refined is less than what might be expected.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Staggered Lagrangian schemes; Volume consistency; Entropy; Hydrodynamics

1. Introduction

In this note we construct a modification of the classic staggered grid Lagrangian compressible hydrodynam-
ics scheme as described, for example, in [2]. With this modification we remove the ambiguity in the definition
of cell volume that results from requiring both total energy conservation and the modeling of the internal
energy advance from the differential equation de

dt þ p dð1=qÞ
dt ¼ 0. This is brought about by appropriately relating

the motion of cell vertices to the cell volume change. Our approach is algebraic and simply stated. We then test
this modification on the Coggeshall adiabatic compression problem [5]. We observe that now in addition to
energy conservation the cell entropies are almost exactly conserved.

In the staggered scheme there are two sets of variables. First, for definiteness specifically in two dimensions,
there is a set of indexed nodes or vertices at which the variables are coordinates (xi,yi), velocities (ui,vi),
and nodal masses mi. Next, there is a set of indexed cells at which the variables are cell volumes Vj, masses
mj, densities qj, specific internal energies ej, and pressures pj. The set of cell (resp. node) indexes is J (resp.
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I). Both sets of data are given at the start of a time step. Nodal and cell masses are Lagrangian, that is,
independent of time, and qj = mj/Vj. Pressure is given by an equation of state, pj = p(qj,ej). The set of nodes
i belonging to the same cell j is Ij. Likewise the set of cells j sharing the same node i is Ji

Two critical but standard assumptions follow, namely:

(i) the volume of any cell is a computable function of the nodal coordinates; typically, the volume of a cell
will only depend on those nodes that are the vertices of the cell;

(ii) the velocities are constant during the time step. If those velocities are ð�ui;�viÞ, we can define the nodal
coordinates as functions of time in the interval (tn, tn+1 = tn + Dt) for t 2 [tn, tn+1] as

xiðtÞ ¼ xn
i þ �uiðt � tnÞ; yiðtÞ ¼ yn

i þ �viðt � tnÞ;
so that

xnþ1
i ¼ xn

i þ �uiDt; ynþ1
i ¼ yn

i þ �viDt:

This defines cell volume Vj as a function of time, and we have the identity

V nþ1
j � V n

j ¼
Z tnþ1

tn

dV j

dt
dt ¼

X
i2Ij

�ui

Z tnþ1

tn

oV j

oxi
dt þ

X
i2Ij

�vi

Z tnþ1

tn

oV j

oyi

dt: ð1Þ

Noting that �ui ¼ ðxnþ1
i � xn

i Þ=Dt;�vi ¼ ðynþ1
i � yn

i Þ=Dt, (1) is just another way of writing the cell volume at time
tn+1, V nþ1

j , as a function of the coordinates at time tn+1. Specific instances of this are given in Section 2.
We define matrices A and B by their entries

Aji ¼
Z tnþ1

tn

oV j

oxi
dt; Bji ¼

Z tnþ1

tn

oV j

oyi

dt; ð2Þ

with j 2 J and i 2 I, so that A and B are rectangular sparse sized jJj � jIj matrices, where jIj is the size of
I. They will play a role in the evolution of the hydrodynamic variables since (1) becomes

V nþ1
j � V n

j ¼
X
i2Ij

ðAji�ui þ Bji�viÞ: ð3Þ

An important point to emphasize here is that A and B are not in general simple time averages of the integ-
rands, except in the case of Cartesian coordinates.

2. Momentum, energy, entropy

2.1. Momentum

The differential equations for momentum are

q
du
dt
¼ �ðgradpÞx; q

dv
dt
¼ �ðgradpÞy :

Staggered grid momentum difference equations have the form

miðunþ1
i � un

i Þ ¼
X
j2Ji

pjaij; miðvnþ1
i � vn

i Þ ¼
X
j2Ji

pjbij; ð4Þ

where the matrix a involves geometrical grid vectors so that
P

j2Ji
pjaij is an approximation of the integral of

the pressure gradient in x direction over cell indexed j, likewise for b. Matrices a and b are rectangular sparse
jIj � jJj.1 We now set �ui ¼ 1

2
ðunþ1

i þ un
i Þ, �vi ¼ 1

2
ðvnþ1

i þ vn
i Þ. To each pressure pj there will be added an artificial

1 In [4] the momentum equations corresponding to (4) can be seen on page 575 Eq. (2.1); it involves the ‘‘corner force” entity: f~pz for a
zone/cell z and a point/node p of z. Indeed we urge the reader to consult Section 2 of [4, pp. 575–577] to get a detailed description of the
original staggered Lagrangian scheme viewed from a different perspective. The corner force in x direction from this work corresponds in
our notation to 1

Dt pjaij.
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viscosity qj to deal with shock waves. However, we take q to be zero in our analysis and in the example pre-
sented later.

2.2. Energy

Kinetic energy is a nodal quantity for any time tn, Kn
i ¼ 1

2
miððun

i Þ
2 þ ðvn

i Þ
2Þ, and the total kinetic energy is

Kn ¼
P

i2IKn
i . Then since

1

2
miððunþ1

i Þ
2 � ðun

i Þ
2Þ þ 1

2
miððvnþ1

i Þ
2 � ðvn

i Þ
2Þ ¼ �ui

X
j2Ji

pjaij þ �vi

X
j2Ji

pjbij;

that is to say Knþ1
i � Kn

i ¼ �ui
P

j2Ji
pjaij þ �vi

P
j2Ji

pjbij, the change in total kinetic energy is

Knþ1 � Kn ¼
X
i2I

�ui

X
j2Ji

pjaij þ
X
i2I

�vi

X
j2Ji

pjbij:

The total energy is taken to be the sum of the total nodal kinetic energy and total cell internal energy, that
is, E ¼

P
j2Jmjej

� �
þ K. Then energy conservation requires that (En+1 � En) = 0, that is to sayP

j2Jmjðenþ1
j � en

j Þ
� �

þ ðKnþ1 � KnÞ ¼ 0, or

X
j2J

mjðenþ1
j � en

j Þ þ pj

X
i2Ij

�uiaij þ pj

X
i2Ij

�vibij

 !
¼ 0:

Thus a sufficient condition for energy conservation, no matter how the a and b matrices have been defined, is that
for any cell, the internal energy evolution be2

mjðenþ1
j � en

j Þ þ pj

X
i2Ij

ð�uiaij þ �vibijÞ ¼ 0: ð5Þ

2.3. Entropy

For adiabatic flows the entropy S satisfies T dS
dt ¼ de

dt þ p dð1=qÞ
dt ¼ 0. The Lagrangian difference expression of

this, according to (3), is

mjðenþ1
j � en

j Þ þ pjðV nþ1
j � V n

j Þ � mjðenþ1
j � en

j Þ þ pj

X
i2Ij

ð�uiAji þ �viBjiÞ ¼ 0: ð6Þ

It can now be seen that there are two implied volume definitions,3 following from (5) and (6). They will be iden-
tical if for all i 2 I, j 2 J

aij ¼ Aji and bij ¼ Bji: ð7Þ
and then we will have both total energy conservation and (6).

This is different from the approach in, e.g. [1], where the a and b matrices are chosen in order to satisfy some
symmetry conditions and then the A and B matrices are defined by (7), in which case (3) cannot be expected to
hold. Indeed, the discrepancy between

P
i2Ij
ð�uiaij þ �vibijÞ and ðV nþ1

j � V n
j Þ for the area-weighted scheme of [1]

and its effect on stability is the subject of [4].

3. Two geometries

For specific examples we need to indicate the relation between nodes and cells and we have to compute the
volume change matrices A and B.

2 Eq. (5) can be seen in [4, Eq. (2.2), p. 575], or in [2, Eqs. (12) and (13), p. 234–235].
3 See the discussion in [2, Section 2.3, pp. 244–245], where this volume inconsistency is referred as to an entropy error.
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3.1. 1D spherical coordinates

Each cell at half-index iþ 1
2

has vertices ri and ri+1. The volume of the cell is V iþ1
2
¼ 1

3
ðr3

iþ1 � r3
i Þ, so

V nþ1
iþ1

2
� V n

iþ1
2
¼ �uiþ1

Z tnþ1

tn
ðrn

iþ1 þ �uiþ1ðt � tnÞÞ2 dt � �ui

Z tnþ1

tn
ðrn

i þ �uiðt � tnÞÞ2 dt

 !

¼ Aiþ1
2;iþ1�uiþ1 þ Aiþ1

2;i
�ui

� �
; ð8Þ

where

Aiþ1
2;k
¼

� Dt
3
ððrn

i Þ
2 þ ðrnþ1

i Þ
2 þ rn

i rnþ1
i Þ if k ¼ i

Dt
3
ððrn

iþ1Þ
2 þ ðrnþ1

iþ1 Þ
2 þ rn

iþ1rnþ1
iþ1 Þ if k ¼ iþ 1

0 if k 6¼ i; k 6¼ iþ 1

8><
>:

By (7) the momentum equation must therefore be given by

miðunþ1
i � un

i Þ ¼ ai;iþ1
2
piþ1

2
þ ai;i�1

2
pi�1

2
� Aiþ1

2;i
piþ1

2
þ Ai�1

2;i
pi�1

2
;

or,

miðunþ1
i � un

i Þ ¼ �Dt
1

3
ððrn

i Þ
2 þ ðrnþ1

i Þ
2 þ rn

i rnþ1
i Þ piþ1

2
� pi�1

2

� �
: ð9Þ

Then, in order to get the volume consistency in 1D spherical symmetry the approximate pressure gradient
must be given by the right hand side of (9). As seen in Section 1 it uniquely implies the discretization of
the energy equation (5) to get total energy conservation.

3.2. 2D cylindrical coordinates

In cylindrical r–z coordinates, for a generic quadrilateral cell Vj with counter-clockwise ordered vertices
(1,2,3,4) with coordinates (ri,zi) (functions of t),4 the cell volume is (with indices defined by periodicity)

V j ¼
1

6

X4

i¼1

ðr2
i þ r2

iþ1 þ ririþ1Þðziþ1 � ziÞ: ð10Þ

Looking at vertex i,
oV j

ori
¼ 1

6
ðð2ri þ riþ1Þðziþ1 � ziÞ þ ð2ri þ ri�1Þðzi � zi�1ÞÞ. However, the volume also is

V j ¼
1

6

X4

i¼1

ðriziþ1 þ riþ1zi þ 2ðrizi þ riþ1ziþ1ÞÞðriþ1 � riÞ; ð11Þ

so
oV j

ozi
¼ 1

6
ðð2ri þ riþ1Þðriþ1 � riÞ þ ð2ri þ ri�1Þðri � ri�1ÞÞ. Now we just need to use the fact that for two func-

tions a(s) and b(s) linear in [0, 1]Z 1

0

aðsÞbðsÞds ¼ 1

6
½að0Þbð1Þ þ að1Þbð0Þ þ 2fað0Þbð0Þ þ að1Þbð1Þg�:

Thus, if we define

Ri!j ¼ ð2rn
i þ rn

j Þðznþ1
j � znþ1

i Þ þ ð2rnþ1
i þ rnþ1

j Þðzn
j � zn

i Þ þ 2fð2rn
i þ rn

j Þðzn
j � zn

i Þ þ ð2rnþ1
i þ rnþ1

j Þðznþ1
j � znþ1

i Þg;

Zi!j ¼ ð2rn
i þ rn

j Þðrnþ1
j � rnþ1

i Þ þ ð2rnþ1
i þ rnþ1

j Þðrn
j � rn

i Þ þ 2fð2rn
i þ rn

j Þðrn
j � rn

i Þ þ ð2rnþ1
i þ rnþ1

j Þðrnþ1
j � rnþ1

i Þg;

it is seen that

V nþ1
j � V n

j ¼
Dt
36
fð�u1½R1!2 � R1!4� þ �u2½R2!3 � R2!1� þ �u3½R3!4 � R3!2� þ �u4½R4!1 � R4!3�Þ

þ ð�v1½Z1!2 � Z1!4� þ �v2½Z2!3 � Z2!1� þ �v3½Z3!4 � Z3!2� þ �v4½Z4!1 � Z4!3�Þg;

4 For example see Fig. 1 in [4, p. 575].
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and this defines the matrix elements of (3). A and B being defined, it uniquely implies the discretizations of (4)
and (5) in order to get volume consistency and total energy conservation.

The above expressions were easily incorporated into the ALE-INCUBATOR [3] code in order to obtain the
computations in Section 4.

4. The full predictor corrector scheme and the Coggeshall cylindrical adiabatic compression problem

This is a modification of the predictor corrector scheme of [2]. The scheme solves the implicit system

miðunþ1
i � un

i Þ ¼
X
j2Ji

pjaij; miðvnþ1
i � vn

i Þ ¼
X
j2Ji

pjbij; ð12Þ

xnþ1
i ¼ xn

i þ �uiDt; ynþ1
i ¼ yn

i þ �viDt: ð13Þ
This is solved by simple substitution, keeping the pressures fixed. That is, predict the nodal coordinates in the
right sides of (12) to get predicted �u and �v, and then use (13) to obtain corrected coordinates. Let us call this
the inner consistency iteration. This produces the new cell volumes V nþ1

j which can then be entered in the inter-
nal energy Eq. (6) to get a new internal energy and then a new pressure. But then we can iterate on the pressure
(outer iteration), putting pj ¼ 1

2
ðpnþ1

j þ pn
j Þ. The currently used method does the consistency iteration to con-

vergence,5 and then just one outer corrector iteration.6

4.1. The Coggeshall problem

The ALE-INCUBATOR [3] code is used to obtain the following numerical tests. The code is run without
artificial viscosity and without anti-hourglass forces (see [3] and the references therein), so that only pressure
forces enter the calculation as described in this note.

The choice of numerical tests is limited to tests free of shock waves and hourglass spurious modes; the Cog-
geshall adiabatic compression is described in [6].

The geometry is 2D r–z cylindrical. A sphere of initial radius R = 1.0 is filled with a perfect gas (c = 5/3) in
motion leading to the following exact solution uexðtÞ ¼ � rðtÞ

1�t, vexðtÞ ¼ � zðtÞ
4ð1�tÞ, qex(t) = (1 � t)�9/4,

eexðtÞ ¼ 3zðtÞ
8ð1�tÞ

� �2

. At each boundary, the exact velocity is imposed up to the final time tn = 0.7. Initial and final

meshes can be seen [6].7 We then look at various errors, comparing Consistent control Volume (CV) method,
as described in this note, to the original discrete compatible formulation of Lagrangian hydrodynamics
scheme, referred as in Consistent control Volume method and labeled (iCV) see [1,2]. The grid is rectangular
polar made of nr � nz nodes, and refined several times in r and z directions by a factor 2.

4.2. Entropy, density and specific internal energy errors

For any mesh we compute the error in density q, entropy S and energy e, (the number of cells being nc,
xj = (rj,zj)

t and Q stands for q, S, or e) as

en
Q ¼

1

nc

X
j2J
jQexðxj; tnÞ � Qn

j j=max
j2J
jQexðxj; tnÞj:

Fig. 1 compares the errors en
Q as functions of time (tn 6 0.7) for different mesh sizes. This figure shows that: (i)

errors decrease as the mesh is refined for iCV and CV, (ii) asymptotically, a ratio 2 (first order convergence) is

5 That is to say if m is the iteration indices and xi = (xi,yi), convergence of the inner consistency iteration is attained if

� ¼
P

i2Ikx
mþ1
i �xm

i k
2P

i2Ikx
mþ1
i k2 6 10�10.

6 The predictor corrector scheme from [2] simply does one inner iteration and one outer iteration. In the case of cylindrical geometry, in
[2] the Cartesian geometrical vector ~a1 (see Fig. 4, p. 249) is modified into ~a1ð3r1 þ r2Þ=4 on p. 261: This can not fulfill consistency of

volumes and total energy conservation. In this new method ~a1 is replaced by 1
6

2
3 r�1 þ 1

3 r�2
� �

ð2~a�1 þ~an
1Þ þ 2

3 rn
1 þ 1

3 rn
2

� �
ð~a�1 þ 2~an

1Þ
� �

with *

referring to the most updated value from the inner consistency iteration.
7 See Fig. 2, p. 5 for a 20 � 20 mesh of [6].
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obtained for any variable, (iii) CV is nearly exact for entropy and more accurate for internal energy, but den-
sity accuracy is not increased.

Finally then, we have proposed a staggered Lagrangian numerical scheme with the following properties:

� It is volume consistent: there is no ambiguity in the cell volume definition.
� Total energy is conserved.
� For the adiabatic compression Coggeshall problem, with the artificial viscosity set to zero, cell entropies are

almost exactly conserved.
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Fig. 1. Coggeshall problem on a quarter of a disk in r–z geometry – Entropy (left panels), density (middle panels), energy (right panels) –
L1 errors as functions of time for successively refined meshes 11 � 51 up to 81 � 401 for a CFL condition 1/4. Top: Inconsistent control
Volume (iCV) scheme. Bottom: Consistent control Volume (CV) scheme. The scales for the entropy error plots are different as the
consistent control Volume scheme exhibits a quasi-exact entropy conservation.
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1.4 Special additions

In this section I present some other topics related to the compatible staggered Lagrangian scheme to
which my colleagues and myself have studied. More precisely in this section we treat the following
subjects :

In the endless story on human being struggling with artificial viscosity, E.J. Caramana and I made
a contribution with article [11] entitled “Curl-q” : A vorticity damping artificial viscosity for essen-
tially irrotational Lagrangian hydrodynamics calculations. The goal of this work is to supplement
the so-called edge artificial viscosity, see section 1.2.3, with a viscous term that is designed to
eliminate spurious vorticity.

The purpose of the work made by E.J. Caramana and I, published in [10] under the title The
Force/Work Differencing of Exceptional Points in the Discrete, Compatible Formulation of Lagrangian
Hydrodynamics is to complete the compatible formulation of Lagrangian hydrodynamics by
addressing the remaining finite-volume discretization questions that arise when treating grid
points that must be internally enslaved within the grid to prevent timestep collapse. In other
words what we have called “exceptional points”. The work in article [10] focuses on developing
a treatment of exceptional points such that collateral damages brought by the existence of
exceptional points are literaly (or at least virtualy) absent.

With M. Kucharik, R. Liska and L. Bednarik at CTU in Prague (Czech Republic) we have faced a
situation where a slide-line treatment for the compatible staggered Lagrangian scheme was
needed. Starting with the paper of E.J. Caramana [80] we have published in [25] a work based
on two enhancements — interpolated interaction instead of a simple one-to-one point interac-
tion described in the previous article, and a numerical surface tension model improving the
stability of the interface. Both improvements stabilize the slide line and lead to more realistic
results, as shown on selected numerical examples such as pure sliding, some sanity checks
such as the Saltzman piston, two sliding rings, and some more realistic simulations like the
explosion with sliding and the bullet in a channel.

Trying to unite cell-centered and staggered Lagrangian schemes into a common framework in or-
der to extrude the similarity of these supposedly different approaches is the next considered
topic. This subject has been brought to light by P.-H. Maire all alone. At the very end of his
thoughte he has been further joined by P. Váchal and me for several publications in 2D [23]
Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydro-
dynamics Scheme, and its counterpart in 3D [24] : 3D staggered Lagrangian hydrodynamics scheme
with cell-centered Riemann solver based artificial viscosity. The bridge between the cell-centered
and staggered approaches has led us to re-derive the staggered compatible scheme, and most
of all re-define the concept of subcell force invoking Galilean invariance and thermodynam-
ical consistency. More precisely we have drawn the basics to design a new form of artificial
viscosity subcell force driven by a subcell-based positive definite tensor, Mcp, which is the true
essence of the numerical scheme.

1.4.1 Vorticity damping artificial viscosity

The bane of Lagrangian hydrodynamics calculations in multi-dimensions is the appearance of
vorticity that causes tangling of the mesh and consequent run termination. This vorticity may be
numerical or physical in origin, and is in addition to the spurious “hourglass” modes associated
with quadrilateral or hexahedral zones that in pure form have both zero curl and divergence associ-
ated with their velocity field. The purpose of this paper is to introduce a form of vorticity damping,
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Figure 1.8 – Numerical results from paper [11]. Noh problem, 2D Cartesian geometry — Mesh and density at time
t = 0.6, the exact radius of the shock wave is r = 0.2 — Left : Edge viscosity without curl-q, 1422 time steps, —
Middle : Edge viscosity with curl damping, 606 time steps, — Right : Tensor viscosity, 423 time steps.

based on a edge-centered artificial viscosity [57], see also section 1.2.3, that extends the runtime and
range of calculations over which a pure Lagrangian code can compute.
The origin of this work was the superiority of the tensor artificial viscosity [53] to damp spurious

vorticity especially for the Noh problem on quadrangular grid for which the edge-centered artificial
viscosity [57] is creating jets along axes leading to a serious lack of robustness and symmetry. The
analysis of the tensor artificial viscosity was not trivial. The hope of recasting it into an edge-centered
artificial viscosity that would ease the comparison and as such enlight the extra-terms was not a
success. Consequently E.J. Caramana and I adopt a different strategy and developed an extra-term
to the edge-centered artificial viscosity denoted as the “curl-q”, because it is a function of the curl of
the velocity field in a zone. Notice that this new “curl-q” does not resolve shock waves and is always
to be utilized with an artificial viscosity that performs this task. This curl-q force is formulated as
an analogy to the edge-centered artificial viscosity. The development and justification of this curl-q
force is provided in this work. Moreover numerical results are given both in 2D and 3D showing
the effectiveness of the approach. In particular, results are contrasted between this new term and
the tensor artificial viscosity [53]. It is shown that these two forms give quite similar results in 2D.
As instance we reproduce in Fig. 1.8 the results for the Noh problem on 2D Cartesian geometry
with initially square zones (50× 50 cells). Moreover in Fig. 1.9 we reproduce the 3D Noh results
obtained with and without the curl-q vorticity damping term. The main advantage of this “curl-q”
is its ability to damp curl like motion and this is also its main drawback when fluid instabilities,
that is to say rotational flows, are expected to occur.

This paper is reproduced in the following pages.
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Figure 1.9 – Numerical results from paper [11]. Spherical Noh problem, 3D Cartesian geometry, one octant, 503 cubic
initial grid — Edge viscosity — Corner is the origin. Left : without curl-q damping, fails at time t = 0.5 due to mesh
tangling at 1196 time steps. Specific internal energy is shown for contrast, density is unphysical due to the severe mesh
distortion. — Right : with curl-q damping at time t = 0.6, 279 time steps. Variable plotted is density, which matches
the exact solution (shock wave at radius r = 0.2, density of 64, red color).



Short note

‘‘Curl-q’’: A vorticity damping artificial viscosity for
essentially irrotational Lagrangian hydrodynamics calculations

E.J. Caramana *, R. Loubère

CCS-2 and T-7, Los Alamos National Laboratory, MS-D413, Los Alamos, NM 87545, United States

Received 1 September 2005; received in revised form 8 November 2005; accepted 10 November 2005
Available online 27 December 2005

1. Introduction

The bane of Lagrangian hydrodynamics calculations in multi-dimensions is the appearance of vorticity that
causes tangling of the mesh and consequent run termination. This vorticity may be numerical or physical in
origin, and is in addition to the spurious ‘‘hourglass’’ modes associated with quadrilateral or hexahedral zones
that in pure form have both zero curl and divergence associated with their velocity field.

The purpose of this note is to introduce a form of vorticity damping, based on a previously published edge-
centered artificial viscosity [1], that extends the runtime and range of calculations over which a pure Lagrang-
ian code can compute. Since the explicit inclusion of an artificial viscosity into the fluid equations is often
referred to as the ‘‘q term’’, we denote this new term as the ‘‘curl-q’’, because it is a function of the curl of
the velocity field in a zone. It is formulated in the context of the ‘‘discrete, compatible formulation of Lagrang-
ian hydrodynamics’’ [2,3]. This employs a staggered placement of variables in space (velocity and position at
nodes, with density and stresses in zones), but a predictor/corrector time integration scheme so that all vari-
ables are known at the same time level, allowing total energy to be exactly conserved [2]. This new ‘‘curl-q’’
does not resolve shock waves and is always to be utilized with an artificial viscosity that performs this task. In
order to set the stage for the introduction of the new curl-q force, the edge-centered artificial viscosity given in
[1] is briefly reviewed in a slightly simplified form; after this the curl-q force is formulated as an analogy to this
edge-centered artificial viscosity. Numerical results are given in both 2D and 3D that display its effectiveness.
In particular, results are contrasted between this new term and a recently published tensor artificial viscosity
[4]. It is shown that these two forms give quite similar results in 2D. We end with a brief discussion concerning
the validity of the use of this type of numerical device.

In Fig. 1 is shown a quadrilateral zone with its defining points, i = 1–4, and associated median mesh vectors
~Si. These vectors point in the indicated direction and have a magnitude of the surface area that lies between
their defining points in 2D or in 3D [2,5]. In terms of the median mesh vector~S1, the force exerted by the edge-
centered artificial viscosity between points ‘‘1’’ and ‘‘2’’ from zone ‘‘z’’ is given by

~f
visc

21 ¼ c1ð1� w21Þqzðcs;z þ Dv21Þ½D~v21 �~S1�dDv21 ; ð1:1Þ
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where the various terms are defined as follows: qz and cs,z are the density and speed of sound in zone ‘‘z’’;
D~v21 �~v2 �~v1 is the difference in velocity along the edge ‘‘21’’ defined by points ‘‘1’’ and ‘‘2’’, from which
are defined its magnitude Dv21 � jD~v21j, and its direction dDv21 � D~v21=Dv21; the limiter function w21 is given
in [1] and turns this force off for situations in which the velocity difference with respect to the edge direction
is a linear function of the local coordinates; c1 is a simple coefficient that is generally set to unity. This edge
force is applied to points ‘‘1’’ and ‘‘2’’, with plus and minus signs, according to the compression switch
½D~v21 �~S21�; for the given definition of D~v21 and the orientation of the~S1 vector in Fig. 1, compression is defined

for ½D~v21 �~S1� > 0. Considering a frame of reference where~v1 ¼ 0,~f
visc

21 is then applied to point ‘‘1’’ with a ‘‘+’’

sign, and to point ‘‘2’’ with a ‘‘�’’ sign in order to ensure that this term acts in a dissipative manner [1]. If
½D~v21 �~S1� < 0, then ~f

visc

21 ¼ 0. If the quantity in square brackets is summed over all edges of a zone and this
sum is then divided by the zone volume, one obtains the negative divergence of the velocity field as defined
by finite volume differencing: namely, ðr �~vÞz ¼ �

P
eD~ve �~Se=V z, where ‘‘e’’ ranges over all edges of the given

zone ‘‘z’’, and Vz is its volume. The work performed by Eq. (1.1), and all other forces in the discrete, compat-
ible formulation of Lagrangian hydrodynamics, is given by the negative dot product of the particular force
with the displacement in a timestep of the point that this force acts upon [2,3].

To correctly specify an effective sound speed with respect to the edge ‘‘21’’ for use in determining the CFL
number for timestep determination, a sound speed ‘‘cq,21’’ is defined by c2

q;21 � c1ð1� w21Þðcs;zDv21 þ Dv2
21Þ; the

effective edge sound speed is then defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

s;z þ c2
q;21

q
. What has been done is to define an effective edge

sound speed in the presence of dissipation that resembles the magnitude of the largest characteristic speed
along an edge in 1D in the Lagrangian frame, which is (cs,z + Dv21). The CFL condition sets the timestep
by requiring that this characteristic speed be resolved for all edges of all zones in the computational domain.

2. Curl-q force specification

The first attempt at turning Eq. (1.1) into a vorticity damping form of an artificial viscosity is to change the
dot product in the compression switch into a cross product, obtaining ½D~v21 �~S1�. However, this quantity is a
vector, and what is needed is an appropriate scalar. In order to construct a scalar the magnitude of D~v21 is
separately factored out of this term and rewritten as a vector l21;?~xz, where ~xz �

P
eD~ve �~Se=V z is the finite

volume difference form of the curl of the velocity field in zone ‘‘z’’, and l21,^ is a length scale along edge ‘‘21’’
that is defined as l21;? � jdDv21 �~l21j;~l21 is the vector distance between points ‘‘1’’ and ‘‘2’’ of edge ‘‘21’’. Now a
dot product can be formed between ~xz and the remaining factor, ðdDv21 �~S1Þ, to obtain the desired scalar.
Assembling these ‘‘postulates’’ results in our form for the ‘‘curl-q’’ force as

~f
curl-q

21 ¼ c1ð1� w2
21Þqzðcs;z þ Dv21Þ½l21;?~xz � ðdDv21 �~S1Þ�dDv21 . ð2:1Þ

S
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S
4
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z

Fig. 1. Quadrilateral zone z: dotted interior lines delineate triangular subzones (gray), dashed lines form the median mesh with normal
vectors ~S1; ~S2; ~S3; ~S4.
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Note that this force is applied to grid points ‘‘1’’ and ‘‘2’’ with the same signs as that of the artificial viscosity

force of Eq. (1.1). Also, if the term in square brackets is negative, ~f
curl-q

21 ¼ 0, as required for it to act in a dis-
sipative manner. Thus, all of the properties of the artificial viscosity that apply to Eq. (1.1), as enumerated in
Ref. [1], are automatically transferred to the above definition of the curl-q force. In particular, this force turns
off for rigid rotation due to the limiter function, and for grid-aligned flow because the lever arm l21,^ is then
zero. Because of this latter fact the limiter function has been weakened somewhat in Eq. (2.1) by using w2

21 in
place of w21 itself. This is a rather minor modification that allows us to run all test problems with the coeffi-
cient c1 = 1.0 instead of somewhat larger values in certain cases. Also, to prevent numerical noise l21,^ is set to
zero if l21;?=j~l21j < 10�3. Just as for the artificial viscosity force, the curl-q force contributes an effective sound
speed along the given edge that is added to the sum of the squares of the zone sound speed and the artificial
viscosity c2

q;21 for timestep determination, as discussed previously. The square of the effective curl-q force
sound speed is given simply by inspection of Eq. (2.1) as c1ð1� w2

21Þðcs;z þ Dv21Þl21;?j~xzj.
The above form for the force is stated directly without reference to any term in a set of PDE�s. That this is

possible is a consequence of the discrete compatible form of Lagrangian hydrodynamics in that the discrete
finite-volume description that it utilizes is more fundamental than the underlying continuum equations. For
edge forces such as those given in Eqs. (1.1), (2.1), there exists no direct continuum limit, but only a loose anal-
ogy to terms in a differential equation. For the edge-centered artificial viscosity of Eq. (1.1), this analogy yields
the term q ” q(cs + Dv)Dv in a zone ‘‘z’’, which in 1D allows one to insert P! P + q into all terms that contain
the pressure ‘‘P’’. For the curl-q force of Eq. (2.2) such an analogy is more difficult to justify since ~xz ¼ 0 in
1D, and this force vanishes. However, keeping this fact in mind one can still loosely make the analogy that the
simple scalar form of the artificial viscosity ascribed above to Eq. (1.1) becomes

qzðcs;z þ ðDvÞzÞðDvÞz ! qzðcs;z þ jðr �~vÞzjl?Þl?jðr �~vÞzj. ð2:2Þ
In this equation ‘‘l^’’ is to be interpreted as some average length that is normal to Dv taken over all zone edges.
Then this term augments the pressure ‘‘P’’, subject to the limiter and force on/off switch, as does the usual
artificial viscosity.

3. Numerical results and discussion

Two well-known test problems are utilized to demonstrate the effectiveness of the new curl-q vorticity
damping mechanism. These are Saltzman�s piston [6], and Noh�s problem [7], computed in both 2D and
3D Cartesian geometry. In the 2D case results of the curl-q force, in conjunction with the edge-centered arti-
ficial viscosity, are compared to a recently published ‘‘tensor’’ form of the artificial viscosity [4]. Unlike the
edge-centered form, this tensor artificial viscosity contains zone information, and thus reduces the dependence
of the solution on the relation of the grid to the flow direction. These test problems have a c = 5/3 ideal gas law
equation of state; they are run with all artificial viscosity coefficients, as well as ‘‘c1’’ in Eq. (2.1), set to unity.
Anti-hourglass subzone pressure forces as described in [8], with a ‘‘merit factor’’ of unity, are also utilized for
all simulations. Modifications to the standard setups referenced above are indicated; comparisons in 2D are
made within the same computer code [9].

We begin with the standard setup for the Saltzman piston problem in 2D Cartesian geometry that has
been elongated by an amount of 3:1 in the shock wave (or driving piston, from left to right with unit velocity)

X
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fig. 2. Saltzmann piston in 2D – aspect ratio 3:1 – edge viscosity without curl damping, mesh at t = 0.6 before failure due to severe grid
distorsion.

E.J. Caramana, R. Loubère / Journal of Computational Physics 215 (2006) 385–391 387

direction. The result shown in Fig. 2 is the grid at time t = 0.6 without curl-q forces using the edge-centered
artificial viscosity. The code fails due to severe grid distortion shortly after this time.

Results with the same initial and boundary conditions are given in the top and bottom parts of Fig. 3 at the
final time of t = 0.8 for the edge-centered artificial viscosity with curl-q forces, and with the tensor artificial
viscosity, respectively. At this time the shock wave has reflected from the fixed wall on the right side of the
figure and is heading back towards the piston. Both of these cases show little grid distortion due to unphysical
vorticity generation. These results show that the tensor artificial viscosity performs substantial damping of the
unphysical vorticity that would otherwise be generated, and thus acts much like the curl-q damping force. If
the grid is further elongated in the shock direction both the edge-centered artificial viscosity with curl-q force,
and the tensor artificial viscosity, will fail; the former at about 4:1 aspect ratio, the latter at about 5:1. This is
expected since as one further elongates the grid, pressure gradients in the ignorable vertical direction become
larger, eventually leading to grid distortion and failure of the calculation. One can make modifications to
increase the aspect ratio at which this failure occurs, but these can lead to non-positive heating of the artificial
viscosity and curl-q forces that is unacceptable. Finally, if this problem is run with the grid highly elongated
(104:1) in the ignorable, vertical direction as in [8], the net vorticity is small and the curl-q force has no dis-
cernable effect; in this case subzone, anti-hourglass forces are needed to obtain quality results.

Next, results are displayed for the Noh problem in 2D Cartesian geometry with initially square zones,
50 · 50, on a unit domain in both ‘‘x’’ and ‘‘y’’ directions. The initial velocity is minus one in the radial direc-
tion for all points, but zero at the (0, 0) origin; a shock propagates outward from this point. Fig. 4 shows the
grid and density at time t = 0.6 for three cases: part (a) gives the result for the edge-centered artificial viscosity
without curl-q forces; part (b) is with curl-q forces added, and part (c) is with the tensor artificial viscosity
alone. The latter two results are similiar, again showing that the tensor artificial viscosity damps unphysical
vorticity much as the curl-q force does. The large jets seen in part (a) without curl-q damping can be thought
of as arising from ‘‘false’’ vorticity present in the initial conditions using a square grid. The Noh problem is
irrotational in its initial conditions, but on a square grid, and using our finite-volume formulas to compute the
curl of the velocity field in the zone, one finds zero curl only on the 45� line; the curl of the velocity field

Fig. 3. Saltzmann piston in 2D – aspect ratio 3:1 – mesh and density. (Top) Edge viscosity with curl-q damping at t = 0.8. (Bottom)
Tensor viscosity at t = 0.8.
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Fig. 4. Noh problem, 2D Cartesian geometry – mesh and density at time t = 0.6, the exact radius of the shock wave is r = 0.2. (a) Edge
viscosity without curl damping, 1422 time steps. (b) Edge viscosity with curl damping, 606 time steps. (c) Tensor viscosity, 423 time steps.

Fig. 5. Extended Saltzmann problem, 3D Cartesian geometry, aspect ratio 2:1 – edge viscosity – density and mesh at time t . 0.3, density
behind shock should be 4.0. (a) Without curl-q damping; fails due to mesh tangling soon after this time. (b) With curl-q damping; code
runs to about t = 0.7 and then fails due to mesh tangling.
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increases with magnitude and with opposite signs as one approaches the horizontal and vertical axes. The lim-
iter functions keep the artificial viscosity and the curl-q force off until the shock wave propagates past any
given point. Then, without the curl-q force or the tensor artificial viscosity, strong unphysical vorticity gener-
ation is seen to occur along the axes.

In 3D we show results with the extended version of the Saltzman piston problem as previously defined in [5].
This extended problem is completely 3D in its setup; the Saltzman skewing of the grid is made to change parity
uniformly in the third dimension. This grid is compressed by a 2:1 aspect ratio in the non-shock directions so that
zones are elongated by this amount in the shock direction. Fig. 5 shows the grid and density profile at time t = 0.3
for two cases: part (a) is without the curl-q force; this calculation fails shortly after this time due to unphysical grid
distortion; part (b) is with the curl-q force at the same time and shows a quite satisfactory result. This latter sim-
ulation will fail later (at about t = 0.7) due to grid distortion about the vertical plane with the high (red) density
spot seen in the top-middle of part (b) of this figure. Lagrangian codes can always be broken, and no amount of
curl smoothing or other devices guarantees run to completion, much less correct answers.

Fig. 6. Spherical Noh problem, 3D Cartesian geometry, one octant, 503 cubic initial grid – edge viscosity – corner is the origin. (a)
Without curl-q damping, fails at time t = 0.5 due to mesh tangling at 1196 time steps. Specific internal energy is shown for contrast, density
is unphysical due to the severe mesh distortion. (b) With curl-q damping at time t = 0.6, 279 time steps. Variable plotted is density, which
matches the exact solution (shock wave at radius r = 0.2, density of 64, red color). Wall heating error is clearly visible.
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Last, the Noh problem is calculated using initially cubic zones in 3D Cartesian geometry, (50 · 50 · 50) for
an octant. Fig. 6 has two parts: part (a) gives the grid at time t = 0.5 when the calculation fails due to excessive
grid distortion without using any curl-q damping force. Jets along the three coordinate axes dominate the solu-
tion, which is colored using specific internal energy to obtain contrast; density has become unphysical due to
zone collapse. Part (b) of this figure gives the result showing density at the final time t = 0.6 with curl-q forces.
This latter result is of high quality for this problem; the ubiquitous wall-heating error is clearly visible, other-
wise this is the correct solution for the 3D spherical Noh problem – a density of 64 behind the shock at a major
radius of 0.2 at time t = 0.6.

In summary, the Lagrangian formulation of hydrodynamics produces reliable results only for irrotational,
compressible, deterministic fluid flow. These conditions are strictly valid only in one-dimension. However, in
multi-dimensions this may be the case to a substantial degree, particularly when the initial conditions of the
simulation are homomorphic to one-dimensional geometry. Use of a vorticity damping mechanism as intro-
duced herein is justified not only to remove unphysical vorticity, but also for calculations where physical vor-
ticity is present but not dominant. In the latter case the solution may be incorrect in certain regions of the
problem, but global, spatially integrated quantities may still remain substantially correct. If it is these quan-
tities that are of principal interest, then Lagrangian frame calculations are appropriate. However, it is neces-
sary to keep such calculations running to completion in order to assess these results. The ‘‘curl-q’’ term
introduced herein affords a very simple and effective way to sustain Lagrangian calculations under such
circumstances.
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1.4.2 Dealing with exceptional points

The purpose of the work made by E.J. Caramana and I and published in [10] under the title The
Force/Work Differencing of Exceptional Points in the Discrete, Compatible Formulation of Lagrangian Hy-
drodynamics is to complete the compatible formulation of Lagrangian hydrodynamics by addressing
the questions that arise when treating grid points that must be internally enslaved within the grid
to prevent timestep collapse, in other words “exceptional points”.
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Left : Example of a polar mesh with 51× 49 cells. Right :
Radial mesh with three layers of exceptional points.

The figure to the left presents an example
of a three layer of exceptional point polar
mesh, one also calls termination lines the
mesh lines stopping at an exceptional
point. A zone with an exceptional point
is also sometimes called a dendritic zone.
The reason to use such a mesh is the
potential gain in CPU time compared to
a full radial mesh : The CFL number is
often ruled by the smallest cell length
which is located on the triangles at the
origin. Roughly speaking with three layers
of exceptional points one expects three
times bigger CFL number, therefore a
three times less expensive computation.
It is this decrease in spatial grid stiffness
without degradation in solution quality
that the procedure proposed in this work
is intended to produce.

Indeed dendritic zones could be treated as pentagons by the compatible staggered Lagrangian
scheme but the fact that any exceptional point is dynamical often leads to lack of robustness and
tendency to unpleasant fatal mesh tangling situations. The work in article [10] focuses on devel-
oping a treatment of exceptional points such that collateral damages brought by the existence of
exceptional points are literaly (or at least virtualy) absent.
First we have shown that the types of grids that must be used to reduce numerical perturbations

about exceptional points involve a restriction of the type of zone to be uniform across the grid. A
pentagon must become a quadrilateral. It was also shown that the basic discretization about excep-
tional, or nondynamical, points could be largely handled by three basic rules that involve already
computed subcell masses and forces so that the number of additional operations is small. These in-
volved impedance matching of subcell volumes and masses by donation to nearby dynamical points
to which the velocity of the nondynamical exceptional points is enslaved. An appropriate addition
of the remaining subcell forces, after median mesh grid adjustment, and their subsequent division
and donation to neighboring dynamical points is performed such that force equilibrium is achieved
for uniform stress (a necessary sanity check). It was shown that for the internal energy equation
to obey momentum conservation about nondynamical points, it is required that the definition of
what region in space constitutes a “zone” be generalized. A zone becomes the smallest region in
space for which its associated subcell forces sum to zero. Thus, primitive zones that contain com-
mon nondynamical points must be glued together in calculating the work from the internal energy
equation. In this work the edge-centered artificial viscosity [57] or the tensor artificial viscosity [53]
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Figure 1.10 – Numerical results from paper [10]. Straight piston with termination lines — (a) Mesh and density at
t = 0.6 original scheme — (b) Mesh and density at t = 0.6 with the technique proposed.

are considered and adapted to the presence of exceptional points if needed. Numerical results were
shown to validate the procedures given, and to quantify the magnitude of the errors that necessarily
occur with the introduction of terminated lines (and their associated nondynamical points). In our
work a straight piston is used as a sanity check then the Saltzman problem is simulated with or
without exceptional points. Then the spherical Noh problem in axisymmetric geometry is treated as
to measure the symmetry error introduced by the presence of exceptional points. Finally the Gud-
erley problem in axisymmetric geometry is run to assess the efficiency of the treatment. Moreover
the Guderley problem with false center of convergence is further simulated to show the robustness
of our approach when the grid is no more aligned with the flow.
As an illustration we reproduce in Fig. 1.10 the results on a straight piston for the original scheme
and the scheme coupled with our donation technique. This sanity check shows how the tech-
nique is able to treat termination lines without spurious side effects whereas the original scheme
presents an oscillation. In Fig. 1.11 the axisymmetric Guderley problem is simulated (compression
of an homogeneous gas initialy at rest due to external velocity boundary condition) on a polar
∆r×∆θ = 51× 49 mesh and on the same effective resolution mesh but with three termination lines.
This problem is run to a time t = 0.8 at which point the shock wave has reached the true center of
convergence, is propagating outward, and has recrossed the inner layer of terminated points. The
results are very comparable in quality but the number of timesteps needed to run without and with
terminations is about 3000 and 1000.

This paper is reproduced in the following pages.
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Figure 1.11 – Numerical results from paper [10]. Guderley problem at t = 0.8 — Left : Final mesh and density
isolines with no termination layers (∼ 3000 time steps). — Right : Two termination layer final mesh and density
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Abstract

This study presents the force and mass discretization of exceptional points in the compatible formulation of Lagrangian
hydrodynamics. It concludes a series of papers that develop various aspects of the theoretical exposition and the opera-
tional implementation of this numerical algorithm. Exceptional points are grid points at the termination of lines internal
to the computational domain, and where boundary conditions are therefore not applied. These points occur naturally in
most applications in order to ameliorate spatial grid anisotropy, and the consequent timestep reduction, that will otherwise
arise for grids with highly tapered regions or a center of convergence. They have their velocity enslaved to that of neigh-
boring points in order to prevent large excursions of the numerical solution about them. How this problem is treated is
given herein for the aforementioned numerical algorithm such that its salient conservation properties are retained. In doing
so the subtle aspects of this algorithm that are due to the interleaving of spatial contours that occur with the use of a spa-
tially-staggered-grid mesh are illuminated. These contours are utilized to define both forces and the work done by them,
and are the central construct of this type of finite-volume differencing. Additionally, difficulties that occur due to uncer-
tainties in the specification of the artificial viscosity are explored, and point to the need for further research in this area.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Lagrangian; Hydrodynamics; Energy conserving; High speed flow; Artificial viscosity

1. Introduction

Most physical applications that involve Lagrangian or ALE hydrodynamics calculations employ grids that
must be unstructured to some degree to avoid the spatial grid stiffness that would otherwise occur, resulting in
an unacceptable decrease in timestep. While the problem of differencing the hydro equations about excep-
tional, or irregular, points of such grids has been addressed in a previous paper for the case where the exact
one-dimensional symmetry limit is desired in curvilinear coordinates [1], the solution presented requires rota-
tions of the force that may not be desirable for general cases, particularly those where low-dimensional sym-
metry is not important and does not attain to any approximate degree in the solution. However, the general
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discussion given therein of the timestep vicissitudes of such grids remains valid and is not repeated here. An
example of the type of grid previously considered is shown in Fig. 1. Here the terminated lines, and associated
exceptional points, are displayed as hollow circles that are placed at the midpoints of straight lines connecting
neighboring regular points. This is opposed to being placed on a common radius as previously depicted in [1].
It is in general necessary to enslave the terminated points shown in Fig. 1 to prevent large unphysical pertur-
bations in the solution from occurring about them when disturbances such as shock waves propagate in any
direction across them. Thus the force and mass discretizations that are suitable for regular zones that do not
contain these points must be appropriately modified where they are present in the grid. This requires a careful
investigation of the discretization properties of the underlying hydro algorithm that elucidates all assump-
tions, transparent or hidden. To this end, Section 2 gives a brief review of the hydro algorithm that forms
the title of this paper. This is, however, a new and concise presentation that displays essential features that
complement previous expositions [2,3].

In Section 3 the types of grids encountered are briefly detailed as well as the basic constraints that are
enforced when both mass and force from the exceptional points are ‘‘donated’’ to neighbors to which their
velocity is enslaved, making the former ‘‘nondynamical’’. Section 4 gives numerical results that validate the
discretization rules introduced in Section 3, and quantifies the magnitude of errors that necessarily occur when
strong shock waves encounter these points. In particular, special attention is paid to the artificial viscosity
forces as they are velocity dependent; and since velocity interpolation is utilized, these forces can result in
sensitivities that are difficult to counter by any general prescriptions. Last, a discussion of this work and its
principal conclusions is given.

2. Discrete, compatible Lagrangian hydrodynamics

The discrete, compatible formulation of Lagrangian hydrodynamics [3] essentially modernizes older forms
of Lagrangian hydro [4]. It places this type of numerical algorithm into a simple and consistent framework
where conservation of total energy plays the central role, but where the principal dependent variables remain
density, velocity, and specific internal energy. Like all the older versions of Lagrangian hydrodynamics it
employs a staggered grid in space with velocity and position carried on points ‘‘p’’, and density, specific inter-
nal energy, and stress centered in zones ‘‘z’’. However, both zones and points are considered to be surrounded
by interleaved volumes circumscribed by lines in 2D (or surfaces in 3D) that are termed the ‘‘coordinate-line’’
and ‘‘median’’ meshes, respectively, as shown in Fig. 2. This interleaved topology allows for a simple finite-
volume calculation of forces. These act from zones that carry a mass Mz, and onto points that carry a mass
Mp, where ‘‘z’’ and ‘‘p’’ are integer indices that range over all zones and points, respectively. Auxiliary quan-
tities denoted as ‘‘corner’’ masses and forces are introduced; these are unique and common to both a zone and
a given point of that zone, and thus carry both the zone and the point indices. The zone and point masses and
the total force acting on a point are then constructed from these more primitive entities as simple sums. The
corner mass is denoted as mp

z or mz
p, and the corner force as~f

p

z or~f
z

p, where the lower index denotes that which

Exceptional
point

Dynamical 
point

Fig. 1. Typical mesh with exceptional points. Exceptional points are enslaved to adjacent dynamical points on an angular grid line.
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is summed, but they are otherwise equal. The corner forces mediate the exchange of kinetic and internal energy
from points to zones, or vice-versa.

The essentials of this algorithm can be presented in a very succinct form that displays both its power and
simplicity in the following manner: consider the change in the kinetic energy of a point ‘‘p’’ between two time
levels ‘‘n’’ and ‘‘n + 1’’ as given by DKp � Mp½ð~vnþ1

p Þ
2 � ð~vn

pÞ
2�=2 in a timestep Dt. Then note that the difference

in the squares of the point velocity,~vp, between the two time levels can be uniquely factored to yield

DKp ¼ MpD~vp � D~rp=Dt; ð2:1Þ
where D~vp � ð~vnþ1

p �~vn
pÞ, and more importantly the change in the position vector,~rn

p, is D~rp � ð~vnþ1
p þ~vn

pÞDt=2.
That is, the reason the coordinates are advanced as~rnþ1

p ¼~rn
p þ D~rp with the just specified form for D~rp is not to

obtain second order accuracy in time (other forms may give higher order), but because of the manner in which
the kinetic energy difference between two time levels factors! Defining the change in internal energy in a zone
in a time Dt as MzDez, where Dez � ðenþ1

z � en
z Þ, and summing the change of kinetic energy over all points ‘‘p’’,

and the change in internal energy over all zones ‘‘z’’, the change in total energy on a timestep, DE, can be writ-
ten as

DE �
X

p

MpD~vp � D~rp=Dt þ
X

z

MzDez ¼ DW bd; ð2:2Þ

where DWbd is the boundary work performed on the particular timestep. Next the momentum and specific
internal energy equations are ‘‘postulated’’ to have the discrete forms

MpD~vp ¼
X

z

~f
p

z Dt; ð2:3Þ

where the sum of the arbitrary corner force is over all zones that contain point ‘‘p’’, and

MzDez ¼ �
X

p

~f
z

p � D~rp; ð2:4Þ

where this sum is over all points that circumscribe zone ‘‘z’’. Note that what has been done is to define the total
force that acts on a point ‘‘p’’ as the sum of all corner forces that act from zones adjacent to that point; and
also, to define the work done into a zone ‘‘z’’ as the negative sum of the corner forces of that zone dotted into
their respective point displacements on the given timestep. For example, for the case of pressure forces this
sum is a discrete form of �PzDVz work, where Pz is the zone pressure and DVz is the change in zone volume
in a timestep.

Writing the momentum equation in the form given by Eq. (2.3) may appear to be simply a useful division
of the force acting on a point into single contributions from surrounding zones. However, that the work

Fig. 2. Coordinate-line mesh thru solid dots; median mesh thru stared points: subcell geometrical vectors~a1;~a2;~S1;~S2 associated with zone
‘‘z’’; mp

z is corner mass.
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performed by a zone can be written as Eq. (2.4) utilizing the same corner forces such that this work becomes a
simple sum of corner force times point displacement is more significant, as this guarantees exact conservation
of total energy for forces of completely arbitrary origin. Note that the force of gravity exchanges kinetic
energy with gravitational potential energy and thus does not enter into the corner force; but rather, enters
directly as an additional term on the RHS of the momentum equation, and with the kinetic energy of a point
augmented by its gravitational potential in the total energy tally. Likewise, Eq. (2.4) can contain an additional
source term on the RHS that originates from the direct deposition of internal energy from chemical or other
sources.

To demonstrate energy conservation suppose that the momentum equation, Eq. (2.3), is dotted into the
point displacement on a timestep, D~rp, and its RHS inserted into the first sum in Eq. (2.2). Then the RHS
of Eq. (2.4) is likewise inserted into the second sum of Eq. (2.2). This results in

DW bd ¼
X

p

X

z

~f
p

z � D~rp �
X

z

X

p

~f
z

p � D~rp;¼
X

p¼bd

X

z¼ext

~f
p

z � D~rp. ð2:5Þ

Since the corner force is unique to a given zone and point of that zone (recall that ~f
p

z ¼ ~f
z

p), the second sum
from the internal energy equation completely cancels with terms from the first sum due to the momentum
equation. There remains only terms that sum over the boundary points ‘‘p = bd’’ from the external zones
‘‘z = ext’’ that lie adjacent to these points that form the prescribed boundary; these terms define the boundary
work performed on the given timestep. Thus total energy is conserved exactly in that when integrated in time
Eq. (2.2) yields En ¼ En¼0 þ W n

bd, where En=0 is the initial total energy and W n
bd is the sum of the boundary

work as given by Eq. (2.5) over all timesteps to the final time ‘‘tn’’. Total energy is also conserved locally
in that the internal domain of interest can consist of any collection of zones, or just a single zone. This latter
case is illustrated in Fig. 3 where a single 2D quadrilateral zone ‘‘z’’ is shown with its associated corner forces
‘‘~f

z

i ’’, and where ‘‘i = 1. . .4’’ ranges over its defining points. For this case En ¼ Mzen
z þ

P4
i¼1Mið~vn

i Þ
2
=2. Defin-

ing ‘‘~F i’’ as the sum of all corner forces that act on point ‘‘p = i’’ in a timestep, it follows from Eq. (2.5) that
the boundary work performed on a timestep is DW bd ¼

P4
i¼1ð~F i �~f

z

i Þ � D~ri. This is the total exterior work per-
formed with respect to any single zone. If there is no mass exterior to the boundary, the sum of all zone masses
and the sum of all point masses are equal (a consistency requirement), but otherwise this is not true and is not
necessary for total energy to be conserved.

As previously noted [3], the discrete form of the equations for total energy, momentum, and internal energy
when written as Eqs. (2.2)–(2.4) constitute an algebraic identity; given any two, the third uniquely follows.
This identity employs three totally arbitrary entities referred to as the zone mass, Mz, the point mass, Mp,
and the corner force (~f

p

z or ~f
z

p). It is the proper specification of these otherwise abstract objects that gives this
system physical meaning; however, whatever their specification the quantity defined above as ‘‘total energy’’ is
always exactly conserved. The program of the rest of the development of the discrete, compatible formulation

f3
z f2

z

f
z

4 f1
z

p=3 p=2

p=1p=4

z

Fig. 3. Single quadrilateral zone ‘‘z’’ with its defining points p1, p2, p3, p4, and associated corner forces ~f
z

p, 1 6 i 6 4.
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of Lagrangian hydrodynamics is to specify these three objects. The word ‘‘discrete’’ is to be emphasized in that
these equations are considered to describe the time evolution of small fluid volumes, as opposed to a differ-
encing of the equations of continuum fluid dynamics.

The nodal and zonal masses, Mp and Mz, are straightforwardly constructed by introducing the corner mass
mp

z or mz
p, where the zone mass is simply the sum of all mz

p�s over points about the specified zone ‘‘z’’; and
likewise, the point mass Mp is the sum of all mp

z �s over all zones adjacent to point ‘‘p’’ [3]. The median
mesh is hinged by auxiliary points, shown as asterisks in Fig. 2, that are determined by time independent
interpolation coefficients (usually 1/2, 1/4, . . .) applied to neighboring dynamical points. That these
coefficients be time independent is necessary to prevent destructive nonlinear feedback between the median
and coordinate-line meshes. The specification of the corner force is much more involved, and is given
for regular zones in both 2D and 3D for all force contributions: mean zone stress, artificial viscosity, and
anti-hourglass forces in a series of previously published papers [3,5–9]. Although this corner force specification
is given as a form of finite volume differencing, other discretizations can be utilized to define the corner forces.
It is the purpose of this work to extend the finite volume definitions to the aforementioned case of exceptional
points that preserve not only conservation of total energy, but also the conservation properties of Eqs.
(2.2)–(2.4) that the original corner force specifications enforce. The nature of these are briefly detailed.

Principal amongst the additional conservation laws is the conservation of linear momentum, which can be
stated most succinctly as the homogeneity of space (referred to as Noether�s theorems [10]). This adheres for
our discrete equations as follows: suppose that a constant but arbitrary displacement vector, ‘‘~r0’’, is added to
the coordinates of all points in space by performing a Galilean boost,~v0, such that~r0 ¼~v0Dt during any given
timestep. Then for the discrete form of the internal energy equation, Eq. (2.4), to remain unchanged it is
required that

X

z

~f
p

z �~r0 ¼~r0 �
X

z

~f
p

z ¼ 0. ð2:6Þ

Thus the requirement of linear momentum conservation is just the statement that all corner forces in a zone
must sum to zero. For zones with a constant stress throughout the entire zone, this means that the zone vol-
ume is closed and simply connected so that the sum of its surface area vectors equal zero. (Note that for 1D
cylindrical or spherical geometry this requirement does not hold since these zone volumes, as formed by two
concentric circles or spheres, are not simply connected.) Conservation of angular momentum, as the isotropy
of space, follows similarly as requiring

P
p~rp �~f

z

p ¼ 0 in each zone, where~rp is the position vector to a point
‘‘p’’ from any arbitrary origin of the coordinate system. All corner forces are required to obey conservation of
linear momentum on a single zone basis when cast into Cartesian geometry. This property is central to our
treatment of exceptional points; however, not all force contributions obey angular momentum conservation
on a single zone basis if they arise from stresses that are not constant throughout a given zone. This is true
for both the subzone-pressure anti-hourglass forces [6], and the edge-centered artificial viscosity forces [5].
However, studies have shown that global breaking of angular momentum conservation remains at small trun-
cation error levels for these force contributions. Finally, for the stated system of equations to give useful
results they must be time advanced in a numerically stable manner. This is achieved by a predictor-corrector
step where the predictor and corrector stages are identical except that the corner forces are centered at the ‘‘n’’
time level on the predictor, and at the ‘‘n + 1/2’’ time level on the corrector, resulting in second order accuracy
in time and numerical stability subject to the usual CFL constraint [1].

3. Finite-volume mass/force/work computation

The basic program of this work is to give a general prescription of how to perform the force and mass dis-
cretizations about exceptional points of terminated lines as shown in Fig. 1. However, this may not be for the
simple terminations shown; instead these may consist of a line of such points in two or in three dimensions. It
is not our purpose to detail all possible cases, but instead, to give some general rules that enable one to adapt
the basic underlying differencing to any situation, and to illustrate the general method and show its effective-
ness for certain relevant cases. The central idea is to treat all points as though they are regular, then the excep-
tional points have their associated corner forces and masses appropriately ‘‘donated’’ to points to which their
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velocity is enslaved. One must examine the character of the individual contributions to the corner force to
ascertain that they still behave in a physically meaningful manner. First, the kind of zone topologies encoun-
tered with the exceptional points of terminated lines must be considered.

Two types of median mesh configurations that can occur in 2D geometry for the exceptional point ‘‘pe’’ are
shown in Fig. 4. If this point is considered to be a defining point of all zones, as is the case in Fig. 4(a), then the
large zone on the left is a degenerate pentagon; whereas in Fig. 4(b), this point belongs to the smaller rectan-
gles on the right but is not considered a defining point for the large zone on the left, which remains a quad-
rilateral. Since the lines that comprise the median mesh connect midpoints of the coordinate lines to the zone
center point, the subzone corner volumes appear skewed to one side if the exceptional (termed ‘‘nondynam-
ical’’ from hereon) point is considered part of the larger zone. Thus the light gray region in Fig. 4(a) denotes
the three corner masses that are associated with point ‘‘pe’’ if it were to remain dynamical. Our first alteration
from the usual definitions used to construct the median mesh is to erase the nondynamical point from being
associated with the large zone on the left in Fig. 4. All corner forces are thus constructed from the mesh shown
in Fig. 4(b). The nondynamical point ‘‘pe’’ now obtains mass only from the two small corner volumes of the
rectangular zones of Fig. 4(b) shown as the light gray region, and no mass from the larger zone to its left that
no longer identifies it as a part of that zone; the same statement holds for the corner forces. Next, three basic
principles are enunciated that determine how to difference about any one or any set of nondynamical points:

1. Corner masses are donated from nondynamical points such that, aside from convergence effects, corner
volumes are matched in size about dynamical points that neighbor nondynamical ones.

2. Corner forces are donated from nondynamical points to neighboring dynamical points such that force
equilibrium is achieved for uniform stress in a region about these points.
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3. Conservation of linear momentum as defined by Eq. (2.6) must be maintained for all zones. This generalizes
the definition of the term ‘‘zone’’.

The consequences of these three requirements are now examined.
The basic idea behind the first of our three statements is readily seen from Fig. 4(b). To make the corner

volume and corner mass on the right side of the two dynamical points ‘‘p1’’ and ‘‘p2’’ match that from the large
zone on the left of these points, one must let mz1

p1
! mz1

p1
þ mz1

pe
and mz2

p2
! mz2

p2
þ mz2

pe
. Next one sets both mz1

pe
and

mz2
pe

equal to zero, so that the nondynamical point ‘‘pe’’ carries no mass; thus it does not contribute kinetic
energy to the total energy tally.

The requirement of equilibrium for uniform stress demands that the two corner forces that act on point
‘‘pe’’ from zones ‘‘z1’’ and ‘‘z2’’ first be summed, then one-half of this sum is donated to points ‘‘p1’’ and
‘‘p2’’. That these corner forces must be summed before being donated can be seen from the fact that for a uni-
form pressure ‘‘P’’ in zones ‘‘z1’’, ‘‘z2’’ and ‘‘z0’’, ~f

z1

pe
¼ Pð~a1 þ~a3Þ and ~f

z2

pe
¼ Pð~a2 �~a3Þ. (Here the grid vectors

~ai are oriented as shown in Fig. 4(c) and have magnitudes of the length of the half-edges to which they are
normal.) By adding these two corner forces the term associated with the grid vector ~a3 cancels. Thus when
this sum is donated to the dynamical points ‘‘p1’’ and ‘‘p2’’ with simple factors of one-half to each, force equi-
librium is achieved when taking into account the corner force contribution from the large zone, ‘‘z0’’, that lies
to the left side of these points. That is, we define ~F pe

� ~f
z1

pe
þ~f

z2

pe
and then let ~f

z1

p1
! ~f

z1

p1
þ~F pe

=2,
~f

z2

p2
! ~f

z2

p2
þ~F pe

=2. Last, we set ~f
z1

pe
and ~f

z2

pe
to zero and can proceed with zone sweeps as before to assemble

the total force on all points.
The sum of the original corner forces add to zero individually in the two rectangular zones of Fig. 4(b) that

contain the nondynamical point ‘‘pe’’. However, because of the sum and then division performed to satisfy the
requirement of force equilibrium for uniform pressure, zones ‘‘z1’’ and ‘‘z2’’ must now be considered as a single
composite zone when the internal energy equation, Eq. (2.4), is solved. That is, the sum of the corner forces of
both of these zones still sum to zero, but no longer on a single zone basis. Thus the change of specific internal
energy, Dez, due to the corner forces acting in these two zones must be considered as a single sum. This is
because by donating the force from the nondynamical point, the grid vectors that make up the force contours
sum to zero only over the composite region ‘‘z1 + z2’’. If there are no other energy sources in Eq. (2.4), and if
both regions ‘‘z1 and ‘‘z2’’ have equal specific internal energies at time zero, then this equality is maintained for
later time. However, even in this case the pressure in these two zones need not be equal since their zone den-
sities can still have different values.

The velocity enslavement of nondynamical points always utilizes a simple linear interpolation to neighbor-
ing dynamical points. This serves to keep the position of these points closely synchronized to dynamical ones
preventing large spatial excursions that would otherwise occur. Thus for the case shown in Fig. 4(b),
~vpe
¼ ð~vp1

þ~vp2
Þ=2, keeping the enslaved point ‘‘pe’’ at the midpoint of the line connecting points ‘‘p1’’ and

‘‘p2’’.
The procedure just outlined can be extended to two or more terminated lines with associated nondynamical

points between two dynamical points, to which their velocities are enslaved by linear interpolation, in a com-
pletely analogous manner. The large zone adjacent to the terminated lines is again made into a quadrilateral,
and all its corner forces are computed the same as for any other quad. Corner volumes are donated to the two
dynamical points such that corner volume matching is achieved with respect to the large zone. Corner forces
are summed on the terminated line side and then donated to the dynamical points with coefficients that are the
same as used to donate the nodal volume/mass. (That is, a single nondynamical point may now contribute all
of its nodal mass and force to a single dynamical point, instead of one-half to each.) Likewise in 3D, although
the situation may be more complicated to visualize, the manner in which the nondynamical points of termi-
nated lines are treated is not fundamentally different than in 2D; the three principles given above are applied to
all situations using a linear interpolation of the velocity from the dynamical to the nondynamical points.

The artificial viscosity forces that appear in these equations must be given special consideration as these
forces are velocity dependent, and thus do not compose about nondynamical points in the same manner as
the total stress and anti-hourglass forces that are completely accounted for by the above set of rules. However,
in the calculations shown in the next section they are treated the same as all other forces since the basic algo-
rithm consists of assembling the corner force from all the various contributions and then manipulating the
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corner force as previously described. Two different forms of artificial viscosity are utilized: an edge-centered
form [5] and a tensor form [9]. The edge-centered form is simple and intuitively based, and works particularly
well when the fluid flow is close to grid-aligned; lower-dimensional symmetry properties are automatically cap-
tured. However, it contains no information about the zone topology. In contrast, the tensor form connects all
points of a zone and gives better results when the fluid flow is far from being aligned with the grid; however,
for highly elongated zones it can connect disparate zone length scales in an unphysical manner. The tensor
form of the artificial viscosity is unchanged in its calculation in zones that contain nondynamical points.
The edge-centered artificial viscosity is modified from the form given in [5] as follows: first, the density and
sound speed used to compute this viscosity is taken to be the zone values, rather than from point-centered
averages. This is done for all zones to obtain consistency across the mesh. Any change in the functional form
of the artificial viscosity within the computational domain will itself result in errors for a steady-state shock
even if there are no terminated lines. Second, the limiter function used with the viscosity calculated on the edge
that connects the nondynamical point to that with a larger major radius, as shown in Fig. 1, is calculated as an
average of that of the two limiters adjacent to it and oriented in the same direction. Thus for grid aligned flow
in the radial direction in Fig. 1 these edges all have the same value for the limiter function. Other concerns
about the artificial viscosity forces are discussed after presenting the numerical results that highlight difficulties
that can occur with their use.

Finally, for completeness the trivial case of degenerate points is mentioned. Degenerate points occur at a
center of convergence in 2D or 3D, or along the z-axis of a polar grid in 3D, where a set of points that are
initially coincident are required to move together. In this case one simply adds the individually separate nodal
masses and forces associated with these points for use in updating the common point velocity from the
momentum equation. The change in specific internal energy of these zones need not be averaged as they
are still separately Galilean invariant; however, this averaging can result in more robust results and is
performed for the edge-centered artificial viscosity. An example of this is shown later with the Guderley test
problem [11] utilizing a mesh with a center of convergence that is displaced along the z-axis, and moves when it
encounters a converging shock wave.

4. Numerical results

The numerical results given next are of two types: sanity checks that gauge the effect of our donation pro-
cedure for two driven piston problems (a straight piston and the so-called Saltzman piston [12]), and more
difficult tests utilizing the well-known Noh [13] and Guderley problems. The latter problems assess the size
of errors in 1D symmetry, and the general robustness of the method in addition to its ability to keep the time-
step from decreasing precipitiously. The results are computed with a 2D, unstructured grid code developed in
the group T-7 at LANL [14,15]. A simple ideal gas law, c = 5/3, equation of state is employed to compute
pressures. An advection-type limiter is utilized to restrict the magnitude of both forms of artificial viscosity
that are employed, edge-centered [5] and tensor [9], unless otherwise indicated.

We begin with a straight piston problem whose initial grid is shown in Fig. 5. The grid is on a domain of
unit horizontal length and with a width of 0.1 in the ignorable, vertical direction with 101 equally spaced ver-
tical lines and 21 equally spaced horizontal lines, one-half of which terminate at the middle of the domain.
Thus the zones in the coarser region on the left half of the figure have one to one aspect ratio, and those
in the finer region on the right half have 2:1 aspect ratio, elongated in the vertical direction. The initial density
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Fig. 5. Straight piston with termination lines – initial mesh.
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is unity, with zero initial specific internal energy; the left piston boundary moves to the right with unit velocity
driving a shock wave into cold media and across the terminated lines. Results showing the grid and density
isolines at time t = 0.6 using the edge-centered viscosity are given in Fig. 6 parts (a) and (b): part (a) shows
the result obtained with no modifications about the terminated lines, and part (b) presents results obtained
if the mass and force donation procedure is performed. In the first instance the perturbations caused by the
shock wave crossing the layer of terminated lines is clearly visible at the shock front that has moved far to
the right of this layer. In part (b) these perturbations are totally absent; there are also no residual density
changes at the termination layer. That is, the presence of terminated lines causes no perturbations to the solu-
tion, which is the same as though these lines were totally absent. With the use of the tensor artificial viscosity
similar results are also seen; perturbations in the density are somewhat smaller than those in Fig. 6(a), but are
still clearly visible; they are removed by the donation procedure. No subzone pressure forces are utilized, as
these are unnecessary for this type of problem.

Next the initial grid shown in Fig. 5 is given the standard Saltzman perturbation to obtain the one displayed
as Fig. 7. This problem is rerun with subzone pressure forces using a merit factor, Mf = 1.0. In Fig. 8 results
are given at time t = 0.6 for four cases: parts (a) and (b) show the grid and density contours without, and with,
modification for points at the termination layer, respectively, using the edge-centered artificial viscosity. These
two figures are almost identical, and thus the donation procedure did not result in an improved solution but it
also did not degrade it. In parts (c) and (d) are shown the results using the tensor artificial viscosity without,
and with, modification for points at the termination layer. In this case the mass and force donations at the
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Fig. 6. Straight piston with termination lines for the edge viscosity – (a) mesh and density at t = 0.6 original code; (b) mesh and density at
t = 0.6 with donation.
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termination layer result in a very substantial improvement. The shock front nearly breaks apart downstream
of the termination layer and is close to failure without these modifications, but the results seen with them are
better than those with the edge-centered viscosity. This problem also shows the necessity for averaging the
work done on a timestep in the zones that share a common nondynamical point, which is a consequence of
our third criterion that guarantees linear momentum conservation. If this averaging procedure is not carried
out, negative specific internal energy is encountered in some of these zones and the calculation ends. It is only
the sum of the work done into zones with a common nondynamical point that is positive.

The spherical Noh problem [13] is next considered in cylindrical geometry using area-weight differencing on
an angular grid with one layer of terminated lines. The initial conditions are unit density, zero specific internal
energy, and an inward radial velocity of magnitude 1.0. A spherical stagnation shock wave is generated and
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Fig. 8. Saltzman piston with terminated lines – mesh and density at t = 0.6: (a) edge viscosity original code, (b) edge viscosity with
donation, (c) tensor viscosity original code, (d) tensor viscosity with donation – note different scales due to different behaviors.
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travels outward from the center. Subzone pressure forces are turned off because they are not needed for this
problem when run without terminated lines. The timestep is increased by a factor of two as expected with the
single termination layer; for a high resolution simulation multiple termination layers are necessary. The sim-
ulation is performed to the point where the shock reaches the location of the first termination line at
t = 0.07866. The grid at this time is shown in Fig. 9: parts (a) and (b) are without, and with, mass and force
donation, respectively, using the edge-centered viscosity. A very large sawtooth-like oscillation occurs at the
termination layer. This is largely, but not totally, removed by the enslavement procedure. Without subzone
pressure forces the calculation in part (a) will not continue much longer; with them the grid distortion is some-
what reduced but not eliminated. In parts (c) and (d) are given the corresponding results for the tensor viscos-
ity without, and with, the donation procedure, respectively. The grid without donation in part (c) is
comparable in quality to that in part (b) for the edge-centered viscosity with donation. The symmetry errors
in the density along the termination layer are detailed in Table 1. The donation procedure reduces these errors
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Fig. 9. Noh problem at t = 0.07866, the shock has just passed the termination line – final meshes (zoom): (a) edge viscosity, (b) edge
viscosity with donation process, (c) tensor viscosity, (d) tensor viscosity with donation process.
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to truncation levels, but recall that for no termination layer and area-weight differencing they are always at
roundoff error level.

The last test problem considered is the driven spherical impulsion problem of Guderley [11]. This has an
initial density of unity, zero specific internal energy, and a velocity boundary condition given in [6] using
area-weight differencing in cylindrical geometry. Results are shown with two layers of terminated points,
and for comparison without terminated lines, for two types of grid setups: first, with 51 equally-spaced radial
and 51 equally-spaced angular divisions on a one-half circular domain of unit initial radius, with a center of
convergence at (r = 0, z = 0); and second, the same total domain but with circular lines that have their centers
moved along the z-axis such that the center of convergence is displaced to the point (r = 0, z = 0.5). In both
cases the velocity boundary condition is the same, and the outer boundary remains a circle with center at
(r = 0, z = 0). Subzone pressure forces with merit factor unity are utilized for both the centered and off-axis
center of convergence cases. This problem is run to a time t = 0.8 at which point the shock wave has reached
the true center of convergence, is propagating outward, and has recrossed the inner layer of terminated points.
The results are seen in Fig. 10 where the top two parts show the grid and density isolines for no radially terminated
layers. The bottom two parts give these same results with two terminated layers; the edge-centered artificial
viscosity and the donation procedure at the termination layers are utilized. The results are very comparable in
quality. The number of timesteps needed to run without and with terminations is about 3000 and 1000,
respectively. It is this decrease in spatial grid stiffness without degradation in solution quality that the donation
procedure is intended to produce. The tensor form of the artificial viscosity produces results of similar quality.

Finally, Fig. 11 shows the initial grid for the Guderley problem with the displaced center of convergence
described previously, both with two layers of termination lines and without such points. Results are given
in Fig. 12 utilizing the edge-centered viscosity for the case without, and with, termination layers; both the grid
and the density isolines are shown at the final time of t = 0.8. Likewise, similar results are given for the tensor
viscosity at the same final time in Fig. 13. The density bulge that results from the shock wave that is reflected
from the true center of convergence of this problem at (r = 0, z = 0) is quite visible in both figures. With the
edge-centered viscosity and no terminated lines it took about 9000 timesteps to run to completion, whereas
with the two termination layers this was reduced to roughly 2000; for the tensor viscosity these values are
approximately 6300 and 1700, respectively. Thus our donation procedure is effective in this regard. However,
in order to make these displaced center of convergence cases run to completion the limiters were turned off on
both forms of the artificial viscosity. Additionally, the velocity of points on the z-axis were enslaved to those
points on the next radial line angularly outward (for area-weight differencing this causes no energy errors since
these points carry zero mass [3].), rather than being moved dynamically as they are for the nondisplaced center
of convergence case shown in Fig. 9. Usually simulations terminate due to very small timesteps just after the
shock wave intersects the false center of convergence without this set of alterations. This can be changed some-
what depending on the value of the merit factor that multiplies the subzone pressure forces. Generally the ten-
sor form of the artificial viscosity shows more robustness and better quality of results for the case of very
nongrid-aligned flow than the edge-centered form, which agrees with the results presented in [9]. This rather
unsatisfactory state of affairs is due to the lack of a consistent form of the artificial viscosity that is optimal for
all simulations. This topic is addressed next.

4.1. Artificial viscosity forces

The artificial viscosity forces that are necessary to resolve shocks in the otherwise dissipationless Euler
equations that are solved herein have been the subject of much discussion and controversy since they were
introduced many years ago [16]. While there is still no universal agreement on the precise functional form
for these forces, they can usually be viewed as variations on the basic form expressed in [17] as

Table 1
Noh problem: symmetry errors for edge and tensor viscosities along termination layer

(qmax � qmin)/qmax Original code With donation

Edge viscosity 3.1 · 10�2 4.0 · 10�4

Tensor viscosity 4.5 · 10�2 1.2 · 10�4
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qz ¼ q½csDvþ ðDvÞ2�; ð4:1Þ
where ‘‘qz’’ acts as an addition to the scalar pressure of zone ‘‘z’’, with the additional requirement that the zone
be under compression for the forces to be dissipative. The factor ‘‘q’’ is a measure of density, ‘‘cs’’ is a sound
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Fig. 10. Guderley problem at t = 0.8 with edge viscosity. Top: final mesh and density isolines with no termination layers; Bottom: two
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speed, and ‘‘Dv’’ is a jump in the magnitude of the velocity about a zone; all of these can be calculated in more
than one manner. The two terms on the RHS of Eq. (4.1) are referred to as the linear and nonlinear artificial
viscosity, respectively.

Ideally one wishes to solve the Euler equations by integrating along the characteristics of this hyperbolic
system. However, because this is both too difficult, and too expensive to compute, one resorts to shock cap-
turing methods by inserting an artificial viscosity term that regularizes the discontinuities that otherwise occur.
This term may be inserted directly as done herein, or as the consequence of solving a local Riemann problem,
with much the same effect. With the former approach, more recent forms of the artificial viscosity term that
give much improved results over older versions, are developed by specifying conditions under which the char-
acteristics of the Euler equations do not cross, and thus where dissipation is not needed. This results in the
inclusion of a limiter function that augments the compression switch in the basic artificial viscosity, Eq.
(4.1). The limiter has the form of that used for advection except that the ‘‘upwind’’ direction of material advec-
tion is unimportant, and also, it should not limit the magnitude of these forces so much that oscillations occur
behind a strong shock. The purpose of the limiter in this context is to turn off the artificial viscosity for adi-
abatic compression, or along a front of constant phase where the edge-projected velocity field is a linear func-
tion of the coordinates, and thus where the characteristics of the hyperbolic system do not cross. However, for
general flow that is nongrid-aligned there is no theory that indicates how this limiter should be constructed. It
can simply result in a decreased value of these forces that degrades overall robustness of the calculations, as
occurs with the above simulations.

For the terminated line situation considered in this paper, there is a more fundamental difficulty when the
artificial viscosity is computed using the velocity of a nondynamical point that has been set by linear interpo-
lation. As is seen from Eq. (4.1), a linear interpolation of the velocity from two dynamical points to one
nondynamical point results in a decrease in the strength of the linear viscosity term by one-half, and the
nonlinear term by one-quarter. This situation gets geometrically worse for the case of multiple terminations.
Furthermore, the limiter function defined along these edges is invalid since a limiter calculated from a linearly
interpolated velocity will always turn completely off. The zone-centered tensor artificial viscosity also exhibits
this problem, although in some averaged sense that is more difficult to quantify. One can separately
reconstruct the edge-centered viscosity without using the points that have interpolated velocities. This is the

r

z

0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

r

z

0 0.5 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Fig. 11. Initial meshes for Guderley problem with displaced grid center of convergence. Left: without terminations (51 · 51) circular and
radial lines; Right: two termination layers.

14 R. Loubère, E.J. Caramana / Journal of Computational Physics 216 (2006) 1–18

ideal solution, but one that is expensive computationally. The treatment of the artificial viscosity is found to be
problematical in that changes in zones that contain nondynamical points may be mirrored as errors (severe
zone volume collapse) in regular neighboring zones that do not contain these modifications. There is no
known ‘‘optimal’’ form of the artificial viscosity, and the inclusion of this term into the Euler equations is
always fraught with difficulties.
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Fig. 12. Guderley displaced center problem at t = 0.8 with the edge viscosity. Top: final mesh and density isolines; Bottom: two
termination layers, final mesh and density isolines – with donation.
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5. Discussion and conclusions

The purpose of this work is twofold: first, to complete the compatible formulation of Lagrangian hydro-
dynamics by addressing the remaining finite-volume discretization questions that arise when treating grid
points that must be internally enslaved within the grid to prevent timestep collapse; and second, to address
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Fig. 13. Guderley displaced center problem at t = 0.8 with the tensor viscosity. Top: final mesh and density isolines; Bottom: two
termination layers, final mesh and density isolines – with donation.
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certain more general questions concerning the basic structure and implementation of this numerical algorithm.
That these issues are related is seen in Section 3. There it is shown that the types of grids that must be used to
reduce numerical perturbations about exceptional points involve a restriction of the type of zone to be uniform
across the grid. This is seen in going from Fig. 4(a) to (b) where a pentagon becomes a quadrilateral. A com-
pelling reason for using a restricted set of zone types is that the central quantity that must be computed to
implement this algorithm is the corner force. If one knows that the number of corners of all the zones is
the same, then sweeps over all zones, combined with sweeps over the known number of internal zone edges
and corners, allows the corner force to be assembled with computer code that is simple to construct, and which
executes in an efficient manner.

It was shown that the basic discretization about exceptional, or nondynamical, points could be largely han-
dled by three basic rules that involve already computed corner masses and forces so that the number of addi-
tional operations is small. These involved impedance matching of corner volumes and masses by donation to
nearby dynamical points to which the velocity of the nondynamical points is enslaved. An appropriate addi-
tion of the remaining corner forces, after median mesh grid adjustment, and their subsequent division and
donation to neighboring dynamical points is performed such that force equilibrium is achieved for uniform
stress (a necessary sanity check). It was shown that for the internal energy equation to obey momentum con-
servation about nondynamical points, it is required that the definition of what region in space constitutes a
‘‘zone’’ be generalized. A zone becomes the smallest region in space for which its associated corner forces
sum to zero. Thus, primitive zones that contain common nondynamical points must be lumped together in
calculating the work term in the internal energy equation. Numerical results were shown to validate the
procedures given, and to quantify the magnitude of the errors that necessarily occur with the introduction
of terminated lines and their associated nondynamical points. Artificial viscosity forces are always the most
crucial component of any shock-wave hydro algorithm. There is still no universally satisfactory form of the arti-
ficial viscosity suitable for all problems. The fact that different forms for this force are often utilized depending
on the type of problem being studied is the major remaining deficiency of this class of hydrodynamics methods.

Finally, the discrete, compatible formulation of Lagrangian hydrodynamics was developed in a manner
that explicitly displays the nature of this algorithm to be that of an algebraic identity. This identity consists
of two arbitrary scalars, the zone and point masses, and one arbitrary vector, the corner force, such that
the usual definition of total energy conservation is always exact. This algorithm thus reveals itself to be a true
tautology in the sense described in [18]. As such, it describes a priori truth that cannot be confuted, since in
primitive form it makes no assertion about any physical system. As remarked in [18], tautologies are neither
trivial nor useless, but embody the kernel from which physical systems of truth may be constructed. Thus the
quality with which the discrete, compatible formulation of Lagrangian hydrodynamics may describe certain
physical situations is mostly, if not entirely, dependent on the quality of the specification of the three abstract
quantities that compose it.
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62 Chapter 1. Compatible staggered Lagrangian schemes

1.4.3 Slide-lines

When developing a simulation code based on a Lagrangian scheme at one point we can have to
face situations for which slide-lines are required. Many hydrodynamical problems involve shear
flows along material interfaces. If the materials move along each other but are tied to a single
Lagrangian computational mesh without any sliding treatment, severe mesh distortions appear
which can eventually cause the failure of the simulation.
With M. Kucharik, R. Liska and L. Bednarik at CTU in Prague (Czech Republic) we have imple-

mented a slide-line treatment into the PALE code (Prague ALE) based on the compatible staggered
Lagrangian scheme on quadrilateral meshes. Starting with the paper of E.J. Caramana [80] we have
published paper [25] entitled Enhancement of Lagrangian slide lines as a combined force and velocity
boundary condition.
In this work we first review the 2D approach described by E.J. Caramana in [80] and suggest two

enhancements - interpolated interaction instead of a simple one-to-one point interaction described in
the previous article, and a numerical surface tension model improving the stability of the interface.
Both improvements stabilize the slide line and lead to more realistic results, as shown on selected
numerical examples such as pure sliding, Saltzman piston, sliding rings, explosion with sliding and
a bullet in a channel. In Fig. 1.12 we reproduce the sanity check of two columns of gas sliding
on each other. The meshes are of different size. Nonetheless the sliding is perfectly reproduced.
The same pure sliding test is further run with two annulii. In Fig. 1.13 one reproduces the results
obtained by the original approach of E.J. Caramana vs our improved technique.

This paper is reproduced in the following pages.
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Figure 1.12 – Numerical results from paper [80]. Initial and final 40× 50 and 10× 50 meshes of the pure sliding
sanity check. Two vertical blocks of fluid (Left and Right) meshed with non-uniform grids are sliding with velocity
UL = (0,+v) and UR = (0,−v), v = 1 in our test. The vertical slide line is initiated at x = 1 and must remain
vertical during the sliding.
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Figure 1.13 – Numerical results from paper [80]. Top : Initial meshes for sliding rings problem separated by a circular
slide line of radius R = 2. Bottom : Zoom to the interesting part along the slide line (aspect ratio not preserved).
Comparison of computational meshes for the original approach (left) and our improved method (right) proposed in [80].
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Abstract

Many hydrodynamical problems involve shear flows along material interfaces. If the materials move along
each other but are tied to a single Lagrangian computational mesh without any sliding treatment, severe
mesh distortions appear which can eventually cause the failure of the simulation. This problem is usually
treated by introducing the sliding line framework into the Lagrangian code. In this paper, we revise the 2D
approach described in the article The implementation of slide lines as a combined force and velocity boundary
condition, E. J. Caramana, Journal of Computational Physics, 228, (2009), and suggest two enhancements
– interpolated interaction instead of a simple one-to-one interaction described in the previous article, and a
numerical surface tension model improving the stability of the interface. Both improvements stabilize the
slide line and lead to more realistic results, as shown on selected numerical examples.

Keywords: Lagrangian hydrodynamics, slide lines, staggered scheme

1. Introduction

In realistic physical simulations, people often face problems of shear flows at material interfaces. If the
materials move along each other but are tied to a single computational mesh without any sliding treatment,
severe distortions appear which can eventually cause the failure of the simulation. A typical example is the
motion of a laser produced plasma in a deforming channel [? ], or a shear flows in a high-velocity impact
problem [? ]. One option to solve this problem is the introduction of a slide line environment into the
Lagrangian code.

The demand for a slide line treatment arose when first realistic Lagrangian simulations became attractive.
Generally, all sliding algorithms can be classified into two groups [? ? ]. The first group in which the overall
forces between the sides of the slide line are computed, includes popular methods of Lagrangian multipliers [?
? ] or the penalty method [? ]. We focus here on the second type of methods, where quantities are mapped
across the slide line and the nodes are treated in a similar manner as the internal nodes. The introduction
of slide lines is an old but fruitful idea that dates back to Wilkins [? ] as a chapter in a book (reproduced in
chapter 5 of [? ]). In this approach, the interaction of both sides of the slide line is explicitly calculated, and
their inter-penetration is prevented by an explicit put-back-on step. This approach is very popular and is
used for slide line treatment in many hydrodynamic codes. There exist many modifications of this approach,
see for example [? ? ? ]. For an overview of the slide line algorithms see the specialized report [? ] or the
classical more general paper [? ].

Another possibility to treat sliding lines in a compatible staggered Lagrangian code [? ] is a special
type of boundary condition for nodal forces and velocities. Suppose that there exist two different meshes
interacting with each other through a common sliding line, one of them is specified as the master side defining
the slide line shape, while the other – slave – side follows the slide line. We keep the main idea of [? ] and
incorporate the contact forces for the nodes on the slide line, representing the forces due to the pressure
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gradient across the interface. The second main ingredient of the sliding line treatment is the correction
preventing the inter-penetration of two sides. This is the main difference between the two approaches. In [?
], the inter-penetration is prevented by an explicit put-back-on step in which the slave nodes are artificially
moved back onto the master slide line edges. Instead of this artificial nodal motion, the velocity correction
is used [? ]. The correction is simpler and compatible with the rest of the Lagrangian solver.

In this paper, we describe the method from [? ] with details, some of which are eluded in the original
paper. In [? ], the nodes on the slide line exclusively interact with one mesh node from the other side
of the slide line, and this interaction can cause severe distortions of the interface. We suggest here the
improvement in which the interaction is performed in an interpolated sense. Moreover, as the shear flow
(sliding) is present here, the original method can result in interface disturbances due to evolving (real or
numerical) Kelvin-Helmholtz instabilities. To stabilize the interface, we suggest here a type of numerical
surface tension model preventing the instability to appear. We skip all issues related to void opening or
closing, which may be very important for the practical computations, however this topic will be treated in
future investigations.

The rest of the paper is organized as follows. In Section 2, we briefly describe the staggered Lagrangian
hydrodynamics which we use to derive and test the slide line framework. In Section 3, the slide line treatment
from [? ] is reviewed and explained in detail. In Section 4, we suggest the interpolated interaction, changing
the communication between the nodes on both sides of the slide line from one-to-one to interpolated. In
Section 5, another improvement is suggested, the numerical surface tension, eliminating evolution of the
Kelvin-Helmholtz instability due to the shear flow along the interface. The behavior of the improved method
and its comparison with the original method on selected numerical tests is performed in Section 6. Finally,
the whole paper is concluded in Section 7.

2. Staggered Lagrangian Hydrodynamics

In the Lagrangian framework, the gas dynamics equations can be written in the following form,

ρ
d

dt

(
1

ρ

)
− ∇ · ~v = 0 , (1)

ρ
d

dt
~v + ∇P = ~0 , (2)

ρ
d

dt
ε + P ∇ · ~v = 0 , (3)

where ρ is the fluid density, ~v is the velocity, ε the specific internal energy, and d
dt denotes the total Lagrangian

time derivative. The first equation expresses the volume conservation equation, whereas the second and
third ones are the momentum and total energy conservation equations. Volume conservation equation is
often referred to as the Geometric Conservation Law (GCL). The previous system is supplemented by a
thermodynamics closure (equation of state – EOS), P = P (ρ, ε). Often, the ideal gas equation of state is
used, p = (γ − 1) ρ ε, where γ is the ratio of specific heats. The last equations are the trajectory equations

d~x

dt
= ~v (~x(t), t) , (4)

expressing the Lagrangian motion of any point located at position ~x.
We use a staggered placement of variables in which position and velocity are defined at mesh nodes while

thermodynamic variables (density, pressure, energy) are located at cell centers. We denote the computational
zone (cell) by the symbol z, mesh points (nodes) are denoted by the symbol p. Following the compatible
discretization from [? ], the mass of zone z is connected with the mass of the adjacent point p by the notion
of the subzonal masses, mzp,

mz =
∑

p∈P (z)

mzp , mp =
∑

z∈Z(p)

mzp , (5)

2

where P (z) stands for the set of points in zone z, and Z(p) stands for the set of zones adjacent to point p.
The subzones are assumed to be Lagrangian particles, which implies that the subzonal masses are initialized
at the beginning of the simulation, mzp = ρzp Vzp and remain constant in time, implying that cell and nodal
masses remain constant either.

The discrete trajectory equation for mesh nodes can be written as

d~xp

dt
= ~vp , (6)

which together with the assumption of constant cell mass guarantees satisfaction of the GCL equation (1).
The momentum equation (2) can be written in the semi-discrete form for a particular mesh point p,

mp
d~vp
dt

= ~Fp , (7)

where the Newton force is computed by evaluating the pressure gradient in the dual cell Ωp corresponding
to node p,

~Fp = −
∫

Ωp

~∇P dV = −
∑

z∈Z(p)

∫

Ωzp

~∇P dV =
∑

z∈Z(p)

~Fzp , (8)

where the subzonal forces ~Fzp are evaluated by transforming the volume integrals to boundary integrals using
the Green divergence theorem. Finally, following [? ], the semi-discrete form of the energy equation (3) can
be written as

mz
dεz
dt

= −
∑

p∈P (z)

~Fzp · ~vp , (9)

which is derived from the total energy conservation on a cell-by-cell basis. This approach is supplemented by
additional forces representing artificial viscosity [? ] and anti-hourglass forces [? ], stabilizing the solution
and preventing the simulation from failure. The update of fluid specific internal energy and velocity come
from the finite difference discretization of the equations (7) and (9), new nodal positions from equation (6),
new fluid density is obtained by dividing the constant cell mass by the new cell volume, and new pressure
from the EOS. For a full description of the compatible Lagrangian scheme including more details, such as
timestep control of predictor-corrector time integration scheme, see [? ? ? ].

3. Slide Line Treatment

Quoting Caramana [? ]: “Slide lines (2D) and surfaces (3D) are a way to treat interfaces in Lagrangian
hydrocodes that allow different materials or regions to move relative to each other without the grid distortion
that would otherwise terminate these calculations quickly.” The presence of fluid instabilities is often, if not
always, a cause of failure for Lagrangian codes. The idea of slide lines comes from [? ], and was reproduced
in Chapter 5 of [? ]. By all means most of slide line treatments follow this original work of Wilkins as
pointed by Caramana [? ]. Slide line is an important feature although it is quite rarely described.

Any method treating slide lines in a Lagrangian hydrocode must ideally respect some general require-
ments. On the first hand some requirements are related to the properties of the physical underlying system
and the Lagrangian numerical scheme used to solve it. As instance conservation of mass, momentum and
total energy obeyed by the physical system and the numerical scheme must be also preserved by the specific
slide line treatment. The normal acceleration between two materials being continuous, the slide line treat-
ment is required to preserve such continuity. In addition the slide line treatment must not destabilize steady
solutions (as instance homogeneous fluids with constant pressure and velocity field). Over and above ideal
situations must be perfectly dealt with independently of the possibly different mesh sizes across the slide
line. More precisely fake slide lines must have an ignorable impact, straight slide line must remain so in pure
sliding situations. On the other hand some requirements are related to the physics involved at the slide line.
As instance two materials sliding on each other never inter-penetrate, consequently the slide line treatment

3

should also obey this principle. Furthermore the resulting contact force between two sliding materials must
only act in the normal direction to the slide line. In addition, in the frictionless case, the tangential net force
due to the contact must be zero.
Developing a slide line algorithm demands to, exactly or approximately, fulfill these requirements. The
technique developed in [? ] and described in section 3.1 first determines scaled contact forces normal to
the slide line. Apart from momentum conservation (for non-ideal cases) and inter-penetration problem the
technique fulfills the previous requirements. Contact forces are determined by trying to perfectly deal with
ideal situations. Then, to ensure that no penetration occurs, the point velocity on one side of the slide
line is further corrected in section 3.2. Unfortunately, doing so, the technique slightly losses total energy
conservation. Nonetheless such energy discrepancy is used to assess the meaningfulness of the computation,
see section 3.3.

3.1. Contact Forces

The first task is to determine the contact force for the ideal situation as shown in Figure 1 where a
computational mesh is split in two parts separated by a single slide line splitting each point on the slide
line into two half-points p and p′. Here the design principle consists of exactly retrieving the momentum

p

pm
p

p’
p’m

mp

(a) single point (b) split in two points

Figure 1: (a) One point in a mesh separated in its lower (red) and upper (blue) part by imaginary slide line (black line). One
particular point p is shown with its dual cell containing the corresponding nodal volume/mass mp (gray rectangle). (b) Point
separated to two half-points p and p′, belonging to different sides of the slide line.

equation (7) for one point when the slide line splits (7) in two equations for two half-points,

mp
d~vp
d t

= ~Fp + ~gp , mp′
d~vp′

d t
= ~Fp′ + ~gp′ , (10)

where ~Fp and ~Fp′ represent the sum of subzonal forces from lower/upper subzones attached to the half-points
and their sum is equal to the original total nodal force, and similarly with the masses of the half-points mp

and mp′ . Moreover, ~gp/~gp′ represent the contact forces acting on the lower/upper half-point from the opposite
side of the slide line. When we assume that p and p′ coincide and have the same mass and geometry, the
separate equations (10) have to sum to the original equation (7) which implies ~gp′ = −~gp. After substituting
this back to (10) and assuming the same acceleration for both half-points, the contact forces become

~gp = −~gp′ =
mp

~Fp′ − mp′ ~Fp

mp + mp′
. (11)

Let us move to a less ideal situation shown in Figure 2 (a) where both sides of the slide line remain
straight, however, the cell aspect ratios are different. In this case one defines the outer normals for each edge

4
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Figure 2: (a) Definition of edge outer normals ~Np±1/2, nodal unit normals ĉp, and nodal characteristic lengths ap. (b) Projection
of contact forces ~gp to the normal direction ap.

on a slide line, ~N , which have the normal directions, and their size is defined by the length of the edge. The
nodal outer normal is defined (as suggested in [? ]) by the average of the adjacent edge normals,

~Np = ( ~Np− 1
2

+ ~Np+ 1
2
)/2 , (12)

where p − 1/2 and p + 1/2 denote the left and right edges in the slide line with respect to point p. The

characteristic size ap of node p is defined as ap = ‖ ~Np‖ which corresponds to the length between the edge

centers of the two adjacent edges. The nodal unit normal is defined as ĉp = ~Np/ap.

Because two upper cells sharing one single node p′ interact with possibly more than two lower cells we
need to “impedance” match the force interactions across the slide line. (In other words an interaction area
ap′ of point p′ must be matched by an approximately equal area of interaction from the opposite side no
matter how many points p from this opposite side contribute.)
When p and p′ coincide as in Figure 2 (a) it is somewhat enlightening to consider the “meta-cell” constituted
of some part of the upper cells sharing point p′ and the the lower cells associated to the interaction area ap.
In this meta-cell the mass of point p ≡ p′ is approximately given by mp + mp′

ap

ap′ because, if one assumes

that mp′/ap′ represents the density of the mass along lower boundary cells, then mp′
ap

ap′ does represent the

approximate mass related to the interaction area ap. In the same way the acceleration of p ≡ p′ in the

meta-cell may be approximated by
(
~Fp + ~Fp′

ap

ap′

)
/
(
mp + mp′

ap

ap′

)
.

The half-sided momentum equations are given by

mp
d~vp
d t

= ~Fp + ~Gp , mp′
d~vp′

d t
= ~Fp′ + ~Gp′ , (13)

where ~Gp = (~gp · ĉp) ĉp and ~Gp′ = (~gp′ · ĉp′) ĉp′ are the normal component of the contact forces. The contact
force is then defined as the normal component of the acceleration of the point in the meta-cell, that is to say
~Gp force is determined as the solution of

d~vp
d t

· ĉp =
~Fp + ~Gp

mp
· ĉp ≡

~Fp + ~Fp′
ap

ap′

mp + mp′
ap

ap′

· ĉp, (14)

5

leading to ~gp · ĉp =
mp(~Fp′ ·ĉp)−mp′(~Fp·ĉp)

ap′mp+apmp′ ap. We further approximate the projected force by the projection

to the normal from the opposite side, ~Fp′ · ĉp ≈ −~Fp′ · ĉp′ to get

~gp · ĉp ≈ −
mp

(
~Fp′ · ĉp′

)
+ mp′

(
~Fp · ĉp

)

ap′mp + apmp′
ap. (15)

As a consequence ~Gp (and ~Gp′ following the same logic) is determined by

~Gp = (~gp · ĉp) ĉp ≈ −
mp

(
~Fp′ · ĉp′

)
+ mp′

(
~Fp · ĉp

)

ap′ mp + ap mp′
ap ĉp , (16)

~Gp′ = (~gp′ · ĉp′) ĉp′ ≈ −
mp′

(
~Fp · ĉp

)
+ mp

(
~Fp′ · ĉp′

)

ap mp′ + ap′ mp
ap′ ĉp′ . (17)

As we can see, both formulas are the same up to a prime sign again. The projection is demonstrated in
Figure 2 (b). When the points p and p′ do not coincide then the meta-cell construction is only an approxi-
mation, so are the point mass and its acceleration.

By construction two of the previously listed requirements, namely the contact force only acting in the
normal direction and the frictionless requirement, are obeyed. Moreover the normal acceleration between
the two materials is continuous because 1

mp
(~Fp + ~Gp) · ĉp = − 1

mp′ (
~Fp′ + ~Gp′) · ĉp′ . While the momentum

conservation is not ensured to round-off error for non-ideal situations it is still conserved to truncation error
when summed over all of the points of the slide line1. On the other hand total energy conservation is preserved
because the slide line treatment is so far expressed as contact forces which are further participating in the
internal energy update (9) relying on the compatible construction of the numerical scheme. Furthermore we
have obtained equations (16-17) by requiring the slide line algorithm to retrieve ideal situations; Areas a are
used to scale the G quantities so that we obtain the “exact” result given by (11) in the limit of exactly the
same number of aligned grid points on both sides of the slide line. Lastly we can verify that the slide line
treatment maintains a constant pressure even when non-uniform meshes are used, see also the numerical
experiments on pure sliding situations in 6.1.
Unfortunately the slide line treatment does not prevent the two sides to inter-penetrate. The contact force
is constructed to avoid such an unlikely situation to occur, however, there is no intrinsic mechanism that
can prevent it. The next section presents the velocity correction technique to prevent inter-penetration from
[? ].

3.2. Velocity Correction Preventing Inter-penetration
Up to now, the slide line has been treated in a symmetric manner concerning the upper and lower sides.

However, classical treatment of slide line defines a “master” and “slave” side. In general, the materials on
both sides dictate such dichotomy. Without loss of generality, let us assume that the lower (red) side in our
Figures is declared as slave. Because inter-penetration can occur the slave side of the slide line is forced to
follow the master side – the so-called “put-back-on step” puts back any point from the slave side onto the
master side [? ].

The last ingredient proposed by Caramana [? ] relates to this put-back-on step. In fact, the solution
of the inter-penetration problem is recast into a velocity boundary condition. More precisely, the update of
velocity of slide points coming from (13) is given by

~vn+1,†
p = ~vnp +

∆t

mp

(
~Fp + ~Gp

)
, ~vn+1,†

p′ = ~vnp′ +
∆t

mp′

(
~Fp′ + ~Gp′

)
, (18)

1Indeed let us remark that in the case the normals are collinear and opposite, ĉp = −ĉp′ , the sum of ~Gp/ap and ~Gp′/ap′
(make the force intensive with respect to a’s) is identically zero. With the normals being different there is again an error at
truncation level because of the curvature along the slide line.
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where the final master velocity is not modified ~vn+1
p′ = ~vn+1,†

p′ , while the slave velocity is altered in the
following way,

~vn+1
p = ~vn+1,†

p +
[(

~vn+1,†
p′ + ~vnp′

)
· ĉp′

]
ĉp′ −

[(
~vn+1,†
p + ~vnp

)
· ĉp′

]
ĉp′ , (19)

which guarantees that the projection of the time centered velocities ~v
n+1/2
p′ = (~vn+1

p′ +~vnp′)/2, ~v
n+1/2
p = (~vn+1

p +

~vnp )/2 on the normal ĉp′ coincide, i.e. ~v
n+1/2
p′ ·ĉp′ = ~v

n+1/2
p ·ĉp′ . In words, this correction removes the excessive

velocity in the direction of inter-penetration (slide line normal) from the final velocity. Consequently, this
correction prevents the slave node to move in this direction more than the corresponding master node does.
This correction is weaker than the explicit put-back-on step [? ] and does not bring so strong disturbance
into the compatible Lagrangian schemes. While this velocity correction provides a way to fulfill the inter-
penetration requirement it also affects the energy conservation as this correction is not recast into the
compatible formulation.

3.3. Energy discrepancy

In the context of a compatible Lagrangian scheme and away from boundary conditions the total energy is
conserved up to machine precision. During one time step ∆t = tn+1 − tn, internal energy in zone z changes
as

mz (εn+1
z − εnz ) = −

∑

p∈P (z)

~F z
p · ∆~rp , (20)

where ∆~rp = ∆t(~vn+1
p + ~vnp )/2 represents nodal motion during the time step. Kinetic energy in point p

changes as
1

2
mp

(
(~vn+1

p )2 − (~vnp )2
)

. (21)

Due to compatibility of the scheme, both energy changes summed over the entire mesh should be the same.
However, the presence of a slide line may interfere with this equilibrium. The sliding forces are naturally
treated by the energy update of the compatible scheme, but the velocity correction can introduce some
discrepancy in the energy conservation. In [? ] the author presents a way to measure this discrepancy. The
work done by the slide line on a time step ∆t upon a point p of the slide line is computed as

∆Wn,n+1
p =

[
1

2
mp

(
(~vn+1

p )2 − (~vnp )2
)]

−
[ ∑

z∈Z(p)

~F z
p · ∆~rp

]
, (22)

where the internal energy change was transformed from a sum over cells to a sum over nodes. By construction
of the compatible scheme, the total energy E is conserved, but the work done by the slide line remains so
that

En+1 − En =
∑

p in slide line

∆Wn,n+1
p . (23)

To compute the overall energy discrepancy during the entire simulation, one can accumulate over time,

En+1 − E0 =
n+1∑

i=1

∑

p in slide line

∆W i−1,i
p . (24)

This last equation represents the energy balance that must be satisfied up to machine precision and represents
the total energy discrepancy brought into the simulation due to the velocity correction of the slide line
treatment.

7

4. Interpolated Interaction

The approach [? ] described in the previous Section employs the standard point-to-point interaction

where the pressure forces ~F , velocities ~v, characteristic lengths ap, and the outer normals ĉ on the opposite
side of the slide line are simply taken from the nearest opposite point. This approach works reasonably well
and it is the best choice from the parallelization point of view, however, it can lead to staircase-shape of the
slide line when different aspect ratios are present on each side of the slide line, so the original approach is
unlikely to be suitable for problems with high local curvature. This is caused by interaction of several points
with a particular point from the opposite side, causing the set of points behaving similarly, while the very
next point interacting with a neighboring point from the other side behaves in a significantly different way,
as shown in Figure 3 (a). Therefore, we suggest here the interpolated interaction, where all the mentioned

p

p’

p

ep p’R
Lp’

(a) point-to-point interaction (b) interpolated interaction

Figure 3: (a) Point-to-point interaction where many points (p) can interact with one point from the opposite side (p′). (b)
Interpolated interaction where points interact with edge ep, its left and right points denoted by p′L and p′R respectively.

quantities from the opposite side of the slide line are interpolated from the adjacent point values. For
completeness, let us note that the interpolated interaction is used in practice in various numerical codes,
however, not many details are available in open literature. For example, in [? ] and [? ], the authors treat the
interaction of contact nodes with an edge from the other side in the context of Lagrangian multipliers. For
example, in [? ], the authors accumulate portions of nodal quantities (such as mass) from several opposite-
side nodes. In [? ], the nodal quantities are distributed to the opposite-side nodes using weighting by mass
fractions. And finally in [? ], the authors interpolate scalar quantities and normals of vector quantities
while projecting the vector components to the normal direction. Similarly, in the approach suggested here,
all quantities are interpolated along the edge, however, each component of vector quantities is interpolated
separately.

In the point-to-point interaction, a closest point p′ from the opposite side has to be determined for any
point p on a slide line. In the interpolated interaction, an edge ep belonging to the opposite side of the
slide line and interacting with p has to be determined. Let us note that we reuse the information about the
closest point p′, and ep is always one of the slide line edges connected to p′. The relative position of p on ep
is found by the standard projection formula

αep
p = max

(
0,min

(
1, αep,†

p

))
, (25)

αep,†
p =

(xp − xp′
L
) (xp′

R
− xp′

L
) + (yp − yp′

L
) (yp′

R
− yp′

L
)

‖p′
R − p′

L‖ , (26)

where p′
L and p′

R denote the left and right vertexes of ep. This situation is shown in Figure 3 (b). The
interpolation of, for example, mass is then performed by a linear function

mp′ = mp′
L

+ αep
p (mp′

R
− mp′

L
) , (27)

so the value is different for each node interacting with ep and smoothly changes from mp′
L

to mp′
R

along the
edge, making the interaction more continuous.

Similarly, as shown in (27) for nodal mass, the remaining nodal quantities from the opposite side of the
slide line are interpolated in the same way, using the same pre-computed α

ep
p parameters. These are: nodal
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mass mp′ , characteristic length ap′ , nodal normals ĉp′ , and nodal force ~Fp′ in contact force (16), the same

quantities with p subscript instead of p′ in contact force (17), and normals ĉp′ and velocities ~vn+1,†
p′ and

~vnp′ in slave velocity update (19). The vector quantities are interpolated component by component, while
the interpolated normals are re-normalized to be unit vectors again. This approach leads to a significant
improvement of the staircase-shape problem, see Figure 8(a) and 11(b).

5. Numerical Surface Tension

In many tests containing sliding, we can observe the evolution of the Kelvin-Helmholtz instability caused
by the shear of different density fluids along each other which can eventually cause the failure of the sim-
ulation. This situation can be caused by real physics or wrong model, which is the case for example for
gasses, where the disturbance of the interface is the consequence of the missing model for fluid mixing. In
simulations of solids, this problem is typically avoided by introducing a model for material stress/strain, such
as [? ? ? ], which causes the material to behave more rigidly; the instability modes are suppressed. We have
decided to adopt the technology of numerical surface tension for interface stabilization which is most ade-
quate for description of behavior of liquids. In the formulation of slide line treatment using the Lagrangian
multipliers or the penalty method, one can stabilize the interface by an inherited stabilization parameter [?
]. Alternative surface stabilization techniques involve for example the viscous interface dumping described
in [? ].

In our approach, we incorporate the surface tension effect in the form of tension forces in a similar
manner, as described in [? ]. Let us emphasize here that (contrary to [? ]) these forces in our approach do
not represent real physical surface tension, it is only a numerical technique for stabilization of a slide line.

The numerical surface tension force acting from zone z on point p, is constructed as

~FNST
zp = sp σzp κp ĉp , (28)

where the sign sp defines the orientation of the force, σzp represents the pressure gradient in the interface
normal direction, κp represents the local curvature of the slide line, and the nodal unit normal ĉp defines
the direction of the surface tension force. Due to ĉp term, the numerical surface tension force only acts in

the direction normal to the slide line, no tangential component exists. ~FNST
zp can be incorporated into the

subzonal pressure forces ~Fzp, and have to be included through this force into the slide line contact forces ~Gp.
The orientation of the numerical surface tension force is defined as

sp =

{
−1 for αp ∈ 〈0, π)
+1 for αp ∈ 〈π, 2π〉 , (29)

where αp stands for the internal angle spanned by the slide line edges attached to p. If the slide line is locally
convex from one side, the internal angle is acute, therefore sp < 0, and the node is pulled inside the mesh.
In the opposite situation, in case of locally concave mesh from one side of the slide line, αp is obtuse, so sp
is positive, and the node is pushed outside of the mesh. In both cases, the direction leads to straightening
of the slide line segment. Let us also present an alternative definition of sp, avoiding the strong jump in the
situation of the straight angle,

sp = tanh(C(αp − π)) . (30)

Here, the constant C defines the width of the transition region. Let us note that this definition of sp is
smoother, and moreover, sp ≈ 0 for αp ≈ π what makes the whole numerical surface tension machinery more
robust.

The term σzp represents the pressure gradient in the vicinity of the slide line. As the pressure force ~FNST
zp

is computed using (8), the pressure gradient can be approximated by it. As we are only interested in the
size of the pressure gradient in the direction normal to the slide line, it can be computed as

σzp ≈ ∇pzp =
∣∣∣~Fzp · ĉp

∣∣∣ . (31)
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The last term which we need to define is the local curvature of the slide line κp. We compute the curvature
in point p as the maximum curvature of a Bezier curve defined by p and its two neighbors in the slide line,
as shown in Figure 4. The Bezier curve is described by the following parametric formula

1 3

p=2

Figure 4: Part of the mesh attached to a slide line approximated by a Bezier curve. Enumeration of slide line points shown.

x(t) = (1 − t)2 x1 + 2 t (1 − t)x2 + t2 x3 , (32)

y(t) = (1 − t)2 y1 + 2 t (1 − t) y2 + t2 y3 , (33)

where x1,2,3 and y1,2,3 are the coordinates of the nodes as enumerated in Figure 4, and where the parameter
t ∈ 〈0, 1〉. The curvature is defined by the standard formula

κp(t) =
|x′ y′′ − y′ x′′|√(

x′2 + y′2)3
, (34)

where the ′ symbol represents the derivative with respect to t, and can be computed analytically. The
maximum curvature κp = maxt∈〈0,1〉 κp(t) is found by the golden section search.

In certain configurations (typically when slide line edges of very different lengths are connected to p), this
approach can produce excessive numerical surface tension force due to possibly unbounded value of curvature
κp. To fix this problem, we have adopted the following limiting approach. If the numerical surface tension

force ~FNST
zp is too big compared to the hydrodynamic pressure force ~Fzp, we perform limiting to a certain

amount of ~Fzp,

~FNST,lim
zp = β

‖~Fzp‖
‖~FNST

zp ‖
~FNST
zp . (35)

In practical simulations, we use 10% of the pressure force, i.e. β = 1/10. Next to it, in practical calculations,
one may want to incorporate a switch which enables the numerical surface tension force only if sp changes
its sign in the neighborhood of p. This avoids the straightening of the slide line in smooth regions, while it
still prevents its pathologic zigzagging.

Let us note that the numerical surface tension mechanism can change physics in the vicinity of the inter-
faces by straightening the material interface. This straightening eliminates the development of instabilities
on the interface, which may or may not be desirable. The usage of this mechanism therefore depends on
a particular simulation. For problems containing pure sliding of materials along each other, the numerical
surface tension mechanism helps to stabilize the interface and increases robustness of the calculation. On
the other hand, for simulations of instabilities, the numerical surface tension mechanism can eliminate the
growth of the instability completely, so this mechanism is not suitable at all. In general, this mechanism
should be used only as little as possible to avoid excessive interface straightening.

6. Numerical Examples

In this Section, we present several numerical examples to demonstrate the behavior of the original method
and its comparison with the improved method combining the interpolated interaction and the numerical
surface tension.
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Figure 5: (a) Initial 40 × 50 and 10 × 50 meshes of the pure sliding sanity check. (b) Final meshes.

6.1. Pure Sliding

The first numerical example is a sanity check testing the robustness of the methods and their ability to
maintain straight material interface. The 〈0, 2〉2 computational domain is split in the middle by a vertical slide
line into two different non-uniform computational meshes, with different mesh resolution in each quadrant
of the domain [? ]. The initial meshes are shown in Figure 5 (a). All fluid quantities are constant in the
entire domain except the vertical velocity which is +0.02 in the left mesh and −0.02 in the right mesh. The
final time is t = 10.

All methods keep the straight slide line exactly, no violation occurs, as shown in Figure 5 (b). This is
confirmed by the ∆W energy discrepancy which is zero up to machine accuracy for all methods. Due to non-
equidistant nature of the meshes, this test checks the infrastructure of the slide line framework, especially
the mechanism of scaling the contact forces to the segment size across the interface by the parameter ap.

6.2. Saltzman-like Piston

Another sanity check is inspired by the standard Saltzman piston problem, however, a standard uniform
orthogonal mesh is used instead of the skewed Saltzman mesh. The whole 〈0, 1〉 × 〈0, 0.1〉 domain is covered
by a 100 × 10 mesh which is split in the middle of the domain by a horizontal or vertical slide line, as shown
in Figure 6 (a,b). The fluid has a unit density and zero (in practice, 10−8 is used) pressure, and it is static
except the left boundary which is moving with unit velocity representing a piston compressing the fluid. The
value of γ = 5/3 is used everywhere, the final time is t = 0.98. The whole problem is rotated by a non-trivial
angle π/6 to avoid interference with the axes directions. (The non-rotated problem produced perfect results
for all methods and is consequently skipped.)

Interesting parts of the final computational meshes are shown in Figure 6 (c,d). No difference among the
methods can be visually observed, so only images for the interpolated interaction with the numerical surface
tension are presented. As we can see, the 1D nature of the problem is preserved perfectly in both cases for
all methods. For the horizontal slide line test, no discrepancy occurs at all, the ∆W energy discrepancy is
zero up to machine accuracy for all methods. In case of vertical slide line, small discrepancy appears for all
methods (∆W ≈ 10−9), and a small oscillation in density shows up close to the slide line. This is caused
by the shock wave passing the interface and consequent velocity correction, which did not appear in case of
horizontal slide line as no velocity correction was performed due to normal direction of the slide line and the
shock wave. However, the 1D symmetry as well as the shock wave velocity is not affected.
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Figure 6: Saltzman-like piston with a slide line: initial (a,b) and final (c,d) meshes for Saltzman-like piston problem separated
by a horizontal (a,c) and vertical (b,d) slide line.

6.3. Sliding Rings

In this Section, we describe a problem in which an inner low-density ring slides along an outer heavier
ring. This problem is similar to the pure sliding test presented in Section 6.1, however, this is not just a
sanity check any more as real hydrodynamic effects take place here due to the centrifugal forces. Both initial
meshes contain 100 × 20 computational cells. The outer mesh uniformly spans from −π/4 to 5/4π in the
angular direction and from 2 to 3 in the radial direction. The inner mesh spans from 0 to π/2 in the angular
direction and from 1 to 2 in the radial direction, so there is a 1/3 aspect ratio between the meshes. The
initial meshes are shown in Figure 7. Both meshes contain initially uniform unit pressure, the inner (slave)
mesh with uniform unit density slides by a unit angular velocity along the static outer (master) ring with
density 104. The simulation stops in time 0.65, just before the original method fails.

The results of the simulations are shown in Figure 8. The original method provides significantly worse
results when compared with the improved method what is caused by the staircase-shape problem due to
a different aspect ratio of the meshes, as described in Section 4. This problem propagates though the
computational mesh and can be seen as strong disturbances in the mesh and also in the density (and other
quantities) profiles. The interpolated interaction helps significantly and the simulation can continue. As
the slide line shape is maintained smooth in this case, the numerical surface tension does not change the
behavior significantly due to low curvature term κp in formula (28).

Note a significant inter-penetration in the original method, which is eliminated by the interpolated
interaction. As for the energy discrepancy due to velocity correction, it is of the order of 10−3 for the original
method, and one order of magnitude lower for the improved methods. Clearly, this problem demonstrates
the ability of the interpolated interaction mechanism to suppress the staircase shape problem and stabilize
the interface.
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Figure 7: Initial meshes for sliding rings problem separated by a circular slide line.
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Figure 8: Zoom to the interesting part along the slide line for the sliding rings problem (aspect ratio not preserved). Comparison
of computational meshes and density field for the original approach and the improved method with interpolated interaction and
surface tension shown.

6.4. Explosion with Sliding

In this Section, we demonstrate the behavior of the methods on a more complex test coming from [? ],
representing a realistic problem including a shock wave along the slide line, a shock wave in the direction
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Figure 9: Problem of explosion with sliding. (a) Initial data. (b) Simulation on a single mesh with no slide line present.
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Figure 10: Results for problem of explosion with sliding. Density profiles and zoom to the slide line regions (aspect ratio not
preserved) are shown for the original approach and the improved method with interpolated interaction and surface tension.

normal to the slide line, and sliding at the same time. The computational domain 〈0, 1〉 × 〈0, 0.5〉 is divided
by a horizontal slide line into two static uniform meshes of 100 × 25 cells. The lower (slave) mesh has a unit
density, pressure is 20 in cells left from x = 0.05, and 2/3 10−8 right from it. This high pressure generates a
shock wave moving to the right. The upper (master) mesh has density 10 and pressure 2/3 10−8 everywhere.
The value of γ = 5/3 is used in the entire domain. The initial configuration is shown in Figure 9 (a). The
simulation is stopped in time t = 0.4.

Figure 9 (b) presents the simulation performed on a single computational mesh without a slide line. Note
a significant mesh distortion along the material interface due to shear flow, causing high numerical error and
eventually degeneracy of the computational time-step. The results of the simulations with a slide line are
shown in Figure 10. All methods provide better results than the one-mesh approach, the meshes slide along
each other, and the horizontally moving shock wave is nicely captured as no mesh distortion is present. The
vertically-moving shock waves from the original method and the improved method are almost identical in
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Figure 11: Computational meshes for the bullet in a channel test at t = 0.1. (a) Initial mesh of the bullet in a channel test.
(b-d) Comparison of the original approach with the improved method with interpolated interaction and surface tension.

the density pictures, when numerical surface tension is added, it is slightly flatter. The void region in the
left part of the mesh is bigger for the original approach, it is reduced by interpolated interaction, and almost
eliminated by adding the numerical surface tension. The density profile of the original method is almost
identical with the profile presented in [? ].

When looking at the mesh segments along the slide line in the post-shock region for the original method,
one can see the development of serious disturbances due to the staircase-shape problem again. This problem is
significantly reduced by switching to the interpolated interaction again (Figure 10 (b),(c)). As for the energy
discrepancy, it is comparable for all methods for this problem, ∆W = 8.8 10−3 for the original method, it
drops to ∆W = 7.1 10−3 for the interpolated interaction, and increases slightly to ∆W = 7.5 10−3 when
numerical surface tension is added.

6.5. Bullet in Channel

The last test is inspired by real physical experiments, dealing with ablative acceleration of dense plasma
in a channel [? ], which were performed at the Prague Asterix Laser System (PALS). The initial mesh is
shown in Figure 11 (a). The 〈0, 2〉 × 〈0, 10〉 computational domain is split by a vertical slide line. The right
(master) part is covered by a initially static uniform mesh of 20 × 100 cells with density equal to 10 and
pressure 1, representing the channel boundary. The left (slave) part of the domain represents the inside of
the channel. It is divided into three parts: the uppermost air (5 cells between y = 9 and y = 10), the bullet
(90 cells between y = 8 and y = 9), and air (5 cells between y = 0 and y = 8). The density is 1 in the
heavy bullet and 0.1 in the air. The air is initially static, the bullet moves down with the velocity 7. The
value of γ = 5/3 is used in the entire domain. The simulation stops at time t = 1.17, just before the original
approach fails.

Due to the bullet motion, the lower air is compressed, the pressure here is increased, and the slide line
deforms due to the developed pressure gradient. This problem involves a strong difference in aspect ratios
across the slide line, which drives the staircase-shape problem very strongly.

Figure 11 (b),(c),(d) presents the situation in a very early stage of the simulation at t = 0.1. The
original method suffers from severe distortions. We can clearly identify sets of points from the master side
interacting with the particular points on the slave side. On the other hand, the interpolated interaction
demonstrates reasonable shift of the master nodes along the edges of the slave boundary. At this early stage
of the simulation, the numerical surface tension does not have any significant influence as the shape of the
slide line is still smooth.

Figure 12 presents the density field in the entire domain at the final time t = 1.17, as well as the
part of the meshes close to the slide line. The largest voids between the meshes appear in the case of the
original method, but the global picture (bullet shape, shock wave position, etc.) is the same for all methods.
Looking at the mesh part along the slide line, one can notice the significant inter-penetration when the
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Figure 12: The density profiles in the entire domain and mesh segments in the interesting region close to the slide line (aspect
ratios not preserved). Comparison of the original approach with the improved method with interpolated interaction and surface
tension.

original method is used, which is reduced by the interpolated interaction and almost eliminated by adding
the numerical surface tension. The ∆W energy discrepancy is comparable for all methods.

6.6. Sedov Explosion with an Interface

In this section, we demonstrate the symmetry violations introduced by the slide line machinery for
an initially symmetric problem. This problem resembles the standard Sedov point explosion problem on
polar computational mesh. The initial mesh covers the radius r ∈ 〈1/100, 1.1〉 and the angular interval is
θ ∈ 〈0, π/2〉. Small radius around the origin prevents the degenerate points to appear. The computational
mesh is split by a slide line at r = 1/2, where the outer mesh acts as its master side. Both meshes have 20
computational cells in the radial direction. The outer mesh contains 100 cells while the inner mesh has only
31 cells in the angular direction, so the nodes do not coincide at the slide line. The entire domain contains
unit-density zero-pressure gas (in practice, p = 10−10 is used) with γ = 1.4, except the innermost ring of cells
where the value of p = 114.359 is used. This value is found to exactly correspond to the standard version of
the Sedov problem presented for example in [? ]. The final time of the simulation is t = 1.

When this problem is solved on a single mesh without any slide line, the solution preserves its symmetry
up to machine accuracy. We measure the non-symmetry as the ratio of the angular momentum and the total
momentum. The solutions when a slide line is present is shown in Figure 13. As we can see, small decrease in
the density value is visible at the slide line (around r = 0.9 in Figure 13) for all slide line treatments. Let us
note this dip is not present for single mesh simulation and probably originates from the energy discrepancy
due to velocity correction at the slide line. However when meshes with termination lines or hanging nodes
are employed, the preservation of symmetry becomes tricky [? ] especially when nodes on both sides do
not coincide as in our case. Even visually, we can observe some non-symmetry of the solution between the
slide line and the shock front, especially for the original approach. The relative momentum in the angular
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Figure 13: The density profiles in the entire mesh (upper figures) and scatter plot of all cell densities as a function of radius
(lower figures) against the analytic solution for the original approach and the improved method with interpolated interaction
and surface tension.

direction is 4.008 ·10−4 for the original approach, 3.230 ·10−4 for the interpolated interaction, and 3.223 ·10−4

for the interpolated interaction with the surface tension. The ∆W energy discrepancy is comparable for all
methods. Let us note that for this problem, the surface tension switch mentioned in Section 5, which disables
the tension in smooth regions was used. Without this switch, the surface tension force tries to make the
slide line straight and symmetry of the problem is violated significantly.

6.7. Rayleigh-Taylor Instability with Sliding

In this section, we want to analyze the influence of the slide line treatment on the growth rate of the
Rayleigh-Taylor instability problem [? ] against the theoretical rate. The initial configuration is exactly
adopted from [? ]. This simulation is performed on a single 100 × 600 mesh without any slide line, and also
on two 100 × 300 meshes separated by a slide line. The upper mesh containing the high density fluid acts as
master in these calculations.

In Figure 14, we present the growth rates of the instability and their comparison with the analytic rate [?
] during the linear phase of the instability growth. First of all, we can see that the simulation without
the slide line follows almost exactly the analytic curve until t = 0.6. After that, the shear along the fluid
interface decelerates the growth due to interface nodes belonging to both fluids and stick to each other. This
problem is improved by introducing a slide line separating the fluids, so the interface nodes are freely moving
along the interface, without further restrictions from the opposite side. At time t = 1.3, the growth rates
in the calculations with the slide line exceed the single mesh results, better corresponding to the theoretical
growth and the results from [? ].

We can see that the results of the original method almost coincide with the results of the interpolated
interaction. Let us note that the result with numerical surface tension is omitted here as it is not appropriate
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Figure 14: Comparison of analytic growth rate of the Rayleigh-Taylor instability with the numerical calculations performed on
single mesh, and on two meshes separated by a slide line treated by original approach (blue) and the interpolated interaction
(green). Blue and green curves are superimposed.

for this kind of problem. The numerical surface tension mechanism is designed to stabilize the interface and
eliminate the instability, so the instability amplitude decreases instead of increasing according to theory.

7. Conclusions

We have reviewed the slide line treatment from [? ] in the staggered Lagrangian framework. On the
selected numerical examples, we have demonstrated some pathologies of this method in case of different
aspect ratios of the computational meshes. This problem can be described as staircase-shape due to similar
interaction of several mesh nodes from the finer side of the slide line with a particular node in the coarser
side, and just next to them, another set of points interacting with a neighboring node in the coarser side.
We describe the technique of interpolated interaction which eliminates this problem.

A second problem is the development of Kelvin-Helmholtz instability in the vicinity of the slide line due
to a shear flow in this region. We suggest here a numerical surface tension formulation which suppresses
this problem and stabilizes the slide line by making it more rigid. This technique is however devoted to cure
hydrodynamical instability. Obviously if such instabilities must be kept or if more advance material strength
model is used then this technique should not be employed.

On selected numerical examples, we demonstrate the advantages of the improved methods by comparison
with the original approach. We show here that the interpolated interaction provides a much more regular
shape of the slide line than the original method. It is also demonstrated that the numerical surface tension
process does not affect the slide line shape when it is reasonably smooth, but starts to stabilize it when
perturbations appear. In all tests shown here, the improved method provides better results than the original
method [? ].

Acknowledgments

The authors thank E.J. Caramana for clarifications of many details and discussion of many issues related to this topic. This

research was supported in parts by the Czech Ministry of Education grants MSM 6840770022, MSM 6840770010, MEB021020, and

LC528, and the Czech Science Foundation project P201/10/P086. The authors warmly thank the support of the French embassy in

Prague, Czech Repulic under the Vltava program, which has provided the conditions for this work to reach maturity.

18

69



70 Chapter 1. Compatible staggered Lagrangian schemes

1.5 Uniting cell-centered and staggered Lagrangian schemes

In this section one presents the work done mainly by P.-H. Maire, P. Váchal and I on uniting cell-
centered and staggered Lagrangian schemes into a common framework. The goal is to extrude the
similarity of these supposedly different approaches. I need however to give credit to P.-H. Maire for
his breakthrough idea on bridging the two approaches and his ability to divert fruitful tools from
his work on cell-centered schemes [48, 49, 102, 50, 103, 104, 105, 51, 42]. This has led to still on-going
research and several publications in 2D [23], and 3D [24], proceedings [21, 22] from international
conferences. It is worth noticing that a very similar approach has been developed independently
by A. Burbeau-Augoula in [106] almost at the same time. In this section I review the 2D and 3D
publications on this subject.

2D cell-centered Riemann solver based artificial viscosity. In article [23] Staggered Lagrangian
Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme, P.-H. Maire,
P. Váchal and I have drawn the basics to design a new form of artificial viscosity for the compatible
staggered Lagrangian scheme.
More precisely this work suggests a general formalism to derive staggered discretizations for La-
grangian hydrodynamics on general unstructured meshes in two dimensions. This unified formal-
ism uses the concept of subcell mass and force from the compatible staggered Lagrangian scheme
community and a Riemann solver based artificial viscosity from cell-centered Lagrangian scheme
community, see [104, 105] for details.
This artificial viscosity form is formulated invoking Galilean invariance and thermodynamic consis-
tency. Moreover the satisfaction of entropy inequality is ensured by using a subcell-based positive
definite tensor, Mcp for cell c and point p. This tensor is the core of the scheme as it uniquely defines
the artificial viscosity and the nature of the scheme per se. Let us remind the final form of the subcell
force (1.55) for the compatible staggered Lagrangian scheme

Fcp = F
press
cp +F

q
cp +F

∆P
cp ,

which is constituted of the pressure force F press
cp (1.35), the artificial viscous force F q

cp (1.39, 1.40) and
the anti-hourglass force F ∆P

cp (1.51). In our work a sufficient condition to obtain the satisfaction of
the second law of thermodynamics is to set the subcell force as

Fcp = F
press
cp +Mcp(Up −Uc), (1.73)

where Mcp is a 2× 2 subcell-based matrix. A seemingly new degree of freedom, the cell-centered
velocity Uc, is in reality deduced from the point velocities and the subcell-based tensor. Indeed sub-
stituting the subcell force expression, Fcp = −LcpPcNcp +Mcp(Up−Uc), into the Galilean invariance
condition, ∑p∈P(c) Fcp = 0, leads to the following system satisfied by the cell-centered velocity Uc

McUc = ∑
p∈P(c)

McpUp, (1.74)

where Mc = ∑p∈P(c) Mcp is a symmetric positive definite matrix. Once the definition of the subcell
matrix Mcp is known, one can solve the previous system to get a unique expression of the cell-
centered velocity. By analogy with the node-centered approximate Riemann solver introduced in
the context of cell-centered Lagrangian discretization [50], we present one cell-centered approximate
Riemann solver. This solver allows to determine one particular form of the subcell matrix Mcp. To
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this end, let us introduce two pressures at the cell center per subcell denoted by Π−cp, Π+
cp. These

pressures are related to the normals N+
cp, N−cp which are the unit outward normals to the subcell

boundaries inside the cell, refer to Fig. 1.14. The subcell force is then defined as

Fcp = L−cpΠ−cpN
−
cp + L+

cpΠ+
cpN

+
cp. (1.75)

The cell-centered pressures are obtained by means of the half-Riemann problems

Pc −Π−cp = Z−cp
(
Uc −Up

)
·N−cp, (1.76)

Pc −Π+
cp = Z+

cp
(
Uc −Up

)
·N+

cp, (1.77)

where Z−cp, Z+
cp denote the swept mass fluxes, and Uc is the cell-centered velocity which remains to

be computed. The swept mass fluxes, Z−cp, Z+
cp, are defined following Dukowicz [88] as

Z−cp = ρc

[
σc + cQΓc | (Uc −Up) ·N−cp |

]
, Z+

cp = ρc

[
σc + cQΓc | (Uc −Up) ·N+

cp |
]

. (1.78)

Here, σc is the isentropic sound speed, cQ a user-defined parameter (usually set to 1 in our simula-
tions) and Γc a material dependent coefficient, which for a γ gas law is defined by

Γc =

{
γ+1

2 if (∇ ·U )cp < 0,
0 if (∇ ·U )cp ≥ 0,

(1.79)

where (∇ ·U )cp = − 1
Vcp

LcpNcp · (Uc −Up) is the subcell contribution to the velocity divergence. In
case of rarefaction wave, we recover the acoustic approximation whereas in case of shock wave we
get the well known two-shock approximation.
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Using (1.76)-(1.77) the subcell force is rewritten

Fcp =
(

L−cpN
−
cp + L+

cpN
+
cp

)
Pc +Mcp

(
Up −Uc

)
, (1.80)

where
Mcp = Z−cpL−cp(N

−
cp ⊗N−cp) + Z+

cpL+
cp(N

+
cp ⊗N+

cp) (1.81)

is a 2× 2 symmetric positive definite matrix. Because L−cpN
−
cp + L+

cpN
+
cp = −LcpNcp then the sub-

cell force writes like (1.73) where the subcell matrix is given by (1.81). The generic form of the
subcell force has been retrieved. Our expression of the subcell matrix is directly linked to the half-
Riemann invariants (1.76)-(1.77). The cell-centered velocity Uc is obtained by solving the system
McUc = ∑p∈P(c) McpUp, recalling that Mc = ∑p∈P(c) Mcp and that Mcp is given by (1.81). Mc is sym-
metric positive definite which ensures its invertibility. Remark that this system is non-linear due
to the dependency of the swept mass flux on the cell-centered velocity. This non-linear system can
be solved using an iterative procedure such as fixed point or Newton algorithms. In practice, few
iterations are needed to get convergence, in fact we only use two iterations. Once the cell-centered
velocity is known, the subcell force is deduced from equation (1.73). The present cell-centered ap-
proximate Riemann solver can be viewed as a two-dimensional extension of the work initiated by
Christensen in one-dimensional framework [87]. The viscous part of subcell force is an important
potential link between staggered and cell-centered Lagrangian schemes. While some of the exist-
ing artificial viscosity implementations can be reformulated by means of the proposed symmetric
positive definite tensor, others still seem to resist this simple interpretation. From this viewpoint
there remains enough space for deeper investigation with the prospect of finding similarities and
differences between the Godunov and Lagrange like methods.
An elegant way to incorporate the anti-hourglass-like forces (1.51) within the framework consists

of incorporating subcell pressure effects by the substitution of Pcp into the half-Riemann problems.
In other words, one replaces Pc in (1.76-1.77) by Pcp as follows

Pcp −Π−cp = Z−cp
(
Uc −Up

)
·N−cp, (1.82)

Pcp −Π+
cp = Z+

cp
(
Uc −Up

)
·N+

cp. (1.83)

The swept mass fluxes are also modified using the subcell density ρcp and sound speed σcp as

Z±cp = ρcp

[
σcp + cQΓc | (Uc −Up) ·N±cp |

]
.

The corresponding subcell force is modified accordingly

Fcp = −LcpPcpNcp +Mcp
(
Up −Uc

)
. (1.84)

Then, the system solving the cell-centered velocity rewrites as

Uc = M−1
c ∑

p∈P(c)

(
McpUp − LcpPcpNcp

)
. (1.85)

Let us provide an interpretation of the two terms that determine the cell-centered velocity. The first
term at the right-hand side is a weighted interpolation of nodal velocities at cell center, whereas the
second corresponds to a discretization of the pressure gradient at cell center. This interpretation is
obtained by computing the pressure gradient integral over the cell as

(∇P)c =
1
Vc

∫

∂Ωc

PN dS =
1
Vc

∑
p∈P(c)

∫

∂Ωcp∩∂Ωc

PN dS =
1
Vc

∑
p∈P(c)

LcpPcpNcp. (1.86)
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Figure 1.15 – Numerical results from paper [23]. Sod problem at tfinal = 0.2 for 100, 200, 400 cells in x direction —
Cell-centered density for the generic scheme and the scheme using piecewise linear velocity.

Then the cell-centered velocity reads

Uc = ∑
p∈P(c)

M−1
c McpUp −VcM

−1
c (∇P)c . (1.87)

This formula degenerates to the previous formula (1.74) in case of uniform subcell pressure over
the cell. The extra pressure gradient term induced by the subcell pressures acts as a supplementary
viscous term that is usually present in approximate Riemann solver.
An extension to higher order of accuracy in space using piecewise linear reconstruction of veloc-

ity field is also developed. The extension in time is obtained with the classical predictor-corrector
scheme. One noticable new feature is the vector limitation procedure which is frame independent
and thus preserves desirable properties like rotational symmetry. Performance of the new method
is demonstrated on a set of classical and demanding numerical tests, using various structured and
unstructured computational meshes, Sod, Sedov, Noh, and Saltzman problems and the linear phase
of a Rychtmyer-Meshkov instability.
In Fig. 1.15 one reproduces the results obtained by the generic scheme and its extension using piece-
wise linear velocity on the Sod problem run with the 2D code. These clearly show the improvement
gained by the later.

3D cell-centered Riemann solver based artificial viscosity. The promissing approach developed
in [23], that is to say the cell-centered Riemann solver based artificial viscosity in 2D, has been
further extended by P. Váchal, P.-H. Maire and I in three dimensions. This article appropriately
entitled 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver based artificial
viscosity [24] is depicted in this subsection.
The framework designed in 2D in [23] is extended to 3D. As the original framework was designed

for unstructured 2D mesh, its extension to 3D is almost trivial. Besides the natural complication to
face when developing a 3D code, we had to extend the notion of reconstruction and limitation of
vector field to 3D. In fact the frame invariant limitation demands the definition of two directions
in the plane perpendicular to the point velocity which is considered. Several tests have shown that
this choice has a significant effect on robustness and/or accuracy. The main focus of this paper
was to obtain the more complete and comprehensive picture of the efficiency of the 3D method



74 Chapter 1. Compatible staggered Lagrangian schemes

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Exact

1st order 100x3x3

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Exact

2nd order 100x3x3

Figure 1.16 – Numerical results from paper [24]. Sod problem at tfinal = 0.2 for 100 cells in x direction and 3 in y
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Cell-centered density as a function of x for all cells and 3D view.

implemented into a simulation code via test cases. As for any 3D extension of an existing method
great care has to be paid to the implementation details. We then ran sanity checks with the 3D code
to retrieve 1D Sod results as in Fig. 1.16. In Fig.1.17 we also show that 2D Sedov results are also
retrieved by the 3D code. One has run several 3D problems : Sedov, Noh, Saltzman and Rayleigh-
Taylor on hexaedric and polar meshes. The generic compatible staggered Lagrangian scheme and
its extension using piecewise linear velocity using a cell-centered Riemann solver based artificial
viscosity have been compared on the 3D Sedov problem with a 3D implementation of the compatible
staggered Lagrangian scheme using the edge based artificial viscosity popularized in [57]. We have
shown that the new approach is able to reproduce almost perfectly spherical symmetry whereas the
edge based artificial viscosity presents some spurious mesh instability, see Fig. 1.18

These papers are reproduced in the following pages.
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Abstract. The aim of the present work is to develop a general formalism to derive
staggered discretizations for Lagrangian hydrodynamics on two-dimensional unstruc-
tured grids. To this end, we make use of the compatible discretization that has been ini-
tially introduced by E. J. Caramana et al., in J. Comput. Phys., 146 (1998). Namely, mo-
mentum equation is discretized by means of subcell forces and specific internal energy
equation is obtained using total energy conservation. The main contribution of this
work lies in the fact that the subcell force is derived invoking Galilean invariance and
thermodynamic consistency. That is, we deduce a general form of the sub-cell force so
that a cell entropy inequality is satisfied. The subcell force writes as a pressure con-
tribution plus a tensorial viscous contribution which is proportional to the difference
between the nodal velocity and the cell-centered velocity. This cell-centered velocity is
a supplementary degree of freedom that is solved by means of a cell-centered approx-
imate Riemann solver. To satisfy the second law of thermodynamics, the local subcell
tensor involved in the viscous part of the subcell force must be symmetric positive
definite. This subcell tensor is the cornerstone of the scheme. One particular expres-
sion of this tensor is given. A high-order extension of this discretization is provided.
Numerical tests are presented in order to assess the efficiency of this approach. The
results obtained for various representative configurations of one and two-dimensional
compressible fluid flows show the robustness and the accuracy of this scheme.
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1 Introduction

In Lagrangian hydrodynamics methods, a computational cell moves with the flow veloc-
ity. In practice, this means that the cell vertices move with a computed velocity, the cell
faces being uniquely specified by the vertex positions. Thus, Lagrangian methods can
capture contact discontinuity sharply in multi-material fluid flows. However, in the La-
grangian framework, one has to discretize not only the gas dynamics equations but also
the vertex motion in order to move the mesh. Moreover, the numerical fluxes of the phys-
ical conservation laws must be determined in a compatible way with the vertex velocity
so that the geometric conservation law (GCL) is satisfied, namely the rate of change of a
Lagrangian volume has to be computed coherently with the node motion. This critical
requirement is the cornerstone of any Lagrangian multi-dimensional scheme.

The most natural way to solve this problem employs a staggered discretization in
which position, velocity and kinetic energy are centered at points, while thermodynamic
variables (density, pressure and specific internal energy) are defined within cells. The
dissipation of kinetic energy into internal energy through shock waves is ensured by an
artificial viscosity term. Since the seminal works of von Neumann and Richtmyer [33],
and Wilkins [34], many developments have been made in order to improve the accuracy
and the robustness of staggered hydrodynamics [8, 11, 12]. More specifically, the con-
struction of a compatible staggered discretization leads to a scheme that conserves total
energy in a rigorous manner [9, 10].

An alternative to the previous discretizations is to derive a Lagrangian scheme based
on the Godunov method [18]. In the Godunov-type method approach, all conserved
quantities, including momentum, and hence cell velocity, are cell-centered. The cell-
face quantities, including a face-normal component of the velocity, are available from
the solution of an approximate Riemann problem at each cell face. However, it remains
to determine the vertex velocity in order to move the mesh. In the early work [1] the
flux computation was not compatible with the node displacement, and hence the GCL
was not satisfied. This incompatibility generated additional spurious components in the
vertex velocity field whose correction required expensive treatment [17]. An important
achievement concerning the compatibility between flux discretization and vertex velocity
computation has been introduced in [15,27]. In these papers, the authors present schemes
in which the interface fluxes and the node velocity are computed coherently thanks to an
approximate Riemann solver located at the nodes. This original approach leads to first-
order conservative schemes which satisfy a local semi-discrete entropy inequality. The
multi-dimensional high-order extension of these schemes are developed in [13,25,26,28].

The staggered discretization of variables (kinematic variables located at nodes, ther-
modynamic ones at cell centers) allows the scheme to fulfill naturally the GCL compati-
bility requirement and at the same time to construct a discrete divergence operator. The
discretizations of momentum and specific internal energy are derived from each other
by use of the important concepts of subcell mass, subcell force and total energy con-
servation [10]. This compatible hydrodynamics algorithm is thus designed to conserve

942 P.-H. Maire, R. Loubère and P. Váchal / Commun. Comput. Phys., 10 (2011), pp. 940-978

momentum and total energy exactly in discrete form by using the adjointness property
of the discrete gradient and divergence operators. The dissipation of kinetic energy into
internal energy through shock waves is ensured by means of an artificial viscosity which
can be edge based [12] or tensorial [8]. This mechanism leads to a dissipation that is
coherent with the second law of thermodynamics. The subcell pressure method is also
used for control of hourglass type motion [11]. Finally, the time integration method is
a predictor-corrector technique which is detailed in [10]. The extension of this compat-
ible Lagrangian hydrodynamics algorithm to unstructured grids, where each zone is a
polygon with an arbitrary number of sides, has been presented in [9].

Adopting the important concept of the subcells, we are proceeding in the opposite
direction than designers of the staggered methods: instead of postulating a form of the
artificial viscosity force and the anti-hourglass force, the force is derived from first princi-
ples by requiring Galilean invariance and thermodynamic consistency. In other words, if
staggered and cell-centered approaches are two paths to the same objective, then the arti-
ficial viscosity term (explicit or implicit) should result as a difference of the cell-centered
approach (which naturally contains dissipation on shocks) and the staggered approach
with the artificial viscosity turned off. The hope is that such artificial viscosity term (if
it exists) will be closely related to physical viscosity and thus will improve the method’s
performance (for example in [8], the authors blame the jets along Cartesian axes in Noh
problem on the insufficiency of edge-based artificial viscosity model).

In Godunov methods, the dissipation of kinetic energy into internal energy is pro-
vided by solution of a Riemann problem. Our aim here is to use the same mechanism in
the framework of a staggered scheme. The solution of the cell-centered Riemann prob-
lem provides an approximation of the cell-centered velocity Uc, which will then be used
to define the viscous part of the subcell force. This formulation allows a straightforward
extension to second order in space by constructing linear velocity vector field approxima-
tion with frame invariant limitation, applicable on any mesh structure. At this point let
us stress that careful and sensitive vector limitation is a key issue to effective exploitation
of the improvement gained by frame invariant higher order extension, which is however
a fact not always reflected in the design of existing methods. For example, dimensionally
split limiters depend on Cartesian framework and thus fail to preserve rotational sym-
metry. As for temporal integration, we achieve second order in time by employing the
predictor-corrector approach.

In the simplest case the resulting viscosity force can be expressed with the help of a
symmetric positive definite matrix Mcp, so that the thermodynamic consistency is satis-
fied automatically by the viscous term Mcp

(
Uc−Up

)
. In particular, we are adopting the

approximate Riemann solver by Dukowicz [16], which is based on the two-shock approx-
imation and gives a viscous term not far from the classical formula by Kuropatenko [20,
34]. It turns out that a similar term (differing only in particular form of tensor Mcp) is
implicitly contained in some cell-centered schemes such as [15].

Our method can be viewed as an extension of the work by Christensen [14], who
noticed that under certain assumptions the staggered Lagrangian schemes with artificial
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viscosity can be written in the same form as Godunov’s scheme with HLL approximate
Riemann solver and stressed the potential synergy of both approaches (e.g., higher-order
extension of simple staggered scheme by techniques typically used in the Godunov com-
munity, such as TVD limiters). At this point let us remark, that the relationship between
staggered Lagrangian and cell-centered Godunov methods from the viewpoint of shock-
capturing mechanism has been discussed already in earlier works, e.g., by Wilkins [35]
or Dukowicz [16]. Another step towards ”bridging the Lagrange-Godunov conceptual
gap” was done by Luttwak and Falcovitz [24], who also use a Riemann solver to provide
necessary dissipation at shocks in the staggered scheme. The suggested SMG/Q method
computes cell-centered velocity gradient to define a principal direction for limiter and
shock detector in one. This approach is claimed to be superior to Christensen’s split
Q in multiple dimensions while being similar to it in the one-dimensional case. More-
over it can be used on structured as well as unstructured meshes. However, the authors
themselves are still not happy with the uniaxial formulation of viscosity. Finally let us
mention that since linking Godunov with staggered methods is an active research area,
this topic was recently also investigated by Burbeau-Augoula [6], who introduced an ad-
ditional degree of freedom by piecewise constant interpolation of selected variables on
primary resp. dual cells. This establishes a connection between cell-centered and stag-
gered formulation. The extra degree of freedom is then coupled to the nodal velocity
by defining two half-Riemann problems per edge, which are subsequently treated by the
HLL approximate Riemann solver. Assigning each half of the edge the velocity of its
corresponding node (endpoint) provides a first order scheme. Besides other issues, on
the way to frame invariant higher order extension of this method the strategy of proper
limitation must be addressed.

The paper is organized as follows. First the governing equations and notations are
stated. The compatible discretization is then derived from first principles. The fourth
section deals with the definition of the fundamental object named subcell force. This
previous derivation shows the necessity of the introduction of a cell-centered velocity as
a new degree of freedom. This velocity is then determined in the fifth section through the
use of a cell-centered approximate Riemann solver. High-order extension in space is also
provided. The sixth section presents the high-order time discretization. In the last section,
numerical results are proposed to assess the validity of this approach. Conclusions and
perspectives are finally drawn.

2 Governing equations and notations

2.1 Governing equations

In Lagrangian framework, the two-dimensional gas dynamics equations write

ρ
d

dt

(1

ρ

)
−∇·U =0, (2.1a)

77
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ρ
d

dt
U+∇P=0, (2.1b)

ρ
d

dt
E+∇·(PU)=0, (2.1c)

where ρ is the density, U the velocity, E the specific total energy and d
dt denotes the mate-

rial derivative. The first equation expresses the volume conservation equation, whereas
the second and third ones are the momentum and total energy conservation equations.
Volume conservation equation is often referred to as the Geometric Conservation Law
(GCL). The previous system is equipped with a thermodynamics closure, Equation of
State (EOS), P= P(ρ,ε), where the specific internal energy is given by ε= E−U

2/2. Note
that for smooth solutions energy equation can be rewritten as

ρ
d

dt
ε+P∇·U =0, (2.2)

and, substituting volume equation yields

ρ
d

dt
ε+Pρ

d

dt

(1

ρ

)
=0. (2.3)

Recalling Gibbs relation for temperature T and specific entropy S: TdS=dε+Pd( 1
ρ ), and

the second law of thermodynamics, namely T dS
dt ≥ 0, implies that for non-smooth flows

the following relation holds:

ρ
d

dt
ε+P∇·U ≥0. (2.4)

As a consequence, internal energy equation can be viewed as an entropy evolution equa-
tion since

ρ
d

dt
ε+Pρ

d

dt

(1

ρ

)
≥0. (2.5)

The previous System (2.1a)-(2.1c) can therefore be rewritten as a non-conservative system
by replacing the energy equation by (2.4). The last equations are the trajectory equations

dX

dt
=U(X(t),t), X(0)= x, (2.6)

expressing the Lagrangian motion of any point initially located at position x.

2.2 Notations

We use a staggered placement of variables in which position and velocity are defined at
grid points while thermodynamic variables are located at cell centers, refer to Fig. 1. An
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cpNL cp

c

p −

p+

p

Ω c

Ω cp

Figure 1: Fragment of a polygonal grid. Position and velocity are defined at grid points while thermodynamic
variables are located at cell centers. A polygonal cell, Ωc, is subdivided into subcells Ωcp. Points are denoted

by subscript p and ordered counterclockwise: p−, p, p+.

unstructured grid consisting of a collection of non-overlapping polygons is considered.
Each polygonal cell is assigned a unique index c and is denoted Ωc. Each vertex/point
of the mesh is assigned a unique index p and we denote C(p) the set of cells sharing a
particular vertex p. Each polygonal cell is subdivided into a set of subcells; each being
uniquely defined by a pair of indices c and p and denoted Ωcp. This subcell is constructed
by connecting the cell center of Ωc to the mid-points of cell edges impinging at point p.
The union of subcells Ωcp that share a particular vertex p allows to define the dual vertex-
centered cell Ωp related to point p with Ωp=

⋃
c∈C(p)Ωcp. Using the previous notation, we

can define the primary grid
⋃

c Ωc and the dual grid
⋃

p Ωp. The volumes of the primary
and dual cells are functions of time t. Here, following [10], we make the fundamental
assumption that the subcells are Lagrangian volumes. This means that the subcell mass
mcp is constant in time. Therefore, being given the initial density field ρ0(x) one deduces
the initial mean density in cell c

ρ0
c =

∫

Ωc(0)

ρ0(x)

V0
c

dx, (2.7)

where V0
c is the volume of cell Ωc at time t = 0. Subcell mass is defined as mcp = ρ0

c V0
cp,

where V0
cp is the initial volume of subcell Ωcp. By summation of Lagrangian subcell

masses one defines Lagrangian cell/point masses as

mc = ∑
p∈P(c)

mcp, mp = ∑
c∈C(p)

mcp, (2.8)

where P(c) is the set of counterclockwise ordered vertices of cell c. For a vertex p of cell
Ωc we denote its previous and next vertices by p− and p+.
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3 Compatible discretization

We construct staggered Lagrangian schemes using the well known methodology of com-
patible discretization which has been presented in [4, 7, 10]. The cornerstone of this type
of discretization is the subcell force that acts from subcell cp onto point p. In this ap-
proach, the discretization of the internal energy equation in terms of subcell forces is
deduced from total energy conservation. Here, we fully derive a generic abstract form
of the subcell force so that an entropy inequality is satisfied, which ensures that kinetic
energy is dissipated into internal energy through shock waves. The subcell force writes
as a pressure contribution plus a tensorial viscous contribution which is proportional to
the difference between the vertex-centered and cell-centered velocities. The cell-centered
velocity is a supplementary degree of freedom which is determined invoking the funda-
mental principle of Galilean invariance. To satisfy the second law of thermodynamics,
the local subcell matrix involved in the viscous part of the subcell force must be sym-
metric positive definite. This matrix is the fundamental object that allows to properly
define an artificial viscosity required to stabilize the scheme. We remark, that this new
framework leads to a new form of artificial viscosity which is derived using first principle
arguments.

3.1 Geometric conservation law (GCL)

Here, we use a discretization of the volume Eq. (2.1a) that is compatible with the GCL. By
GCL compatibility we mean that we are deriving a discrete divergence operator for the
volume equation by requiring consistency of the divergence of the velocity field with the
time rate of change of volume of the cell, refer to [29]. By noticing that mc = ρcVc, where
ρc =ρc(t) and Vc =Vc(t) are the cell density and volume, we can write

mc
d

dt

( 1

ρc

)
=

d

dt
Vc,

using the fact that the cell mass is constant in time. Moreover, remarking that the cell
volume can be expressed as a function of the position vectors of its vertices as follows

Vc(t)= ∑
p∈P(c)

1

2

(
Xp×Xp+

)
·ez,

where ez is the unit vector of the canonical basis in z direction, we deduce that the time
rate of change of the cell volume writes

d

dt
Vc = ∑

p∈P(c)

∇XpVc ·
d

dt
Xp.

Here, we have simply applied the chain rule differentiation. Setting

d

dt
Xp =Up,
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where Up is the vertex velocity, we rewrite this last equation as

d

dt
Vc− ∑

p∈P(c)

LcpNcp ·Up =0, (3.1)

where LcpNcp, with N
2
cp =1, stands for the corner vector defined by LcpNcp =∇XpVc. This

corner vector is a fundamental geometric object which is nothing but the gradient of the
cell volume at point p. Its explicit expression in terms of points coordinates writes

LcpNcp =
1

2

(
Yp+ −Yp−

−(Xp+ −Xp−)

)
,

where (Xp,Yp) denote the coordinate of the position vector Xp. This kind of formalism is
well known and has been used in staggered and cell-centered (free Lagrange) discretiza-
tions long time ago [29, 32]. We note that (3.1) is compatible with the discrete version of
the trajectory equation (2.6)

d

dt
Xp =Up, Xp(0)= xp.

This leads to a compatible definition of the discrete divergence operator over cell c as

(∇·U)c =
1

Vc
∑

p∈P(c)

LcpNcp ·Up. (3.2)

We also emphasize that the corner vector LcpNcp satisfies the fundamental geometric
identity

∑
p∈P(c)

LcpNcp =0, (3.3)

which is equivalent to the well known result that the summation of the outward normals
to a closed polygonal contour is equal to zero.

Finally, we have obtained a compatible discretization of the volume equation (2.1a),
which writes

mc
d

dt

( 1

ρc

)
− ∑

p∈P(c)

LcpNcp ·Up =0. (3.4)

3.2 Momentum equation

The semi-discrete momentum equation over the dual cell Ωp writes

mp
d

dt
Up+ ∑

c∈C(p)

Fcp =0. (3.5)
78
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Here, Fcp is the subcell force from cell c that acts on point p, which is defined by

Fcp =
∫

∂Ωp(t)∩Ωc(t)
PNdl. (3.6)

Momentum equation (3.5) is nothing but the Newton law applied to particle of mass mp

moving with velocity Up.

3.3 Specific internal energy equation

Here we derive a semi-discrete internal energy equation that ensures total energy con-
servation using the concept of subcell force, following the approach initially described
in [10]. Let us introduce total kinetic energy and total internal energy

K(t)=∑
p

1

2
mpU

2
p(t), E(t)=∑

c

mcεc(t),

where εc is the cell-averaged specific internal energy. Total energy is then defined as
E(t)=K(t)+E(t). The conservation of total energy without taking into account boundary
conditions simply writes

d

dt
E=

d

dt
K+

d

dt
E =0.

The substitution of kinetic and internal energies recalling that cell/point masses are La-
grangian objects, i.e., they not depend on time, yields

d

dt
K+

d

dt
E =∑

c

mc
d

dt
εc+∑

p

mp
d

dt
Up ·Up.

Using the semi-discrete momentum equation (3.5) yields

∑
c

mc
d

dt
εc−∑

p
∑

c∈C(p)

Fcp ·Up =0,

interchanging the order in the double sum one finally gets

∑
c

(
mc

d

dt
εc− ∑

p∈P(c)

Fcp ·Up

)
=0. (3.7)

A sufficient condition for total energy conservation is obtained by requiring the previous
equation to hold in each cell c

mc
d

dt
εc− ∑

p∈P(c)

Fcp ·Up =0. (3.8)

Once the subcell force is known, then momentum and internal energy can be updated
using Eqs. (3.5) and (3.8).
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3.4 Summary of the compatible discretization

We summarize the semi-discrete equations that govern the time rate of change of the
primary variables ( 1

ρc
,Up,εc):

mc
d

dt

( 1

ρc

)
− ∑

p∈P(c)

LcpNcp ·Up =0,

mp
d

dt
Up+ ∑

c∈C(p)

Fcp =0,

mc
d

dt
εc− ∑

p∈P(c)

Fcp ·Up =0.

We point out that the mesh motion is given by the trajectory equations

d

dt
Xp =Up(Xp(t),t), Xp(0)= xp,

which is compatible with the GCL. The thermodynamic closure is given by the equation
of state which writes Pc = P(ρc,εc). We emphasize that this subcell-based compatible dis-
cretization ensures total energy conservation regardless of the subcell force form. Now,
it remains to determine the general form of this force so that our semi-discrete scheme
fulfills, first, the principle of being Galilean invariant, second, the principle of being con-
sistent with the second law of thermodynamics.

4 Definition of the subcell force

Here we provide a definition of the subcell force using Galilean invariance and thermo-
dynamic consistency.

4.1 Galilean invariance

Galilean invariance is a principle of relativity which states that the fundamental laws of
physics are the same in all inertial frames. It is one of the key requirements of many
physical models adopted in theoretical and computational mechanics. To fulfill Galilean
invariance, the previously derived specific internal energy equation (3.8) must remain
unchanged under a uniform translation of frame. Let A denote the uniform translation
velocity. Then Eq. (3.8) transforms into

mc
d

dt
εc− ∑

p∈P(c)

Fcp ·(Up+A)=0.
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By substituting (3.8) into this last equation leads to

∑
p∈P(c)

Fcp ·A=0,

which must hold for all vectors A. Therefore, specific internal energy equation remains
invariant under uniform translation if and only if

∑
p∈P(c)

Fcp =0. (4.1)

We note that this result has been already quoted in [4] page 576. This condition also
implies total momentum conservation without taking into account boundary conditions.
To demonstrate this, it suffices to time-differentiate the global momentum defined as
Q=∑p mpUp:

d

dt
Q=∑

p

mp
d

dt
Up

=−∑
p

∑
c∈C(p)

Fcp (thanks to momentum equation)

=−∑
c

∑
p∈P(c)

Fcp (by interchanging the double sums).

Thus, d
dtQ=0 due to condition (4.1), which completes the proof.

A corollary of the Galilean invariance condition is that specific internal energy equa-
tion (3.8) can also be rewritten into

mc
d

dt
εc− ∑

p∈P(c)

Fcp ·(Up−Uc)=0, (4.2)

where Uc is a piecewise constant cell-centered velocity that remains to be determined.

4.2 Thermodynamic consistency

We investigate the thermodynamic consistency of our semi-discrete scheme by comput-
ing the time rate of change of entropy in cell c. Using Gibbs formula, one gets

mcTc
d

dt
Sc =mc

[ d

dt
εc+Pc

d

dt

( 1

ρc

)]
, (4.3)

where Sc and Tc are the specific entropy and temperature of cell c. Substituting into (4.3)
the specific internal energy equation (4.2) and the volume equation (3.4) yields

mcTc
d

dt
Sc = ∑

p∈P(c)

Fcp ·(Up−Uc)+Pc

(
∑

p∈P(c)

LcpNcp ·Up

)

= ∑
p∈P(c)

(Fcp+LcpPcNcp)·(Up−Uc).
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Here, we have used the geometric identity ∑p∈P(c) LcpNcp = 0. To satisfy the second law
of thermodynamics the right-hand side of the last equation must be positive. A sufficient
condition to obtain this consists in setting

Fcp =−LcpPcNcp+Mcp(Up−Uc), (4.4)

where Mcp is a subcell-based matrix.
Given this form, several features of Mcp can be drawn:

1. Dimensionality. Mcp has dimension of density times velocity times length.

2. Entropy inequality satisfaction. Mcp is positive semidefinite, i.e., McpU ·U≥0, ∀U∈R2.
By substituting (4.4) into (4.3), we obtain the entropy inequality satisfied by our
semi-discrete scheme

mcTc
d

dt
Sc = ∑

p∈P(c)

Mcp

(
Up−Uc

)
·(Up−Uc)≥0, (4.5)

as the right-hand side is a positive semidefinite quadratic form.

3. Galilean invariance. Mcp is compatible with the principle of Galilean invariance: in
a nutshell, Mcp must be invariant w.r.t. translation and transform as RMcpRt for a
rigid rotation R.

4. Symmetry. Mcp is symmetric, i.e., Mt
cp =Mcp.

5. Locality. Mcp is a locally defined matrix: the physical and geometric quantities in-
volved in Mcp must be local in a neighborhood of the current subcell.

We remark that entropy production (4.5) within cell c is directly governed by the subcell
matrix Mcp and the velocity jump between the nodal and the cell-centered velocity which
still remains to be determined. This is the main topic of next section.

5 Cell-centered velocity computation

Using the previously derived generic form of the subcell force and the Galilean invariance
condition, we develop a cell-centered solver to compute the cell-centered velocity.

5.1 Abstract formulation

Substituting the subcell force expression,

Fcp =−LcpPcNcp+Mcp(Up−Uc),

into the Galilean invariance condition, ∑p∈P(c)Fcp =0, leads to the following system sat-
isfied by the cell-centered velocity Uc,

McUc = ∑
p∈P(c)

McpUp, (5.1)
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where Mc=∑p∈P(c)Mcp is a symmetric positive definite matrix. Once the definition of the
subcell matrix Mcp is known, one can solve the previous system to get a unique expression
of the cell-centered velocity. We shall see in the next paragraph one example of such a
solver.

5.2 Cell-centered approximate Riemann solver

By analogy with the node-centered approximate Riemann solver introduced in the con-
text of cell-centered Lagrangian discretization [26], we present one cell-centered approx-
imate Riemann solver. This solver allows to determine one particular form of the subcell
matrix Mcp. To this end, let us introduce two pressures at the cell center per subcell de-
noted by Π−

cp, Π+
cp. These pressures are related to the normals N

+
cp, N

−
cp which are the

unit outward normals to the subcell boundaries inside the cell, refer to Fig. 2. The subcell
force is then defined as

Fcp = L−
cpΠ−

cpN
−
cp+L+

cpΠ+
cpN

+
cp. (5.2)

The cell-centered pressures are obtained by means of the half-Riemann problems

Pc−Π−
cp =Z−

cp

(
Uc−Up

)
·N−

cp, (5.3a)

Pc−Π+
cp =Z+

cp

(
Uc−Up

)
·N+

cp, (5.3b)

where Z−
cp, Z+

cp denote the swept mass fluxes, and Uc is the cell-centered velocity which

remains to be computed. The swept mass fluxes, Z−
cp, Z+

cp, are defined following Dukow-
icz [16] as

Z−
cp =ρc

[
σc+cQΓc|(Uc−Up)·N−

cp|
]
, Z+

cp =ρc

[
σc+cQΓc|(Uc−Up)·N+

cp|
]
. (5.4)

L−
cpN−

cp

L+
cpN+

cp

cp
+Π

cp
−Π

p

p −

p+

L cp cpN

c

Figure 2: Notation used in the cell-centered Riemann solver. Two pressures per subcell (�) are introduced at
the cell center: Π+

cp, Π−
cp. They are related to the outward normal vectors L+

cpN
+
cp, L−

cpN
−
cp. In total, 2|P(c)|

pressures are introduced within cell Ωc.
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Here, σc is the isentropic sound speed, cQ a user-defined parameter (set to 1 in our simu-
lations) and Γc a material dependent coefficient, which for a γ gas law is defined by

Γc =





γ+1

2
, if (∇·U)cp<0,

0, if (∇·U)cp ≥0,
(5.5)

where

(∇·U)cp =− 1

Vcp
LcpNcp ·(Uc−Up)

is the subcell contribution to the velocity divergence. In case of rarefaction wave, we
recover the acoustic approximation whereas in case of shock wave we get the well known
two-shock approximation.

Using (5.3) the subcell force is rewritten

Fcp =
(

L−
cpN

−
cp+L+

cpN
+
cp

)
Pc+Mcp

(
Up−Uc

)
, (5.6)

where
Mcp =Z−

cpL−
cp(N

−
cp⊗N

−
cp)+Z+

cpL+
cp(N

+
cp⊗N

+
cp) (5.7)

is a 2×2 symmetric positive definite matrix. Noticing that the subcell contour is closed,
we deduce that L−

cpN
−
cp+L+

cpN
+
cp =−LcpNcp. Finally, the subcell force writes

Fcp =−LcpPcNcp+Mcp

(
Up−Uc

)
,

where the subcell matrix is given by (5.7). We emphasize that we have recovered the
generic form of the subcell force which has been previously derived. Moreover, we have
given a particular expression of the subcell matrix which is directly linked to the half-
Riemann invariants (5.3). Finally, the cell-centered velocity Uc is obtained by solving the
system McUc = ∑p∈P(c)McpUp, recalling that Mc = ∑p∈P(c)Mcp and that Mcp is given by
(5.7). We note that Mc is symmetric positive definite which ensures its invertibility. We
remark that this system is non-linear due to the dependency of the swept mass flux on
the cell-centered velocity. This non-linear system can be solved using an iterative proce-
dure such as fixed point or Newton algorithms. In practice, few iterations are needed to
reach convergence. Once the cell-centered velocity is known, the subcell force is deduced
from Eq. (4.4). The present cell-centered approximate Riemann solver can be viewed as
a two-dimensional extension of the work initiated by Christensen in one-dimensional
framework [14].

5.3 High-order extension

The previously defined cell-centered approximate Riemann solver utilizes piecewise con-
stant nodal velocities defined over the subcells of a given cell. In this sense, this leads to
a first-order approximation of the cell-centered velocity. To get a more accurate approxi-
mation, we construct a piecewise linear representation of the nodal velocity field to feed
the cell-centered solver with the extrapolated velocity at the cell center.
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5.3.1 Piecewise linear reconstruction of the velocity field

First, we introduce a piecewise linear representation of the velocity field over the dual
grid by setting

Up(X)=Up+∇Up ·
(
X−Xp

)
, (5.8)

where ∇Up is the constant velocity tensor gradient over the dual cell Ωp. To compute it
we use a classical least squares approach by solving the following minimization problem

∇Up =argmin ∑
q∈N (p)

[(
Uq−Up

)
−∇Up

(
Xq−Xp

)]2
, (5.9)

where N (p) is the set of neighbor vertices of vertex p. The solution of this minimization
problem reads

∇Up =M−1
p ∑

q∈N (p)

(Uq−Up)⊗(Xq−Xp), (5.10)

where matrix Mp is the symmetric positive definite matrix

Mp = ∑
q∈N (p)

(Xq−Xp)⊗(Xq−Xp). (5.11)

We emphasize that this least squares approach is valid for any type of unstructured grid
and preserves linear velocity field.

5.3.2 Frame invariant tensorial limitation for a vector field

Monotonicity is achieved thanks to a modification of the classical Barth-Jespersen slope
limiter [2,3]. For vectors, limiting is usually applied separately to each component. How-
ever, such a procedure is frame dependent and thus leads to rotational symmetry dis-
tortion. Namely, component limiters do not preserve symmetry since a rotation of the
coordinate axis produces different results. This drawback is crucial in the framework
of Lagrangian hydrodynamics since we are dealing with moving mesh discretizations
which are particularly sensitive about symmetry loss. To correct this flaw, we have to
construct a limiting procedure which is frame invariant for vectors. One possible choice
is to use the Vector Image Polygon (VIP) methodology derived in [23]. This method con-
sists in constructing the VIP as the convex hull of the vector-space points corresponding
to the neighbor vectors. If a slope-extrapolated vector lies inside the VIP, the slope is
monotonicity preserving, otherwise slope limiting is required. On the other hand, the
slope is set to zero by analogy with the scalar limitation. Here we develop an original
procedure to perform a limitation of vector field which preserves rotational symmetry.
To define a limiter for the velocity tensor gradient, we define in each dual cell Ωp a local
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orthonormal basis (ξ
‖
p,ξ⊥

p ) which is assumed to be frame independent. Let us define the

coordinates of the vectors ξ
‖
p and ξ⊥

p in the canonical basis by setting

ξ
‖
p =

(
ξx

ξy

)
, ξ⊥

p =

(−ξy

ξx

)
,

where ξ2
x+ξ2

y = 1 so that (ξ
‖
p,ξ⊥

p ) is a direct orthonormal basis. Thus the transformation
matrix from the canonical basis to the local basis reads

Ap =

(
ξx ξy

−ξy ξx

)
.

The transformation of the nodal velocity Up to the local coordinates is

Wp =

(
W

‖
p

W⊥
p

)
=ApUp =

(
ξ

‖
p ·Up

ξ⊥
p ·Up

)
. (5.12)

Then we find the minimum and maximum value from projections of neighboring nodes’
velocities into new directions:

W
‖,max
p = max

k∈N (p)

(
ξ

‖
p ·Uk

)
, W⊥,max

p = max
k∈N (p)

(
ξ⊥

p ·Uk

)
, (5.13a)

W
‖,min
p = min

k∈N (p)

(
ξ

‖
p ·Uk

)
, W⊥,min

p = min
k∈N (p)

(
ξ⊥

p ·Uk

)
, (5.13b)

where N (p) is the set of neighbor points of current point p. Now consider cell c ∈C(p)
centered at Xc. Using the unlimited piecewise linear representation of the velocity field,
the extrapolated values of the velocity at point Xc are given by

Up,c ≡U p(Xc)=Up+∇Up ·
(

Xc−Xp

)
, (5.14)

and its transformation into the local basis (ξ
‖
p,ξ⊥

p ) produces

Wp,c =

(
W

‖
p,c

W⊥
p,c

)
=ApUp,c. (5.15)

From these values we define

φ
‖
p,c =





L
(

W
‖,max
p −W

‖
p

W
‖
p,c−W

‖
p

)
, if

(
W

‖
p,c−W

‖
p

)
>0,

L
(

W
‖,min
p −W

‖
p

W
‖
p,c−W

‖
p

)
, if

(
W

‖
p,c−W

‖
p

)
<0,

1, if
(
W

‖
p,c−W

‖
p

)
=0,

φ⊥
p,c =





L
(

W⊥,max
p −W⊥

p

W⊥
p,c−W⊥

p

)
, if

(
W⊥

p,c−W⊥
p

)
>0,

L
(

W⊥,min
p −W⊥

p

W⊥
p,c−W⊥

p

)
, if

(
W⊥

p,c−W⊥
p

)
<0,

1, if
(
W⊥

p,c−W⊥
p

)
=0,80
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where L(α) is a suitable limiting functional such as

L(α)=min(α,1) or L(α)=(α2+2α)(α2+α+2)−1.

The slope limiters for node p are finally defined by φ
‖
p and φ⊥

p as

φ
‖
p = min

c∈C(p)
φ

‖
p,c, φ⊥

p = min
c∈C(p)

φ⊥
p,c.

This pair of limiters is transformed back into the Cartesian coordinates:

Φp =A−1
p

(
φ

‖
p 0

0 φ⊥
p

)
Ap =


 ξ2

x φ
‖
p+ξ2

y φ⊥
p ξx ξy φ

‖
p−ξx ξy φ⊥

p

ξx ξy φ
‖
p−ξx ξy φ⊥

p ξ2
y φ

‖
p+ξ2

x φ⊥
p


.

The limited tensor gradient is finally given by formula

∇U
lim
p =Φp∇Up

and thus the limited velocity field reconstruction in the vicinity of node p is

Up(X)=Up+∇U
lim
p

(
X−Xp

)
. (5.16)

We claim that we have defined a tensorial limitation procedure for the velocity vector
which is frame invariant and thus preserves rotational symmetry. In practice, we define
the local basis utilizing the point velocity direction.

5.3.3 High-order cell-centered approximate Riemann solver

It consists in replacing the point velocity by its extrapolated value at cell center using the
piecewise linear monotonic reconstruction. Namely, the system that solves Uc becomes

McUc = ∑
p∈N (c)

McpUp(Xc),

where the swept mass fluxes entering the definition of the subcell matrices are also com-
puted using the extrapolated velocity as

Z±
cp =ρc

[
σc+cQΓc|(Uc−Up(Xc))·N±

cp|
]
.

The subcell force is modified accordingly:

Fcp =−LcpPcNcp+Mcp

(
Up(Xc)−Uc

)
. (5.17)
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5.4 Subcell pressure based cell-centered Riemann solver

In Section 5.2, the cell-centered Riemann solver has been derived by considering a piece-
wise constant pressure inside the cell. Here we present a modification that takes into
account the subcell pressures as in [11]. Indeed, the main assumption of the compati-
ble formalism that has been used relies on the fact that subcells are Lagrangian volumes;
namely subcell mass mcp is constant in time. This main assumption leads to the following
definition of subcell density

ρcp(t)=
mcp

Vcp(t)
, (5.18)

where Vcp(t) is the subcell volume. To define the subcell pressure, Pcp(t), we assume that
the cell-centered specific internal energy is constant over the cell. Therefore, using the
EOS, subcell pressure reads

Pcp(t)= P(ρcp(t),εc(t)). (5.19)

To incorporate subcell pressure effects one substitutes Pcp into the half-Riemann problems
that allow to define the subcell force. In other words, one replaces Pc in (5.3a)-(5.3b) by
Pcp as follows

Pcp−Π−
cp =Z−

cp

(
Uc−Up

)
·N−

cp, (5.20a)

Pcp−Π+
cp =Z+

cp

(
Uc−Up

)·N+
cp. (5.20b)

The swept mass fluxes are also modified by making use of the subcell density ρcp and
sound speed σcp as

Z±
cp =ρcp

[
σcp+cQΓc|(Uc−Up)·N±

cp|
]
.

The corresponding subcell force is modified accordingly

Fcp =−LcpPcpNcp+Mcp

(
Up−Uc

)
. (5.21)

Then, the system that solves the cell-centered velocity rewrites as

Uc =M−1
c ∑

p∈P(c)

(
McpUp−LcpPcpNcp

)
. (5.22)

Let us a give an interpretation of the two terms that determine the cell-centered velocity.
The first term at the right-hand side is simply a weighted interpolation of nodal velocities
at cell center, whereas the second corresponds to a discretization of the pressure gradient
at cell center. This interpretation is easy to obtain by computing the pressure gradient
integral over the cell as

(∇P
)

c
=

1

Vc

∫

∂Ωc

PNdS. (5.23)
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Using the subcell decomposition, (5.23) rewrites

(∇P
)

c
=

1

Vc
∑

p∈P(c)

∫

∂Ωcp∩∂Ωc

PNdS=
1

Vc
∑

p∈P(c)

LcpPcpNcp.

With this result the cell-centered velocity reads

Uc = ∑
p∈P(c)

M−1
c McpUp−VcM

−1
c

(∇P
)

c
. (5.24)

This formula degenerates to the previous formula (5.1) in case of uniform subcell pres-
sure over the cell. The extra pressure gradient term induced by the subcell pressures
acts as a supplementary viscous term that is usually present in approximate Riemann
solver. Namely, (5.24) can be viewed as a two-dimensional generalization of an acoustic
Riemann solver. Indeed, in the case of a one-dimensional flow aligned with a rectangular
grid, for cQ =0, one can show that the cell-centered velocity reduces to

Uc =
(Zlul +Zrur

Zl +Zr
− Pr−Pl

Zl +Zr

)
ex,

where the subscripts l and r denote the left and right states of the one-dimensional Rie-
mann problem on both sides of the interface.

We want to quote that the subcell pressure has been initially introduced in classical
staggered discretization by Caramana and Shashkov [11] to control artificial grid distor-
tions, such as the hourglass modes. Let us recall, that in the case of a logically rectangular
grid, a quadrilateral cell has eight degrees of freedom. All but the two hourglass modes
are physical, only for the hourglass modes does the subcell density differ from the cell
density to which it belongs. The subcell pressure method uses this to calculate subcell
forces that are proportional between the subcell and the cell pressures, and oppose the
hourglass motion. In this approach, the subcell pressure force is defined as

F
∆P
cp = Lcp(Pcp−Pc)Ncp+

1

2

[(
Pcp−Pcp−

)
L−

cpN
−
cp+

(
Pcp−Pcp+

)
L+

cpN
+
cp

]
, (5.25)

where Pcp− and Pcp+ are the previous and next neighbor subcell pressures with respect to
subcell cp.

6 Time discretization

The time discretization is performed with a classical two-step predictor-corrector scheme
to gain second-order accuracy. Being given geometric quantities and physical variables
at time tn, we first predict the pressures that are later used in the corrector step to update
physical and geometric variables. The full discretization in space and time is displayed
in the following algorithm:
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Predictor step

1. Piecewise monotonic linear reconstruction of the velocity field over the dual grid

U
n
p (X)=U

n
p +∇U

lim
p

(
X−X

n
p

)
.

2. Compute U
n
c with the high-order cell-centered Riemann solver

U
n
c =

(
Mn

c

)−1 ∑
p∈P(c)

[−(LcpNcp
)n

Pn
cp+Mn

cpU
n
p (X

n
c )
]
.

3. Compute subcell forces

F
n
cp =−(Lcp Ncp

)n
Pn

cp+Mn
cp

(
U

n
p (X

n
c )−U

n
c

)
.

4. Update internal energy

mc
(
ε

n+ 1
2

c −εn
c

)− ∆t

2 ∑
p∈P(c)

F
n
cp ·Un

p =0.

5. Update vertex position

X
n+ 1

2
p =X

n
p +

∆t

2
U

n
p .

6. Update volume and density

ρ
n+ 1

2
c =

mc

V
n+ 1

2
c

, ρ
n+ 1

2
cp =

mcp

V
n+ 1

2
cp

.

7. Compute predicted pressures

P
n+ 1

2
c = P

(
ρ

n+ 1
2

c ,ε
n+ 1

2
c

)
, P

n+ 1
2

cp = P
(
ρ

n+ 1
2

cp ,ε
n+ 1

2
cp

)
.

Corrector step

1. Piecewise monotonic linear reconstruction of the velocity field over the dual grid

U
n+ 1

2
p (X)=U

n
p +∇U

lim
p

(
X−X

n+ 1
2

p

)
.

2. Compute U
n+1/2
c with the high-order cell-centered Riemann solver

U
n+ 1

2
c =

(
M

n+ 1
2

c

)−1 ∑
p∈P(c)

[
−
(

LcpNcp

)n+ 1
2 P

n+ 1
2

cp +M
n+ 1

2
cp U

n+ 1
2

p (X
n+ 1

2
c )

]
.

3. Compute subcell forces

F
n+ 1

2
cp =−(Lcp Ncp

)n+ 1
2 P

n+ 1
2

cp +M
n+ 1

2
cp

[
U

n+ 1
2

p

(
X

n+ 1
2

c

)−U
n+ 1

2
c

]
. 81
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4. Update momentum

mp

(
U

n+1
p −U

n
p

)
+∆t ∑

c∈C(p)

F
n+ 1

2
cp =0.

5. Update internal energy

mc
(
εn+1

c −εn
c

)−∆t ∑
p∈P(c)

F
n+ 1

2
cp ·Un+ 1

2
p =0,

with U
n+1/2
p =(U

n+1
p +U

n
p )/2.

6. Update vertex position

X
n+1
p =X

n
p +∆tU

n+ 1
2

p .

7. Update volume and density

ρn+1
c =

mc

Vn+1
c

, ρn+1
cp =

mcp

Vn+1
cp

.

8. Compute pressures

Pn+1
c = P

(
ρn+1

c ,εn+1
c

)
, Pn+1

cp = P
(
ρn+1

cp ,εn+1
cp

)
.

We point out that in the corrector step, internal energy has been discretized using the
time centered nodal velocity U

n+1/2
p . This choice is required to ensure total energy con-

servation up to machine precision.

7 Numerical results

The 2D Cartesian geometry is chosen for all test cases which are mono-material simula-
tions. Only the ideal gas EOS is employed even though the framework accepts any type
of EOS. We provide results of the following test cases: the Sod shock tube, the Carte-
sian Sedov problem, the Saltzman piston problem, the Noh problem and a Richtmyer-
Meshkov instability. The high-order scheme is used for every test except the Sod shock
tube for which a comparison between first and high-order is provided.

7.1 Sod shock tube

The Sod problem is a 1D Riemann shock tube with a relatively mild discontinuity. Its
solution consists of a left moving rarefaction fan, a right moving contact discontinuity
and a right moving shock wave. The domain is filled with an ideal gas at rest with
γ = 1.4. The density/pressure values on the left side of the discontinuity are 1.0/1.0,
while those on the right side are 0.125/0.1. The discontinuity is initially located at 0.5.
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Figure 3: Sod problem at tfinal =0.2 for 200 cells in x-direction. Top: first order scheme. Bottom: high order
scheme. From left to right: Cell-centered density, nodal velocity in x-direction as a function of x.

We simulate this problem up to the final time tfinal = 0.2. In our numerical experiments,
the computational domain is Ω = [0,1]×[0,ymax ], where ymax is chosen so that the cells
are initially squares. We are enforcing zero normal velocity at left and right of Ω and
slip boundary at top and bottom. The run is made with nx =200 computational cells in x
direction and ny =10 cells in y direction leading to ymax =0.2.

In Fig. 3 is presented the first order (top) and high order extension (bottom). We
display the cell density for all cells and the nodal velocity for all nodes vs the exact solu-
tion shown by solid line. The symmetry of the scheme is perfect and the quality of the
high order results is close to the cell-centered Lagrangian scheme [26]. The first order
scheme presents classical associated behavior-three-to-five cell shock spreading-whereas
the shock wave is spread only on one or two cells for the second-order extension. In
the compatible staggered Lagrangian scheme with classical artificial viscosity the shock
is generally spread over three to five cells. Moreover the tail of the rarefaction does not
suffer from the classical undershoot that can usually be seen on classical compatible stag-
gered Lagrangian scheme.

7.2 Sedov blast wave problem

In this subsection we present the Sedov blast wave problem [31], which describes the
evolution of a blast wave in a point-symmetric explosion. It is an example of a diverging
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shock wave. We consider the cylindrically symmetric Sedov problem in Cartesian geom-
etry. The total energy of the explosion is concentrated at the origin and has magnitude
Etotal =0.244816 similar to [22]. The material is an ideal gas with γ=1.4 and initially is at
rest with an initial density equal to 1.0.

At final time tfinal=1.0 the exact solution is a cylindrically symmetric diverging shock
whose front is at radius r=

√
x2+y2 =1 and has a density peak ρ=6.0. An exact solution

is available as instance in [19]. In our numerical experiments Etotal is concentrated in one
cell located at the origin (that is, containing the vertex (x,y)=(0,0)). The specific internal
energy of this cell, c, is defined as εc =Etotal/Vc. Therefore the initial pressure for this cell
is p=(γ−1)ρε=0.4Etotal/Vc.

The high-order scheme is used. First we use a Cartesian grid of 30×30 cells on domain
Ω=[0,1.2]×[0,1.2] (see Fig. 4(a)). Next we use a polygonal grid (Voronoi tessellation) of a
quarter of the disk of radius 1.2 (see Fig. 4(c)), this mesh has 775 cells being various poly-
gons. In Fig. 4(a) are shown the mesh and the density colormap. The general geometric
mesh quality is good. Moreover the symmetry of the shock wave is nicely preserved on
both these meshes. Indeed the good symmetry preservation is shown on Fig. 4(b), (d)
where the cell density as a function of cell radius is displayed for all cells in the domain
together with the exact solution; not only the shock wave is very sharp but the cells are
well distributed onto the exact curve.

7.3 Noh problem

In a quarter of the unit disk a gas (γ=5/3) is initiated with

ρ0 =1, ε0 =10−6 and U(x,y)=
( −x√

x2+y2
,

−y√
x2+y2

)
.

A cylindrical shock wave is generated at the origin and further diverges. The final time
is chosen at tfinal =0.6. The exact solution at radius r and time t is given by the following
relations, in which d identifies the geometry of the problem (1 for 1D Cartesian, 2 for 1D
cylindrical, 3 for 1D spherical), ρ0 is the uniform initial density, and u0 is the uniform
radial velocity (u0 =‖U‖=1):

{
ρ,ε,ur

}
=





{
ρ0

(γ+1

γ−1

)d
,
1

2
(u0)

2,0
}

, if r< rs ,

{
ρ0

(
1− u0t

r

)d
,0,u0

}
, if r> rs ,

(7.1)

where the position of the shock rs is given by

rs =Ust, with the shock speed Us =
1

2
(γ−1)|u0|. (7.2)

The exact solution is given by (rs =0.2, Us =1/3)

{
ρ,ε,ur

}
=





{
16,

1

2
,0
}

, if r<0.2,
{(

1+
3

5

1

r

)
,0,1

}
, if r>0.2.

(7.3)
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Figure 4: Sedov problem at tfinal=1. (a) Density map and mesh on a 30×30 Cartesian grid. (b) Cell density
as a function of cell center radius vs exact solution on a 30×30 Cartesian grid. (c) Density map and mesh on
a polygonal grid. (d) Cell density as a function of cell center radius vs exact solution on a polygonal grid.
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Figure 5: Noh problem at tfinal=0.6 on a 100×9 polar grid. (a) Density map and mesh. (b) Cell density as a
function of cell center radius vs exact solution.82
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This problem is simulated in its Cartesian version. First a polar mesh with 100 cells in
radial direction and 9 cells in angular direction is considered. Fig. 5 shows the final mesh
and density colormap on panel (a) and the cell density as a function of cell center radius
compared to exact solution on panel (b). The symmetry of the shock wave and the mesh is
almost perfect. Moreover the accuracy of the plateau is good and one observes a classical
wall heating effect close to the origin. A slight overshoot can be noticed just after the
shock wave which is, however, very sharp.

One classical issue of using polar mesh is the fact that to get a cell aspect ratio close
to one on the external border of the disk we have to mesh the region close to the origin
with triangles that have tremendously small internal angle. This leads not only to very
big number of cells, but also to inaccuracy and sensitivity while discretizing equations
on such long and a thin triangles, and last but not least, a small time step. A solution
consists in using a non-conformal mesh as depicted in Fig. 6 panel (a); the mesh is made
of quadrangles and every second angular line is stopped at a given radius (r = 0.3 in
the figure), leading to pentagonal cells. Such lines and associated cells are elsewhere re-
ferred as to termination lines [21] or dendritic cells. The extra nodes that are created on
these pentagons by the termination lines are usually enslaved to their edge. A special
treatment is set-up for these pentagonal cells [21] in classical compatible Lagrangian hy-
drodynamics scheme. This treatment is based on distribution of masses and forces on
surrounding zones. In our approach, as for the cell-centered Lagrangian scheme [26], no
special treatment is needed. The Riemann solver is naturally producing the correct point
velocity (see Fig. 6(b)) contrary to the classical approach with no special treatment (see
Fig. 9(a) on page 11 of [21]). Although some mesh imprint can be seen, the cell density as
a function of cell center radius in Fig. 6(c) is still very well reproduced.

7.4 Saltzman piston

The domain Ω = [0,1]×[0,0.1] is filled with a gas (γ = 5/3) at rest ρ = 1, ε = 10−6. The
right boundary is a perfect wall, the left boundary is a right-moving piston with velocity
U = (1,0)t. This piston sends a straight shock wave into the rectangular domain. This
shock wave ultimately bounces onto the fixed right wall and onto the piston back and
forth. At time t=1.0 the piston reaches the right wall.

An exact solution is defined by the value of the plateaus behind the shock. The ana-
lytical solution is characterized by a post-shock density plateau of 4 and a shock velocity
of 4/3 before the time t = 0.75. This problem usually tests the robustness of Lagrangian
numerical methods by using the Saltzman mesh defined by nx = 100 cells in x-direction
and ny =10 in y-direction and a deformation in x-direction as

xdeformed = x+(0.1−y)sin(πx),

as can be seen in Fig. 7. In Fig. 8 is presented the mesh and the density colormap at
time tfinal = 0.6. Unfortunately, our approach is not able to perform up to time t> 0.925
as the top left corner cells are pinched and become tangled soon after this time. This
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quite disappointing result asks for more investigation on robustness issue and also on
boundary condition treatment using staggered discretization.

7.5 Linear phase of Richtmyer-Meshkov instability

This test case is devoted to the study of the linear phase of the Richtmyer-Meshkov insta-
bility [30] for a piston-driven flow. This hydrodynamic instability occurs when a shock
wave hits a perturbed interface separating two different fluids. For sufficiently small per-
turbations, analytical solutions can be derived using linear perturbation theory [36]. In
this framework, the theory shows that the amplitude of the perturbation grows linearly
as a function of time. We first study the unperturbed fluid configuration in the RMI prob-
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lem, which is a collision of a shock wave with a flat contact discontinuity. Such collision
produces a transmitted shock wave and a reflected wave that can be either a shock or a
rarefaction. This shock-contact interaction defines a one-dimensional Riemann problem,
which can be solved analytically.

In what follows, we will employ the configuration displayed in Fig. 9. The interface is
located at x=0 and the computational domain corresponding to the shock tube is defined
by (x,y)∈[−5,4.2]×[0,0.5], since the y=0 line is a symmetry axis for this problem. For the
initial and boundary conditions described in Fig. 9, the incident piston-driven shock hits
the interface at time t = 3.015. This interaction leads to transmitted and reflected shock
waves, which also later interact with the piston and the right boundary wall. The time
history of the shock-contact interaction is displayed in Fig. 10(a) using a classical (t−x)
diagram. We run a computation for the unperturbed configuration with our high-order
scheme using 460 equally spaced cells in the x-direction and one cell in the y-direction.
The density as function of x-coordinate is plotted in Fig. 10(b) together with analytical
solution at time t = 5. We point out the very good agreement between numerical and
analytical solutions. Moreover, we note that transmitted and reflected shocks are sharply
resolved. In order to study the perturbed configuration, we initialize a cosinusoidal per-
turbation of the interface with a small amplitude α0. Thus, the equation of the interface
is written

x(y)= a0 cos
(2π

λ
y
)

, for y∈
[
− λ

2
,
λ

2

]
, (7.4)

where λ is the wavelength of the perturbation. The shape of the perturbed interface is
displayed in Fig. 9. For a small enough initial amplitude, linear theory predicts that the
perturbation amplitude, α(t), grows linearly as a function of time, after the shock has
interacted with the interface. Using direct two-dimensional simulation of the perturbed
configuration, we shall recover this important result and compare the numerical pertur-
bation amplitude with the one coming from the linear theory. The numerical simulations
are made by meshing the computational domain, (x,y)∈ [−5,4.2]×[0,0.5], with 460×25
equally spaced cells. Hence, we have set λ = 1 and meshed only a half wavelength due
to the symmetry of the problem w.r.t. x-axis. We set α0 =10−4 and performed a compu-
tation utilizing our high-order scheme. The perturbed interface is prescribed by moving
the vertices initially located on the line x = 0 onto the curve defined by Eq. (7.4). The
perturbation amplitude, α(t), is computed using the following formula

α(t)=
Xpert(t)−Xunpert(t)

α0
, (7.5)

where Xpert(t) (resp. Xunpert(t)) is the abscissa of a point located on the perturbed (resp.
unperturbed) interface. Using this formula for the previous computations, we compute
the corresponding perturbation amplitude and compare it to the reference one coming
from the linear theory [36]. We have plotted in Fig. 11 the numerical perturbation am-
plitude as a function of time compared to the one coming from the linear theory. We
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remark that the high-order computation recovers quite well the linear theory. These re-
sults show the ability of our high-order Lagrangian scheme to simulate very accurately
complex phenomena such as hydrodynamic instabilities. 83
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8 Conclusions

This work suggests a general formalism to derive staggered discretizations for La-
grangian hydrodynamics on general unstructured meshes in two dimensions. The frame-
work uses fundamental objects of compatible discretizations like Lagrangian subcell
mass and subcell forces. Artificial viscosity form is formulated invoking Galilean in-
variance and thermodynamic consistency. The satisfaction of entropy inequality is en-
sured by using a subcell-based symmetric positive definite tensor, a particular example
of which is given in this work. An extension to high order in space and time is demon-
strated, including a vector limitation procedure which is frame independent and thus
preserves desirable properties like rotational symmetry. Performance of the new method
is demonstrated on a set of classical and demanding numerical tests, using various struc-
tured and unstructured computational meshes.

An important potential link between staggered and cell-centered Lagrangian schemes
is the viscous part of subcell force. While some of the existing artificial viscosity imple-
mentations can be easily reformulated by means of the proposed symmetric positive defi-
nite tensor, others still seem to resist this simple interpretation. From this viewpoint there
remains enough space for deeper investigation with the prospect of finding important
similarities and differences between the Godunov-based and Lagrange-based methods.

Another promising idea to be explored is the use of a generalized Riemann prob-
lem [5] for simultaneous discretization in space and time, which would replace predictor-
corrector temporal integration by a more elegant one-step scheme.

Last but not least, the plan is to extend all pieces of the existing machinery to two-
dimensional axisymmetric [25] and further to three-dimensional geometry and thus open
it for new practical applications.
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Appendix: 1D staggered Lagrangian scheme based on

cell-centered Riemann solver

In this appendix we detail the 1D version of the numerical scheme proposed in this paper.
In order to be complete we fully describe its derivation. The governing equations are
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written in 1D as

ρ
d

dt

(1

ρ

)
− ∂

∂X
u=0, ρ

d

dt
u+

∂

∂X
P=0, ρ

d

dt
E+

∂

∂X
(Pu)=0. (A.1)

Physical variables are expressed as functions of X(t), which is the coordinate of a fluid
particle at time t whose initial position is denoted by x. The trajectory equation then
writes

d

dt
X =u(X(t),t), X(0)= x. (A.2)

A cell is labeled with an integer index as Ii and is the segment Ii(t)=[Xi−1/2(t);Xi+1/2(t)]
constituted of two consecutive points labeled with half-integers, see Fig. 12. I =

⋃
i Ii is

a partition of the 1D computational domain. We denote Vi(t)= Xi+1/2(t)−Xi−1/2(t) the
volume of cell Ii. The displacement of the vertex Xi+1/2(t) is given by the semi-discrete
trajectory equation

d

dt
Xi+ 1

2
=ui+ 1

2
, Xi+ 1

2
(0)= xi+ 1

2
, (A.3)

where ui+1/2 = u(Xi+1/2(t),t) is the trajectory of the vertex, namely the fluid velocity at
point Xi+1/2. Since cell Ii moves with the fluid velocity it may deform but can neither
gain nor lose mass, thus the mass of cell Ii writes

mi(t)=
∫

Ii(t)
ρ(X(t),t)dX =

∫

Ii(0)
ρ(x,0)dx=mi(0), (A.4)

where Ii(0)= [xi−1/2,xi+1/2] is the initial cell and ρ(x,0) the initial density. Let

Xi(t)=
1

2

(
Xi− 1

2
(t)+Xi+ 1

2
(t)
)

be the center of cell Ii. The median mesh is defined by the introduction of the dual cell
Ii+1/2(t) = [Xi(t),Xi+1(t)]. Knowing that the cell center is computed in a Lagrangian
manner we deduce that the mass of the dual cell, mi+1/2, is constant and writes mi+1/2 =
(mi+mi+1)/2.
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Volume conservation equation. Let ρi(t) be the cell-averaged density

ρi(t)=
1

Vi(t)

∫

Ii(t)
ρ(X(t),t)dX. (A.5)

It can also be written ρi(t)=mi/Vi(t) and therefore

mi
d

dt

( 1

ρi

)
=

d

dt
Vi =ui+ 1

2
−ui− 1

2
, (A.6)

which is the semi-discrete version of the volume conservation equation (A.1).

Momentum conservation equation. The semi-discrete momentum equation over the
dual cell writes

mi+ 1
2

d

dt
ui+ 1

2
+
(

P∗
i+1−P∗

i

)
=0, (A.7)

where P∗
i = P(Xi(t),t) represents the pressure at zone center Xi that remains to be deter-

mined.

Total energy conservation. Without taking into account boundary terms we introduce
the total kinetic energy at time t>0 as

K= ∑
i+ 1

2

1

2
mi+ 1

2
u2

i+ 1
2
,

where the sum is performed over the dual cells Ii+1/2. We also introduce the total internal
energy at t as E = ∑i miε i, where the sum is taken over the primal cells Ii and ε i denotes
the cell-averaged internal energy. Conservation of total energy writes

d

dt
K+

d

dt
E =0. (A.8)

Recalling that masses are Lagrangian objects, the previous equation rewrites

∑
i+ 1

2

1

2
mi+ 1

2
ui+ 1

2

d

dt
ui+ 1

2
=−∑

i

mi
d

dt
ε i. (A.9)

Substituting the semi-discrete momentum equation previously derived we get

∑
i+ 1

2

ui+ 1
2
(P∗

i+1−P∗
i )=∑

i

mi
d

dt
ε i, (A.10)

which yields after shifting the index of the first sum

∑
i

P∗
i

(
ui+ 1

2
−ui− 1

2

)
=∑

i

mi
d

dt
ε i. (A.11)
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Without taking into account the boundary terms, the total energy conservation writes

∑
i

mi
d

dt
ε i+P∗

i

(
ui+ 1

2
−ui− 1

2

)
=0. (A.12)

A sufficient condition to ensure total energy conservation is obtained by writing the fol-
lowing evolution equation for the internal energy within cell Ii

mi
d

dt
ε i+P∗

i

(
ui+ 1

2
−ui− 1

2

)
=0. (A.13)

The only unknown to determine is the pressure P∗
i . Let us note that using the volume

conservation equation this last equation can be recast into the form

mi
d

dt
ε i+miP

∗
i

d

dt

( 1

ρi

)
=0, (A.14)

which, recalling the Gibbs formula TdS=dε+Pd( 1
ρ ), rewrites

miTi
d

dt
Si =−mi(P∗

i −Pi)
d

dt

( 1

ρi

)
, (A.15)

where Si and Ti are the specific entropy and temperature in cell Ii. The right-hand side
of this equation is nothing but the time rate of change of specific entropy dissipation.
According to the second law of thermodynamics Ti

d
dt Si ≥0, thus we should have

(P∗
i −Pi)

d

dt

( 1

ρi

)
≤0.

Consequently for smooth flows, characterized by reversible thermodynamical process,
such as rarefaction wave or isentropic compression, we should have P∗

i =Pi since d
dt (

1
ρi

)<

0. The difference P∗
i −Pi is the artificial viscosity first introduced by von Neumann and

Richtmyer [33]. Let us now describe how to compute this term by solving a staggered
Riemann problem. First the interfacial pressure P∗

i is computed at each cell center Xi by
solving the Riemann problem characterized by the left state (ρi,ui−1/2,Pi) and the right
one (ρi,ui+1/2,Pi). Note that only the velocity is discontinuous with a jump

∆u=ui+ 1
2
−ui− 1

2
.

In order to simplify the notation let us denote with subscript L the left state (ρ,uL,P).
Accordingly the right state is (ρ,uR,P) with subscript R and the jump in velocity is
∆u = uR −uL. We note that the equation of state is the same both sides of the interface.
The solution of the Riemann problem is a two-shock solution in the case that ∆u<0 (see
Fig. 13 top-right panel) and a two-rarefaction solution if ∆u>0 (see Fig. 13 bottom-right84
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Figure 13: Left: States for the Riemann problem at cell center. Top-right: Two-shock Riemann solution.
Bottom-right: Two-rarefaction Riemann solution.

panel). The solution is denoted (ρ∗,u∗,P∗). Since thermodynamical variables are contin-
uous across the interface, there is no contact discontinuity.

Two-shock case. The Rankine-Hugoniot relations allow to compute the post-shock pres-
sure and velocity. They write for the right-facing shock

M
( 1

ρ∗ − 1

ρ

)
=−(u∗−uR), (A.16a)

M(u∗−uR)= P∗−P, (A.16b)

ε∗−ε+
P∗+P

2

( 1

ρ∗ − 1

ρ

)
=0, (A.16c)

where M>0 denotes the mass swept by the wave per unit time. For the left-facing shock
we only write

M
( 1

ρ∗ − 1

ρ

)
=−(u∗−uL), (A.17a)

M(u∗−uL)=−(P∗−P), (A.17b)

recalling that the third equation is exactly the same as (A.16c) since it is independent on
the direction of propagation. Adding (A.16b) and (A.17b) yields u∗ =(uR+uL)/2, hence
using (A.16b) and the definition of ∆u we get

P∗ = P− 1

2
M∆u. (A.18)

Using cell notation we deduce

P∗
i = Pi−

1

2
M
(
ui+ 1

2
−ui− 1

2

)
, (A.19)
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thus the internal energy equation reads

mi
d

dt
ε i+Pi

(
ui+ 1

2
−ui− 1

2

)
=

1

2
Mi

(
ui+ 1

2
−ui− 1

2

)2
. (A.20)

This discretization is compatible with the second principle of thermodynamics.
The swept mass flux can be expressed as function of the physical variables by com-

bining (A.16a) and (A.16b)

M2 =−(P∗−P)
( 1

ρ∗ − 1

ρ

)−1
. (A.21)

In the limit of the weak shock wave P∗ → P and ρ∗ → ρ and one can show that M → ρc
where c2=( ∂P

∂ρ )s is the isentropic sound speed. In the general case for a γ gas law one can

compute the analytical solution of the Riemann problem. Knowing that P=(γ−1)ρε and
using (A.16c) one gets

1

ρ∗ =
1

ρ

(γ+1)P+(γ−1)P∗

(γ+1)P∗+(γ−1)P
. (A.22)

After substitution in the equation for M2 we obtain

M2 =ρ
(γ+1

2
P∗+

γ−1

2
P
)

, (A.23)

thus using (A.16b) we show that P∗ satisfies a quadratic equation whose physical solution
is

P∗ = P+ρ

(
γ+1

4

∆u

2
−
√(γ+1

4

)2(∆u

2

)2
+c2

)
∆u

2
. (A.24)

This last equation allows to write

M=ρ

(
−γ+1

4

∆u

2
+

√(γ+1

4

)2(∆u

2

)2
+c2

)
. (A.25)

Let us remark that this last equation recovers the Kuropatenko artificial viscosity [20]
up to a factor one half in front of the velocity jump. Kuropatenko has in fact derived
his formula computing the pressure jump produced by only one shock wave created
by a velocity jump ∆u. Here we are considering the solution of the Riemann problem
corresponding to an initial velocity jump ∆u. This initial discontinuity breaks up into two
shock waves, each being characterized by a velocity jump of ∆u/2. The same conclusion
has been given by Luttwak and Falcovitz [24].

In the case of real material we propose the following ansatz for the swept mass flux

M=ρ
(
−c0

∆u

2
+c1c

)
, (A.26)
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where c0 and c1 are constants depending on material properties. This amounts to pretend
that the velocity of the shock wave is an affine function of the fluid velocity. This assump-
tion is satisfied for many materials as it has been noticed by Dukowicz [16]. Returning to
cell notation we finally get

P∗
i = Pi−

1

2
Mi

(
ui+ 1

2
−ui− 1

2

)
, (A.27)

where

Mi =ρi

(
−c0

1

2

(
ui+ 1

2
−ui− 1

2

)
+c1ci

)
. (A.28)

Let us remark that this form of swept mass flux is the one used in (5.4) in 2D. Moreover,
in 1D, the subcell matrix (5.7) is a 1×1 matrix that indeed coincides with the swept mass
flux, hence the notation Mi in the equation above. Finally this procedure can be viewed
as the solution of the Riemann problem using an approximate solver.

Two-rarefaction case. In the case ∆u ≥ 0 we simply can set P∗
i = Pi in order to satisfy

entropy conservation. It consists in canceling the entropy production in the case of rar-
efaction wave. This is the usual way of proceeding when dealing with classical artificial
viscosity. However it is possible also to solve the Riemann problem in this case. Since
∆u≥0, the initial discontinuity breaks up into two rarefaction waves (see Fig. 13 bottom-
right panel). The Riemann problem is solved using Riemann invariants:

• for the right-facing wave u∗−uR =
∫ ρ∗

ρ
dP

ρ(P)c(P)
,

• for the left-facing wave u∗−uL =−
∫ ρ∗

ρ
dP

ρ(P)c(P)
,

and by adding these last equations we get u∗=(uR+uL)/2. In the case of a γ gas law one
can integrate the Riemann invariants to get

P∗ = P
(

1− γ−1

2

∆u

2c

) 2γ
γ−1

, (A.29)

that is valid for
∆u

2
≤ 2

γ−1
c.

We can rewrite the last equation as

P∗ = P+P
[(

1− γ−1

2

∆u

2c

) 2γ
γ−1 −1

]
= P− 1

2
M∆u, (A.30)

where

M= P
[
−
(

1− γ−1

2

∆u

2c

) 2γ
γ−1

+1
](1

2
∆u
)−1

>0. (A.31)
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In the limit of weak shock wave ∆u → 0 and thus M → ρc. For real materials one can
derive an approximate solution using the following quadrature for the integrals for the
Riemann invariants

∫ ρ∗

ρ

dP

ρ(P)c(P)
=

P∗−P

ρc
, (A.32)

hence u∗ and P∗ are solution of the 2×2 linear system

ρc(u∗−uR)= P∗−P, ρc(u∗−uL)=−(P∗−P), (A.33)

in particular u∗=(uL+uR)/2 and P∗=P−ρc ∆u
2 . This corresponds to the acoustic approx-

imation.

Time discretization. A two-step Runge-Kutta discretization is used. Knowing all physi-
cal quantities at time tn, we advance them up to time tn+1 = tn+∆t.

• Predictor step. One computes

P∗,n
i = Pn

i − 1

2
Mn

i ∆un
i ,

and solves the internal energy equation

mi

(
ε

n+ 1
2

i −εn
i

)
+

∆t

2
P∗,n

i

(
un

i+ 1
2
−un

i− 1
2

)
=0. (A.34)

Then the mesh nodes are displaced:

X
n+ 1

2

i+ 1
2

=Xn
i+ 1

2
+

∆t

2
un

i+ 1
2
.

The density is then computed:

ρ
n+ 1

2

i+ 1
2

=mi

(
V

n+ 1
2

i

)−1
,

where

V
n+ 1

2
i =X

n+ 1
2

i+ 1
2

−X
n+ 1

2

i− 1
2

.

Finally the predicted pressure is computed

P
n+ 1

2
i = P(ρ

n+ 1
2

i ,ε
n+ 1

2
i ).

• Corrector step. One computes

P
∗,n+ 1

2
i = P

n+ 1
2

i − 1

2
M

n+ 1
2

i ∆un
i ,

and solves momentum equation

mi+ 1
2

(
un+1

i+ 1
2

−un
i+ 1

2

)
+∆t

(
P

∗,n+ 1
2

i+1 −P
∗,n+ 1

2
i

)
=0, (A.35)85
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and computes

u
n+ 1

2

i+ 1
2

=
1

2

(
un+1

i+ 1
2

−un
i+ 1

2

)
.

The internal energy is solved

mi

(
εn+1

i −εn
i

)
+∆tP

∗,n+ 1
2

i

(
u

n+ 1
2

i+ 1
2

−u
n+ 1

2

i− 1
2

)
=0. (A.36)

Then the mesh nodes are displaced:

Xn+1
i+ 1

2

=Xn
i+ 1

2
+∆tu

n+ 1
2

i+ 1
2

.

The density is then computed:

ρn+1
i+ 1

2

=mi

(
Vn+1

i

)−1
,

where
Vn+1

i =Xn+1
i+ 1

2

−Xn+1
i− 1

2

.

High-order extension of this scheme is obtained using a piecewise linear conservative
reconstruction of the velocity on each dual cell.

∀X ∈ [Xi,Xi+1], ui+ 1
2
(X)=ui+ 1

2
+δui+ 1

2

(
X−X̃i+ 1

2

)
, (A.37)

where X̃i+1/2 =(Xi+Xi+1)/2 and we note that generally X̃i+1/2 6= Xi+1/2 since the mesh
may be non-uniform. The reconstruction is conservative in the sense that

1

Xi+1−Xi

∫ Xi+1

Xi

ui+ 1
2
(X)dX =ui+ 1

2
. (A.38)

As instance a least squares approach is utilized to compute the slope δui+1/2. Monotonic-
ity is ensured by the use of any classical slope limiter. High-order reconstructed velocities

uL =ui− 1
2
(Xi)=ui− 1

2
+δui− 1

2

(
Xi−X̃i− 1

2

)

and

uR =ui+ 1
2
(Xi)=ui+ 1

2
+δui+ 1

2

(
Xi−X̃i+ 1

2

)

are further used in the Riemann solver as left and right states.
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SUMMARY

The aim of the present work is the 3D extension of a general formalism to derive a staggered discretiza-
tion for Lagrangian hydrodynamics on unstructured grids. The classical compatible discretization is used;
namely, momentum equation is discretized using the fundamental concept of subcell forces. Specific inter-
nal energy equation is obtained using total energy conservation. The subcell force is derived by invoking
the Galilean invariance and thermodynamic consistency. A general form of the subcell force is provided
so that a cell entropy inequality is satisfied. The subcell force consists of a classical pressure term plus a
tensorial viscous contribution proportional to the difference between the node velocity and the cell-centered
velocity. This cell-centered velocity is an extra degree of freedom solved with a cell-centered approximate
Riemann solver. The second law of thermodynamics is satisfied by construction of the local positive defi-
nite subcell tensor involved in the viscous term. A particular expression of this tensor is proposed. A more
accurate extension of this discretization both in time and space is also provided using a piecewise linear
reconstruction of the velocity field and a predictor-corrector time discretization. Numerical tests are pre-
sented in order to assess the efficiency of this approach in 3D. Sanity checks show that the 3D extension of
the 2D approach reproduces 1D and 2D results. Finally, 3D problems such as Sedov, Noh, and Saltzman are
simulated. Copyright © 2012 John Wiley & Sons, Ltd.
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KEY WORDS: Lagrangian hydrodynamics; compressible flow; staggered scheme; 3D; artificial viscosity;
Riemann solver; unstructured mesh

1. INTRODUCTION

The aim of the present work is twofold: to develop the 3D version of a general formalism, which
was first derived in [1], and to numerically validate this formalism via a 3D staggered Lagrangian
hydrodynamics code.

One classical staggered Lagrangian hydrodynamics compatible scheme, which is vastly used for
designing 3D code, dates back to [2–4]. The staggered discretization of variables (kinematic
variables located at nodes, thermodynamic ones at cell centers) allows the scheme to fulfill naturally
the geometric conservation law (GCL) compatibility requirement and, at the same time, provides the
construction of a natural discrete divergence operator. The discretizations of momentum and spe-
cific internal energy are derived from each other by use of the important concepts of subcell mass,
subcell force, and total energy conservation [4]. This compatible hydrodynamics algorithm is thus
designed to conserve momentum and total energy exactly in discrete form by using the adjointness

*Correspondence to: Raphaël Loubère, Institut de Mathématiques de Toulouse, CNRS, Université de Toulouse, France.
†E-mail: raphael.loubere@math.univ-toulouse.fr
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property of the discrete gradient and divergence operators. The dissipation of kinetic energy into
internal energy through shock waves is ensured by means of artificial viscosity, which can be edge
based [5], tensorial [6], or more advanced [7, 8]. This mechanism leads to a dissipation that is com-
patible with the second law of thermodynamics. The subcell pressure method is also used for the
control of hourglass-type motion [9]. Finally, the time integration method is a predictor-corrector
technique, which is detailed in [4]. The extension of this compatible Lagrangian hydrodynamics
algorithm to unstructured grids, where each zone is a polygon with an arbitrary number of
sides, has been presented in [10]. The subcell formalism greatly simplifies the 3D version of the
scheme [11].

More recently, cell-centered Lagrangian schemes were developed [12–14]. Their primary vari-
ables are the cell-centered density, the velocity, and the total energy. These schemes solve the
difficulty of defining a nodal velocity to move the mesh consistently with the GCL. An approximate
Riemann problem is constructed at each node, the solution of which provides the nodal velocity. A
3D version of such schemes has been presented for instance in [15–17].

In [1], the authors derived a staggered discretization for 2D Lagrangian hydrodynamics on
unstructured grids. This derivation uses the concept of subcell discretization of the staggered
Lagrangian schemes and also a cell-centered interpretation of the Riemann solver from the cell-
centered Lagrangian schemes. This leads to an artificial viscosity force obtained by invoking the
Galilean invariance and thermodynamic consistency. In Godunov methods, the dissipation of kinetic
energy into internal energy is provided by a solution of a Riemann problem. The same mechanism
is used in the framework of a 3D staggered scheme. The solution of the cell-centered Riemann
problem provides an approximation of the cell-centered velocity U c , which is used to define the
viscous part of the subcell force. Let us note that, independently, a very similar and interesting work
in 2D has been published in [18]. This formulation allows a straightforward more accurate extension
in space by constructing linear velocity vector field approximation with frame-invariant limitation,
applicable on any mesh structure. A careful and sensitive vector limitation is a key issue to effective
exploitation of the improvement gained by frame-invariant higher-order extension. We extend the
approach proposed in [1] to obtain a 3D frame invariant vector limitation. As for temporal integra-
tion, we achieve second order in time by using a classical predictor-corrector time discretization.
The 3D derivation of the scheme is very similar to the 2D one. The resulting viscosity force can be
expressed with the help of a 3 � 3 positive definite matrix Mcp , so that the thermodynamic consis-
tency is satisfied automatically by the viscous term Mcp.U c�U p/. The method in [1] can be viewed
as an extension of the work by Christensen [19], who noticed that under certain assumptions, the
staggered Lagrangian schemes with artificial viscosity can be written in the same form as Godunov’s
scheme with Harten, Lax, van Leer (HLL) approximate Riemann solver and stressed the potential
synergy of both approaches (e.g., higher-order extension of simple staggered scheme by techniques
typically used in the Godunov community, such as Total Variation Diminishing (TVD) limiters).
The relationship between staggered Lagrangian and cell-centered Godunov methods from the view-
point of shock-capturing mechanism has been discussed already in earlier works, for example, by
Wilkins [20] or Dukowicz [21].

The paper is organized as follows. First, the governing equations and notation are stated.
The compatible discretization is then derived from first principles. The fourth section deals with
the definition of the fundamental object named subcell force. This previous derivation shows
the necessity of the introduction of a cell-centered velocity as a new degree of freedom. This
velocity is then determined using a cell-centered approximate Riemann solver. A more accu-
rate scheme is built using a piecewise linear limited reconstruction of the velocity field. This
section also presents the second-order time discretization. In the fifth section, numerical results
are provided. First, sanity test cases are shown to assess the validity of this approach when
problems with 1D or 2D symmetries are run in 3D. In a second series of tests, genuinely
3D demanding test cases are proposed. The numerical results provided by our scheme are
compared with exact solutions or solutions obtained by a classical staggered Lagrangian
scheme with edge artificial viscosity possibly supplemented with several useful tools (symmetry
corrections [11] or vorticity damping artificial viscosity [22]). Conclusion and perspectives are
finally drawn.
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2. GOVERNING EQUATIONS AND NOTATION

2.1. Governing equations

In a Lagrangian framework, the 3D gas dynamics equations write

�
d

dt

�
1

�

�
�r �U D 0, (1)

�
d

dt
U CrP D 0, (2)

�
d

dt
E Cr � .PU /D 0, (3)

where � is the density, U the velocity, E the specific total energy, and d
dt the material derivative.

Equation (1) expresses the volume conservation, and (2) and (3) are the momentum and total energy
conservation laws. Volume conservation equation is referred to as the GCL. A thermodynamic
closure (equation of state (EOS)) supplements the previous system by relation P D P.�, "/. The

specific internal energy is "DE � U 2

2
. For smooth solutions, energy equation is reformulated into

�
d

dt
"CPr �U D 0, (4)

and using (1), one obtains

�
d

dt
"CP�

d

dt

�
1

�

�
D 0. (5)

The Gibbs relation for temperature T and specific entropy S writes T dS D d"CP d
�
1
�

�
, and the

second law of thermodynamics, namely, T dS
dt > 0, implies that for non-smooth flows, we have

�
d

dt
"CP�

d

dt

�
1

�

�
> 0. (6)

The previous system (1–3) is replaced in this work by the non-conservative system composed of
Equations (1), (2), and (4). The last equations are the trajectory equations

dX

dt
D U .X.t/, t /, X.0/D x, (7)

expressing the Lagrangian motion of any point initially located at position x.

2.2. Notation and geometrical consideration

An unstructured grid consisting of a collection of non-overlapping cells is considered. Each cell is
assigned a unique index c and is denoted as �c . Each point/vertex of the mesh is assigned a unique
index p, and C.p/ is the set of cells sharing a particular vertex p. Each cell is subdivided into sub-
cells, each being uniquely defined by a pair of indices c and p and denoted as �cp . This subcell is
the volume defined by connecting the center of�c to the mid-points of cell edges impinging at point
p and the centers of the faces meeting at point p (Figure 2). In other words, �cp D �p \�c . The
union of subcells �cp sharing a particular point p defines the dual vertex-centered cell �p related
to point p as �p D

S
c2C.p/�cp .

The primary grid is
S
c �c and the dual grid

S
p�p . The set of faces f of a cell is denoted as

F.c/, and the set of faces of a subcell is F.cp/. A face f is uniquely defined by a set of points.
Note that a face may not be coplanar if more than three vertexes compose it. Consequently, a face
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Figure 1. Tetrahedralization of polyhedron of arbitrary order (example of a hexahedron). Note that a face is
generally not a simple plane—a hexahedron is split into 24 tetrahedra meeting at the center of the cell.

having more than three vertexes is split into triangles. The surface Af of face f is computed as
the sum of the surfaces of the triangles composing it. Moreover, N f , the unit normal of face f , is
deduced from the sum of normals of the triangles composing the face.

The method used to calculate volumes and surface vectors is to tetrahedralize the polyhedron of
arbitrary order so that the volume of any domain can be formed in a general manner on an unstruc-
tured grid (Figure 1). The cell center point is defined as the average of the coordinates of the points
that define the cell. A face center point is defined as the average of the coordinates of the points that
define it.

For the sake of simplicity, we only describe the framework on a hexahedral mesh knowing that the
extension to cells with more faces is immediate. In the case of a hexahedral cell c, the face composed
of four points denoted in Figure 1 by p1,p2,p7,p8 has its center atXf ,c D

1
4

P
kD1,2,7,8Xpk . The

cell center is defined by X c D
1
8

P
kD1,:::,8Xpk . Moreover, the zone is divided into 24 tetrahedra,

with two tetrahedra associated with each of the 12 edges. Three tetrahedra are shown in Figure 1.
The 24 tetrahedra volumes are further summed to obtain an approximation of the cell volume that
is called Vc . Subcell volume is computed by summing the volumes of the six tetrahedra imping-
ing at point p and dividing the sum by factor 2. Let us emphasize that the face vectors satisfy the
fundamental geometric identitiesX

f 2F.c/
Af ,cN f ,c D 0,

X
f 2F.cp/

Af ,cpN f ,cp D 0, (8)

where Af ,c ,N f ,c are the surface and the unit outward normal of face f in cell c. Similarly,
Af ,cp ,N f ,cp are the surface and unit outward normal of face f in subcell �cp . Note that the faces
of the subcell may not be coplanar either. Consequently, each subcell face is split into two triangles
by the diagonal line passing through the cell center for internal faces (arrows on Figure 1) or
the point for the external faces. The surface of the subcell face called Aint/ext

f ,cp is therefore the sum

of the surfaces of these two triangles. Similarly, N int/ext
cp , the unit normal vector to the subcell face,

is the sum of the normals to the triangles divided by its norm. Equation (8) is equivalent to the
well-known result that the sum of the outward normals to a closed polyhedral surface is equal
to zero.

The sets of internal and external (cell-boundary) faces with respect to cell c are respectively
named F int.cp/, F ext.cp/, as depicted in Figure 2; and according to the second equation in (8),
one has‡ X

f 2Fext.cp/

Aext
f ,cpN

ext
f ,cp D�

X
f 2F int.cp/

Aint
f ,cpN

int
f ,cp . (9)

‡Another definition of interior faces is @�p \�c and @�c \�p for exterior faces.
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A int
f,cpN

f,cp

int

Af,cp
int

N
int
f,cp

Cell : c

Aint
f,cp

N int
f,cp

p

Figure 2. Fragment of an unstructured mesh. Position and velocity are defined at grid points (�), whereas
thermodynamic variables are located at cell centers. A cell, �c , is subdivided into hexahedral subcells
�cp . Points are denoted by subscript p and cells by subscript c. Each internal face of subcell �cp (brown,
blue, and green) has a superscript ‘int’. Similarly, one uses ‘ext’ for external faces. A unit normal to face
f denoted as N int

f ,cp is the sum of the normals to the triangles divided by its norm. The surface of face
f is Aint

f ,cp .

The previous equation defines the important notion of 3D corner vector as being

AcpN cp D
X

f 2Fext.cp/

Aext
f ,cpN

ext
f ,cp , (10)

where N cp is the unit vector in the direction of vector
P
f 2Fext.cp/A

ext
f ,cpN

ext
f ,cp , and Acp is

its norm.
We use a staggered placement of variables: Position and velocity are defined at grid points

whereas thermodynamic variables are located at cell centers. In a moving framework, the volumes
of the primary and dual cells are functions of time t . Following [4], we assume that subcells are
Lagrangian entities. Consequently, subcell mass mcp is constant in time. Being given V 0c as the
volume of cell �c at time t D 0 and the initial density �0c , one defines the initial subcell mass as
mcp D �

0
c V

0
cp . By summation of Lagrangian subcell masses, one defines cell/point masses as

mc D
X

p2P.c/
mcp , mp D

X
c2C.p/

mcp , (11)

where P.c/ is the set of all points of cell c. These cell/point masses inherit the Lagrangian property
of subcell masses, namely, they are constant in time.

3. COMPATIBLE DISCRETIZATION

Staggered Lagrangian schemes are constructed here using the methodology of compatible
discretization [2, 4, 23]. The cornerstone of this discretization is the so-called subcell force acting
from subcell�cp onto point p. In this compatible approach, the discretization of the internal energy
equation is deduced from total energy conservation. Closely following [1], we derive an abstract
form of the subcell force in 3D so that an entropy inequality is satisfied. The subcell force con-
sists of a classical pressure term plus a tensorial viscous contribution, which is proportional to the
difference between the vertex-centered and cell-centered velocities. The cell-centered velocity is a
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new degree of freedom that will be solved using the principle of the Galilean invariance. To satisfy
the second law of thermodynamics, the local subcell matrix involved in the viscous part of the
subcell force must be positive definite. This matrix is the fundamental object that entirely defines
the artificial viscosity of the scheme required to stabilize the scheme.

3.1. Geometric conservation law

We build a discretization of the volume equation (1), which is compatible with the GCL. In other
words, we are using a discrete divergence operator for the volume equation by requiring consistency
of the divergence of the velocity field with the time rate of change of volume of the cell (refer
to [24]). By noticing that mc D �cVc is constant in time but �c D �c.t/ and Vc D Vc.t/, we deduce

mc
d

dt

�
1

�c

�
D

d

dt
Vc .

Moreover, because the cell volume can be expressed as a function of the position vectors of its
vertexes (see [1]), we can write the time evolution of the cell volume as

d

dt
Vc �

X
p2P.c/

AcpN cp �U p D 0, (12)

where AcpN cp is the corner vector defined in (10), and U p is the node velocity.
A compatible definition of the discrete divergence operator over cell c is given by

.r �U /c D
1

Vc

X
p2P.c/

AcpN cp �U p . (13)

This kind of formalism has already been used in staggered and cell-centered (free Lagrange)
discretizations [24, 25]. Note that (12) is compatible with the discrete version of the trajectory
equation (7), namely,

d

dt
Xp D U p , Xp.0/D xp .

Finally, a compatible discretization of the volume equation (1) writes

mc
d

dt

�
1

�c

�
�

X
p2P.c/

AcpN cp �U p D 0. (14)

3.2. Momentum equation

The semi-discrete momentum equation over the dual cell �p is postulated to be

mp
d

dt
U p C

X
c2C.p/

F cp D 0. (15)

Here F cp is the subcell force from cell c that acts on node p, which is defined by

F cp D

Z
@�p.t/\�c.t/

PN dl . (16)

Momentum equation (15) can be seen as the Newton law applied to a particle of mass mp moving
with velocity U p .
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3.3. Specific internal energy equation

The compatible staggered Lagrangian machinery relies on the conservation of total energy to obtain
a semi-discrete internal energy equation following the approach described in [4]. The total energy
is then defined as E.t/ D K.t/ C E.t/, where total kinetic energy and total internal energy are
given by

K.t/D
X
p

1

2
mpU

2
p.t/, E.t/D

X
c

mc"c.t/,

and "c is the cell-averaged specific internal energy. The conservation of total energy neglecting
boundary conditions writes d

dtE D
d
dtK C d

dt E D 0. The substitution of kinetic and internal
energies yields

d

dt
E D

d

dt
KC d

dt
E D

X
c

mc
d

dt
"c C

X
p

mp
d

dt
U p �U p .

Using the semi-discrete momentum equation (15) yieldsX
c

mc
d

dt
"c �

X
p

X
c2C.p/

F cp �U p D 0,

which rewrites as

X
c

0@mc d

dt
"c �

X
p2P.c/

F cp �U p

1AD 0. (17)

A sufficient condition is obtained by requiring the previous equation to hold in each cell c

mc
d

dt
"c �

X
p2P.c/

F cp �U p D 0. (18)

To summarize, the semi-discrete equations for the primary variables
�
1
� c

,U p , "c
�

are

mc
d

dt

�
1

� c

�
�

X
p2P.c/

AcpN cp �U p D 0,

mp
d

dt
U p C

X
c2C.p/

F cp D 0,

mc
d

dt
"c �

X
p2P.c/

F cp �U p D 0.

The mesh motion given by the trajectory equations

d

dt
Xp D U p.Xp.t/, t /, Xp.0/D xp ,

is compatible with the GCL. The thermodynamic closure is provided by the EOS, which writesPc D
P.�c , "c/. This subcell-based compatible semi-discretization ensures total energy conservation
regardless of the subcell force form.

4. SUBCELL FORCE

Here we follow the definition of the subcell force from [1], where the Galilean invariance and
thermodynamic consistency are invoked. The Galilean invariance is a principle of relativity,
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which states that the fundamental laws of physics are the same in all inertial frames. To fulfill
the Galilean invariance, the specific internal energy equation (18) must remain unchanged under a
uniform translation denoted as C . Equation (18) becomes

mc
d

dt
"c �

X
p2P.c/

F cp � .U p CC /D 0.

Substitution of (18) into this last equation leads toX
p2P.c/

F cp �C D 0,

which must hold for all vectors C . Therefore, specific internal energy equation remains invariant
under uniform translation if and only if X

p2P.c/
F cp D 0. (19)

This condition also implies total momentum conservation without taking into account boundary
conditions§.

In [1], the authors derived a possible form of the subcell force as a sufficient condition to fulfill
the second principle of thermodynamics. We refer the reader to [1] for the derivation and only recall
the final subcell form

F cp D�AcpPcN cp CMcp.U p �U c/. (20)

In 3D, Mcp is a subcell-based 3�3 positive semi-definite matrix. Such form provides the following
entropy inequality satisfied by the semi-discrete scheme [1]:

mcTc
d

dt
Sc D

X
p2P.c/

Mcp

�
U p �U c

�
� .U p �U c/> 0, (21)

where Sc and Tc are the specific entropy and temperature of cell c. Indeed, using the Gibbs formula,
one obtains

mcTc
d

dt
Sc Dmc

�
d

dt
"c CPc

d

dt

�
1

�c

�	
. (22)

Substituting into (22) the specific internal energy equation (18) and the volume equation (14) yields

mcTc
d

dt
Sc D

X
p2P.c/

F cp � .U p �U c/CPc

0@ X
p2P.c/

AcpN cp �U p

1A
D

X
p2P.c/

.F cp CAcpPcN cp/ � .U p �U c/

D
X

p2P.c/
Mcp

�
U p �U c

�
� .U p �U c/.

Here we have used the geometric identity
P
p2P.c/AcpN cp D 0 to obtain the second line, and

we have substituted the subcell force form (20) to obtain the third and final equation. As Mcp is a
positive semi-definite matrix, (21) is fulfilled.

§Summing (15) over all points p yields
X
p

 
mp

d

dt
U p C

X
c2C.p/

F cp

!
D 0. Interchanging the sums yieldsX

p

mp
d

dt
U p C

X
c

X
p2P.c/

F cp D 0, which, according to (19), leads to
X
p

mp
d

dt
U p D 0, which means that the

total momentum is conserved.
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Entropy production (21) within cell c is directly governed by the subcell matrix Mcp and the
velocity jump between the nodal and the cell-centered velocity, which still remains to be determined.
In [1], the authors provided an abstract formulation, which, by analogy with the node-centered
approximate Riemann solver introduced in the context of cell-centered Lagrangian discretization
[13], provides a cell-centered approximate Riemann solver. This solver allows to determine one
particular form of the subcell matrix Mcp . To this end, we first compute the unknown cell center
velocity by substituting the subcell force expression (20) into the Galilean invariance condition (19),
leading to the following system satisfied by the cell-centered velocity U c :

McU c D
X

p2P.c/
McpU p , (23)

where Mc D
P
p2P.c/ Mcp is a symmetric positive definite matrix. Once the definition of the

subcell matrix Mcp is known, one can solve the previous system to obtain a unique expression of
the cell-centered velocity.

There is no unique definition of subcell matrix neither in 2D nor in 3D. Consequently, we rely on
the proposition made in [1], which we further extend in 3D. That is to say,

Mcp D
X

f 2F int .cp/
Zf ,cp Af ,cp .N f ,cp ˝N f ,cp/ (24)

is a 3 � 3 symmetric positive definite matrix where each matrix .N f ,cp ˝ N f ,cp/ is symmetric
positive definite, Af ,cp is the surface of internal face f of subcell �cp , and N f ,cp is its unit
outward-pointing normal. The last ingredient of formula (24) is the swept mass flux for a given
face f of subcell �cp that we define following Dukowicz [21] as

Zf ,cp D �c


�c C cQ�c j .U c �U p/ �N f ,cp j

�
. (25)

Here �c is the isentropic sound speed, cQ a user-defined parameter (set to 1 in our simulations), and
�c a material-dependent coefficient, which, for a � law gas, is defined by

�c D

8<:
� C 1

2
if .r �U /cp < 0,

0 if .r �U /cp > 0.
(26)

Here .r �U /cp D � 1
Vcp

AcpN cp � .U c �U p/ is the subcell related velocity divergence. In case of
a rarefaction wave, we recover the acoustic approximation, whereas in case of a shock wave, we
obtain the well-known two-shock approximation.

We note that Mc in (23) is symmetric positive definite, which ensures its invertibility. We remark
that this system is non-linear because of the dependency of the swept mass flux on the cell-
centered velocity. This non-linear system can be solved using an iterative procedure such as fixed
point or Newton algorithms. In practice, few iterations are needed to reach convergence. Once the
cell-centered velocity is known, the subcell force is deduced from Equation (20). The present cell-
centered approximate Riemann solver can be viewed as a 3D extension of the work initiated by
Christensen in 1D framework [19] and extended to 2D in [1].

5. IMPROVEMENTS

Anti-hourglass subpressure force. Subcell pressure forces have been designed in [9] in classical
staggered discretization to counteract some parasitic hourglass grid motion that may otherwise
appear. Following [9] or in the same fashion as in [1], subpressure force formalism is extended
to 3D without further modification. If the technique from [1] is considered, then the cell pressure
Pc must be replaced by the subcell pressure Pcp obtained from the subcell density �cp and the
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Figure 3. Definition of the orthonormal basis .�p ,�p , �p/ according to direction of flow at and around
node p. The node velocity is chosen as the main direction, and the first basis vector is �p D U p

kU pk

(blue vector).

cell-based specific internal energy "c via the EOS. In other words, the subcell force for the first-order
scheme is

F cp D�AcpPcpN cp CMcp

�
U p �U c

�
. (27)

We skip the whole description and refer the reader to [9] and [1].

Reconstruction and limitation of 3D velocity field. The previous solver utilizes piecewise constant
nodal velocities defined over the subcells. In order to obtain a more accurate approximation in a
monotone upstream-centered schemes for conservation laws sense, we construct a piecewise linear
representation of the nodal velocity field. The extrapolated velocity at cell centers is further used in
the solver.

We introduce a piecewise linear reconstruction of the velocity field over the dual grid by setting

U p.X/D U p CrU p � .X �Xp/, (28)

where rU p is the velocity tensor gradient constant over the dual cell �p obtained with a least-
squares approach. This approach is valid for any type of unstructured grid and preserves linear
velocity field. Monotonicity is achieved thanks to a modification of the classical Barth–Jespersen
slope limiter [26] later popularized in [27]¶ as described in [1] and further extended in 3D.

Limiting for vectors is usually applied separately to each component. However, such a proce-
dure is frame dependent. Consequently, component limiters may not preserve symmetry because a
rotation of the coordinate axes may produce different results. This is critical in Lagrangian hydro-
dynamics especially in 3D because we are dealing with moving mesh discretizations, which are
particularly sensitive to symmetry discrepancy. The limiter in [1] is a frame-invariant tensorial lim-
itation for vector field. Because its original form did not rely on dimensionality argument, its 3D
extension is immediate. More precisely in 2D, this limiter determines two subcell-based orthonormal
directions, which are the ones given by the node velocity and its associated perpendicular direction.
In 3D, we define the local basis .�p ,�p , �p/ according to the direction of the flow at and around
node p. There is no unique way of defining these vectors. For example, we define the orthonormal
basis as shown in Figure 3: The node velocity is chosen as the main direction, and the first basis
vector is therefore �p D Up

kUpk
. One possible choice is to define �p as the second most represen-

tative direction of the flow, which is the average flow in the surrounding (eU p in Figure 3) further
projected onto the plane Pp perpendicular to �p . Now �p is perpendicular to �p . The basis vectors

¶We use the ‘Barth–Jespersen’ name, which is usual in the community, although such limiter was first introduced in [26]
by Desideri and Dervieux.
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�p and �p form the orthonormal basis of plane Pp . In the case of a uniform flow, we define �p and
�p as any two mutually perpendicular vectors in plane Pp .

The transformation matrix from the canonical basis to the local basis .�p ,�p , �p/ is denoted
as Ap . Consequently, the transformation of the nodal velocity U p to the local coordinates is
given by

W p D

0B@ W
�
p

W
�
p

W
�
p

1CAD ApU p D

0B@ � �p �U p

� �p �U p

� �p �U p

1CA . (29)

Then we find the minimum and maximum values from projections of neighboring nodes’ velocities
into these new directions:

W � ,max
p D max

k2N .p/

�
� �p �U k

�
, W �,max

p D max
k2N .p/

�
� �p �U k

�
, W � ,max

p D max
k2N .p/

�
� �p �U k

�
,

(30)

W � ,min
p D min

k2N .p/

�
� �p �U k

�
, W �,min

p D min
k2N .p/

�
� �p �U k

�
, W � ,min

p D min
k2N .p/

�
� �p �U k

�
,

(31)
where N .p/ is the set of neighbor points of current point p. Now consider cell c 2 C.p/ centered
at X c . Using the unlimited piecewise linear representation of the velocity field, the extrapolated
values of the velocity at point X c are given by

U p,c � U p.X c/D U p CrU p � .X c �Xp/, (32)

and their transformation into the local basis .�p ,�p , �p/ is

W p,c D

0B@ W
�
p,c

W
�
p,c

W
�
p,c

1CAD ApU p,c . (33)

From these values, we define (� stands for � , 	, or 
)

��p,c D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

L
 
W �,max
p �W �

p

W �
p,c �W

�
p

!
if
�
W �
p,c �W

�
p

�
> 0

L
 
W �,min
p �W �

p

W �
p,c �W

�
p

!
if
�
W �
p,c �W

�
p

�
< 0

1 if
�
W �
p,c �W

�
p

�
D 0

,

where L.˛/ is a limiting functional such as L.˛/ D min.˛, 1/ or L.˛/ D ˛2C2˛
˛2C˛C2

. The slope

limiters for node p are finally defined by ��p ,��p ,��p as

��p D min
c2C.p/

��p,c , ��p D min
c2C.p/

��p,c , ��p D min
c2C.p/

��p,c .

This triplet of limiters is transformed back into the Cartesian coordinates with

ˆp D A�1p

0B@ �
�
p 0 0

0 �
�
p 0

0 0 �
�
p

1CAAp . (34)
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The limited tensor gradient is finally given by formula

rU lim
p DˆprU p ,

and thus the limited velocity field reconstruction in the vicinity of node p is

U p.X/D U p CrU
lim
p .X �Xp/. (35)

At this point, let us remark that (34) is valid for any choice of non-coplanar vector set .�p ,�p , �p/.
In case we choose orthonormal basis vectors, such as those described earlier and shown in Figure 3,
the transformation matrix Ap is orthogonal, meaning that A�1p D AT

p , and thus, we do not need to
solve any linear system to limit the tensor gradient of velocity.

Finally, the extension of the cell-centered approximate Riemann solver consists in replacing the
point velocity by its extrapolated value at cell center by using the piecewise linear monotonic
reconstruction as

McU c D
X

p2N .c/

McpU p.X c/,

where the swept mass fluxes are

Zf ,cp D �c


�c C cQ�c j .U c �U p.X c// �N f ,cp j

�
.

The subcell force is modified accordingly to

F cp D�AcpPcN cp CMcp

�
U p.X c/�U c

�
. (36)

Time discretization. The time discretization is performed with a predictor-corrector scheme to
gain second-order accuracy in time. Being given the geometric quantities and physical variables
at time tn, one predicts the pressures that are later used in the corrector step to update physical
and geometric variables. In the corrector step, internal energy is discretized using the time-centered
nodal velocity U nC1=2p . This choice is required to ensure total energy conservation up to machine
precision. We refer the reader to [1] for more details about the algorithm.

6. NUMERICAL RESULTS

The purpose of this section is to provide numerical evidence to assess the validity of the pro-
posed approach in 3D. We will compare the results obtained by the original scheme (referred to
as ‘original’) and/or the scheme using piecewise linear velocity field reconstruction (referred to as
‘with velocity reconstruction’) against analytical solutions when available. In a first series of san-
ity checks, we will prove that the implementation of the 3D scheme reproduces 1D or 2D known
results; these sanity tests are the 1D Sod problem and the 2D Sedov problem run on 3D hexahedral
grids. In a second series of tests, we will run the 3D Sedov, 3D Noh, and 3D Saltzman problems,
the exact solutions of which are known.

6.1. Sanity checks

1D Sod problem We run the 1D Sod problem with the 3D code. The Sod problem is a 1D Riemann
shock tube whose solution consists of a left-moving rarefaction fan, a right-moving contact discon-
tinuity, and a right-moving shock wave. The domain is filled with an ideal gas at rest with � D 1.4.
The discontinuity is located at x D 0.5 at t D 0. The density/pressure values on the left side of
the discontinuity are 1.0=1.0. Those on the right side are 0.125=0.1. The final time is tfinal D 0.2.
In our numerical experiments, the computational domain is � D Œ0I 1� � Œ0I 0.03� � Œ0I 0.03� paved
with a regular hexahedral mesh. We are enforcing zero normal velocity as boundary conditions for
Nx D 100 and Ny DN´ D 3.
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Figure 4. Sod problem at tfinal D 0.2 for Nx cells in x direction, and 3 in y and ´ directions. Cell-centered
density as a function of x for all cells versus exact solution (black thick line). Top line: original scheme
results; bottom line: scheme with velocity reconstruction results. Left panels: Nx D 100 results; middle
panels: comparison of Nx D 100, 200, 400 results; right panels: enlarged image of the shock wave for

Nx D 50, 100, 200, 400, and 800.

Figure 4 presents the original scheme results (top) and the scheme with velocity reconstruction
results. We display the cell density for all cells vs the exact solution with solid line (left panels) and a
3D view on the mesh cells colored by density (right panels). The symmetry of the scheme is perfect,
and the quality of the scheme with velocity reconstruction is close to the cell-centered Lagrangian
scheme [13]. The same comments as the ones from [1] do apply here.

2D Sedov blast wave problem The second sanity check is the Sedov blast wave problem (see [28]),
which describes the evolution of a blast wave in a point-symmetric explosion in 2D. We consider
the cylindrical symmetric Sedov problem in Cartesian geometry. The total energy is concentrated
at the origin with magnitude Etotal D 0.244816. An ideal gas with � D 1.4 initially at rest is
considered. The initial density is equal to 1.0. At final time tfinal D 1.0, the exact solution is a
cylindrically symmetric diverging shock whose front radius is r D

p
x2C ´2 D 1. It has a den-

sity peak � D 6.0. In the case of a hexahedral mesh in .x,y, ´/ coordinate system on domain
� D Œ0.0, 1.2� � Œ0.0, 0.12� � Œ0.0, 1.2�, the total energy Etotal is concentrated in cells such that
xc D ´c D 0 (see the red cells on the top-left panel of Figure 5).

The mesh is made of 30�3�30 hexahedra in x,y, ´ directions, respectively. The results displayed
in Figure 5 show the density color map and the mesh at final time on a 3D view (top) obtained by the
second-order scheme. The bottom-left panel shows the mesh and the density on the 2D x–´ plane at
y D 0, and the bottom-right panel displays the 1D cut at ´D x in green and 1D cuts at ´D 3x and
´ D x=3 from the 2D x–´ plane at y D 0. The results proposed by the 3D version of the method
are very similar to the 2D results obtained in [1, Figure 4(a, b)]. This proves that the 3D code can
reproduce 2D results without alteration.

6.2. 3D Sedov problem

In the 3D version of the Sedov problem, the total energy of the explosion is concentrated at
the origin and has magnitude Etotal D 0.851072 for � D 1.4 similarly to [29]. At final time
tfinal D 1.0, the exact solution is a spherically symmetric diverging shock whose front is at radius
r D

p
x2C y2C ´2 D 1 and has a density peak �D 6.0.
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Figure 5. Sedov problem at tfinal D 1. Scheme with velocity reconstruction. Top: density map and mesh on
a 30 � 3 � 30 Cartesian grid at initial and final time (the red highlighted cells are the ones with initial high
energy). Bottom-left: 2D x–´ plane at y D 0, density map and mesh. Bottom-right: density as a function of

cell radius (all cells are displayed).

In the case of a hexahedral mesh in .x, y, ´/ coordinate system on domain � D Œ�1.2, 1.2�3, the
total energy Etotal is concentrated in cells c in contact with the origin (that is, containing the vertex
O D .0, 0, 0/). The specific internal energy of these cells is defined as "c D Etotal=.8 Vc/, where Vc
is the volume of one cell (initially the same for all cells). Therefore, the initial pressure for this cell
is p D .� � 1/�"D 0.4 Etotal=.8 Vc/.

Figure 6 displays the color map of density and mesh at final time t D 1.0 when a 20 � 20 � 20
hexahedral mesh is used on one-eighth of the cube. The results of the scheme with velocity recon-
struction have been mirrored two times in order to see the cylindrical symmetry of the shock wave
in this figure. The 3D Sedov problem on the full cube has also been simulated, and the symme-
try is also perfectly reproduced (not displayed in this paper). In the next set of results (Figure 7),
we ran the same problem for the original scheme, the scheme with velocity reconstruction, and a
classical staggered compatible Lagrangian scheme [11] with anti-hourglass subpressure forces [9]
(merit factor 1) with edge artificial viscosity [5]. The mesh is a 20� 20� 20 hexahedral mesh. The
density as a function of cell radius is plotted for these three runs versus the exact solution. We can
observe the lack of cylindrical symmetry on the results for the original method with edge artificial
viscosity, and this can be seen especially along the axes, whereas the two schemes proposed in
this paper almost exactly reproduce the cylindrical symmetry of the shock wave. As expected, the
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Figure 6. 3D Sedov problem. Scheme with velocity reconstruction. Density map and mesh on a 20�20�20
hexahedral mesh at final time t D 1.0.

scheme with velocity reconstruction produces more accurate results. The panels of Figure 8 present
the density as a function of radius for all cells in the domain at final time versus the exact solution
for 10 � 10 � 10 (column (a)), 20 � 20 � 20 (column (b)), and 40 � 40 � 40 (column (c)) meshes.
The top line presents the original scheme whereas the bottom line presents the scheme with velocity
reconstruction. These plots show that the 3D code results converge to the exact solution when the
grid is refined.

In Figure 9, we compare the results without anti-hourglass force obtained by the classical compat-
ible staggered scheme with edge viscosity and the schemes without or with velocity reconstruction
(see Section 5). The mesh is made of 20 � 20 � 20 hexahedra. We present the 2D view of the y–´
plane of the density and mesh at final time t D 1.0 for the classical edge viscosity at the top-left
corner, original scheme at the top-right corner, and the scheme with velocity reconstruction at the
bottom-left corner. For comparison purposes, we also present the scheme with velocity reconstruc-
tion supplemented by the anti-hourglass force (merit factor 1) on the bottom-right corner. For all
calculations without anti-hourglass force, the mesh is tangled. For the schemes presented in this
paper, the central cell and the first layer of neighbor cells are tangled, whereas inappropriate jets are
observed along axes when classical edge viscosity is used. In fact, these jets were already visible
in Figure 7 but with a little amplitude as the anti-hourglass force tends to damp them. Because our
implementation only relies on cell volume, all these calculations are completed without code failure,
neither negative cell energy nor negative density is encountered. The density as a function of cell
radius is also compared with the exact solution in Figure 7(a–c). Notice that this first cell tangling
effect is not cured by mesh refinement, and some kind of anti-hourglass force or stiff artificial
viscous force must be employed. In our implementation, the smallest merit factor that ensures that
the mesh remains valid is 0.06.

6.3. 3D Saltzman problem

This is the extended version of the Saltzman piston as previously defined in [11] and rephrased in
[22]. Let us note that the 100 � 10 � 10 mesh is completely 3D in its setup because the Saltzman
skewing of the grid is made to change parity uniformly in the third dimension (Figure 10). The
equations to obtain the skewed grid are recalled in [17]. In 2D or 3D, this problem is used to test
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Figure 7. 3D Sedov problem. Density as a function of radius for all cells in the domain. Left: 3D view; right:
density as a function of cell radius. Final time t D 1.0 on a hexahedral 20�20�20mesh. (a and b) Original
scheme with anti-hourglass forces. (c and d) Scheme with velocity reconstruction with anti-hourglass forces.

(e and f) Classical compatible staggered scheme with edge viscosity with anti-hourglass forces.

the robustness of Lagrangian schemes. For this problem, we use the polytropic index � D 5=3.
The initial state is �0 D 1, "0 D 10�6. The plane originally at x D 0 is driven by a piston with a
unit normal velocity. We set reflective boundary conditions elsewhere. The exact solution is a y–´
planar shock wave moving at speed 4=3 in the x direction. The final time is t D 0.6. In Figure 10,
we present the results obtained by the original scheme and the scheme with velocity reconstruction.
More precisely, the density map and mesh are displayed in panels (a) and (b). Moreover, the density
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Figure 8. 3D Sedov problem. Density as a function of radius for all cells in the domain at final time t D 1.0.
Top line: original scheme. Bottom line: scheme with velocity reconstruction. Column (a): 10�10�10mesh.
Column (b): 20 � 20 � 20 mesh. Column (c): 40 � 40 � 40 mesh. We show the exact solution by a red

thick line.
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Figure 9. 3D Sedov problem. 2D view in the y–´ plane of the density and mesh at final time t D 1.0
on a hexahedral 20 � 20 � 20 mesh without anti-hourglass forces. Top panel: classical edge viscosity
at the top-left corner, original scheme at the top-right corner, scheme with velocity reconstruction at the
bottom-left corner, and scheme with velocity reconstruction supplemented with anti-hourglass force (merit
factor 1) at the bottom-right corners. Bottom panels: density as a function of radius for all cells in the
domain for classical edge viscosity (a), original schemes (b), and scheme with velocity reconstruction (c).
See Figure 8 bottom-line panel (b) for the results of the scheme with velocity reconstruction supplemented

with anti-hourglass force.
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(b)(a)

(d)(c)

Figure 10. 3D Saltzman piston problem at final time t D 0.6. Top panel: initial mesh. Middle panels:
(a) density and mesh for the original scheme, and (b) density and mesh for the scheme with velocity
reconstruction. Bottom panels: (c) density as a function of x for all cells for the original scheme, and

(d) density as a function of x for all cells for the scheme with velocity reconstruction.

as a function of radius for all cells is shown in panels (c) and (d). The expected behavior for the two
schemes is observed, namely, the original scheme is dissipative, hence it damps the numerical vor-
ticity that effectively leads to a more regular mesh. On the other hand, the scheme with velocity
reconstruction, being more accurate and less dissipative, does not damp enough the parasitic
instabilities. This leads to a less regular numerical solution.

We remark also that some modification of the Mcp matrix permits to improve the numerical
results for instance by neglecting the off-diagonal terms. It has indeed the tendency to add more
dissipation to the solution and, as a consequence, leads to a more robust scheme.

6.4. 3D Noh problem

In an eighth of the unit domain, a gas (� D 5=3) is initiated with �0 D 1, "0 D 10�6,

and U.x,y/ D

�
�xp

x2Cy2C´2
, �yp

x2Cy2C´2
, �´p

x2Cy2C´2

�
(see [30]). A spherical shock wave is
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generated at the origin and further propagates. The final time is chosen at tfinal D 0.6. At this time,
the exact solution is given by the position of the shock at rs D 0.2, and the post-shock density
plateau is 64.

The initial mesh is made of 30�30�30 regular hexahedral cells on the unit cube (i.e., one-eighth
of the domain).

The results obtained with the classical 3D compatible staggered Lagrangian scheme with edge
artificial viscosity are comparable with the ones displayed in [22, Figure 4(a)]: Jets along the axes
dramatically alter the symmetry of the solution. (Such non-symmetry along the axes was already
triggered in the 3D Sedov problem in Figures 7(e) and 9.) These results are already well docu-
mented; the edge artificial viscosity in 2D or 3D may produce excessive numerical vorticity that
sometimes leads to a degradation of the solution. Please note that this is not a boundary condition
issue as such behavior is also observed when the problem is run on the full Œ�1, 1�3 domain. Using
some vorticity damping artificial viscosity helps somehow to improve the general behavior [22];
however, this extra damping has lethal effect when physical instability is to be simulated.

In Figure 11, we present the density map and mesh for the original scheme and the scheme with
velocity reconstruction. The latter scheme develops some numerical instabilities, which damage the
numerical solution (see panel (b)). Let us remark that the numerical instabilities seem to develop
along the lines ˙x D˙y D˙´ contrary to the ones from classical staggered Lagrangian schemes
that develop along the axes x,y, ´. Nevertheless, these instabilities have a lethal effect on the com-
putation when the time grows. Moreover, these instabilities are still present when a refined grid is

(b)(a)

Figure 11. Noh problem on a 30 � 30 � 30 hexahedral grid. Density map and mesh: (a) original scheme,
(b) scheme with velocity reconstruction. The color scale is the same as that of the original scheme. The

maximal density in a pinched cell along the axis is about 415.

Figure 12. Noh problem on 30� 30� 30 and 60� 60� 60 hexahedral grids. Density map and mesh for the
original scheme. Left: 30 � 30 � 30 resolution (with top-bottom mirroring). Right: 60 � 60 � 60 resolution
(with top-bottom mirroring). The same color resolution is used for both simulations. The maximal density

for the 60� 60� 60 simulation is about 100.
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used. The original scheme is able to produce a correct numerical solution because its formulation
leads to a more dissipative behavior. In Figure 12, we present the results of the original scheme for
30�30�30 and 60�60�60 hexahedral grids. The goal is to show the convergence of the numerical
results towards the exact spherical shock wave whose radius is rs D 0.2 at final time 0.6.

7. CONCLUSION

This work has proposed a 3D version of the previous work from [1]. It consists in a staggered
discretization for Lagrangian hydrodynamics on general unstructured meshes. The framework uses
fundamental objects of compatible discretizations such as Lagrangian subcell mass and subcell
forces. An artificial viscosity form is formulated invoking the Galilean invariance and thermody-
namic consistency as in [1]. The satisfaction of entropy inequality is ensured by using a subcell-
based positive definite tensor, which is the cornerstone of the numerical schemes in 2D and 3D.
Formally, the extension of the 2D scheme with piecewise constant velocity field in 3D is immediate,
and only few specific points required clarification. A more accurate version of the scheme is further
presented using a piecewise linear velocity field reconstruction and a vector limitation procedure
that is frame independent. This limitation requires the choice of two directions compared with only
one in 2D. A 3D code has been constructed on this framework in order to numerically study the
behavior of such Lagrangian schemes.

The approach has been validated on sanity checks; namely, the 1D Sod problem and the 2D Sedov
problems run with the 3D code. Then genuine 3D test cases have been run on hexahedral grids. The
3D Sedov problem showed that spherical symmetry of a shock wave can be preserved. Moreover, it
shows the improvement obtained by the scheme with velocity reconstruction on regular grids. For
more demanding test cases (3D Noh on hexahedral grid) or on less regular grids (3D Saltzman),
the original scheme reveals its robustness. In fact, the extra dissipation of this scheme reduces its
sensitivity to numerical instabilities, which are usually not sufficiently damped by the scheme with
velocity reconstruction.

In the near future, we plan to investigate the behavior of different subcell-based matrices, which
lead to different numerical schemes. We have observed that some modifications of the matrix
presented in this work enhance the dissipative behavior of the resulting scheme. We plan to adapt
the form of the subcell-based matrix within a cell depending for instance on a local measure of
mesh regularity.

Finally, a last word on 3D implementation: A 3D code on moving mesh, no matter how much
effort is dedicated to a proper implementation, is never a direct extension of its 2D counterpart.
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∼

This chapter was devoted to the description of a family of discrete compatible Lagrangian schemes
and some of related investigations. As previously mentioned our primary goal was to build an
ALE simulation code for compressible hydrodynamical flow. As such this family of staggered
Lagrangian scheme is only one of the building brick of such a code. Presumably this is the most
important brick as the Lagrangian scheme may be considered as the “engine” of any ALE code.
As a consequence some of our investigations were specifically dedicated to better understand such
family of numerical schemes.

The next chapter presents some of our investigations related to the two other parts of an ALE code,
namely the rezone and remap steps.
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In numerical simulations of multidimensional fluid flow, the relationship between the motion of
the computational grid and the motion of the fluid is an important issue. Two choices that are

typically made representing either a Lagrangian framework, in which the mesh moves with the
local fluid velocity, or an Eulerian framework, in which the fluid flows through a grid fixed in
space. More generally, however, the motion of the grid can be chosen arbitrarily. The philosophy of
the Arbitrary Lagrangian-Eulerian methodology (ALE ; cf. [107, 108, 52, 109, 110, 111, 112, 113]) is
to exploit this degree of freedom to improve both the accuracy and the efficiency of the simulation.
The main elements of many ALE algorithms are an explicit Lagrangian phase, a rezone phase in
which a new grid is defined, and a remap phase which transfers the Lagrange solution onto the
new grid [109]. Most ALE codes use a grid of fixed connectivity that, in two spatial dimensions,
is formed by quadrilaterals or by a mix of quadrilaterals and triangles, the latter being considered
as degenerate quadrilaterals. Ultimately, we are interested in the development of ALE methods for
meshes whose connectivity may change during the calculation. In such methods, the total number
of cells may change with time, as well as the number of edges bounding each cell, leading to the
appearance of general polygonal cells.
As a first step toward this goal, in section 2.2, we present some of our contributions to the context

of ALE methods on a mesh with fixed connectivity, but we allow the mesh to contain general
polygonal cells. Extending the ALE methodology to this more general mesh is valuable in itself as
it simplifies the setup process for computational domains with complex geometrical shapes and
helps to avoid artificial mesh imprinting due to the restrictions of a purely quadrilateral mesh,
[75, 114]. In this section we mainly focus on the remapping stage of the ALE methodology using the
compatible staggered Lagrangian scheme presented in the previous chapter. This also includes the
repair technique to conservatively corrected unphysical remapped variables. Then in section 2.3 we
extend the fixed ALE methodology to a reconnection ALE, further called ReALE, to allow meshes

95



96 Chapter 2. Arbitrary-Lagrangian-Eulerian schemes

whose connectivity may change during the calculation. In this case only the rezone part of the ALE
algorithm is revamped using the Voronoi tesselation machinery.
In section 2.4 we present some investigations we have performed to compare three ALE codes on
representative and demanding test cases. Namely we have compared the following codes : CHIC
at CELIA, University of Bordeaux, PALE code standing for ’Prague ALE’, from Prague’s team in
Czech Republik, and ALE INC(ubator) at IMT, University of Toulouse. In section 2.5 we present
some specifics techniques to deal with multi-material fluid flows. More specifically we focus on
order-independent interface reconstruction technique to deal with more than three materials in
mixed cells. Some numerical results are provided throughout the chapter to show the behaviors of
the proposed techniques.

Let us begin by resetting the context and point why the research pursued was, to some degree,
justified.

2.1 History and presentation

As previously stated the ALE methodology chosen for the code ALE INC(ubator) is built on three
successive phases : Lagrangian, rezone and remap.

Lagrangian phase. We consider the discrete compatible staggered Lagrangian scheme presented
and studied in the previous chapter, see chapter 1. Notice that this scheme employs staggered vari-
ables (cell-centered density and energy, vertex-based velocity) on general polygonal mesh. Moreover
this scheme does need the subcell-based density and pressure which are further used to compute
subpressure forces that fight back hourglass parasital grid motion, see the previous chapter for more
details. These remarks are of great importance when the remap phase will be defined.

Rezone phase. The rezone phase consists in defining the new grid onto which the conservative
variables are to be remaped. This new grid must be “better” than the previous Lagrangian grid.
However providing a unambiguous definition of “better” in the previous sentence is a genuine
problematic point.
It is more or less agreed 1 that a better mesh must be smoother than the Lagrangian mesh. In fact
in the literature the rezone phase is often called the smoothing phase. One of the most cited name
in this field is probably A. Winslow [115, 116] who has used the property of elliptic regularity
to smooth grids. An elliptic operator is applied to the node positions leading to a better node
equidistribution and to a relaxed Lagrangian mesh. The main drawback of this technique lays in
its underlying metrics. Usually metrics are based on Euclidean distance and equidistribution of
length, surface and angle between edges. Consequently this implies that according to this measure
the “best” quadrangle is a square, the “best” triangle is an equilateral triangle, and, generaly the
“best” polygon is the associated regular polygon. If the initial mesh is not an optimal mesh for
this underlying metrics then the rezone strategy instantaneously starts to improve the mesh, even
if no physical motion has occured yet. In other words in some part of the domain the initial and
supposedly valid cells (because the user has provided a good enough mesh) are reshaped by the
rezoning strategy before any physical process has started. This is not acceptable. Some cures have
been developed such as zone/vertex triggers. Given constraints these triggers keep a cell/vertex
Lagrangian, that is to say unmodified, by the rezoner. Quoting A.Barlow [117] “Constraints [...]

1. but it is not an issue without contention !
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keep a node Lagrangian until some condition is reached e.g. element quality criterian or physical
condition is reached in surrounding elements”, see also [118] for an example of triggers. Such
triggers are activated according to constraints and condition which are not obvious to derive. In
other words it seems that there is nowadays no universal rezoner which satisfies the whole ALE
community.
For another important contributor to the field of mesh generation, mesh metrics consult P. Knupp’s

articles, as instance [119, 120, 121, 122, 123, 124].
It is agreed that the new mesh must be at minima valid for the numerical Lagrangian method.

In our case one requires that each cell remains a convex polygon. In the unlikely situation where
the Lagrangian grid is tangled, before applying any rezoning technique, one applies the untangling
procedure described in [125] and depicted in Fig. 2.1. This procedure computes the feasible set for
a problematic node. More precisely for an invalid polygon and a bad node one determines the
feasible set which is the valid space for the node to move in, that further leads to surrounding valid
polygons. Although this feasible set may not always exist the authors of [125] have provided an
extension of their method to deal with such a situation. Amazingly this feasible set approach can
also be used as a mesh smoother [118]. In ALE INC(ubator) several smoothing techniques have been

invalid polygonbad node

Valid space leading to a valid polygon Feasible set leading to valid polygons

Figure 2.1 – Description of the untangling technique from [125]. For an invalid polygon and a bad node one determines
the feasible set which is the valid space for the node to move in that further leads to surrounding valid polygons. The
middle panel shows the feasible set if one only considers to fix the invalid polygon only. The right panel shows the final
feasible set leading to valid neighbor polygons.

implemented. Winslow smoothing and the Reference Jacobian rezoning technique from [124], see
the details in this paper. Our main contribution to this rezone phase is the mesh reconnection that
is described in section 2.3.
One related issue with rezone and remap is the strategy to decide when a rezone and remap step is
needed. This point has been little noticed and very few investigations have been carried out mainly
because the rezoning step already demands several parameters to be fixed, adding two or three
more parameters for the strategy does not weaken the entire process. Nevertheless we have tried to
develop an automatic choice of rezone and remap strategy for our ALE code in [126]. The goal of
this report is to gather several “measures” of solution quality to help the ALE code to develop its
own capability to detect when and how often to rezone and remap. We skip this description but
refer the reader to [126] for details.
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Remap phase. The remapping phase is considered as conservative transfer (or advection) of the
physical quantities from the Lagrangian mesh onto the rezoned and smoother mesh. To ease the
phrasing we call the Lagrangian mesh “old” and the rezoned mesh “new”, likewise for any entity
defined on the Lagrangian or rezoned mesh.
An exhaustive list of contributors to this field is almost impossible as this should embrace the
key words interpolation techniques, advection methods, (flux-corrected) transport methods and
remapping per se. However some very much related works are to be found in [52, 127, 128, 129,
7, 130, 131, 132, 133, 134, 135]. In this introduction we only consider the so-called unsplit methods
(as noticed by Benson [52] “despite the fact that they were never split in the first place“). By the
way one urges the reader to refer to the review made by Benson [52] to have an overview of legacy
remapping methods.
At first glance defining a remapping technique between an old and new mesh for a single conserved
variable, say the mass, being the density multiplied by a surface, is fairly easy. First one defines a
conservative representation of the old density on the old mesh ; a piecewise constant representation
in a finite volume sense. Second the exact geometrical intersection between a new cell and the
old mesh is computed, it consists of a set of polygons that pave the new cell without overlapping
and gap. Third the new mass in the new cell is computed as the sum of all old masses present
in the intersection polygons (the mass is computed as the density integrated over the intersection
polygons), see Fig. 2.2 left. This straighforward method has some drawbacks :

1. it is an exact method only for a constant density function leading, in some sense, to a first-
order accurate method,

2. the exact intersection of two polygonal meshes is a demanding algorithm to implement and,
most of all, a relative expensive method.

This has led several authors to reconstruct the underlying function as a piecewise linear function
[127, 128]. If so the remapping method is exact for linear function and, as such, is considered as a
second-order accurate method. However generation of non-physical remapped quantities enforces
the utilization of slope or flux limiters in the reconstruction. Such limiters may not always be trivial
to properly define as instance when a vector field is to be reconstructed. Usually the limitation is
independently applied to each component leading to a frame dependent limitation 2.
On the other hand to overcome the cost of the exact intersection, in the case of a fixed connectivity
rezoning, some authors have proposed to use a kind of donor cell method 3. This method is often
refered to as the swept region remapping [127, 128] because in the 2D context this method considers
the motion of each edge from its old position to its new position, see Fig. 2.2 right. This method
is tremendously less expensive than the exact intersection remapping as only the region swept
by the edges of a generic cell are to be computed. Between two cells sharing an edge the swept
region implicitely determines a “donor” cell. This donor cell donates the integrated quantity of
conservative variable over the swept region to the second cell. The swept region remapping has
some drawbacks also. The mass flux can only occur between cells sharing one edge, corner cells as
a consequence never interact (as instance cells 0 and 2 in Fig. 2.2-right). In other word the flux may
be evaluated from an inappropriate cell (edge sharing cell instead of corner cell) [137]. Moreover
the swept region may auto-intersect or may be inaccurately computed, respectively observe the red
swept region and green/magenta regions on Fig. 2.2 on the right panel. These geometrical errors
can however be overcome at little cost as instance with clever techniques such as the ones developed
in [138].

2. This is one of the reasons why frame invariant limiters [23, 136] have been recently designed.
3. This corresponds to the forward in time upwind scheme for a transport equation at constant speed.
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Nonetheless the remapping of a single cell-centered variable apart from second-order errors is ex-
actly or approximately achieved. One important difficulty rises because of the staggered placement
of variables to be remapped. While density and mass are located at cells (or subcells if anti-hourglass
force is used), velocity is defined at points. Momentum is therefore the dual cell centered value (we
will also say point centered value which is an abuse of notation)

Qp = mpUp, (2.1)

with the mass point mp = ∑c∈C(p) mcp. More precisely the momentum is defined on the dual mesh
(a dual cell is defined by the subcells around a point). Consequently the momentum should be
conservatively remapped from the Lagrangian dual mesh onto the rezoned dual mesh. However
the mass in the dual cell has presumably changed impacted by the cell-centered mass remap
phase. Properly taking into account this interleaved cell-centered mass remap and point-centered
momentum remap is not obvious and usually demands some additional approximations which
may or may not be properly justified. The reader is refered to [52] section 3.5 for an overview of the
complication brought by staggered placement of velocity and density variables when conservative
momentum remapping is desired.
Furthermore energy remapping phase still needs to be discussed. At first glance either internal
to total energy can be remapped. Most of staggered hydrocodes remap internal energy like any
other conserved quantity. Therefore total internal energy is conserved. Unfortunately momentum
conservation does not imply kinetic energy conservation. Consequently the total energy as the sum
of kinetic and internal energies decreases in time because of the numerical diffusion generated
during the momentum remap. Unavoidably total energy conservation is lost with the unpleasant
possibility that shock waves may weaken. Some tricks are then triggered to reduce the loss of total
energy at shock fronts, see Benson [52] (section “advecting energy”) like the drastic conversion
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of kinetic energy losses into internal energy. In some sense these tricks are intended to “repair”
the damages brought by the remapping phases. Alternative strategies have also been considered
like the remap of the total energy then the deduction of the internal energy from substraction to
the kinetic energy deduced from remapped momentum. However monotonicty of the resulting
internal energy is not ensured which, more or less, may lead to unrealistic heating of materials
[139] 4 If so retrieving physical relevant quantities may demand some ’boarderline’ repair actions 5.
As a matter of fact the problem of interleaved remap phases of conserved quantities defined on
different geometrical entities is not a trivial task when mass, momentum and total energy conserva-
tion is required in addition to the fact that physical relevant variables must ultimately be provided 6.

Some of our investigations on ALE falls within this framework and we present in the next section
a selection of published works.

4. Alternative ways exist. In [140] the authors propose a potentially kinetic-energy-conservative algorithm for remap-
ping nodal velocity in a staggered Lagrangian scheme, the improved algorithm is based on the minimization of a func-
tional which may introduce oscillations in the velocity remapped field. Consequently the authors suggest to combine this
approach with the low-order donor method by flux-corrected remap (FCR).

5. By ’boarderline’ we explicitely emphasize the fact that sometimes for a simulation to run to completion, some
shameful ’arrangements’ with physcics have to be taken.

6. This somehow explains why effective cell-centered Lagrangian schemes are of particular importance in the context
of ALE.
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A simplified algorithm of the ALE method implemented into ALE INC(ubator) is depicted in
Fig. 2.3. In the following sections we mainly focus on our papers dealing with the “remapping
stage” and the “repair stage” of this algorithm (the red bloxes in the figure).

2.2.1 Remapping

While developing the 2D ALE code ALE INC(ubator) with M.J Shashkov at the Los Alamos
National Laboratory [5] we had to face the situation of remapping cell-centered density and specific
internal energy and nodal velocity under the constraints of mass, momentum and total energy
conservation for general polygonal mesh. These variables are the ones provided by the compatible
staggered Lagrangian scheme [55, 63, 64, 12] described in the previous chapter. The staggered place-
ment of variables complexifies the notion of conservation as the remapped cell-centered entities
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must somehow be consistent with the remapped vertex-based entities.

In article [7] entitled “A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-
Eulerian methods”, M.J. Shashkov and I proposed a solution to this problem.
Before describing our solution to this interleaved remapping phases let us make a general comment
related to the compatible staggered Lagrangian discretization that was eluded during the derivation
of the scheme but is of some importance for the remapping phase of the ALE method. As already
seen the primary energy variable is the cell centered specific internal energy εc. Moreover the con-
served total energy used to derive the compatible staggered Lagrangian formulation, in other words
the fact that total energy is conserved to round-off error in the whole domain, is implicitely obtained
considering the subcell-centered total energy

Ecp = mcpεc +
1
2

mcp‖Up‖2. (2.2)

This derives from the total kinetic energy equation (1.18) and total internal energy equation (1.19)
the sum of which defines the total energy (1.20) as a global entity over the domain (see the derivation
of the compatible scheme in section 1.2.2)

E = ∑
c

mcεc + ∑
p

1
2

mp‖Up‖2.

The subcell-centered total energy (2.2) is revealed using the previous equation and the definition of
cell mass mc (see (1.10)) because

E = ∑
c
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1
2
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)
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Ecp,

leading to the definition of the subcell-centered total energy (2.2) given above. Remark that working
on dual cells produces the same subcell-centered total energy definition because

E = ∑
p


 ∑

c∈C(p)
mcpεc +

1
2

mp‖Up‖2


 = ∑
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mcpεc +

1
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= ∑
p

∑
c∈C(p)

mcp

(
εc +

1
2
‖Up‖2

)
= ∑

p
∑

c∈C(p)
Ecp.

Therefore a compatible definition of total energy with the discrete staggered Lagrangian scheme
reveals that total energy must be a subcell-centered entity.
In addition our discretization employs subcell masses that serve to introduce anti-hourglass force
[56], see section 1.2.3. This adds an additional requirement to the remap phase — that the subcell
densities (corresponding to subcell masses) have to be conservatively interpolated.

As a consequence the main goal of the work in [7] is to build subcell-centered conservative mass,
momentum and total energy entities, remap based on subcells and finally recover the primary
variables by association of new subcell remapped entites.
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In this work, we assume that the rezone algorithm produces mesh that is "close" to the Lagrangian
mesh so that a local remapping algorithm (i.e, where mass and other conserved quantities are
only exchanged between neighboring cells) can be used. The swept remapping is used in practice
although an exact intersection algorithm has been also implemented and tested.
Our new remapping algorithm consists of three stages.

First : gathering stage. We define mass, momentum, internal energy, and kinetic energy in the sub-
cells. They are defined in such a way that the corresponding total quantities (defined as the
sums over subcells) are the same as those at the end of the Lagrangian phase, ensuring that
the gathering stage is conservative.

Second : subcell remapping stage. We use the algorithm described in [128] to remap mass, momen-
tum, internal, and kinetic energy from the subcells of the Lagrangian mesh to the subcells of
the new rezoned mesh. This algorithm is linearity-preserving and computationally efficient.
It consists of a piecewise linear reconstruction and an approximate integration based on the
notion of swept regions. The algorithm does not require finding the intersections of the La-
grangian mesh with the rezoned mesh, which contributes to its efficiency. The algorithm is
conservative : total mass, momentum, internal and kinetic energy over subcells of the rezoned
mesh are the same as mass, momentum, internal and kinetic energy over subcells of La-
grangian mesh. The total energy is also conserved, being the sum of (individually conserved)
internal and kinetic energies.

Third : scattering stage. We recover the primary variables — subcell density, nodal velocity, and
cell-centered specific internal energy — on the new rezoned mesh.
– Subcell density is recovered by using the remapped mass and volume of the subcell of the

rezoned mesh. The subcell masses and the corresponding densities are then adjusted using a
conservative repair procedure [128], [141], [142], [8], [9] to enforce local bounds (see also the
next section for details), which may be violated during the remapping stage. This produces
the final subcell density and the corresponding subcell mass that will be used in next time
step.

– Next, we define the remapped nodal momenta using the remapped subcell momenta, in
such a way that total momenta is conserved. New velocity components are defined by di-
viding by nodal mass. Then nodal velocity is repaired, resulting in the final velocity that will
be used to move the point during the Lagrangian phase in the next computational cycle.

– To enforce the conservation of total energy, the discrepancy between the remapped kinetic
energy in the cell and the kinetic energy that is computed from the remapped subcell masses
and the final nodal velocities is contributed to the remapped internal energy in the cell.
Finally, the internal energy and the corresponding specific internal energy are conservatively
repaired.

Our remapping algorithm satisfies the following requirements :
– Conservation. The total mass, momenta and energy of the new mesh must be the same as that of

the old mesh. This property, combined with the same conservation properties of the Lagrangian
phase, guarantees the conservation of the overall ALE method.

– Bound-preservation. The remapped density, velocity components and internal energy have to be
contained within physically justified bounds, which are determined from the corresponding
fields in the Lagrangian solution. For example, density and internal energy have to be positive.
Moreover, because we assume that the new mesh is obtained from a small displacement of the
old mesh, one can require that the new values lie between bounds determined by the values of
its neighbors on the old mesh, [128, 141, 8, 9].
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– Accuracy. It is straightforward to define accuracy in the remap of density ; we will require that the
remap of density is linearity-preserving. That is, if the values on the old mesh are obtained from
a global linear function, then the values on the new mesh have to coincide with the values of
the same linear function on the new mesh. For the remap of velocity, there are several different
notions related to accuracy. For example, one widely used test of consistency is the so-called
DeBar condition (see for example [52]) which can be stated as follows : if a body has a uniform
velocity and spatially varying density, then the remapping process should exactly reproduce a
uniform velocity. For internal energy unfortunately the situation is more complicated. We have
demonstrated the accuracy of our new algorithm through the practical expedient of well-chosen
test problems.

– Reversibility. If the new and old meshes are identical, then the remapped primary variables
should endure no change. This property is closely related to the notion of being free of inversion
error, see [52], where it is stated that if the new and old grids coincide, then the remapped
velocity on new mesh should coincide with the velocity on the old mesh.

We have also demonstrated computationally that our new remapping method is robust and accurate
for a series of test problems in 1D (Sod shock tube, Collela-Woodward blastwave, Le Blanc shock
tube) and 2D (Sedov problem on quadrangular and polygonal meshes).
As instance in Fig. 2.4 one reproduces the results of the ALE scheme in its Eulerian, Lagrangian and
ALE regimes for the Sedov problem on polygonal grid.
Using the remapping method developed in this paper we have constructed a full staggered ALE

code working for polygonal meshes. The method combines and generalizes previous work on the
Lagrangian and rezoning phases [55, 124, 125], and includes this new remapping algorithm [7]. This
work has been implemented into the code ALE INC(ubator) [5].

This paper is reproduced in the following pages.
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Figure 2.4 – Numerical results from paper [7]. Sedov problem on polygonal Mesh — Mesh (left column), density
isolines (middle column) and density as function of radius for all cells (right column) at t = 1.0 — Eulerian regime (top
line), Lagrangian regime (middle line), ALE regime (bottom line).
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Abstract

We describe a new remapping algorithm for use in arbitrary Lagrangian–Eulerian (ALE) simulations. The new fea-

tures of this remapper are designed to complement a staggered-mesh Lagrangian phase in which the cells may be gen-

eral polygons (in two dimensions), and which uses subcell discretizations to control unphysical mesh distortion and

hourglassing. Our new remapping algorithm consists of three stages. A gathering stage, in which we interpolate momen-

tum, internal energy, and kinetic energy to the subcells in a conservative way. A subcell remapping stage, in which we

conservatively remap mass, momentum, internal, and kinetic energy from the subcells of the Lagrangian mesh to the

subcells of the new rezoned mesh. A scattering stage, in which we conservatively recover the primary variables: subcell

density, nodal velocity, and cell-centered specific internal energy on the new rezoned mesh. We prove that our new

remapping algorithm is conservative, reversible, and satisfies the DeBar consistency condition. We also demonstrate

computationally that our new remapping method is robust and accurate for a series of test problems in one and two

dimensions.
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1. Introduction and background

In numerical simulations of multidimensional fluid flow, the relationship between the motion of the

computational grid and the motion of the fluid is an important issue. Two choices that are typically made
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represent either a Lagrangian framework, in which the mesh moves with the local fluid velocity, or an Eule-

rian framework, in which the fluid flows through a grid fixed in space. More generally, however, the motion

of the grid can be chosen arbitrarily. The philosophy of the arbitrary Lagrangian–Eulerian methodology

(ALE; cf. [14,3,4,20,15,16,26]) is to exploit this degree of freedom to improve both the accuracy and the

efficiency of the simulation. The main elements of most ALE algorithms are an explicit Lagrangian phase,
a rezone phase in which a new grid is defined, and a remap phase in which the Lagrange solution is trans-

ferred to the new grid [20].

Most ALE codes use a grid of fixed connectivity that, in two spatial dimensions, is formed by quadri-

laterals or by a mix of quadrilaterals and triangles, the latter being considered as degenerate quadrilaterals.

Ultimately, we are interested in the development of ALE methods for meshes whose connectivity may

change during the calculation. In such methods, the total number of cells remains fixed, but the number

of edges bounding each cell may change with time, leading to the appearance of general polygonal cells.

As a first step toward this goal, here we consider ALE methods on a mesh with fixed connectivity, but allow
the mesh to contain general polygonal cells. Extending the ALE methodology to this more general mesh is

valuable in itself as it simplifies the setup process for computational domains with complex geometrical

shapes and helps to avoid artificial mesh imprinting due to the restrictions of a purely quadrilateral mesh,

[6,7].

In the rest of this introductory section, we will present notation related to a general polygonal staggered

mesh, will review algorithms for the Lagrangian phase and rezone phase as presented in [8,9,17,28,33,32],

and finally will describe the main ideas of our new remap procedure, which is the main topic of this paper.

1.1. Polygonal mesh

We consider a two-dimensional computational domain X, assumed to be a general polygon. We assume

we are given a mesh on X whose cells, {c}, cover the domain without gaps or overlaps. Each cell may be a

general polygon, and is assigned an unique index that for simplicity will also be denoted by c. The set of

vertices (nodes) of the polygons is denoted by {n}, where each node has an unique index n. Then each cell

can be defined by an ordered set of vertices. We denote the set of vertices of a particular cell c by N(c).

Further, we denote the set of cells that share a particular vertex n by C(n). Note that each vertex may
be shared by an arbitrary number of cells. We will subdivide each cell into a set of quadrilaterals that

we will term subcells. A pair of indexes c and n uniquely defines a quadrilateral, identified as subcell cn;

this subcell is constructed by connecting the geometrical center of the cell c with the middle points of cell

faces having the same node n as one end point and the node itself (see Fig. 1). Hence each cell can be divided

uniquely into quadrilaterals (subcells or corners).

We denote the cell and subcell volumes (in 2D Cartesian geometry these are areas) by V(c) and V(cn),

where by construction V ðcÞ ¼
P

n2NðcÞV ðcnÞ. A nodal volume can be defined as the sum of the volumes of

subcells shared by the node n, i.e., V ðnÞ ¼
P

c2CðnÞV ðcnÞ.

1.2. Lagrangian phase

The equations of Lagrangian gas dynamics can be written as

1

q
dq
dt

¼ �divu; q
du
dt

¼ �gradp; q
de
dt

¼ �p divu; ð1:1Þ

where q is the density, p is the pressure, e is the specific internal energy, and u = (u,v) is the velocity. The

pressure is linked to density and specific internal energy via an equation of state: p = p(q, e). This system of

Eq. (1.1) is solved by the Lagrangian phase.
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A discretization of the gas dynamic equations for the Lagrangian phase of the ALE method for a mesh
consisting of general polygons is described in [8,9], based on the philosophy of compatible hydrodynamic

discretization [12]. This discretization assumes a staggered grid, where the components of the velocity vec-

tor are defined at the nodes (vertices) of the cells, u(n) = (u(n),v(n)), and where the thermodynamic variables

density q(c) and internal energy e(c) are defined at the cell centers. In addition to nodal and cell-centered

quantities, this discretization employs as additional variables the densities of the subcells, q(cn). The pres-

ervation of subcell mass during the Lagrangian phase of the calculation introduces new forces that prevent

artificial grid distortion and hourglass patterns. This enhancement of the Lagrangian algorithm was shown

to be effective both for quadrilateral meshes [10], as well as for polygonal meshes [8]. The Lagrangian phase
including subcell forces, is conservative; i.e., discrete forms of mass, momentum, and total energy are con-

served [12]. The use of subcell masses and corresponding densities places new requirements on the remap

phase of an ALE method because these subcell densities have to be remapped in addition to the usual

remapping of the primary variables—nodal velocities, cell-centered densities and internal energies.

We define the subcell mass in terms of the primary cell variables as follows:

mðcnÞ ¼ qðcnÞV ðcnÞ. ð1:2Þ
Then the mass of the cell and of the node are defined

mðcÞ ¼
X
n2NðcÞ

mðcnÞ; mðnÞ ¼
X
c2CðnÞ

mðcnÞ. ð1:3Þ

All of these masses are employed in the Lagrangian phase of our ALE method. Since the subcell mass,

m(cn) is assumed to be Lagrangian and so does not change with time, it follows that:

qðcnÞ ¼ mðcnÞ=V ðcnÞ; ð1:4Þ
which serves as a definition of the subcell density for a given subcell mass. The masses of the individual cells

and nodes are also Lagrangian because they are sums of the masses of the associated subcells. The mass of
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vertices for cell c = 12 is N(c = 12) = {5,2,1,4}, and the set of cells sharing node, n = 39 is C(n = 39) = {1,8,4}. The gray subcell,

cn = 6,12 is the quadrilateral defined by connecting the geometrical center of the cell c = 6 with middle points of cell faces having the

same node n = 12 as one end point and the node itself.
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the cell is used in the equation for the internal energy, while the mass of the node is used in the momentum

equation. Finally, by definition we have

qðcÞ ¼ mðcÞ
V ðcÞ ¼

P
n2NðcÞmðcnÞP
n2NðcÞV ðcnÞ

.

The total mass, M, which is conserved in the Lagrangian phase is

M ¼
X
cn

mðcnÞ ¼
X
c

mðcÞ ¼
X
n

mðnÞ. ð1:5Þ

On the staggered mesh, momentum is most naturally defined at the nodes

lðnÞ ¼ mðnÞuðnÞ; mðnÞ ¼ mðnÞvðnÞ; ð1:6Þ
or equivalently

uðnÞ ¼ lðnÞ=mðnÞ; vðnÞ ¼ mðnÞ=mðnÞ. ð1:7Þ
Note that as a result of the remap stage we will have new momenta and masses at the nodes, so to re-

cover velocities we will use (1.7) as the definition of velocities for given momenta and nodal mass. The total

momentum components, lu, lv, which are individually conserved in the Lagrangian phase, are

lu ¼
X
n

mðnÞuðnÞ; lv ¼
X
n

mðnÞvðnÞ. ð1:8Þ

It will be useful to define a cell-centered momenta as

lðcÞ ¼
X
n2NðcÞ

mðcnÞuðnÞ; mðcÞ ¼
X
n2NðcÞ

mðcnÞvðnÞ. ð1:9Þ

Using this definition and the definition of nodal mass, the total momentum components (lu, lv)—see Eq.

(1.8)—can be expressed as

lu ¼
X
c

lðcÞ; lv ¼
X
c

mðcÞ. ð1:10Þ

Kinetic energy is also most naturally defined at the nodes

KðnÞ ¼ mðnÞ juðnÞj
2

2
. ð1:11Þ

The internal energy is naturally defined at the cells

EðcÞ ¼ mðcÞeðcÞ. ð1:12Þ
In analogy to (1.7), Eq. (1.12) can be used after the remap phase to define e(c) given EðcÞ and m(c)

eðcÞ ¼ EðcÞ=mðcÞ. ð1:13Þ
The total energy, which is also conserved in the Lagrangian phase, is

E ¼
X
c

EðcÞ þ
X
n

KðnÞ. ð1:14Þ

Later we will require the concept of a cell-centered kinetic energy, which we define as follows:

KðcÞ ¼
X
n2NðcÞ

mðcnÞ juðnÞj
2

2
. ð1:15Þ

108 R. Loubère, M.J. Shashkov / Journal of Computational Physics 209 (2005) 105–138

106



Using this definition and the definition of nodal mass, the total energy, E (see formula (1.14)), can be ex-

pressed as

E ¼
X
c

ðEðcÞ þ KðcÞÞ. ð1:16Þ

By introducing total internal and kinetic energies as

E ¼
X
c

EðcÞ; K ¼
X
c

KðcÞ; ð1:17Þ

we finally can express the total energy as

E ¼ Eþ K. ð1:18Þ

1.3. Rezone phase

In the rezone phase, we use the reference Jacobian matrix (RJM) strategy described in [17,28]. The RJM

rezone algorithm is based on a nonlinear optimization procedure that requires a valid mesh as an initial

guess, and so it may be necessary to untangle the mesh (see e.g., [33,32]) prior to rezoning. The RJM rezone

strategy ensures the continuing geometric quality of the computational grid, while keeping the ‘‘rezoned’’

grid at each time step as close as possible to the Lagrangian grid. Sets of cells and nodes of rezoned mesh

will be denoted by f~cg and f~ng, respectively.
When the rezoned and Lagrangian grids are sufficiently close to each other, it is possible to use a local

procedure on the remapping stage, meaning that mass, energy and momentum are exchanged only between
neighboring cells. Local rezoning is conceptually simpler and computationally less expensive than global

rezoning. For some of the tests presented in Section 7, we will use the ALE code in the Eulerian framework,

so that the rezoned mesh will always coincide with the initial mesh (see e.g., [25]).

1.4. Summary of the new remapping algorithm

To guarantee conservation in the overall ALE simulation, the remapping phase must conservatively

interpolate the Lagrange solution onto the rezoned grid. The main purpose of this paper is to describe a
new algorithm for remapping on a general, polygonal, staggered grid, including treatment of the density

defined in the subcells. Readers interested in the history of remapping methods on staggered meshes are

referred to [4,5,26,25,19,21,1,13,23].

To the best of our knowledge, there is no existing remapping method that addresses all of our require-

ments—remapping on a general polygonal staggered mesh with subcell densities.

We have designed a new remapping strategy consisting of the three following stages:

� First: Gathering stage. We define momentum, internal energy, and kinetic energy in the subcells. Recall
that the mass of subcell is already defined by (1.2). Mass, momentum, internal energy and kinetic energy

in the subcells are defined in such a way that the corresponding total quantities (defined as the sums over

subcells) are the same as those at the end of the Lagrangian phase, ensuring that the gathering stage is

conservative.

� Second: Subcell remapping stage. We use the algorithm described in [18] to remap mass, momentum,

internal, and kinetic energy from the subcells of the Lagrangian mesh to the subcells of the new rezoned

mesh. This algorithm is linearity-preserving and computationally efficient. It consists of a piecewise lin-

ear reconstruction and an approximate integration based on the notion of swept regions. The algorithm
does not require finding the intersections of the Lagrangian mesh with the rezoned mesh, which
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contributes to its efficiency. The algorithm is conservative: total mass, momentum, internal and kinetic

energy over subcells of the rezoned mesh are the same as mass, momentum, internal and kinetic energy

over subcells of Lagrangian mesh. The total energy is also conserved, being the sum of (individually con-

served) internal and kinetic energies. We suggest that remapping internal and kinetic energy separately is

more accurate than remapping total energy, because we are not combining two quantities that can have
very different magnitudes and behavior.

� Third: Scattering stage. We recover the primary variables—subcell density, nodal velocity, and cell-

centered specific internal energy—on the new rezoned mesh.

– Subcell density is recovered by using the remapped mass and volume of the subcell of the rezoned

mesh in Eq. (1.4). The subcell masses and the corresponding densities are then adjusted using a con-

servative repair procedure [18,29,21] to enforce local bounds, which may be violated during the sub-

cell remapping stage. This produces the final subcell density and the corresponding subcell mass that

will be used in next time step. The new nodal masses and the cell-centered masses are defined using
Eq. (1.2).

– Next, we define the remapped nodal momenta using the remapped subcell momenta, in such a way

that total momenta is conserved (see details in Sections 2 and 3). New velocity components are defined

according to (1.7). Then nodal velocity is repaired, resulting in the final velocity that will be used to

move the point during the Lagrangian phase in the next computational cycle.

– To enforce the conservation of total energy, the discrepancy between the remapped kinetic energy in

the cell and the kinetic energy that is computed from the remapped subcell masses and the final nodal

velocities is contributed to the remapped internal energy in the cell. The new internal energy is recov-
ered using (1.13). Finally, the internal energy and the corresponding specific internal energy are con-

servatively repaired.

The outline of the rest of this paper is as follows. In Section 2 we will give a precise statement of our

goals for remapping on the staggered mesh and will list the desired properties of the remapping algorithm.

In Section 3 we will define momentum, internal, and kinetic energy in the subcells of the Lagrangian mesh

(gathering stage). The properties of the remapping of subcell quantities from the Lagrangian mesh to the

rezoned mesh are briefly described in Section 4 (subcell remapping stage). The definition of the subcell den-

sity, nodal velocity and cell-centered specific internal energy on the rezoned mesh (scattering stage) is de-

scribed in Section 5 and in Appendix A. In Section 6, we prove that our new remapping algorithm is

conservative, reversible, and that the DeBar consistency condition for remapping of velocity [4] is satisfied.
Numerical results that demonstrate the accuracy and convergence of the remapping algorithm are pre-

sented in Section 7. Finally, we conclude the paper in Section 8.

2. Statement of the remapping

As a result of the Lagrangian phase of a computational cycle, we have a mesh consisting of cells {c},

and nodes {n}. We will call this the Lagrangian or old mesh. We have values of density, q(cn) in subcells,
values of specific internal energy, e(c), in cells, and values of the components of velocity, u(n), v(n), at the

nodes of the old mesh. As a result of the rezone phase, we have the rezoned or new mesh consisting of

cells f~cg, and nodes f~ng. An example of old and new meshes is given in Fig. 2. The goal of the remap-

ping phase is to find an accurate approximation to qðfcnÞ; eð~cÞ; uð~nÞ; vð~nÞ on the new mesh. Using the

primary variables we can define the total mass M, the momentum vector (lu, lv), the internal energy

E, the kinetic energy K, and the total energy E on the old mesh from Eqs. (1.5), (1.10), (1.17) and

(1.18), respectively.
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The remapping algorithm must satisfy the following requirements:

� Conservation. The total mass, momenta and energy of the new mesh must be the same as that of the old

mesh

~M ¼ M ; ~lu ¼ lu; ~lv ¼ lv; ~E ¼ E.

This property, combined with the same conservation properties of the Lagrangian phase, guarantees the

conservation of the overall ALE method.

� Bound-preservation. The remapped density, velocity components and internal energy have to be con-

tained within physically justified bounds, which are determined from the corresponding fields in the
Lagrangian solution. For example, density and internal energy have to be positive. Moreover, because

we assume that the new mesh is obtained from a small displacement of the old mesh, one can require that

the new value lie between bounds determined by the values of its neighbors on the old mesh, [18].

� Accuracy. It is straightforward to define accuracy in the remap of density; we will require that the remap

of density is linearity-preserving. That is, if the values on the old mesh are obtained from a global linear

function, then the values on the new mesh have to coincide with the values of the same linear function on

the new mesh. For the remap of velocity, there are several different notions related to accuracy. For

example, one widely used test of consistency is the so-called DeBar condition (see for example [4]) which
can be stated as follows: if a body has a uniform velocity and spatially varying density, then the remap-

ping process should exactly reproduce a uniform velocity. For internal energy, the situation is more

complicated. We will demonstrate the accuracy of our new algorithm through the practical expedient

of well-chosen test problems.

 0

 0.1
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 0.3

 0.4
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 0.6

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

Fig. 2. Fragment of the Lagrangian (dotted lines) and the rezoned (solid lines) grids.
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� Reversibility. If the new and old meshes are identical, then the remapped primary variables should show

no change. This property is closely related to the notion of being free of inversion error, see [4], where it

is stated that if the new and old grids coincide, then the remapped velocity on new mesh should coincide

with the velocity on the old mesh.

3. Gathering

In the gathering stage, we define mass (which is already known), momentum, internal energy, and kinetic

energy in the subcells: mðcnÞ; lðcnÞ; mðcnÞ; EðcnÞ;KðcnÞ such that the corresponding total quantities main-

tain the same values as they have at the end of the Lagrangian phase

Ms ¼def
X
cn

mðcnÞ ¼ M ;

ls
u ¼
def
X
cn

lðcnÞ ¼ lu; ls
v ¼
def
X
cn

mðcnÞ ¼ lv;

Es ¼def
X
cn

EðcnÞ ¼ E; Ks ¼def
X
cn

KðcnÞ ¼ K.

ð3:1Þ

Here the superscript s emphasizes that the corresponding total quantities are defined by summation over

subcells. Clearly, if we conserve the total kinetic and the total internal energy, then the total energy

Es ¼def Es þ Ks

is also conserved, i.e.,

Es ¼ E. ð3:2Þ
As follows from Eqs. (1.10) and (1.17), the total momenta, kinetic energy and internal energy can be

expressed by summation of the corresponding cell-centered quantities given by (1.9), (1.12) and (1.15). This

suggests the following design principle: construct the subcell quantities in such a way that conservation is

ensured on cell-by-cell basis. For example, the momentum components l(cn) satisfy the following equation:X
n2NðcÞ

lðcnÞ ¼ lðcÞ; ð3:3Þ

and similarly for the other quantities. Thus all requirements of conservation listed in (3.1) will be satisfied.

We note that there is no unique solution for such a construction, because there is one constraint whereas

the number of unknowns is equal to the number of subcells in the given cell. For example, Eq. (1.9) suggests

that the simplest way to satisfy (3.3) is to define l(cn)

lðcnÞ ¼ mðcnÞuðnÞ. ð3:4Þ
However, this will not be accurate enough in general; e.g., in the case of a constant density, it will be exact

only for a constant velocity field. In the next section we will describe a more accurate algorithm, which in

the case of a constant density will be exact for any linear velocity field.

3.1. Definition of subcell momenta

We will present the procedure for defining the x-component of momentum l(cn), noting that the defini-

tion of the other component m(cn) is similar. Also, for brevity, we will refer to the velocity component u

simply as velocity. The total number of nodes (and hence of subcells) of the cell c is denoted by jN(c)j.
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We will use N instead of jN(c)j as we will never need to use a local indexing for two different cells at the

same time. The nodes of the cell under consideration are enumerated from 1 to N in counter-clockwise

order.

The subcell momenta will be defined as

lðcnÞ ¼ mðcnÞuðcnÞ;
where u(cn)—yet to be defined—has the meaning of a subcell velocity, see Fig. 3 for illustration.

The subcell velocities u(cn) must be defined such that the total momentum of the cell, defined in (1.9), is

conserved, i.e.,X
n2NðcÞ

mðcnÞuðcnÞ ¼
X
n2NðcÞ

mðcnÞuðnÞ ¼ lðcÞ. ð3:5Þ

As previously mentioned, a simple solution that satisfies (3.5) is to set u(cn) = u(n). However because

u(cn) has the meaning of a velocity in subcell, setting it to the velocity in the corresponding node will

not be accurate. Instead we seek a more accurate estimate of u(cn) in the form

uðcnÞ ¼ uðcÞ þ uðnÞ þ un;nþ þ un�;n
4

. ð3:6Þ

Here u(c) is not yet defined, and

un� ;n ¼
1

2
ðuðn�Þ þ uðnÞÞ; un;nþ ¼ 1

2
ðuðnÞ þ uðnþÞÞ ð3:7Þ

are the approximations of the velocities at the mid-edge points based on the velocities of the corresponding

nodes in the cell c (n� and n+ are the previous/next nodes with respect to n in the list of vertices of cell c, see

Fig. 4). The velocity u(c) has the meaning of a velocity at the cell center. Eq. (3.6) states that the velocity in
the center of subcell is a simple average of velocities in the corners of the subcell. Three of these velocities,

u(n), un;nþ ; un� ;n are known quantities and one, u(c), will be defined by conserving the momentum of the cell.

(u(23 ,1), u(23 ,4), u(23 ,2), u(23 ,7), u(23 ,9))

2

7

15
17

3
27

28
6

33

41

c=23

n=1

(u(1),u(4),u(2),u(7),u(9))
t

U(23)=

U(23)=
s t

u(23,2)4

9

Fig. 3. Vectors U(c) and Us(c) for a given mesh. The numbers are the global indexes of the nodes. U(23) = (u(1),u(4),u(2),u(7),u(9))t is

the vector of nodal velocities, for example u(7) is the velocity of node number 7. Us(23) = (u(23,1),u(23, 4),u(23,2),u(23, 7),u(23,9))t is

the vector of subcell velocities, for example u(23, 2) is the velocity of the subcell uniquely defined by cell 23 and node number 2. The

local neighbor nodes of n = 1 in cell 23 are n� = 9 and n+ = 4, the mid-edge points being called n, n� = 1,9 and n,n+ = 1,4.
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From (3.5) and (3.6) we obtain the following equation for u(c):X
n2NðcÞ

mðcnÞ uðcÞ þ uðnÞ þ un;nþ þ un� ;n
4

� �
¼
X
n2NðcÞ

mðcnÞuðnÞ;

which is one equation with one unknown. Using the definitions of un;nþ and un�;n from (3.7), we derive a

formula for u(c):

uðcÞ ¼ 1

mðcÞ
X
n2NðcÞ

mðcnÞ 2uðnÞ � 1

2
uðnþÞ � 1

2
uðn�Þ

� �
. ð3:8Þ

An equivalent form of this definition is

uðcÞ ¼ 1

mðcÞ
X
n2NðcÞ

mðcnÞuðnÞ � 1

mðcÞ
X
n2NðcÞ

mðcnÞ uðn
þÞ � 2uðnÞ þ uðn�Þ

2
. ð3:9Þ

From this equation it is clear that if uðnÞ ¼ C then uðcÞ ¼ C; therefore in the case of constant velocity with

any arbitrary distribution of masses, our definition is exact. It is also easy to verify that if all the subcell

masses are the same, then

uðcÞ ¼ 1

jNðcÞj
X
n2NðcÞ

uðnÞ;

meaning that this formula is exact for a linear velocity field.

Substituting (3.8) into (3.6) yields

uðcnÞ ¼ 1

4
2uðnÞ þ uðnþÞ

2
þ uðn�Þ

2

� �
þ 1

4

1

mðcÞ
X
k2NðcÞ

mðckÞ 2uðkÞ � 1

2
uðkþÞ � 1

2
uðk�Þ

� �" #

¼ 1

4
2uðnÞ þ uðnþÞ

2
þ uðn�Þ

2

� �
þ
X
k2NðcÞ

mðckÞ
8mðcÞ 4uðkÞ � uðkþÞ � uðk�Þð Þ. ð3:10Þ

n

n
n+
-

n n-
nn+

c

Fig. 4. Neighbor nodes of node n along the boundary of the cell c (using counterclockwise ordering) are n� and n+. The mid-edge

points are denoted as nn� and nn+.

114 R. Loubère, M.J. Shashkov / Journal of Computational Physics 209 (2005) 105–138

The last term in (3.10) can be transformed as follows. First we split this term in three separate sumsX
k2NðcÞ

mðckÞ
8mðcÞ 4uðkÞ � uðkþÞ � uðk�Þð Þ ¼

X
k2NðcÞ

mðckÞ
8mðcÞ 4uðkÞ �

X
k2NðcÞ

mðckÞ
8mðcÞ uðk

þÞ �
X
k2NðcÞ

mðckÞ
8mðcÞ uðk

�Þ.

Now by shifting the index in second and third sum and combining the resulting expressions, we getX
k2NðcÞ

mðckÞ
8mðcÞ4uðkÞ �

X
k2NðcÞ

mðck�Þ
8mðcÞ uðkÞ �

X
k2NðcÞ

mðckþÞ
8mðcÞ uðkÞ ¼

X
k2NðcÞ

uðkÞ �mðck�Þ þ 4mðckÞ �mðckþÞ
8mðcÞ

� �
.

ð3:11Þ
Finally, using (3.11) and (3.10) we get

uðcnÞ ¼ 1

4
2uðnÞ þ uðnþÞ

2
þ uðn�Þ

2

� �
þ

X
k2NðcÞ

uðkÞ �mðck�Þ þ 4mðckÞ � mðckþÞ
8mðcÞ

� �" #
. ð3:12Þ

(In Appendix A we present a 1D analog of the derivation of this formula for the subcell velocity.)

Eq. (3.12) defines the subcell velocities u(cn) in terms of the nodal velocities u(n). As a result of Eq. (3.8),

and the previously discussed properties of u(c), Eq. (3.12) is exact in the following cases:

� A constant velocity and an arbitrary mass distribution (this property will be used later to prove the

DeBar condition).

� An equal subcell mass distribution and a linear velocity.

Let us rewrite (3.12) for all n 2 N(c) in matrix form. To do this, we represent the velocities u(n) of the

vertices of one particular cell c as the elements of a vector U(c)

UðcÞ ¼ fuðnÞ; n 2 NðcÞgt. ð3:13Þ
Similarly, we represent the subcell velocities as the elements of a vector Us(c)

UsðcÞ ¼ fuðcnÞ; n 2 NðcÞgt.
A graphical illustration of these definitions of U(c), Us(c) is shown in Fig. 3. As a matter of notation, we will

use bold letters to denote column vectors while matrices will be denoted with a capital bold over-lined letter

as �Ic.
Now (3.12) can be rewritten in matrix form as follows:

UsðcÞ ¼ �IcUðcÞ; ð3:14Þ
where the matrix �Ic is

�Ic ¼
1

4
�

2 1
2

0 0 � � � 0 1
2

1
2

2 1
2

0 � � � 0 0

0 1
2

2 1
2

� � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

1
2

0 0 0 � � � 1
2

2

0BBBBBBB@

1CCCCCCCAþ

QN ;1;2 Q1;2;3 Q2;3;4 � � � QN�1;N ;1

QN ;1;2 Q1;2;3 Q2;3;4 � � � QN�1;N ;1

QN ;1;2 Q1;2;3 Q2;3;4 � � � QN�1;N ;1

..

. ..
. ..

. . .
. ..

.

QN ;1;2 Q1;2;3 Q2;3;4 � � � QN�1;N ;1

0BBBBBBB@

1CCCCCCCA. ð3:15Þ

Each element of the second matrix in (3.15) is formed from three consecutive subcell masses, and in terms of

the global indexing

Qn�;n;nþ ¼ �mðcn�Þ þ 4mðcnÞ � mðcnþÞ
8mðcÞ .
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In Appendix A we prove by construction that the matrix �Ic is always invertible, meaning that Eq. (3.14)

prescribes a one-to-one correspondence between the nodal and the subcell velocities in a given cell. As men-

tioned earlier, the fact that Eq. (3.12) is exact when uðnÞ ¼ C implies the following relations for the matrix
�Ic:

�IcC ¼ C; ð�IcÞ�1
C ¼ C; ð3:16Þ

where C is constant vector of length N, each of whose components equals C. Finally, by construction we

ensure that momentum is conserved in each cell, and therefore is conserved for the entire domain.

3.2. Definition of subcell kinetic energy

The subcell specific kinetic energy is denoted k(cn), and we will require that the total kinetic energy in the

cell c is conservedX
n2NðcÞ

mðcnÞkðcnÞ ¼
X
n2NðcÞ

mðcnÞ juðnÞj
2

2
¼ KðcÞ. ð3:17Þ

If we represent the specific kinetic energies at the vertices and in the subcells of cell c as components of

vectors

kðcÞ ¼ kðnÞ ¼ juðnÞj2

2
; n 2 NðcÞ

( )t

; ksðcÞ ¼ kðcnÞ; n 2 NðcÞf gt; ð3:18Þ

then by definition

ksðcÞ ¼def �IckðcÞ. ð3:19Þ
and the subcell kinetic energy is finally given by

KðcnÞ ¼ mðcnÞkðcnÞ. ð3:20Þ
By construction the kinetic energy in each cell is preserved, ensuring that the kinetic energy of the entire

domain is preserved as well. We emphasize that

kðcnÞ 6¼ juðcnÞj2

2
;

because k(cn) and u(cn) are defined independently. Moreover we cannot set kðcnÞ ¼ juðcnÞj2
2

because this def-

inition would not conserve the kinetic energy in the cell.

3.3. Definition of subcell internal energy

The specific internal energy e is a cell-centered quantity. Thus the construction we developed for the

subcell velocity cannot be applied. Instead, we will define the subcell internal energy in the following
two steps:

(1) We will prescribe a linear reconstruction of the internal energy per unit volume in the cell c, which is

denoted (qe)c(x,y). This reconstruction:
� must be conservative in the cell, that is,Z
c
ðqeÞcðx; yÞdxdy ¼ EðcÞ ¼ qðcÞeðcÞV ðcÞ ¼ mðcÞeðcÞ. ð3:21Þ
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� must be exact when q(x,y)e(x,y) is a linear function.

(2) We will compute the subcell internal energy by integrating (qe)c(x,y) over the corresponding subcell.

In each cell c, the function (qe)c(x,y) has the form

ðqeÞcðx; yÞ ¼ qðcÞeðcÞ þ dcxðx� xcÞ þ dcyðy � ycÞ; ð3:22Þ

with (xc, yc) being the centroid of the cell

xc ¼
1

V ðcÞ

Z
c
xdxdy; yc ¼

1

V ðcÞ

Z
c
y dxdy.

We define the slopes dcx; d
c
y , by the Barth–Jespersen (BJ) algorithm [2]. The BJ algorithm is an algorithm for

piecewise linear reconstruction of a function f(x,y) given by its means �f c ¼ 1
V ðcÞ
R
cf ðx; yÞdxdy over mesh

cells. In cell c, function f(x,y) is represented by the linear function fc(x,y). The BJ algorithm has the follow-

ing properties:

� The mean of fc(x,y) over cell c is equal to the given mean value �f c, that is

1

V ðcÞ

Z
c
fcðx; yÞdxdy ¼ �f c.

� It is exact if f(x,y) is a global linear function, f(x,y) = a + bx + cy .

� In each cell c, the linear function fc(x,y) is constructed in a such a way that its values at the cell vertices

are within the bounds defined by the maximum and the minimum of the mean values over the set C(c),

consisting of cell c itself and its nearest neighbors. That is,

min
k2CðcÞ

�f k 6 fcðxn; ynÞ 6 max
k2CðcÞ

�f k; n 2 NðcÞ.

Details of the BJ algorithm can be found in [2] and in Appendix A of [22].

It is easy to verify that this reconstruction (3.22) is conservative becauseZ
c
ðqeÞðx; yÞdxdy ¼

Z
c

qðcÞeðcÞ þ dcx x� xcð Þ þ dcy y � ycð Þ
� �

dxdy

¼ V ðcÞqðcÞeðcÞ þ dcx

Z
c
xdxdy � V ðcÞxc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

8>><>>:
9>>=>>;þ dcy

Z
c
y dxdy � V ðcÞyc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

8>><>>:
9>>=>>; ¼ mðcÞeðcÞ

¼ EðcÞ;

where the expressions in curly brackets are zero because of the definition of the centroid.

The subcell internal energy EðcnÞ is defined as the integral of (qe)c(x,y) over the subcell cn (step two of

the algorithm)

EðcnÞ ¼
Z
cn
ðqeÞcðx; yÞdxdy. ð3:23Þ

The internal energy over each cell is conserved because

EðcÞ ¼
Z
c
ðqeÞcðx; yÞdxdy ¼

X
n2NðcÞ

Z
cn
ðqeÞcðx; yÞdxdy

� �
¼
X
n2NðcÞ

EðcnÞ;

and in consequence, the internal energy is conserved over the entire domain.
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4. Subcell remapping

For the subcell remapping stage, we employ the algorithm described in [18] to remap mass, momentum,

internal, and kinetic energy from the subcells of the Lagrangian mesh to the subcells of the new rezoned

mesh. This algorithm produces values for the mass, momentum, internal energy, and kinetic energy in
the each of the subcells of the new mesh: mðfcnÞ; lðfcnÞ; mðfcnÞ;EðfcnÞ;KðfcnÞ. It is conservative, i.e.,

~M
s ¼def

X
ecn mðfcnÞ ¼ Ms;

~ls
u ¼
def
X
ecn lðfcnÞ ¼ ls

u; ~ls
v ¼
def
X
ecn mðfcnÞ ¼ ls

v;

~E
s ¼def

X
~cn

EðfcnÞ ¼ ~E
s
; ~K

s ¼def
X
~cn

Kð ~cnÞ ¼ ~K
s
;

ð4:1Þ

and linearity-preserving. Clearly, if the total kinetic and the total internal energy are conserved, then the

total energyeEs ¼def ~Es þ ~K
s

is also conserved

~E
s ¼ Es. ð4:2Þ

For future analysis we note that when the new mesh coincides with the old mesh, then the subcell remap-

ping process does not change the subcell quantities. We want to emphasize that in this stage one could use

any other accurate conservative remapping algorithm for cell-centered (cells being the subcells in this con-

text) quantities.

5. Scattering

The third element of our algorithm is the scattering stage, in which we recover the primary variables—

i.e., subcell density, qðfcnÞ, nodal velocity, uð~nÞ; vð~nÞ, and cell-centered specific internal energy eð~cÞ – on the

new mesh. At the beginning of the scattering stage, we have the following subcell quantities on the new

mesh: mass mðfcnÞ, momenta lðfcnÞ; mðfcnÞ, internal energy EðfcnÞ and kinetic energy KðfcnÞ.
The scattering stage has to maintain conservation, meaning that the primary variables on new mesh must

satisfy the following conditions:

~M ¼
X
ecn mðfcnÞ ¼Xecn qðfcnÞV ðfcnÞ ¼ ~M

s
; ð5:1Þ

~lu ¼
X
~n

mð~nÞuð~nÞ ¼ ~ls
u; ~lv ¼

X
~n

mð~nÞvð~nÞ ¼ ~ls
v; ð5:2Þ

~E ¼
X
~c

Eð~cÞ þ Kð~cÞð Þ ¼
X
~c

mð~cÞeð~cÞ þ
X
~n2Nð~cÞ

mðfcnÞ juð~nÞj2
2

" #
¼ ~E

s þ ~K
s ¼ ~E

s
; ð5:3Þ

where

mð~cÞ ¼
X
~n2Nð~cÞ

mðfcnÞ; mð~nÞ ¼
X
~c2Cð~nÞ

mðfcnÞ. ð5:4Þ
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5.1. Definition of subcell density

The subcell density is recovered using Eq. (1.4),

qðfcnÞ ¼ mðfcnÞ=V ðfcnÞ.
The subcell masses and densities are then corrected using a conservative repair procedure [18] to reinforce

local bounds that may have been violated during the subcell remapping stage. Because we assume that the

rezoned grid is close to the Lagrangian grid, we choose the bounds for qðfcnÞ as the minimal and maximal

values of the subcell densities in the neighboring old subcells (i.e., before remapping). We will continue to

use the same notation qðfcnÞ;mðfcnÞ for the repaired quantities, and will employ the same convention for

other remapped and repaired quantities later in the paper.

5.2. Definition of nodal velocity

First, we define the new subcell velocity from subcell momenta and masses

uðfcnÞ ¼def lðfcnÞ
mðfcnÞ . ð5:5Þ

Next we define the nodal velocities, u~cð~nÞ, for ~n 2 Nð~cÞ with respect to cell ~c, by inverting Eq. (3.14), ap-

plied to the new mesh

Uð~cÞ ¼ ð�I~cÞ�1
Usð~cÞ; ð5:6Þ

with the formal vector notation

Uð~cÞ ¼ u~cð~nÞ; ~n 2 Nð~cÞ
� �t

; Usð~cÞ ¼ uðfcnÞ; ~n 2 Nð~cÞf gt.

We have introduced a new notation, u~cð~nÞ, because in general, Eq. (5.6) will give different results for the
same node ~n for different cells ~c. Note that the matrix �I~c is constructed using the final subcell masses of

the new mesh.

Finally, a unique nodal velocity at the node of the new cell can be defined

uð~nÞ ¼ 1

mð~nÞ
X
~c2Cð~nÞ

mðfcnÞu~cð~nÞ. ð5:7Þ

It is easy to show that momentum is conserved, i.e., ~lu ¼ ~ls
u. In fact,

~lu ¼
def
X
~n

mð~nÞuð~nÞ; ð5:8Þ

and the definition of u~cð~nÞ in (5.7), givesX
~n

mð~nÞuð~nÞ ¼
X
~n

X
~c2Cð~nÞ

mðfcnÞu~cð~nÞ. ð5:9Þ

By changing the order of summation in right-hand-side of the previous equation we deriveX
~n

X
~c2Cð~nÞ

mðfcnÞu~cð~nÞ ¼X
~c

X
~n2Nð~cÞ

mðfcnÞu~cð~nÞ. ð5:10Þ

From the definition of u~cðnÞ we haveX
~n2Nð~cÞ

u~cð~nÞmðfcnÞ ¼ X
~n2Nð~cÞ

lðfcnÞ ¼ ~ls
u. ð5:11Þ
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From (5.8)–(5.11) we conclude that momentum is conserved

~lu ¼ ~ls
u. ð5:12Þ

In the final step, velocity is repaired with respect to bounds chosen as the maximal and minimal values of

u(n) (i.e., values before remapping) over the following stencil (see Fig. 5):

n 2 [c2CðnÞ k 2 NðcÞf g.

After the repair stage, we obtain the final velocity at the nodes of the new mesh. This velocity will be used

in the Lagrangian phase in the next time step. The definition of the new nodal velocity by Eq. (5.7) intro-

duces dissipation, that is, the kinetic energy decreases. The repair process by itself conserves the total mo-

menta, but also can change the kinetic energy. The overall change in kinetic energy will be accounted for in

the definition of cell-centered specific internal energy. The final kinetic energy in the new cell is given by

Kð~cÞ ¼
X
~n2Nð~cÞ

mðfcnÞ juð~nÞj2
2

. ð5:13Þ

5.3. Definition of cell-centered specific internal energy

The final specific internal energy has to be defined to ensure the conservation of total energy. At this
stage of the scattering, we know the following quantities for each cell:

� the final kinetic energy Kð~cÞ in the cell evaluated from Eq. (5.13), in which the final velocities and the

final subcell masses are used;

� the remapped subcell internal energy EðfcnÞ, and the remapped subcell kinetic energy, KðfcnÞ.
By definition, the total energy in the cell is

Eð~cÞ ¼ Eð~cÞ þ Kð~cÞ; ð5:14Þ

1

5
4

7

11

12

23

16

27

39

9

2

15
17

7
8

1

4

6

12

Fig. 5. The stencil for velocity repair. The stencil for node 12 (marked by solid square) consists of the union of the vertices of cells 6, 4,

8, 7, that is, 1, 2, 4, 7, 11, 12, 15, 16, 17, 23, 27, 39, which are marked by solid circles.
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where Eð~cÞ is still unknown. If we define

Eð~cÞ ¼
X
~n2Nð~cÞ

EðfcnÞ þ KðfcnÞð Þ; ð5:15Þ

then the conservation of total energy is guaranteed because EðfcnÞ and KðfcnÞ are obtained as a result of a

conservative subcell remapping.

From Eqs. (5.15) and (5.14), we conclude that to conserve total energy, the new internal energy in the cell

must be defined as follows:

Eð~cÞ ¼
X
~n2Nð~cÞ

EðfcnÞ þ X
~n2Nð~cÞ

KðfcnÞ !
� Kð~cÞ

" #
. ð5:16Þ

The term in the square brackets can be interpreted as the distribution of the change in kinetic energy due to

the processes of defining and repairing the nodal velocities. The new specific internal energy is defined by

analogy with (1.13) as

eð~cÞ ¼ Eð~cÞ=mð~cÞ; ð5:17Þ
and in the final step, the specific internal energy is conservatively repaired.

6. Properties of the algorithm

6.1. Conservation

As we have proved in previous sections, mass, momentum, and total energy are all conserved at each

stage: gathering, subcell remapping, and scattering. Therefore,eM ¼ eMs ¼ Ms ¼ M ;

~lu ¼ ~ls
u ¼ ls

u ¼ lu;elv ¼ elv
s ¼ ls

v ¼ lv;

~E ¼ ~E
s ¼ Es ¼ E.

That is, mass, momenta and total energy are conserved by the overall process.

6.2. Reversibility

Reversibility of the remapping means that if the new and old meshes are identical, then the primary vari-
ables will not be changed. Reversibility is a very important property that is related to the continuous depen-

dence of the change of primary variables between the old and the new meshes. As mentioned in Section 4,

there is no change in the subcell quantities during the subcell remapping stage if the new and old meshes are

identical, i.e.,

mðfcnÞ ¼ mðcnÞ; ð6:1Þ

lðfcnÞ ¼ lðcnÞ; mðfcnÞ ¼ mðcnÞ; ð6:2Þ

EðfcnÞ ¼ EðcnÞ; Kð ~cnÞ ¼ KðcnÞ. ð6:3Þ
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From (6.1) we can immediately conclude that the subcell density has not been changed

qðfcnÞ ¼ mðfcnÞ
V ðfcnÞ ¼ mðcnÞ

V ðcnÞ ¼ qðcnÞ.

Combining (6.1) and (6.2) with the definition of uðfcnÞ, we see that uðfcnÞ ¼ uðcnÞ, and therefore

Usð~cÞ ¼ UsðcÞ. ð6:4Þ
Also, (6.1), implies the matrix equality

�I~c ¼ �Ic. ð6:5Þ
We recall that by definition

UsðcÞ ¼ �IcUðcÞ. ð6:6Þ
Thus, combining (5.6), (6.5), (6.4) and (6.6) we derive

Uð~cÞ ¼ ð�I~cÞ�1
Usð~cÞ ¼ ð�IcÞ�1

UsðcÞ ¼ ð�IcÞ�1 � ð�IcÞUðcÞ ¼ UðcÞ. ð6:7Þ
Eq. (6.7) means that

u~cð~nÞ ¼ uðnÞ; ð6:8Þ
demonstrating that the old and new nodal velocities in node ~n (from the point of view of all cells sharing

this node) are the same. Now combining (5.7), (6.1) and (6.8), with the definition of m(n) in (1.2), we derive

uð~nÞ ¼ 1

mð~nÞ
X
~c2Cð~nÞ

mðfcnÞu~cð~nÞ ¼ 1

mðnÞ
X
c2CðnÞ

mðcnÞuðnÞ ¼ uðnÞ 1

mðnÞ
X
c2CðnÞ

mðcnÞ
 !

¼ uðnÞ; ð6:9Þ

demonstrating that the nodal velocity stays the same

uð~nÞ ¼ uðnÞ.
We next prove that eð~cÞ ¼ eðcÞ. Because of (5.17), it is sufficient to prove that

Eð~cÞ ¼ EðcÞ.
Using (5.16) and the fact that after the subcell remapping stage, the subcell internal and kinetic energies

are not changed, we derive

Eð~cÞ ¼
X
n2NðcÞ

EðcnÞ þ
X
n2NðcÞ

KðcnÞ
 !

� Kð~cÞ
" #

. ð6:10Þ

By constructionX
n2NðcÞ

EðcnÞ ¼ EðcÞ;
X
n2NðcÞ

KðcnÞ ¼ KðcÞ.

Therefore, from (6.10) we can conclude that

Eð~cÞ ¼ EðcÞ þ KðcÞ � Kð~cÞ½ �. ð6:11Þ
Finally, the expression in square brackets in (6.11) is zero, because of the definition of Kð~cÞ in (5.13), and

because uð~nÞ ¼ uðnÞ. Thus we have proved that Eð~cÞ ¼ EðcÞ, and so

eð~cÞ ¼ eðcÞ.
To summarize, we have demonstrated that all of the primary quantities before repair do not change if the

new mesh and the old mesh are the same. Further, the repair process does not change anything because all

variables are in bounds by definition, if the meshes are identical.
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6.3. DeBar consistency condition

As mentioned in Section 3.1, when the nodal velocity on the old mesh is constant fuðnÞ ¼ Cg the sub-

cell velocity on the old mesh is also constant, fuðcnÞ ¼ Cg. For a constant subcell velocity fuðcnÞ ¼ Cg,
it is true by definition that the subcell momentum on the old mesh is flðcnÞ ¼ C � mðcnÞg and the re-
mapped subcell momentum on the new mesh is flðfcnÞ ¼ C � mðfcnÞg. Now using (5.5) we get

fuðfcnÞ ¼ Cg. From the property of the matrix �I~c in (3.16) (which holds for both the old and new meshes)

and Eq. (5.6) we conclude that fu~cð~nÞ ¼ Cg. Finally, from Eq. (5.7), and because fu~cð~nÞ ¼ Cg, we derive

uð~nÞ ¼ C. Thus we have proved that the DeBar consistency condition is satisfied: if a body has an uni-

form velocity and a spatially varying density, then the remap procedure exactly reproduces this uniform

velocity.

7. Numerical results

In this section we will investigate numerically the performance of our new method. All problem are

solved in Cartesian coordinates (x,y).

Our remapping method is unique in the sense that it is intended for a staggered mesh of general polygons

using a subcell discretization of the density. As previously mentioned, we are not aware of any other

method that can treat such a remapping problem. However, we are still interested in comparing our new

remapping method with other known methods for remapping on a staggered mesh. To make such compar-
isons, we need to identify specific situations where both our new method and other existing methods can be

used. One such situation is the case of a 1D staggered discretization, where there are no polygons and there

is no hourglass phenomenon. Therefore, in Section 7.1.1, we consider several well-known 1D problems (i.e.,

where the solution depends only on x): Sod�s problem, [30,31]; the blast wave problem of Woodward and

Colella, [34,25]; and the LeBlanc shock tube problem, [4,25]. On this set of problems we will compare our

new method with three other methods: the Half-Interval-Shift (HIS) method, [3,4]; the Nodal Momentum

Remap (NMR) method, [25]; and the Method of Moments (MM), [19,4]. All three methods, HIS,NMR,

and MM employ only a cell-centered discretization for density (no subcells) and differ individually in
how velocity is remapped.

The 1D HIS method employs a remap of two cell-centered momenta, that are ‘‘momenta shifted’’

from the vertices of the corresponding cell, remapped, and then combined to recover unique velocities

at the vertices. The 1D MM employs a cell-centered remap of cell-centered momentum, (1.9), and dis-

crete derivative, du/dx � ou/ox, and then uses these to recover a unique velocity at the node. The

NMR method uses a dual mesh with vertices in the centers of the original cells to directly remap nodal

momentum. We will not discuss advantages and disadvantages of these methods, but refer the interested

reader to [4]. In our implementations of all these methods, after a unique velocity at each node is recov-
ered, a cell-centered specific internal energy is defined as described in Section 5.3. In all implementations,

repair is performed in the same way as described in Section 5. Also, in our 1D implementation of these

three methods, the Lagrangian phase is the same for all methods and is consistent with the methodology

described in [12] when all subcell densities are equal. In 1D there can be no hourglass deformation, and

so no hourglass treatment is necessary. To make the implementation of HIS, MM, and NMR, methods

comparable to our method, we also have arranged the order of computations similarly to our method. In

all three methods the flux limiter remapper is used with the specific choice of the Barth–Jespersen limiter

[2]. We apply all methods in an Eulerian framework, which is described as ‘‘Eulerian as Lagrange Plus
Remap’’, [25].

In Section 7.1.2, we will use the same set of 1D test problems to investigate numerically the conver-

gence properties of our new algorithm, always in the Eulerian framework. In Section 7.2, we will use
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the well-known 2D Sedov blast wave problem to demonstrate the performance of our new method on

both logically rectangular and polygonal meshes. This problem can be run in pure Lagrangian

regime as well, and we will use Lagrangian results as a reference. For this problem we will present re-

sults for both the Eulerian framework and also for an ALE method using the RJM rezone strategy,

[17,28].

7.1. One-dimensional tests

For all 1D test problems we use our new method implemented in a 2D code, but run on an initially

square mesh with only two cells in y direction. The length of the computational domain in the y direction,

ymax, depends on number of cells in x direction (in the x direction initial mesh is always uniform). In our

description of the test problems, we will specify only the length of computational domain and the number

of cells in the x direction. It is interesting that our numerical experiments produce almost identical results
(at the resolution presented) for the MM, the HIS and the NMR methods. For this reason we present only

results obtained by NMR method.

7.1.1. Comparison with other methods

7.1.1.1. Sod problem. The Sod problem is a Riemann shock tube with a relatively small discontinuity, and so

is very mild test. Its solution consists of a left moving rarefaction, a contact discontinuity and a right mov-

ing shock; the exact solution is illustrated in Fig. 6 by the solid line.

In our numerical experiments, the computational domain is 1 P x P 0. The discontinuity is initially at
0.5. The domain is filled with an ideal gas with c = 1.4. The density/pressure values on the left side of the

discontinuity are 1.0/1.0, while those on the right side are 0.125/0.1. In Fig. 6, we present numerical results

for the density at the final time t = 0.25 for a run with Nx = 200 computational cells. The results obtained by

our new method and by the NMR method are very close, but the resolution of the contact discontinuity is

slightly better for our method.

7.1.1.2. Woodward–Colella blast wave problem. The computational domain for this problem has length one,

with reflecting walls at the both ends. The gas is an ideal gas with c = 1.4. At t = 0., the gas is at rest with an
uniform density equal to 1.0. The initial pressure is 1000.0 in the leftmost tenth of the domain, 100.0 in the

rightmost tenth, and 0.01 everywhere else. The final problem time is t = 0.038. Initially, two shocks and two

contacts develop at the initial discontinuities and propagate toward one another, while two rarefactions de-

velop, propagate toward the walls, and reflect off them. As time progresses, these six initial waves interact

and create additional contact discontinuities. There is no analytical solution for this problem and typically

a solution obtained by purely Lagrangian method with very high resolution (Nx = 3600 cells in our case) is

considered as the reference ‘‘truth’’ (the solid line in Fig. 7). As has been mentioned in [25], the Lagrangian

solution has a flaw, a spurious overshoot at x � 0.765. In Fig. 7 we present numerical results obtained by
NMR and our new method for Nx = 1200.

A discussion of the results obtained by the NMR method can be found in [25]. It appears that, at least

for the density, our method gives better results for this problem. We note however that the difference in the

results is accentuated by the use of the Barth–Jespersen limiter. When the minmod limiter is used in both

methods, the results are much closer. In presenting these results, we note that in our 2D code, we use the

Barth–Jespersen limiter most typically.

7.1.1.3. LeBlanc shock tube problem. In this extreme shock tube problem, the initial discontinuity separates
a region of very high energy and density from one of low energy and density. This is a much more severe

test than the Sod Problem. The computational domain is 9 P x P 0 and is filled with an ideal gas with

c = 5/3. The gas is initially at rest. The initial discontinuity is at x = 0.3: (q,e) = (1,0.1) for x < 3 and
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(0.001 · 10�7) for x > 3. The solution consists of a rarefaction moving to the left, and a contact disconti-

nuity and a strong shock moving to the right—solid line in Fig. 8. At the final time of t = 6.0, the shock

wave is located at x = 7.975. In Fig. 8 we present numerical results obtained by NMR and our new method

for Nx = 1400. In comparison with the NMR method, our new method gives a more accurate position of

the contact discontinuity, but shows a larger, relatively narrow, overshoot at the contact. The position of

the shock is slightly more accurate for the NMR method.
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Fig. 6. Sod test problem. Comparison of our new method and the NRM method: density at t = 0.25, Nx = 200.
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Fig. 7. Woodward–Colella blast wave problem. Comparison of the NMR method and the new method: density (zoom)—left, and

specific internal energy (zoom)—right at t = 0.038, Nx = 1200.
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The numerical results presented in this subsection demonstrate that, on these 1D problems, our new

method shows comparable performance to other known remapping methods on a staggered mesh, i.e.,
the nodal momentum remap method, the half-interval-shift method, and the method of moments.

7.1.2. Convergence tests

In this subsection we investigate numerically the convergence of our new method for the 1D test prob-

lems described in the previous section. Recall that all these problems are run in the Eulerian framework.

7.1.2.1. Sod problem. In Fig. 9 we present the exact solution and numerical results for the density for res-

olutions Nx = 50,100,200. In Table 1 we present the L1 errors for density and corresponding estimates for
the convergence rate, which is close to 2.
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Fig. 8. LeBlanc shock tube problem. Comparison of the NMR method and the new method—specific internal energy at t = 6.0,

Nx = 1440: entire computational domain—left, zoom—right.
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7.1.2.2. Woodward–Colella blast wave problem. In Fig. 10 we graphically demonstrate the convergence rate
for the Woodward–Colella blast wave problem on the set of meshes with resolutions Nx = 300,600,1200.

We present numerical results both for density and for specific internal energy. Because there is no analytical

solution for this problem we do not present a table with convergence rates.

7.1.2.3. LeBlanc shock tube problem. In Figs. 11 and 12 we present numerical results and the exact solution

for the specific internal energy and pressure for the LeBlanc shock tube problem. The convergence rate is

analyzed in Table 2. Table 2 demonstrates approximately first-order convergence for the specific internal

energy. We note here that the initial spatially uniform mesh for LeBlanc problem creates 103 jump in
the masses of the cells adjacent to initial discontinuity, which implies a loss of accuracy in the Lagrangian

stage at the beginning of calculation. This explains the observed low order of convergence in comparison

with the Sod problem.

In summary, the numerical results presented for the Sod problem, the Woodward–Colella blast wave

problem, and the LeBlanc shock tube problem, indicate a convergence rate between first and second order.

7.2. Two-dimensional tests

In this subsection we present numerical results for the Sedov blast wave problem, [27], which de-

scribes the evolution of a blast wave in a point symmetric explosion; it is an example of a diverging

Table 1

Sod problem

Nx L1 Error Convergence rate

50 5.63E�4 –

100 1.52E�4 1.88

200 4.22E�5 1.87

400 1.17E�5 1.85

800 3.23E�6 1.86

1600 8.77E�7 1.88

Errors and convergence rate.
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Fig. 10. Convergence for Woodward–Colella blast wave problem. Density (zoom)—left, and specific internal energy (zoom)—right at

t = 0.038, Nx = 300,600,1200.
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Fig. 11. Specific internal energy for the LeBlanc shock tube problem at t = 6.0, Nx = 360,720,1440: entire computational domain—

left, zoom—right.
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Fig. 12. Zoom for the pressure for the LeBlanc shock tube problem at t = 6.0, Nx = 360,720,1440. The pressure profile for the entire

domain is not presented because details of shock resolution (and shock itself) are not visible due to the strong rarefaction wave.

Table 2

LeBlanc problem

Nx L1 Error Convergence rate

180 7.39E�2 –

360 3.38E�2 1.13

720 1.60E�2 1.08

1440 7.79E�3 1.04

2880 3.84E�3 1.02

Errors and convergence rate.
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shock wave. We consider the cylindrically symmetric Sedov problem, in Cartesian coordinates (x,y).
The total energy of the explosion is concentrated at the origin and has magnitude Etotal = 0.244816

(similar to [9]). The material is an ideal gas with c = 1.4 and initially is at rest with an initial density
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Fig. 13. Sedov problem—quadrilateral mesh. Mesh (left), and density isolines (right) at t = 1.0—Eulerian regime (top), Lagrangian

regime (middle), ALE regime (bottom).
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equal to 1. At time t = 1.0 the exact solution is a cylindrically symmetric diverging shock whose front is

at radius, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ 1 and has a peak density of 6.0 (the solid line in Fig. 14). In our numerical

experiments Etotal is concentrated in one cell located at the origin (that is, containing the vertex

(x,y) = (0,0)). The specific internal energy of this cell, c is defined as e(c) = Etotal/V(c). Therefore the

initial pressure is p = (c � 1)qe = 0.4Etotal/V(c). For this problem we compare results obtained by our
2D code in three different frameworks: a purely Eulerian, a purely Lagrangian, and an ALE frame-

work. Simulations in all three frameworks have been carried out on both quadrilateral and polygonal

meshes. In the ALE calculation, the rezoning/remapping is performed once every 10 Lagrangian steps.

The CFL number is chosen to be equal to 0.25 for all simulations. For each simulation we show both

the initial and the final mesh, with 11 density isolines equally distributed in magnitude between 0.0 and

6.0. (Figs. 13 and 15). Each isoline has a label that refers to a density value in the legend scale. Also we

show a 1D plot of density as a function of the radius, r, and a corresponding plot of the exact solution

(Figs. 14 and 16). The 1D plots demonstrate how well the numerical solution preserves cylindrical
symmetry.

7.2.1. Quadrilateral meshes

For this set of simulations, the computational domain is a square ðx; yÞ 2 ½0 : 1.2� � ½0 : 1.2� whose

initial mesh consists of 31 · 31 square cells (top-left mesh in Fig. 13). The two top panels in Fig. 13

and the left panel in Fig. 14 shows the results of purely Eulerian computations. The symmetry of

the solution is preserved quite well but the density peak is diminished (qmax = 3.55 instead of 6) and

the shock wave is spread over several cells. The two panels in the middle of Fig. 13 and the central
panel in Fig. 14 shows the results of purely Lagrangian computations. The peak density magnitude,

4.9, is much closer to the correct value than is the Eulerian computational value. Also, the symmetry

is better preserved in the Lagrangian calculation, especially near the peak. However, the Lagrangian

mesh has a very low geometrical quality near the axis. The two bottom panels in Fig. 13 and right

panel in Fig. 14 shows results of the ALE computations. The symmetry of the solution is even better

than was found in the Lagrangian calculations and the peak density is 4.75 which is little bit smaller

than in the Lagrangian calculations. The geometrical quality of the mesh is significantly improved in

comparison with the Lagrangian case. In the top part of Table 3 we present the peak density values
and also the number of time steps needed to reach the final time of t = 1.0 for the Eulerian, Lagrangian

and ALE computations. It is interesting to note that the ALE computation takes the least number of

time steps.

The ratio between the CPU time spent for the Eulerian regime versus the Lagrangian regime is �10, be-

tween the ALE regime and the Lagrangian one is �2. We remark that these timing comparisons are

strongly dependent on the details of implementation and are presented to the reader as very ‘‘rough’’

estimates.

7.2.2. Polygonal meshes

The computational domain is one quarter of a circular disk with radius of rmax = 1.2. A polygonal mesh

is constructed in the computational domain using a Voronoi diagrams (see for example, [24]) for the set of

point defined as follows:

xi;j ¼ rj sinðhi;jÞyi;j ¼ rj sinðhi;jÞ; j ¼ 1; . . . ; J ; i ¼ 1; . . . IðjÞ.

where

rj ¼ rmax �
j� 1

J
; IðjÞ ¼ roundððj� 1Þ p

2
Þ; hi;j ¼

i� 1

IðjÞ � p
2
; J ¼ 31.
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and function round(x) returns the closest integer to x. According to these formulas, on each circle of radius

rj points are distributed so that the distance between adjacent points along the circle is approximately equal

to Dr = rmax/(J � 1). The total number of points is 775. There is exactly one Voronoi cell corresponding to
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Fig. 14. Sedov problem—quadrilateral mesh. Density at t = 1.0 as a function of the radius (solid line exact solution)—Eulerian regime

(top), Lagrangian regime (middle), ALE regime (bottom).
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each point. The mesh consists of a mixture of convex polygons: quadrilaterals, pentagons and hexagons,
and the total number of vertices is 1325; the mesh is shown in Fig. 15 (top-left panel). The resulting polyg-

onal mesh has approximately the same resolution as the quadrilateral mesh presented in Fig. 13. Numerical
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Fig. 15. Sedov problem—polygonal mesh. Mesh (left), and density isolines (right) at t = 1.0—Eulerian regime (top), Lagrangian

regime (middle), ALE regime (bottom).
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results for the initially polygonal mesh are arranged in a similar way as was done for our study of the quad-

rilateral meshes and are presented in Figs. 15 and 16, and bottom of Table 3. Qualitatively, the relative per-

formance of purely Eulerian, purely Lagrangian, and ALE methods on polygonal meshes is the same as for

quadrilateral meshes. The results of the purely Eulerian and purely Lagrangian calculations on the polyg-

onal mesh exhibit less symmetry than the corresponding calculations on the quadrilateral meshes. However,

the polygonal mesh behaves better near the axes even for purely Lagrangian calculations. In this case the

ratio between the CPU time spent for the Eulerian versus the Lagrangian regimes is �20 and between the

ALE and Lagrangian regime �2.

8. Conclusion

In this paper we have constructed a full ALE method for use on a staggered polygonal mesh. The

method combines and generalizes previous work on the Lagrangian and rezoning phases, and includes a

new remapping algorithm.

In the Lagrangian phase of the ALE method we use compatible methods to derive the discretizations
[8,9]. We assume a staggered grid where velocity is defined at the nodes, and where density and internal

energy are defined at cell centers. In addition to nodal and cell-centered quantities, our discretization em-

ploys subcell masses that serve to introduce special forces that prevent artificial grid distortion and hour-

glass-type motions, [10]. This adds an additional requirement to the remap phase—that the subcell densities

(corresponding to subcell masses) have to be conservatively interpolated in addition to nodal velocities and

cell-centered densities and internal energy.

In the remap phase, we assume that the rezone algorithm produces mesh that is ‘‘close’’ to Lagrangian

mesh so that a local remapping algorithm (i.e., where mass and other conserved quantities are only ex-
changed between neighboring cells) can be used.

Our new remapping algorithm consists of three stages.

� A gathering stage, where we define momentum, internal energy, and kinetic energy in the subcells in a

conservative way such that the corresponding total quantities in the cell are the same as at the end of

the Lagrangian phase.

� A subcell remapping stage, where we conservatively remap mass, momentum, internal, and kinetic energy

from the subcells of the Lagrangian mesh to the subcells of the new rezoned mesh.
� A scattering stage, where we conservatively recover the primary variables: subcell density, nodal velocity,

and cell-centered specific internal energy on the new rezoned mesh.

Table 3

Sedov problem

# of time steps Peak density Mesh type

Eulerian 477 3.55 Quad

Lagrangian 375 4.90 Quad

ALE-10 338 4.75 Quad

Eulerian 1567 3.69 Poly

Lagrangian 603 6.20 Poly

ALE-10 408 5.70 Poly

Number of time steps needed to reach final time t = 1.0 and peak density values.
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We have proved that our new remapping algorithm is conservative, reversible, and satisfies the DeBar

consistency condition.

We have also demonstrated computationally that our new remapping method is robust and accurate for

a series of test problems in one and two dimensions.
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Fig. 16. Sedov problem—polygonal mesh. Density at t = 1.0 as a function of the radius (solid line exact solution)—Eulerian regime

(top), Lagrangian regime (middle), ALE regime (bottom).

134 R. Loubère, M.J. Shashkov / Journal of Computational Physics 209 (2005) 105–138

Acknowledgements

The authors thank L. Margolin, B. Rider, S. Li, B. Wendroff, R. Anderson, R. Pember, D. Benson, and

T. Dey for fruitful discussions. Special thanks go to K. Lipnikov for developing the procedure for the ana-

lytical inversion of matrices described in Appendix A.
This work was performed under the auspices of the US Department of Energy at Los Alamos National

Laboratory, under contract W-7405-ENG-36. The authors acknowledge the partial support of the DOE/

ASCR Program in the Applied Mathematical Sciences and the Laboratory Directed Research and Devel-

opment program (LDRD). The authors also acknowledge the partial support of DOE�s Advanced Simu-

lation and Computing (ASC) program.

Appendix A. Details of the velocity gathering

Invertibility: Here we present a constructive proof of the invertibility of �Ic (see Eq. (3.15)). The analytical
inversion can be performed by taking into account the specific form of the matrix �Ic, and then rewriting �Ic
into the form

�Ic ¼ �Sþ wrt; ðA:1Þ
where

�S ¼ 1

4

2 1
2

0 0 � � � 0 1
2

1
2

2 1
2

0 � � � 0 0

0 1
2

2 1
2

� � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

1
2

0 0 0 � � � 1
2

2

0BBBBBBB@

1CCCCCCCA; ðA:2Þ

and

w ¼ ð1; 1; . . . ; 1Þt; r ¼ ðQN ;1;2;Q1;2;3; . . . ;QN�1;N ;1Þ
t
. ðA:3Þ

Lemma. �Ic is invertible and ð�IcÞ�1 is given by the following formula:

�Ic
	 
�1 ¼ �S

�1 � wrt�S
�1
. ðA:4Þ

Proof. Let us first remark that

�Sw ¼ 3

4
w; ðA:5Þ

and

rtw ¼ðQN ;1;2;Q1;2;3; . . . ;QN�1;N ;1Þ.ð1; 1; . . . ; 1Þ
t ¼

XN
n¼1

Qn�;n;nþ ðA:6Þ

¼ 1

8mðcÞ
XN
n¼1

ð�mðcn�Þ þ 4mðcnÞ � mðcnþÞÞ ðA:7Þ

¼ 1

8mðcÞ
XN
n¼1

2mðcnÞ ¼ 2mðcÞ
8mðcÞ ¼

1

4
. ðA:8Þ
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Now we verify that �Icð�IcÞ�1 ¼ �E, where �E is the identity matrix

�Ic �Ic
	 
�1 ¼ �Sþ wrt

	 

�S
�1 � wrt�S

�1
� �

¼ �E� �Sw
	 
|ffl{zffl}
¼3=4w

rt�S
�1 þ wrt�S

�1 � w rtwð Þ|ffl{zffl}
¼1=4

rt�S
�1

¼ �Eþ � 3

4
þ 1� 1

4

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼0

wrt�S
�1 ¼ �E.

Therefore �Ic is invertible and ð�IcÞ�1
is given by Eq. (A.4). h

The matrix �S can be exactly inverted for every size (recall that the dimension of �S is 3 if cell c is a triangle,

4 for a quadrilateral cell, etc). So once inverse matrices have been stored for every reasonable integer, then

ð�IcÞ�1
can be easily computed using Eq. (A.4).

1D Analog: The meaning of formula (3.12) becomes more clear in 1D, where it is more natural to re-

turn to standard notations, Fig. 17. For nodes, we will use integer indexes, i,i + 1 and so on. For cells, we

will use half indexes, such that cell with end nodes i,i + 1 has index i + 1/2. Subcells , cn, now will be

denoted like i + 1/2, i. Also in 1D we will use of subscripts. For instance, nodal velocities are denoted

by ui, ui+1, cell-centered velocities are ui + 1/2, and subcell velocities are ui,i+1/2 and similar for other

quantities.

In the 1D boundary of cell c = i + 1/2 consists of two nodes n� = i, n+ = i + 1. The subcell velocities are

defined as follows (analog of formula (3.7))

uiþ1
2
;i ¼

ui þ uiþ1
2

2
; uiþ1

2
;iþ1 ¼

uiþ1
2
þ uiþ1

2
. ðA:9Þ

This is a natural definition because subcell velocity is associated with the center of the subcell and it is

natural to define it as an average of the velocities of the subcell end points.

The 1D analog of formula (3.5) is

miþ1
2
;iuiþ1

2
;i þ miþ1

2
;iþ1uiþ1

2
;iþ1 ¼ miþ1

2
;iui þ miþ1

2
;iþ1uiþ1. ðA:10Þ

The formulas (A.9) and (A.10) give the following definition of cell-centered velocity (analog of

(3.8))

uiþ1
2
¼

miþ1
2
;iui þ miþ1

2
;iþ1uiþ1

miþ1
2
;i þ miþ1

2
;iþ1

; ðA:11Þ

which is just the mass average of nodal velocities. One also can consider this formula as result of linear

interpolation of momentum between nodes. Finally, using definition (A.9) and formula (A.11) we obtain
the following expressions for subcell velocities (analog of formula (3.12)):

u uui i+1i+1/2

u u i+1/2 ,i+1/2 , i i+1

Fig. 17. Illustration to 1D velocity gathering.
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In 1D the matrix �Ic, (3.15), is
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The determinant of this matrix is equal to 1/2 and therefore it is invertible.
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2.2.2 Repair

With B. Wendroff and M. Staley we have investigated new repair methods in a paper entitled The
Repair Paradigm : New Algorithms and Applications to Compressible Flow in [8]. The goal in this paper
is to improve upon and apply the repair idea introduced in [142, 141, 128].
A repair method can be viewed as a way to correct values on a discrete mesh by redistributing the

conserved quantity so that conservation and a maximum principle are preserved. The maximum
principle states that new values should obey certain upper and lower bounds obtained from old
values. In this way, not only are non-physical quantities eliminated, but oscillations are reduced
(albeit not necessarily eliminated). We therefore seek repair algorithms that can be applied to CFD
problems, advection problems, or other situations where values of a discrete variable must be placed
in bounds without violating a conservation law and without introducing significant errors in the
dynamics. As stated in [141] (Section 8, page 275), repair is a mass redistribution nonlinear filter.
Notice that this technique is vaguely apparented to other methods for the correction of nonphysical
data, such as Flux Corrected Transport, which are discussed in [143].
As we have seen a critical part of Lagrangian-based methods and ALE methods for Computational

Fluid Dynamics (CFD) is the ability to remap or interpolate data from one computational mesh
to another. Remapping is also essential for pure Lagrangian methods, because they can lead to
tangled grids that must then be untangled with a concomitant remap step. Even if the basic scheme
produces only physically meaningful quantities, a remapping method can create out-of-bounds
quantities such as negative densities or pressures. In some CFD codes, the offending values are
simply set to a small positive number when this occurs, at which point mass or total energy is no
longer conserved. In most instances the error thereby created is negligible, but we have shown that in
at least one example the error is significant. It is possible, by taking great care with the remapping
in the CFD context, to maintain positive mass density. This is done by first extending the given
mean densities in each original cell to the whole domain so that the new distribution is everywhere
positive, and then computing new mean values by exact integration over the cells of the new grid.
Total energy can be remapped in this way, but then there is no guarantee that internal energy will be
positive. Furthermore, in three dimensions, exact integration is computationally intensive. Another
context in which non-physical data can occur is in divergence-free advection of a concentration that
must retain values between zero and one. High quality advection schemes, some of which are based
on remapping ideas ([144], [134]), unavoidably have this fault ([143]). In the case of advection of
a concentration, repair keeps the newly computed concentration in a cell between the maximum
and minimum concentrations in neighboring old cells, thus guaranteeing at least that the new
concentration is between zero and one.
In this paper we have reviewed and applied several conservative repair methods that can be used

in situations where variables must stay between predefined bounds while respecting conservation.
Such situations occur often, in hydrodynamics for example, when the density or the specific internal
energy becomes negative due to remapping. Such unphysical situations must be cured, but replacing
negative values by small positive numbers is not acceptable from the point of view of conservation.
The methods developed in this paper are

Local order-dependent repair. This is perhaps the most obvious local repair algorithm. The underlying
idea is to expand the neighborhood of a cell i which needs repair, until enough room is found
in this neighborhood. Suppose cell i has a negative density, but the minimum bound is 0.
This repair algorithm expands the neighborhood of cell i until enough mass can be found
and removed from the neighborhood to fill cell i and produce a repaired density equal to
the minimum bound, that is, to 0. Then, the next cell is checked and repaired if necessary.
A similar concept is applied to repair an over-bound value. This repair algorithm is order-
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dependent, meaning that the final result depends on the order in which cells are visited. This
unphysical order-dependence is unacceptable in many practical situations.

Global order-independent repair. A simple, global order-independent repair algorithm clips out-of-
bounds values to their bounds, counts the total discrepancy this produces in the quantity
to be conserved, and spreads the discrepancy over the entire mesh. This method is order-
independent because any cell that has to be repaired is immediately brought to its nearest
bound and contributes to a total discrepancy which is not accounted for until all individual
cells have been repaired. Clearly, this algorithm is conservative and order-independent. It is
also symmetry-preserving, in the sense that equivalent cells (cells which have the same mass
and bounds) are treated in the same manner. The drawback is that such a repair process can
violate the physics in computational fluid dynamics. In other words, such a repair process on
hydrodynamics problems can severely perturb the physics of the phenomena one is trying to
study ; it may violate the causality. However for a pure advection problem, the global repair
algorithm can be appreciated for its simplicity and its ability to parallelize.

Local order-independent repair. We have also developed an iterative, order-independent repair algo-
rithm that addresses the disadvantages of the previous algorithm. This is a two-stage algo-
rithm : one stage repairs all values that are above their upper bound, and the other stage
repairs all values that are below their lower bound. Upper bounds can be fixed before lower
bounds, or vice versa. The order affects the result, but given a choice of order, the algorithm
produces the same result regardless of the order in which cells are examined. This algorithm
converges, is conservative and order-independent, and can preserve a 1D symmetry with the
modifications outlines above. However, on parallel machines this algorithm (as well as the
local order-dependent method) is slow. This is largely due to the neighborhood expansion
needed by both algorithms.

Mixed local/global order-independent repair. The global repair algorithm needs very little communica-
tion and can be used very efficiently in a parallel framework. We consider an amalgamation of
the local algorithm, which gives more physically meaningful results, and the global algorithm,
which is more parallelizable. The mixed local/global order-independent repair algorithm is
based on the assumption that most of the out-of-bounds cells can be fixed locally (using only
the immediate neighborhood) because they are due to very small disturbances, and that, as
a corollary, only a few cells need to find room/mass far away from their location. The idea
of this algorithm is to repair as many cells as possible with the local order-independent al-
gorithm, and then if some of the cells are still out-of-bounds, to repair them with the global
repair algorithm.

1. Local treatment : for all out-of-bounds cells, try to repair with the Local order-
independent symmetry-preserving algorithm, but without expanding any immediate
neighborhoods. If the current cell still has excess mass, then leave it out of bounds. Iter-
ate this process in order to converge to a situation where either every cell is repaired, or
the remaining unrepaired cells cannot be repaired using their closest neighborhood. Our
experimentation indicated that few iterations are needed.

2. Global treatment : for any remaining out-of-bounds cells, perform the global repair. This
step finally fixes the remaining out-of-bounds cells, the number of which is presumably
small, and which should be out of bounds only by small amounts

The mixed local/global repair algorithm is conservative, because each of its steps is conser-
vative. Moreover, both the local and global treatments are order-independent and symmetry
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preserving, and there is no particular difficulty with parallelization because there is no in-
definite neighborhood expansion. If any cells are still out-of-bounds after the first step, the
global repair fixes them. The earlier argument stating that this method can violate causality
still holds, but the effect is far less pronounced because very few cells will remain to be fixed
after the initial local treatment, and the amounts by which they need to be fixed will be less.
Therefore, the causality violation is negligible.

Of the methods presented in this paper, we believe that the mixed local/global repair scheme best
meets the requirements of locality and efficiency. This method was applied to an advection example
and to test cases in an ALE hydrodynamics framework, where the use of a conservative repair
algorithm allowed us to :
– preserve the accuracy of the underlying method, as in the Sod Riemann problem ;
– stabilize and improve bad profiles, as in the Le Blanc Riemann problem ;
– maintain physical and reasonable results, as in the blast wave interaction problem and the Sedov

problem.
In Fig. 2.5 one represents the results obtained on the Sedov problem in ALE regime (rezone and

remap every ten cycles) at times t = 0.1 and t = 1.0, the density variable and the mesh are displayed.
At time t = 1.0 one provides the cell-based density value as a function of the radius (right panel).
When no repair is performed in this test case, the code stops due to the creation of negative internal
energy after the fourth remapping. On the other hand, the use of a repair method fixes the parasitic
negative values and allows us to observe good results. The maximum density with the Mixed
Local/Global repair method is 5.62.
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Figure 2.5 – Numerical results from paper [8]. Sedov problem on polygonal Mesh —Sedov blast wave on a polygonal
mesh (1325 nodes and 775 cells). ALE–10 regime — Left-Middle : mesh and density contours (exponential scale) at
t = 0.1 and t = 1.0. Right : density at t = 1.0 (cell-based value as a function of the radius)
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Abstract

The repair paradigm leads to several algorithms for redistributing mass, momentum and energy, while adhering to

local maximum principles, as an adjunct to the remapping step in certain compressible flow codes that use remapping,

such as Arbitrary–Lagrangian–Eulerian codes, or for just redistributing mass in advection codes. In the case of advec-

tion of a concentration, repair keeps the newly computed concentration in a cell between the maximum and minimum

concentrations in neighboring old cells, thus guaranteeing at least that the new concentration is between zero and one.

For compressible flow, density, velocity and internal energy are similarly constrained while maintaining conservation of

mass, momentum and total energy. In this way, positive density and internal energy are achieved as a side effect. We

propose a new algorithm, combining both local and global repair, that maintains causality and is efficient in a parallel

computational setting. The local/global algorithm is independent of the order in which the distribution is performed,

and it maintains 1D symmetry. This is applied to advection in two dimensions, and to, among others, the LeBlanc prob-

lem, the Sedov problem, and an interacting 2D blast wave problem. The latter is done with a Lagrangian code for which

rezoning, remapping and repair are essential.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A critical part of Lagrangian-based methods for computational fluid dynamics (CFD) is the ability to

remap or interpolate data from one computational mesh to another. This is the case for the popular
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ALE schemes that perform Lagrangian steps followed by remaps to fixed grids. Remapping is also essential

for pure Lagrangian methods, because they can lead to tangled grids that must then be untangled with a

concomitant remap step. Even if the basic scheme produces only physically meaningful quantities, a remap-

ping method can create out-of-bounds quantities such as negative densities or pressures. In some CFD

codes, the offending values are simply set to a small positive number when this occurs, at which point mass
or total energy is no longer conserved. In most instances the error thereby created is negligible, but we shall

show that in at least one example the error is significant.

It is possible, by taking great care with the remapping in the CFD context, to maintain positive mass

density. This is done by first extending the given mean densities in each original cell to the whole domain

so that the new distribution is everywhere positive, and then computing new mean values by exact integra-

tion over the cells of the new grid. Total energy can be remapped in this way, but then there is no guarantee

that internal energy will be positive. Furthermore, in more than one dimension, exact integration is com-

putationally intensive.
Another context in which non-physical data can occur is in divergence-free advection of a concentration

that must retain values between zero and one. High quality advection schemes, some of which are based on

remapping ideas [1,2], unavoidably have this fault [3].

The goal in this paper is to improve upon and apply the repair idea introduced in [4,5]. A repair method

can be viewed as a way to correct values on a discrete mesh by redistributing the conserved quantity so that

conservation and a maximum principle are preserved. The maximum principle is that new values should

obey certain upper and lower bounds obtained from old values. In this way, not only are non-physical quan-

tities eliminated, but oscillations are reduced (albeit not necessarily eliminated). We therefore seek repair
algorithms that can be applied to CFD problems, advection problems, or other situations where values of

a discrete variable must be placed in bounds without violating a conservation law and without introducing

significant errors in the dynamics.

As stated in [4] (Section 8, p275), repair is a mass redistribution nonlinear filter. Other methods for the

correction of nonphysical data, such as flux corrected transport, are discussed in [3].

The rest of this paper is arranged as follows. We first present notation, goals and expected properties of

repair methods. We then review a local repair method [5] which repairs out-of-bounds values and distrib-

utes the resulting mass discrepancies locally. This method can produce different results depending on the
order in which cells are visited, and it is therefore called order-dependent. Next we review a simple global

repair process [4] which repairs out-of-bounds values and distributes the resulting mass discrepancy across

the entire grid. The next two sections introduce order-independent local methods, and we conclude with a

discussion of repair methods in advection and hydrodynamics contexts, where numerical tests are per-

formed to show the effects of such methods.

2. Notation, goals and properties

Repair methods can be used for many kinds of variables, including density, velocity, energy, pressure,

and concentration, but we will henceforth call our variable to be repaired a density q, or equivalently, a
mass m. If we denote old cells by c and new cells by ~c, then the quantity to be conserved is the total mass

m ¼
P

cmðcÞ ¼
P

cqðcÞV ðcÞ, where m(c), q(c), and V(c) denote the mass, density, and volume, respectively,

of cell c.

Consider an old mesh M with cell-averaged densities (called old densities), and a new mesh fM with re-

mapped cell-averaged densities (called new densities). We assume for simplicity that the connectivity is the
same for the old and new grids.

In the case of advection the meshes would coincide, but typically the new mesh is a small pertur-

bation of the old one. Define the bound neighborhood N(c) of a cell c as a patch of surrounding cells,
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as in Fig. 1. The notion of neighborhood is essential for any repair method. However it is a user

choice how to define the notion of neighborhood. In our case the neighborhood of a given cell c

is composed of all cells in contact with c, through either a node or an edge. (Alternatively, we could

have defined the neighborhood as the set of all cells in contact with c through an edge, for example.)

Formally,

NðcÞ ¼ fc0; c0
\

c 6¼ øg. ð1Þ

|N(c)| denotes the number of elements in the set N(c). For example, |N(c)| = 10 in Fig. 1. The neighborhood

can be expanded with an iterative process defined as follow (N1(c) = N(c)):

8m > 1; N mðcÞ ¼
[

c02N m�1ðcÞ

Nðc0Þ. ð2Þ

Using this neighborhood definition, we can define maximum and minimum density bounds as

q+(c) = maxs2N(c)q(s) and q�(c) = mins 2 N(c)q(s). (There are, of course, other reasonable ways to define den-

sity bounds.) No matter how these bounds are defined, a feasibility condition is required in order for repair

to work at all.

Feasibility. The total mass mmust not exceed (respectively be below) the total upper bound mass (respec-

tively the total lower bound mass), that is, the total mass if each new cell were at its upper (respectively

lower) bound.
Let�s illustrate the feasibility condition on a simple example: if the mass in each cell, of a 1D mesh

having K cells, is m, and each upper bound mass is u and m > u, then the total mass is M = K Æ m
and the upper bound mass is U = K Æ u; hence M > U and it is not feasible to repair every cell. M units

of mass (which we must keep in order to maintain mass conservation) simply cannot fit into U units of

mass.
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Fig. 1. An example of a neighborhood. Any cell in contact with c is an element of the set: N(c) = {c,c1,c2,c3,c4,c5,c6,c7,c8,c9}. In this

example, c10, c11, and c12 are not part of the neighborhood of cell c.
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Repair is not possible if this condition is violated. However, any repair procedure of the type that trun-

cates out-of-bounds values and redistributes the discrepancy does work if it is satisfied.

If a remapping process produces negative densities qð~cÞ, or more generally produces out-of-bounds den-

sities, then a repair step must be done to make these densities obey their bounds. The properties to be ful-

filled by a repair method are:
Conservation:X

c

mðcÞ ¼
X
c

qðcÞV ðcÞ ¼
X
~c

qð~cÞV ð~cÞ ¼
X
~c

mð~cÞ. ð3Þ

Maximum principle:

8c; q�ðcÞ 6 qð~cÞ 6 qþðcÞ. ð4Þ

The original grid plays no role in the repair process, other than to provide bounds, so for brevity we

henceforth use i rather than ~c to represent new cell indices. Let us write u(i) and l(i) for the upper and lower
mass bounds, respectively, of cell i. Then,

uðiÞ ¼ V ðiÞqþðiÞ ¼ V ðiÞmax
s2NðiÞ

qðsÞ; ð5Þ

lðiÞ ¼ V ðiÞq�ðiÞ ¼ V ðiÞ min
s2NðiÞ

qðsÞ. ð6Þ

These have dimensions of mass, while the mass of cell i is m(i) = V(i)q(i).
In Fig. 2 we illustrate u(i) and l(i) in 1D. The neighborhood of a cell i is given by i and the two adjacent cells:

i�1 and i + 1. Therefore, we have u(i) = max (m(i�1),m(i),m(i + 1)) and l(i) = min(m(i�1),m(i),m(i + 1)).

3. Local order-dependent repair

This is perhaps the most obvious local repair algorithm. The underlying idea is to expand the neighbor-

hood of a cell i which needs repair, until enough room is found in this neighborhood. Suppose cell i has a

negative density, but the minimum bound is 0. This repair algorithm expands the neighborhood of cell i

i

l(i)

u(i)

j

l(j)

i–1 i+1

N(i)={i–1,i, i+1 }

m(i)

u(j)=m(j)

Fig. 2. Illustration of upper and lower bounds in 1D. We examine the cell masses before remapping takes place. The neighborhood of

cell i consists of cells i � 1, i, and i + 1. Then, u(i) = m(i � 1) and l(i) = m(i + 1), while u(j) = m(j) and l(j) = m(j + 1). After remapping,

m(i) can be out-of-bounds. For example, if m(i) > u(i) then cell i needs repair.
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until enough mass can be found and removed from the neighborhood to fill cell i and produce a repaired

density equal to the minimum bound, that is, to 0. Then, the next cell is checked and repaired if necessary.

A similar concept is applied to repair an over-bound value.

3.1. Algorithm

Suppose cell i, with upper bound u(i), must be repaired because m(i) > u(i), that is, because cell i�s mass is

above its upper bound. (A value that is below its lower bound would be treated similarly.) The first step is

to compute the value needed to repair cell i:

mneedðiÞ ¼ mðiÞ � uðiÞ. ð7Þ

This value is ‘‘needed’’ in the sense that if we repair m(i) by reducing it to u(i), then the loss mneed(i) must

be added elsewhere in order to maintain conservation.

Next, we choose a set of neighboring cells N(i), called the search neighborhood, and we check N(i) to see

if enough room is available to accommodate mneed(i):

mtotal

avail
ðiÞ ¼

X
j2NðiÞ

maxðuðjÞ � mðjÞ; 0Þ ð8Þ

¼
X
j2NðiÞ

mavailðjÞ; ð9Þ

where mavail(j) ” max(u(j) � m(j), 0) is the amount by which cell j�s value, m(j), can be increased without

exceeding its upper bound, u(j). If enough room is available in the neighborhood, that is, if

mtotal
avail

ðiÞP mneedðiÞ, then the repair of cell i succeeds, and we make the following adjustments:

mðiÞ  uðiÞ; ð10Þ

8j 2 NðiÞ; j 6¼ i; mðjÞ  mðjÞ þ mneedðiÞ
mavailðjÞ
mtotal

avail
ðiÞ . ð11Þ

That is, we clip m(i) to its upper bound, then add its lost mass proportionally to all acceptor cells (cells

whose masses are below their upper bounds, so that they can accept more mass) in its neighborhood.
If the search neighborhood N(i) does not have enough room to accept cell i�s excess mass, we extend the

neighborhood until enough mass is available. It was shown in [4] that a sufficient condition for such an

extension process to successfully terminate for repair of densities is that the (old) cells of the bound neigh-

borhood cover the new cell i.

For each cell i, the local repair algorithm performs the procedure outlined above if the cell�s value is

above its upper bound, or performs a similar procedure if the cell�s value is below its lower bound.

3.2. Properties and issues

This repair algorithm is order-dependent, meaning that the final result depends on the order in which

cells are visited. This is because out-of-bounds cells are repaired as soon as they are found, and once it

has been repaired, a cell�s other properties, such as its ability to accept excess mass from elsewhere, change.
Moreover, in repairing a cell the properties of some of its neighbors change as well, as mass is transferred

between them and the cell being repaired.

This unphysical order-dependence is unacceptable in many practical situations, so we now focus our

attention on developing order-independent repair algorithms.

R. Loubère et al. / Journal of Computational Physics 211 (2006) 385–404 389

4. Global order-independent repair

A simple, global order-independent repair algorithm clips out-of-bounds values to their bounds, counts

the total discrepancy this produces in the quantity to be conserved, and spreads the discrepancy over the

entire mesh. This method is order-independent because any cell that has to be repaired is immediately
brought to its nearest bound and contributes to a total discrepancy which is not accounted for until all indi-

vidual cells have been repaired.

4.1. Algorithm

The global repair algorithm begins by repairing every cell that needs repair, while keeping track of the

discrepancy, that is, the change in total mass due to performing the repairs. Let each new cell have

computed mass m(i), upper bound u(i) and lower bound l(i) as defined in (5) and (6), and a neighborhood
N(i) as defined in (1). The upper and lower bounds are fixed numbers, while the values m and the discrep-

ancy D evolve as repair progresses, as follows.

D ¼
X
i

maxð0;mðiÞ � uðiÞÞ �
X
i

maxð0; lðiÞ � mðiÞÞ; ð12Þ

mðiÞ  
uðiÞ if mðiÞ > uðiÞ;
mðiÞ if lðiÞ 6 mðiÞ 6 uðiÞ;
lðiÞ if mðiÞ < lðiÞ.

8><
>: ð13Þ

Note that values above their upper bounds make positive contributions to D, while values below their lower

bounds make negative contributions to D.
Each m is now within its bounds. If the total discrepancy, D, is zero, we stop. (This unlikely scenario

would mean that the total above-bound mass precisely equaled the total below-bound mass.) Otherwise,

we must add a total of D to the values of cells in the mesh that can accept it. Note that this works regardless

of D�s algebraic sign. A positive D means the bulk of out-of-bounds masses were above their upper bounds,

in which case the procedure decreased those masses to their upper bounds, and we must add the (positive) D
elsewhere to make up for the loss. A negative D means the bulk of out-of-bounds masses were below their

lower bounds, in which case the procedure increased those masses to their lower bounds, and we must add

the (negative) D elsewhere to get rid of the excess.

To adjust for the discrepancy D, we begin by computing the following:

kðiÞ ¼
uðiÞ � mðiÞ; if D > 0;

mðiÞ � lðiÞ; if D < 0.

�
ð14Þ

For each cell i, this is the amount by which the cell�s value is allowed to increase (if D > 0) or decrease (if

D < 0) without going out of bounds. By construction, k(i) is always positive or zero, because m(i) has al-
ready been placed between its bounds. Whether k(i) is interpreted as an allowable increase or an allowable

decrease is determined by the algebraic sign of D.
Finally, this repair procedure cancels the discrepancy D as follows:

8i; mðiÞ  mðiÞ þ D
kðiÞ
K

; ð15Þ

where K ¼
P

ikðiÞ is the total allowable increase (if D > 0) or decrease (if D < 0) over all cells. Again by

construction, K > 0, and we see that for applicable cells i, m(i) increases if D > 0 and decreases if D < 0.
(Of course, for some cells k(i) = 0, and m(i) for those cells is unchanged in this step.) Using the fraction

k(i)/K means cells are adjusted in proportion to how much room they have.
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The above procedure can be illustrated with the following example. Consider a mesh of four cells, for

which the first cell�s mass is 3 units above its allowable maximum, the second cell�s mass is within bounds

and 5 units below its maximum, the third cell�s mass is within bounds and 6 units below its maximum, and

the fourth cell�s mass is at its maximum. The first cell is fixed by decreasing its mass by 3 units. To conserve

total mass, we must add 3 units elsewhere. The second cell can take 5 units, the third cell 6 units, and the
fourth cell 0 units. According to (15) cell 2�s mass is increased by 3 · 5/11, and cell 3�s mass is increased by

3 · 6/11.

4.2. Properties and issues

Clearly, this algorithm is conservative and order-independent. It is also symmetry-preserving, in the

sense that equivalent cells (cells which have the same mass and bounds) are treated in the same manner.

Moreover, the algorithm is well suited for parallelization.

The drawback is that such a repair process can violate the physics in computational fluid dynamics. Con-

sider its behavior on a simple example, the Sod Riemann problem in 2D, in which a 1D rarefaction wave, a

contact discontinuity, and a shock wave begin to differentiate from each other. Such waves are separated by
plateaus. Suppose an over-bound value of energy in the post-shocked region has to be repaired. With the

present algorithm, this excess energy is spread uniformly over all acceptor cells – all cells that can accept

some mass – even if those cells are in the rarefaction wave or are far from the shock wave. So, energy that

should have been distributed close to the shocked region appears far away. By repeating such a repair pro-

cess on every time step, energy is gradually removed from its physical position and scattered elsewhere, and

the result is a poor approximation of shock speed, density/energy plateaus, etc. In other words, such a repair

process on hydrodynamics problems can severely perturb the physics of the phenomena one is trying to

study.
Such an argument can actually be applied to every repair method we present. Because a redistribu-

tion of an out-of-bounds cell�s value is always involved, its excess energy appears elsewhere instanta-

neously. However, with local algorithms, in which out-of-bounds values are redistributed in a

neighborhood of the cell in question, we have not experienced such modification of the physics.

Expanding a cell�s neighborhood only as far as necessary provides the smallest neighborhood into

which mass must be redistributed, while with the global repair algorithm a cell�s ‘‘neighborhood’’ is

the entire domain.

For a pure advection problem, the global repair algorithm can be appreciated for its simplicity and its
ability to parallelize.

R. Loubère et al. / Journal of Computational Physics 211 (2006) 385–404 391

5. Local order-independent repair

We have developed a new, iterative, order-independent repair algorithm that addresses the disadvan-

tages of the previous algorithm. This algorithm is known to converge, as we will show in the next section.

5.1. Algorithm

This is a two-stage algorithm: one stage repairs all values that are above their upper bound, and the

other stage repairs all values that are below their lower bound. Upper bounds can be fixed before lower

bounds, or vice versa. The order affects the result, but given a choice of order, the algorithm produces

the same result regardless of the order in which cells are examined. Repair of the upper bounds proceeds

as follows.

Upper-bounds repair. If m(i) 6 u(i) for every cell i, then no upper-bounds repair is needed. Otherwise:

(1) "i, let d(i) = 0. As the algorithm proceeds, d(i) can accumulate portions of nearby cells that are above

their upper bounds, if there is room for those portions in cell i.

(2) While $i with m(i) > u(i), iterate the following.

(3) "i with m(i) > u(i), do the following. First, let e(i) = m(i) � u(i). This is cell i�s excess mass, which we

must distribute to nearby cells. Find the smallest neighborhood N(i) whose acceptor cells j (cells

whose values are below their maximum bounds) can accept, in total, at least e(i) units of mass:

a �
P

jðuðjÞ � mðjÞÞP eðiÞ. For each of these acceptor cells j, let d(j) d(j) + e(i) Æ (u(j) � m(j))/a.
That is, distribute cell i�s excess mass into the d�s of neighboring acceptor cells j, in proportion to what

each of these acceptor cells can receive. Note that we haven�t yet modified m anywhere.

(4) "i, if m(i) > u(i) then repair the cell: set m(i) u(i). Otherwise, check d(i) to see if cell i was an accep-

tor for some other cell�s excess mass. If d(i) > 0 then it was, and we now ‘‘accept’’ that mass: set

m(i) m(i) + d(i). However, doing this might put m(i) above its upper bound, in which case we set

a flag indicating that another iteration is necessary.

(5) Set d(i) = 0, because d(i) has now been accounted for.

(6) Iterate (go to step 3) if necessary.

We omit the procedure for repairing lower bounds, which is similar.

In step 4 we remarked that the modification m(i) m(i) + d(i) might put m(i) above its upper bound.

Recall that the individual contributions to any cell�s d, in the form e(i) Æ (u(j) � m(j))/a as in step 3, are

by construction too small to put the cell�s value above its upper bound. However, an acceptor cell can ac-

cept such contributions from many nearby out-of-bounds cells, and the sum of those contributions, accu-

mulated in d and finally added to m(i) in step 4, can possibly put m(i) above its upper bound. If this

happens, then this m(i) will be fixed in the next iteration.
Each iteration fixes all values that were above their upper bounds at the beginning of the iteration, but as

we have just seen, doing so can put other values above their upper bounds. Although this can happen, the

algorithm is guaranteed to converge. Once a cell is repaired, it can never receive a nonzero d, and can there-

fore never be broken. Because each iteration fixes at least one cell, and never breaks a cell that has already

been fixed, the algorithm must converge (in at most N iterations, if N is the number of cells) if repair is

feasible at all.

This algorithm is conservative, and it achieves order-independence by distributing excess mass into d and
only taking d into account later. However, in the above form the algorithm does not preserve a 1D sym-
metry. Consider the following symmetric example, in which cells 1, 2, and 3 are each 1 unit above their max-

imum, and cells 4, 5, and 6 are within their bounds. Under the new algorithm, the upper-bounds repair

proceeds as follows:
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Cell 4 is one of Cell 1�s two acceptor neighbors, and one of Cell 2�s three acceptor neighbors, so it receives

d portions of 1/2 and 1/3 from those cells, respectively. Similarly, cell 5 receives portions from cells 1, 2, and

3, while cell 6 receives portions from cells 2 and 3. After the first iteration, we get values as follows:

which are in-bounds but are not symmetric.

5.2. Symmetry preservation

The loss of symmetry in this algorithm occurs because cells that should be equivalent, because they have

the same values and same bounds, are treated differently according to whether or not they are near the

boundary. In the above example, cells 1, 2, and 3 have the same values and same bounds, but cells 1

and 3, due to their proximity to the boundary, have only two neighboring acceptor cells, while cell 2 has
three neighboring acceptor cells.

To preserve symmetry, we can double-count boundary cells in an appropriate way. Equivalently, we can

introduce ghost cells with the property that a modification made to a ghost cell is later transferred to its

corresponding real cell. Fig. 3 illustrates this process.

Contributions to ghost cells are passed 
on to their real counterparts

With Ghost CellsWithout Ghost Cells

Contribution

3 contributions

2 contributions
1 contribution

+ +

Fig. 3. Preservation of basic symmetry. In the absence of ghost cells, the repair algorithm transfers more mass from broken cells (open

circles) to nearby internal cells (big black squares) than to nearby boundary cells (medium black squares). If we introduce ghost cells,

then the acceptor cells on the boundary receive mass from broken cells both directly, and indirectly through their ghost copy (small

black squares).
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Consider the previous example, now with ghost cells (denoted by primes). Initially, we have:

Cells 1, 2, and 3 now account for the ghost cells when they distribute portions of their excess mass:
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Each broken cell now has three acceptor cells. Consider cell 1. Its nonzero d is spread over cells 4 0, 4, and

5. Because cell 4 0 is a ghost cell, its d, which we call d 0, is ultimately transferred to the real cell 4. So, cell 4

receives one contribution from cell 1, one contribution from cell 2, and one contribution from its ghost ver-

sion, cell 4 0. The final values show preservation of symmetry:

In practice, because the neighborhood size might not be fixed, it may be desirable to use an appropriate

bookkeeping scheme near the boundaries, in lieu of using ghost cells. For example, we can reflect indices at

the boundaries, i.e., treat the grid as a torus.

5.3. Properties and issues

This algorithm converges, is conservative and order-independent, and can preserve a 1D symmetry with

the modifications outlines above. However, on parallel machines this algorithm (as well as the local order-

dependent method) is slow. This is largely due to the neighborhood expansion needed by both algorithms.

To define how far we need to look for mass/room, the algorithms expand the neighborhood of a cell, but

there is no way to know, a priori, how many expansion steps are needed. On a parallel machine, this leads to
excessive communication between processors if the expansion process reaches a border between processors.

If ghost cells are used, a possible solution is to create thicker layers of ghost cells (as thick as we anticipate

will be needed) along processor boundaries. Another solution is described next.

6. A mixed local/global order-independent repair

The global repair algorithm that was described earlier needs very little communication and can be used
very efficiently in a parallel framework. Once every cell has been repaired for every processor, a single com-

munication is performed to give the total discrepancy D, and the final update of the masses is made on each

processor without additional communication. However, the global algorithm can violate causality unless

most of the cells are within or close to their bounds. Therefore, we consider here an amalgamation of

the local algorithm, which gives more physically meaningful results, and the global algorithm, which is

more parallelizable.

6.1. Algorithm

The mixed local/global order-independent repair algorithm is based on the assumption that most of the

out-of-bounds cells can be fixed locally (using only the immediate neighborhood) because they are due to

very small disturbances, and that, as a corollary, only a few cells need to find room/mass far away from

their location.

The idea of this algorithm is to repair as many cells as possible with the local order-independent algo-

rithm, and then if some of the cells are still out-of-bounds, to repair them with the global repair algorithm.

That is, this method consists of the following two steps:
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(1) Local treatment. For all out-of-bounds cells, try to repair with the Local order-independent symme-

try-preserving algorithm, but without expanding any immediate neighborhoods. For example, if cell i

has D units of excess mass, then check if some of its mass can be spread out in the |N(i)| closest cells

(recall that |N(i)| is the number of cells in N(i)). If 0 < n 6 |N(i)| cells can accept A unit of mass in total,

then give Da(j)/A to each of these cells, where a(j) is the mass that can be accepted by cell j. If cell i still
has excess mass, then leave it out of bounds. Iterate this process in order to converge to a situation

where either every cell is repaired, or the remaining unrepaired cells cannot be repaired using their

closest neighborhood. As in the local order-independent repair method, we try to correct the upper

bounds first and then the lower bounds, or vice versa.

(2) Global treatment. For any remaining out-of-bounds cells, perform the global repair.

Our experimentation indicated that few iterations are needed to perform the local treatment. The global

treatment finally fixes the remaining out-of-bounds cells, the number of which is presumably small, and
which should be out of bounds only by small amounts.

6.2. Properties and issues

The mixed local/global repair algorithm is conservative, because each of its steps is conservative. More-

over, both the local and global treatments are order-independent and symmetry preserving (by using the

method described in 5.2), and there is no particular difficulty with parallelization because there is no indef-

inite neighborhood expansion.
The local neighborhood used in the first step is user-dependent and can consist of 0, 1, or more layers of

the neighborhood as defined in (1). In our simulations, we used the 1-layer neighborhood.

If any cells are still out-of-bounds after the first step, the global repair fixes them. The earlier argument

stating that this method can violate causality still holds, but the effect is far less pronounced because very

few cells will remain to be fixed after the initial local treatment, and the amounts by which they need to be

fixed will be less. Therefore, the causality violation could be negligible. In the next section, we present an

example of advection where the data show that most of the cells are indeed fixed by the local treatment.

7. Application to advection

As in [4], we compute a pure advection problem in 2D with the following equation:

oq
ot
þ u

oq
ox
þ v

oq
oy
¼ 0; ð16Þ

where q is the density and u the velocity.

Three revolutions of a cone are computed on a 100 · 100 quadrilateral mesh on the domain

X = [0,2] · [0,2] with a CENO type numerical scheme. In the continuum case, the cone is not disturbed after

the rotations. In the discrete case, we can measure the impact of a given numerical scheme, including dif-
fusion and oscillations, because after three revolutions the cone should be as close as possible to the original

one. The original cone has a peak at 5 and a minimum value of 0 (see Fig. 4).

The density field q as a function of the radius r is defined as follows:

qðrÞ ¼
20ð0.2� rÞ þ 1; if r 6 0.2;

1; if 0.2 6 r 6 0.4;

0; else.

8><
>: ð17Þ
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The center of the cone is shifted to (0.5,1), the boundary conditions are treated as walls (normal velocity

equal to 0), and the velocity field is given by u(x,y) = y � 1, v(x,y) = �x + 1.

The intent at the moment is not to write a good advection scheme, but to show that a repair method can

help any advection scheme to perform better. Indeed, in this case our advection scheme itself performs

poorly on the input data because it creates unphysical oscillations that require repair.

In Fig. 5 we present the third revolution when no repair algorithm is used (top-left), and when the global

(top-right), local order-independent (bottom-left), and mixed local–global (bottom right) repair methods

are used. The figure is a 1D view along the x-axis. The local order-dependent repair method is not used be-
cause its order dependence is too serious an issue.

This problem is quite difficult for any repair method because so many cells must be repaired per

iteration.

No repair. Some parasitic oscillations which generate negative values are present when no repair method

is used. The maximum and minimum densities are 4.46 and �0.405, whereas the exact values are 5.0 and

0.0.

Global repair. No parasitic oscillations can be seen. The time spent to solve the problem is about 6 times

larger than the time spent to solve the problem without any repair.
Order-independent and symmetry-preserving local repair. The time ratio is 7 and the maximum and min-

imum values are 4.12 and 0.0. No oscillations can be seen, and the shape of the cone is respected.

Mixed local/global repair. During this simulation, there are an average of 2000–2500 out-of-bounds cells

per cycle. This is (�20–25% of the total number of cells.) After the local step, the percent of cells still out-of-

bounds is between 0.05% and 2%, meaning that most of the cells have been fixed locally. This was one of the

assumptions to motivate the development of such a repair algorithm. The few remaining out-of-bounds

cells are finally fixed by the global repair step. The time ratio is 7, and the minimum/maximum values

are 0.0 and 4.16.
In Table 1 we gather the results of these methods: the time spent and the minimum/maximum density

values.

This advection problem shows the ability of our repair methods to fix unphysical oscillations without

destroying the shape of the cone, and to maintain reasonable accuracy at the maximum value of the cone

even if the peak has been clipped. Recall that we specifically designed our advection scheme to produce very

poor results; almost every cell needs repair every 4 time steps, and therefore, the repair stage constitutes a

Fig. 4. Initial cone for the advection problem. This is the exact cone after three rotations in the continuum case. Left: 2D view. Right:

1D view plane x, q.
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large percentage of the total run-time of the code. In a real application this will not be the case, and the time

ratio of 1:7 will decrease dramatically. Our ratios reflect worst-case scenarios.

8. Application to hydrodynamics

We now apply the repair idea to some compressible flow problems in which remapping is required, either

because the scheme is an Eulerian one of Lagrange-remap type, or because it is a Lagrangian scheme

Fig. 5. Revolutions of a cone with different repair algorithms. Plane (x,q). Top left: without repair. Top right: with global repair.

Bottom left: with order-independent local repair. Bottom right: with mixed local/global repair.

Table 1

Revolutions of a cone with four repair algorithms

Methods Time ratio dT Min/max values

No repair 1 �0.405/4.46
Global 6 0.0/4.03

Order-independent 7 0.0/4.12

Mixed local/global 7 0.0/4.16

Exact – 0.0/5.0

Minimum and maximum values and dT, the ratio between the time spent to solve the problem with and without the repair method.
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needing rezoning. There are many ways to do the remapping, but, without going into details, we have cho-

sen to use limited piecewise linear reconstruction on the original cells, and integration over the intersection

of the old and new cells. In one dimension this integration is exact, while in two dimensions we use a quad-

rature as described in [6,5]. The variables remapped are mass, momentum, and total energy. Because a

quadrature is used, the remapped density can be negative. Because the internal energy is obtained by sub-
tracting the new kinetic energy from the total energy, this can negative, and frequently is.

For repair, we first repair density to satisfy its maximum principle. [5] provides a simple and easily sat-

isfied condition, relating the bounds and the mesh, that implies the feasibility condition stated in the Intro-

duction. We next repair the velocity components (defined as the ratio of momentum to repaired density) to

satisfy their own maximum principle, maintaining conservation of momentum. A sufficient condition for

the success of this step is stated in [4], and although that condition cannot be verified in this application,

we have never observed a failure of velocity repair. The final step is to repair internal energy, defined as

the remapped total energy minus the kinetic energy as obtained from the repaired density and velocity.
It is shown in [4] that if the new total kinetic energy does not exceed the old kinetic energy, then internal

energy can be repaired without violating local lower bounds, in particular, without being negative. Lower

bound energy repair has not failed in our examples. In theory, local upper bounds on internal energy can-

not always be satisfied. However, we attempt to satisfy them when possible.

8.1. Staggered grids

Staggered polygonal grids are sometimes used in ALE codes. In this scenario, fluid variables live in dif-
ferent places: density and specific internal energy at cell centers, and velocity at nodes. Density can also be

given in subcells, where a subcell is a quadrilateral defined by joining a cell�s center, one of its nodes, and the

centers of the cell�s edges that are linked to the node. With staggered grids, the repair algorithms require no

special treatment because they make no assumption about the meaning (staggered or otherwise) of an

underlying grid. Dealing with a mesh (for energy repair), a subcell mesh (for density repair), or a median

mesh (for velocity repair), is irrelevant to the algorithms themselves.

8.2. Enforcement of boundary conditions

Different types of boundary conditions are used in Lagrangian numerical schemes. These include piston

(nonzero velocity), wall (zero velocity), vacuum (zero pressure), and compression/expansion (nonzero pres-

sure). Such boundary conditions (BCs) are implemented by enforcing the velocity of all the boundary nodes

or by enforcing the pressure of all the boundary cells. For example, assume a nonzero boundary velocity is

enforced during an ALE calculation. After the rezone and remap parts occur, velocities on the boundary

nodes will have changed and will probably violate the boundary conditions. If this happens, a convenient

way to re-enforce the BC is to repair the nodal velocities using upper and lower bounds equal to the re-
quired boundary velocity. Then, no momentum is lost (because the repair is conservative) and the required

velocity at the boundary is satisfied.

8.3. Numerical results

We now present some numerical tests in a compressible hydrodynamics framework where the use of a

repair method can improve the results.

To produce the following results we used an ALE code called ALE INC(ubator) that is designed for gen-
eral polygonal grids [7]. This code is split into a Lagrangian scheme, a rezoning phase, and a remapping

phase. In the remapping phase, we avoid the computation of polygon intersections because it can be

expensive in 2D, and unaffordable or simply infeasible in 3D. Mostly because of this approximation, the
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remapping can produce out-of-bounds values, and therefore a repair process must be used to ensure at least

the positivity of density and energy. For these numerical experiments, a full repair is performed. That is,

density, velocity and specific internal energy are all corrected.

The code can be used in the Eulerian regime (as Lagrange + Remap), in the Lagrangian regime, or in the

ALE regime (with Rezone and Remap phases). Moreover, it can be run in 1D or 2D on general polygonal
grids.

Sod Riemann problem. This is a very simple 1D Riemann problem for an ideal gas with c = 1.4. The data

are given by a left state (q,u,v,p)L = (1,0,0,1) and a right state (q,u,v,p)R = (0.125,0,0,0.1). The disconti-

nuity is located at X = 0.5 on a domain [0:1] · [0:ymax] where ymax is defined so that the initial cells are

squares. Most numerical schemes produce decent results on this problem. The first run of the code is made

without conservative repair; if a density or an energy is negative, we simply clip it to zero. The second run is

performed with a conservative repair method for density, velocity, and specific internal energy.

The results given with and without conservative repair are plotted in Fig. 6 for a perfect quadrilateral
101 · 11 mesh at time t = 0.25 in the Eulerian regime. Clearly, the results without conservative repair fit

the exact solution. Using a repair method does not break the behavior and the results are almost identical.

Also, in both cases we checked that 1D symmetry is preserved.

Le Blanc Riemann problem. This is a very strong 1D shock tube; the jump in pressure being 109 and the

jump in density 103. The data are given by a left state ðq; u; v; pÞL ¼ ð1; 0; 0; 23 10
�1Þ and a right state

ðq; u; v; pÞR ¼ ð10
�3; 0; 0; 2

3
10�10Þ with c = 5/3 and a discontinuity located at X = 3 on [0:9] · [0:ymax] where

ymax is defined so that the initial cells are squares.

Most numerical schemes produce an overshoot after the contact discontinuity in specific internal energy,
and a bad approximation of the shock speed. The results given with and without conservative repair are

plotted in Fig. 7.

A perfect quadrilateral mesh is used with our ALE code, which is run in the Eulerian regime (as Lagran-

ge + Remap). Without a conservative repair method, and for a 601 · 3 mesh, the conservation in total

energy is slightly violated [((Efinal � Einitial)/Einitial). 10�6]. This violation occurs because negative internal

energies are created, and must be cut to 0 for the code to run properly. With any conservative repair meth-

od, on the other hand, conservation is preserved to machine error. So, in this problem, the use of a con-

servative repair method preserves the positivity, reduces the overshoot, and stabilizes the profile in the
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Fig. 6. Sod shock tube – density at t = 0.25 without (left) and with (right) a conservative repair method on a quadrilateral 101 · 11

mesh – Eulerian regime versus the exact solution.
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plateau as shown in the zoom in Fig. 7. In this run the mixed local/global repair method is used, but such

general behavior can be seen with all of our repair methods.

Interaction of blast waves. On X = [�1:1] · [0:1] we initiate two half-disks of radius 0.1 centered at

X1 = �(0.4,0) and X2 = (0.4,0). The perfect equation of state is used with c = 1.4. The density is constant

and equal to 1, and the velocity is zero everywhere. The internal energies are �1 = 30, �2 = 60 in the disks

and 0 elsewhere in the domain. This high energy generates two non-symmetric cylindrical blast waves which

interact. At the same time they reflect onto the walls. The final time is t = 0.7 and the code ran in its ALE–
10 regime (rezone and remap every 10 Lagrangian cycles) on a quadrilateral mesh of 4950 nodes and 4802

cells, which has been adapted to fit the disks.

The first remappings create negative specific internal energies. Therefore, without special treatment, the

code cannot go further. On the other hand, with a conservative repair method the negative energies are re-

moved, and the conservation of mass, momentum and total energy are preserved. Our code, used with the

mixed local/global repair method, produces the meshes and densities plotted in Fig. 8.

Sedov blast wave. The computational domain is one quarter of a circular disk with a radius of rmax = 1.2.

A polygonal mesh is constructed in the computational domain using a Voronoi diagram for the set of
points defined as follows:

xi;j ¼ rj sinðhi;jÞ yi;j ¼ rj sinðhi;jÞ; j ¼ 1; . . . ; J ; i ¼ 1; . . . ; IðjÞ;

where

rj ¼ rmax �
j� 1

J
; IðjÞ ¼ round ðj� 1Þ p

2

� �
; hi;j ¼

i� 1

IðjÞ �
p
2
; J ¼ 31

and the function round(x) returns the closest integer to x. According to these formulas, on each circle of

radius rj the points are distributed so that the distance between adjacent points along the circle is approx-

imately equal to Dr = rmax/(J � 1). The total number of points is 775, and there is exactly one Voronoi cell

corresponding to each point. The mesh consists of a mixture of convex quadrilaterals, pentagons and hexa-

gons, with a total of 1325 vertices; see Fig. 9. The disk is filled at t = 0 with an ideal gas (c = 1.4) at rest

whose density is uniformly equal to 1. The specific internal energy is zero except in the pentagonal cell c

in contact with the origin, where �(c) = E/m(c) = E/V(c). V(c) is the volume of cell c and E is the total energy
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Fig. 7. Le Blanc shock tube. Specific internal energy at t = 6.0 with and without conservative repair, on a 601 · 3 mesh. Entire domain

(left) and zoom (right).
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in the system, chosen as 0.244816. This choice of E leads to a diverging shock wave that, at t = 1.0, should

be at radius 1.0. The peak in density should be equal to 6.

The code is used in its ALE–10 regime. When no repair is performed in this test case, the code stops due

to the creation of negative internal energy after the fourth remapping. On the other hand, the use of a repair
method fixes the parasitic negative values and allows us to observe good results. The maximum density with

the mixed local/global repair method is 5.62.

Fig. 8. Interaction of cylindrical blast waves on a quadrilateral mesh. ALE–10 regime. Mesh and density contours (exponential scale)

at t = 0.1 and t = 0.7.
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In Fig. 9 the density contours are shown in exponential scale, and in Fig. 10 the cell density is shown as a

function of the cell radius at t = 1.0, versus the exact solution.

9. Conclusion

In this paper we have reviewed and applied several conservative repair methods that can be used in sit-

uations where variables must stay between predefined bounds while respecting conservation. Such situa-
tions occur often, in hydrodynamics for example, when the density or the specific internal energy

becomes negative due to remapping. Such unphysical situations must be cured, but setting negative values

to small positive numbers is not acceptable from the point of view of conservation.
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Fig. 9. Sedov blast wave on a polygonal mesh (1325 nodes and 775 cells). ALE–10 regime. Mesh and density contours (exponential

scale) at t = 0.1 and t = 1.0.
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Of the methods presented here, we believe that the mixed local/global repair scheme best meets the

requirements of locality and efficiency. This method was applied to an advection example and to test cases

in an ALE hydrodynamics framework, where the use of a conservative repair algorithm allowed us to:

� preserve the accuracy of the underlying method, as in the Sod Riemann problem;
� stabilize and improve bad profiles, as in the Le Blanc Riemann problem;

� maintain physical and reasonable results, as in the blast wave interaction problem and the Sedov

problem.
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2.2. Arbitrary-Lagrangian-Eulerian (ALE) 123

In paper [9] entitled Convergence and Sensitivity Analysis of Repair Algorithms in 1D B. Després made
most of the the convergence analysis of some simple Repair algorithms and I joint his effort to
numerically retrieve his convergence and sensitivity results. In this paper we limit the theoretical
study to transport equation in 1D and to some simple remapping strategy in 1D. In order to prove
the main convergence result we introduced a box of size p in which the distribution of the excess
of mass is performed. Numerical results are proposed for the Lax-Wendroff (LW) scheme plus
Repair and the DownWind (DW) scheme plus Repair. The LW intends to be representative of high-
order prediction schemes. The DW scheme intends to be representative of highly anti-dissipative
prediction schemes. In a specific section we study the gas dynamics equations in 1D with a La-
grange+Remap code. This code is built on two components : a staggered Lagrangian scheme and
a Remap strategy which may need repair. The Sod and Le Blanc shock tubes and the blastwave of
Colella-Woodward are tested. It seems that the size of the box (parameter p) is not necessarily an
important parameter if one uses a high-order prediction scheme as the Lax-Wendroff scheme for
non oscillating computations. But with a more anti- dissipative prediction scheme as the Downwind
scheme, the results can vary with p. When p is too large the numerical solution may not be correct.
It gives some indication that it is much preferable to restrict ourselves to local Repair (i.e with a
local redistribution of the mass).

An important feature of the Repair paradigm is the simplicity and versatility in any dimension.
Moreover the repair process is independent of the kind of mesh used ; cell-centered values or nodal
values can be repaired the same way. We only need the notion of neighborhood to define the bounds
and to redistribute the amount of conservative variable. Therefore any repair algorithm is suitable
for staggered formulation where physical variables are not defined at the same location.

This paper is reproduced in the following pages.
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Abstract

We prove the convergence of some repair algorithms for linear advection

in dimension one. The convergence depends on the size of the box where

the distribution of the mass excess is performed. Various numerical

examples illustrate the theoretical results. Applications to gas dynamics

in dimension one is also discussed.

Key words : Finite Volume Schemes, Repair algorithms, TVD schemes,

Gas Dynamics.

1 Introduction

The aim of this work is the convergence analysis of some very simple Repair Al-
gorithms. To our knowledge such a proof has never been given, even for simple
problems. The Repair algorithms we consider are very much in the spirit of what
was proposed by M. Shashkov and B. Wendroff in [11]. The underlying idea of Re-
pair methods is related to the fact that conservative remapping methods (present
in Arbitrary-Lagrangian-Eulerian (ALE) framework for example) may not necessar-
ily preserve a maximum principle: no new extrema should be generated during the
remapping process. If so a Repair method can remove these new maxima (resp.
minima) by distributing (resp. taking) the amount of the associated conservative
variable to (resp. from) the neighborhood.
In this paper we limit the theoretical study to transport equation in 1D and to some
simple remapping strategy in 1D. However we hope that some of the conclusions of

Repair Algorithms in 1D

the study can give insights even for multidimensional repair algorithms for systems
of PDE’s, such as compressible gas dynamics.
The outline of this paper is as follows. In the second section, we describe the repair
algorithm for the linear transport. In section three we adapt the repair algorithm for
the remapping process. The numerical results on 1D linear transport are gathered
in the fourth section, whereas the fifth section presents some numerical results for
1D gas dynamics. Finally the conclusion and the plan for future developments is
presented in the last section.

2 Repair algorithm for linear transport

Let us consider the equation of transport in 1D, with constant velocity

∂tu+ a∂xu = 0, a > 0. (1)

The initial condition is u(0, x) = u0(x) where u0 ∈ L1(R)∩BV (R). Let us consider
a mesh, that is uniform even if our result extends to non uniform mesh. The mesh
size is denoted by ∆x. The time step is denoted by ∆t. Thus un

j stands for the
numerical solution in cell j at time step n.

The repair strategy amounts to: 1) compute a prediction of the numerical solu-
tion at time step n + 1 using a “reasonable” and “local” scheme, as instance this
scheme can be a high order non monotone scheme or a highly anti-dissipative scheme,
2) check if the new value satisfies a local maximum principle, 3) if the new value does
not satisfy the local maximum principle, then repair it. Repairing means changing
the value of the unknown for 3) to be fulfilled. A difficulty is that one wants the
total mass to be preserved. So we need to describe in details how to redistribute the
mass of the repaired quantity, such as the total mass is preserved.

This family of algorithms can be local if one redistributes the mass in a local
box around the cell that needs to be repaired, or global if one redistributes the
mass in the entire domain. It has been a debate since the early time of the Repair
Algorithms to decide whether local repairing is better or not than global repairing.
On one hand, global repairing is a more simple algorithm than local repairing. On
the other hand our analysis implies that we can not prove the convergence of a
global repair process. This is a theoretical indication that global repair process can
be dangerous in some cases. Moreover a global repair process breaks the causality
by instantaneously spreading mass all over the domain. The numerical experiments
show it is indeed the case, in particular when the prediction step or the underlying
physics is oscillating.

Let us describe in detail the repair algorithm that we analyze in this work.

2.1 The prediction scheme

First, one computes the new value of the unknown using the finite volume and
conservative scheme

un+1
j − un

j

∆t
+ a

un
j + cn

j+ 1
2

− un
j−1 − cn

j− 1
2

∆x
= 0, (2)
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where un
j is the mean value of u(x) in cell j: [xx− 1

2
;xx+ 1

2
].

The Courant or CFL number is less than one (a > 0)

ν = a
∆t

∆x
≤ 1. (3)

The scheme is a priori different from the upwind scheme. Thus all the difference
between the upwind scheme and the scheme used is embedded in the definition of
the correction flux acn

j+ 1
2

for all j. This correction flux can be either a linear or a

non linear function of (un
j ). The only assumption is

∃C1 > 0, ∃k ∈ N, |cn
j+ 1

2

| ≤ C1

∑

j−k≤q≤j+k

|uq − uq−1|. (4)

The hypothesis (4) essentially means that the flux is defined as the upwind flux plus
a correction. Of course the correction is zero if the numerical profile is flat (that is if
uq − uq−1 ≡ 0 in a neighborhood of cell j) : (4) is compatible with such a principle.
The hypothesis is true for the Lax-Wendroff scheme as instance, moreover all non
linear TVD algorithms satisfy (4).

2.2 Correction step

The spirit of this repair algorithm is to compare un+1
j with

Mn
j = max(un

j , u
n
j−1) and mn

j = min(un
j , u

n
j−1), (5)

that is one checks if mn
j ≤ un+1

j ≤ Mn
j is true or not. Suppose un+1

j > Mn
j , then

one has to modify the value of un+1
j and redistribute the mass “around”. In the

convergence analysis of the method, we discovered that it is better at the theoretical
level not to redistribute the mass globally but locally at least in a box of size p ∈ N
around the current cell. This is why we have introduced a new step in the repair
algorithm first proposed in [11] to be able to ensure that the redistribution of mass
can be made in the box of size p. Since p is a parameter of the method, one recovers
the global repair by setting p ≈ +∞.

So let us define boxes of size p. Each box is the collection of cells j such that
rp ≤ j ≤ (r + 1)p− 1 where r ∈ Z. The mathematical definition of these boxes Br

is
Br = {j; rp ≤ j ≤ (r + 1)p− 1}, r ∈ Z. (6)

However it is also possible to use boxes of different sizes, provided the size is smaller
than the predefined maximal box’s size p. It is also possible to use moving boxes,
that is the starting point of each box is different from one time step to the other.
For the simplicity of the mathematical exposure we use only (6).

To make the correction we first need to compute

bMr =


∑

j∈Br

(
un

j − ν(un
j − un

j−1) −Mn
j

)

− ν(cn

(r+1)p− 1
2

− cn
rp− 1

2
), (7)

bmr =


∑

j∈Br

(
un

j − ν(un
j − un

j−1) −mn
j

)

− ν(cn

(r+1)p− 1
2

− cn
rp− 1

2
). (8)
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Most presumably bMr ≤ 0 (resp. bmr ≥ 0), since this is the result of a comparison be-

tween
∑

j∈Br

(
un

j − ν(un
j − un

j−1) −Mn
j

)
≤ 0 (resp.

∑
j∈Br

(
un

j − ν(un
j − un

j−1) −mn
j

)
≥

0) and ν(cn
(r+1)p− 1

2

− cn
rp− 1

2

). Moreover if p is large enough and ν small enough (i.e.

the time step is small) then bMr ≤ 0 (resp. bmr ≤ 0) is probably stating true. The
correction is here to ensure that bMr ≤ 0 and bmr ≥ 0 are always satisfied. The idea
being that if these inequalities are not satisfied then we multiply the value of the
fluxes by a small number such that bMr ≤ 0 and bmr ≥ 0 are fulfilled.

So we define
dn

j− 1
2

= µn
j− 1

2
cn
j− 1

2
where µn

j− 1
2

∈ [0, 1]. (9)

The coefficient µn
j− 1

2

has to be computed to give a corrected value of the flux. The

constraint µn
j− 1

2

∈ [0, 1] appears natural from the consistency point of view. We

expect that the definition of these µn
j− 1

2

will be the closest as possible to 1, so that

the corrected flux dn
j− 1

2

is almost equal to the flux of the prediction scheme. We

need to check

b̃Mr − ν(µn
(r+1)p− 1

2

cn
(r+1)p− 1

2

− µn
rp− 1

2

cn
rp− 1

2

) ≤ 0, (10)

b̃mr − ν(µn
(r+1)p− 1

2

cn
(r+1)p− 1

2

− µn
rp− 1

2

cn
rp− 1

2

) ≥ 0, (11)

where by definition b̃Mr =
∑

j∈Br

(
un

j − ν(un
j − un

j−1) −Mn
j

)
is not positive and

b̃mr =
∑

j∈Br

(
un

j − ν(un
j − un

j−1) −mn
j

)
is not negative. One feasible strategy can

be derived as:
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Analysis of (10)

if cn
(r+1)p− 1

2

≥ 0 and cn
rp− 1

2

≥ 0 : Then (10) is true once

ν(µn
rp− 1

2

cn
rp− 1

2

) ≤ −b̃Mr . Thus we define ϕ1,−
r , ϕ1,+

r such that

µn
rp− 1

2

≤ ϕ1,−
r =

−b̃Mr
cn
rp− 1

2

and ϕ1,+
r = +∞. (12)

if cn
(r+1)p− 1

2

< 0 and cn
rp− 1

2

< 0 : Then (10) is true once

ν(−µn
(r+1)p− 1

2

cn
(r+1)p− 1

2

) ≤ −b̃Mr . Thus we define ϕ2,−
r , ϕ2,+

r

such that

ϕ2,−
r = +∞ and µn

(r+1)p− 1
2

≤ ϕ2,+
r =

−b̃Mr
−cn

(r+1)p− 1
2

. (13)

if cn
(r+1)p− 1

2

≥ 0 and cn
rp− 1

2

< 0 : Then (10) is true without con-

dition. Thus ϕ3,−
r = ϕ3,+

r = +∞

if cn
(r+1)p− 1

2

< 0 and cn
rp− 1

2

≥ 0 : Then it is not possible to sim-

plify the inequality (10). Thus we impose ϕ4,−
r = ϕ4,+

r and

µn
(r+1)p− 1

2

, µn
rp− 1

2

≤ ϕ4,−
r =

−b̃Mr
cn
rp− 1

2

− cn
(r+1)p− 1

2

(14)
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Analysis of (11)

if cn
(r+1)p− 1

2

≥ 0 and cn
rp− 1

2

≥ 0 : Then (11) is true once

ν(µn
(r+1)p− 1

2

cn
(r+1)p− 1

2

) ≤ b̃mr . Thus we impose that

ψ1,−
r = +∞ and µn

(r+1)p− 1
2

≤ ψ1,+
r =

b̃mr
cn
(r+1)p− 1

2

. (15)

if cn
(r+1)p− 1

2

< 0 and cn
rp− 1

2

< 0 : Then (11) is true once

ν(−µn
rp− 1

2

cn
rp− 1

2

) ≤ b̃mr . Thus we impose that

µn
rp− 1

2
≤ ψ2,−

r =
b̃mr

−cn
rp− 1

2

and ψ2,+
r = +∞. (16)

if cn
(r+1)p− 1

2

≥ 0 and cn
rp− 1

2

< 0 : Then it is not possible to sim-

plify the inequality (11). Thus we impose ψ3,−
r = ψ3,+

r that

µn
(r+1)p− 1

2

, µn
rp− 1

2

≤ ψ3,−
r =

−b̃Mr
−cn

(r+1)p− 1
2

+ cn
rp− 1

2

(17)

if cn
(r+1)p− 1

2

< 0 and cn
rp− 1

2

≥ 0 : Then (11) is true without con-

dition. Thus ψ4,−
r = ψ4,+

r = +∞

Let us consider each of the cases considered in inequalities (12) to (17). We
gather the restrictions it imposes for all µn

rp− 1
2

. The mathematical definition of the

correction algorithm is the following.

Definition 2.1 Let us define the corrected fluxes at the boundaries of the boxes

dn
(r+1)p− 1

2
= min

(
1,min

l
ϕl,+

r ,min
l
ψl,+

r ,min
l
ϕl,−

r+1,min
l
ψl,−

r+1

)
× cn

(r+1)p− 1
2
.

(18)
Inside the boxes we do not correct, that is

dn
j− 1

2
= cn

j− 1
2
, ∀j 6= rp. (19)

The next step consists in the computation of the new prediction ûn+1
j with the

corrected flux:

ûn+1
j − un

j

∆t
+ a

un
j + dn

j+ 1
2

− un
j−1 − dn

j− 1
2

∆x
= 0. (20)
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Lemma 2.2 One has the inequalities after the correction step


∑

j∈Br

(
un

j − ν(un
j − un

j−1) −Mn
j

)

− ν

(
dn
(r+1)p− 1

2
− dn

rp− 1
2

)
≤ 0 (21)


∑

j∈Br

(
un

j − ν(un
j − un

j−1) −mn
j

)

− ν

(
dn
(r+1)p− 1

2
− dn

rp− 1
2

)
≥ 0. (22)

The proof is performed by considering all cases (12-17) separately.

Inequalities (21-22) will be crutial in the analysis of the repairing procedure,
essentialy inequality (31) in subsection 2.4.

2.3 Repairing

As already mentioned, to repair a value means successively to compare with the
local maximum and minimum, to truncate if needed, then to redistribute the excess
of mass on all surrounding cells. Using mathematical notations, one gets





if ûn+1
j > Mn

j then un+1
j = Mn

j and ∆mn
j = ûn+1

j −Mn
j > 0,

if ûn+1
j < mn

j then un+1
j = mn

j and ∆mn
j = ûn+1

j −mn
j < 0,

else then un+1
j = ûn+1

j and ∆mn
j = 0.

(23)

The total mass in box Br of the new unknown un+1
j may as well be different from

the correct mass, so one defines the default of mass as:

∆Mn
r =

∑

rp≤j≤(r+1)p−1

∆mn
j . (24)

This default of mass may be positive or negative. So we need to redistribute it on
the box to get at least a conservative algorithm. Following [11], we consider





if ∆Mn
r > 0 then un+1

j = un+1
j + λn

r (Mn
j − un+1

j ),

if ∆Mn
r < 0 then un+1

j = un+1
j + λn

r (mn
j − un+1

j ),

if ∆Mn
r = 0 then un+1

j = un+1
j ,

(25)

where the coefficient λn
r is set to





if ∆Mn
r > 0 λn

r = ∆Mn
r

P

rp≤j≤(r+1)p−1(M
n
j −un+1

j )
,

if ∆Mn
r < 0 λn

r = ∆Mn
r

P

rp≤j≤(r+1)p−1(m
n
j −un+1

j )
,

if ∆Mn
r = 0 λn

r = 0.

(26)

The repair algorithm that we analyze in this paper consists of equations (2) to
(26).
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2.4 Properties

Before proving our main convergence theorem, we state the stability lemma

Lemma 2.3 Whatever the value of p ∈ N? is, for all time step n, the repair algorithm
is such that the total mass is preserved (conservation)

∑

j

un+1
j =

∑

j

un
j , (27)

the maxima and minima are respected (maximum principle)

mn
j ≤ un+1

j ≤ Mn
j , ∀j, (28)

and the total variation is diminishing (TVD)

∑

j

|un+1
j − un+1

j−1 | ≤
∑

j

|un
j − un

j−1|. (29)

Remark: One notices that the scheme is TVD because of (29). Proof First one
has

∑

j∈Br

ûn+1
j =


∑

j∈Br

(un
j − ν(un

j − un
j−1))


− ν

(
dn
(r+1)p− 1

2
− dn

rp− 1
2

)
.

Since by construction un+1
j = ûn+1

j − ∆mn
j , then we get the relation

∆Mn
r +

∑

j∈Br

un+1
j =


∑

j∈Br

(un
j − ν(un

j − un
j−1))


− ν

(
dn
(r+1)p− 1

2
− dn

rp− 1
2

)
.

(30)

Assume for instance that ∆Mn
r > 0 (the other cases are easily deduced by mimicking

this one). Then the next stage of the algorithm consists in the computation of λn
r .

The key point is to prove that 0 ≤ λn
r ≤ 1 and the property follows. One has

∆Mn
r −∑j∈Br

(
Mn

j − un+1
j

)

=
(∑

j∈Br
(un

j − ν(un
j − un

j−1) −Mn
j )
)

− ν
(
dn
(r+1)p− 1

2

− dn
rp− 1

2

)
,

and clearly

∆Mn
r −

∑

j∈Br

(
Mn

j − un+1
j

)
≤ 0, (31)

due to the correction step (21)-(22). Then ∆M n
r ≤∑j∈Br

(
Mn

j − un+1
j

)
that is

0 ≤ λn
r =

∆Mn
r∑

j∈Br
Mn

j − un+1
j

≤ 1.

And finally
mn

j ≤ un+1
j = (1 − λn

r )un+1
j + λn

rM
n
j ≤ Mn

j ,
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since mn
j ≤ un+1

j ≤ Mn
j by construction. Thus (28) is proved for ∆M n

r > 0. (The
other case is proved using the same method.) It implies (29).
It remains to prove (27). The definition of λn

r associated with equation (30) yields
to

∑

j∈Br

un+1
j =

∑

j∈Br

un+1
j + λn

r

∑

j∈Br

(
Mn

j − un+1
j

)

=
∑

j∈Br

un+1
j + ∆Mn

r =
∑

j∈Br

(un
j − ν(un

j − un
j−1)) − ν(dn

(r+1)p− 1
2

− dn
rp− 1

2
).

Summing up with respect to r gives (27) and completes the proof. �

2.5 Finite Volume Form

The next step is to identify the algorithm (2) to (26) as a standard finite volume
scheme as stated in (35). For the simplicity of notations, assume that ∆M n

r > 0.
Due to the definition of the scheme (2) to (26), one has

un+1
j = un+1

j + λn
r (Mn

j − un+1
j ) = ûn

j − ∆mn
j + λn

r (Mn
j − un+1

j )

=
(
un

j − ν(un
j − un

j−1)
)

− ν(dn
j+ 1

2

− dn
j− 1

2

) +
(
−∆mn

j + λn
r (Mn

j − un+1
j )

)
.

In order to be able to rewrite the scheme as a finite volume scheme, we need to
construct some fluxes en

j+ 1
2

such that for all j

∆t(en
j+ 1

2
− en

j− 1
2
) = −∆mn

j + λn
r (Mn

j − un+1
j ). (32)

The solution can be constructed as

{
en
rp− 1

2

= 0, ∀r ∈ Z,

en
j+ 1

2

= 1
∆t

∑
rp≤k≤j

(
−∆mn

k + λn
r (Mn

k − un+1
k )

)
, rp < j.

(33)

This formula is correct because (24)-(26) implies that (33) is correct for j = (r +
1)p − 1 : en

(r+1)p− 1
2

= 0. If one (or more) of the ∆Mn
r < 0 is negative, the result

remains the same.

Lemma 2.4 The L1 norm of (en
j+ 1

2

) is bounded

||en||1 = ∆x
∑

j

|en
j+ 1

2
| ≤ 2C1(2k + 1)p||u||BV , (34)

where ||u||BV is the BV norm of the solution.

Proof Due to the definition (33) we deduce

||en||1 ≤ p

∆t
∆x
∑

j

|∆mn
j |.
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But one always has

|∆mn
j | ≤ |ûn+1

j − (uj − ν(un
j − un

j−1))| ≤ ν(|dn
j+ 1

2
| + |dn

j− 1
2
|)

≤ ν(|cn
j+ 1

2
| + |cn

j− 1
2
|),

moreover due to the hypothesis (4) we finally get

∆x

∆t

∑

j

|∆mn
j | ≤ 2C1(2k + 1)

∑

j

|un
j − un

j−1| ≤ 2C1(2k + 1)||u||BV .

This ends the proof. �
Then we are able to write the repair algorithm as

un+1
j − un

j

∆t
+ a

un
j − un−1

j

∆t
= (sn

j − sn
j−1), (35)

where sn
j is defined by

sn
j = − 1

∆x
adn

j+ 1
2

+ en
j+ 1

2

. (36)

The L1 norm of sn is bounded by

||sn||1 ≤ C1(2k + 1)||u||BV + ||en||1 ≤ C1(2k + 1)(2p + 1)||u||BV . (37)

From (35) we get

un+1 − un

∆t
+

a

∆x
(I − T )un = (I − T )sn, (38)

where T is the translation operator to the right. This is equivalent to say that

un − (I + ν(T − I))nu0 = ∆t
n−1∑

p=0

(I + ν(T − I))n−p−1(I − T )sp. (39)

The main convergence result is given by the

Theorem 2.5 Assume that ν < 1. The difference between the upwind scheme and
the repair algorithm (as defined by (2) to (26), or (35-36)) tends to zero with ∆x
in the sense that there exists a constant C2 > 0 which does not depend on k, p, C1,
such that

||un − (I + ν(T − I))nu0||1 ≤ C2C1(2k + 1)(2p + 1)||u||BV

√
(n∆t)∆x. (40)

Proof Equation (38-39) shows that the scheme exactly fits in the framework de-
veloped in [7] and applied in [8] for the convergence analysis of non linear schemes
for linear advection. The key estimate proved in [7] is that

||(I + ν(T − I))q+1(I − T )||1 ≤ C
1

ν(1 − ν)

1√
q
. (41)
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The constant C is a universal one. A simplified proof is provided in appendix for the
case ν = 1

2 . This estimate means that the right hand side of (39) is made of terms
that are small with respect to n− p. The final stage of the proof is straightforward.
One has

||un − (I + ν(T − I))nu0||1 ≤ ∆tmax ||sp||1 ×
n−1∑

p=0

||(I + ν(T − I))n−p−1(I − T )||1

≤ C
1

ν(1 − ν)
∆tmax ||sp||1

n∑

q=1

1√
q

≤ C
1

ν(1 − ν)
∆tmax ||sp||1

∫ n

0

dy√
y

≤ C
1

ν(1 − ν)
∆tC1(2k + 1)(2p + 1)||u||BV

√
n

2

≤ C

2a
√

1 − ν
C1(2k + 1)(2p + 1)||u||BV

√
T∆x.

Defining C2 = C
2a

√
1−ν

ends the proof. �
Remark: Since the numerical solution of the upwind scheme converges to the

exact solution meaning

(I + ν(T − I))nu0 → u(n∆t) in L1(R) as ∆x → 0,

then the inequality of theorem 2.5 is a convergence result. Of course this inequality
does not explain that the repair algorithm is better than the upwind scheme. Actu-
ally Repair is equivalent to the upwind scheme is one choose cn

j+ 1
2

= 0, for all j and

n. However the result shows that repair can not diverge if p2∆x → 0.
Remark: On the other hand the error estimate blows up if p is too large. At

least we need p2∆x → 0 to get a vanishing error on the right hand side of the
estimate. This estimate is the reason why we have incorporated the correction step
in the repair algorithm.

Remark: One may wonder the reason of the 1
a
√

1−ν
contribution in the definition

of the constant C2. Indeed if a → 0 or ν → 1, then C2 can go to infinity which
makes the estimate of convergence meaningless. First of all, for a given computation
C2 < ∞. Second of all, it is possible to use sharper estimates to get rid of the 1

a .
This is done in [7] for the convergence analysis of TVD schemes for instance. Finally
one may argue that a similar argument should be possible at the theoretical level
to get rid of the 1√

1−ν
. Nevertheless real computations use ν < 1 which is another

reason to use this hypothesis. At the numerical level, we never saw any dependence
of the rate of convergence with respect to this parameter. Thus we consider this as
an artifact of the analysis.

3 Repair algorithm for remapping

In this section we show how to extend the previous result to take into account some
very simple remapping algorithms. The main idea is that remapping is very close

International Journal on Finite Volumes 11

Repair Algorithms in 1D

t

t

n+1

n

X j+1/2

X j+1/2

nXn
j−1/2

Xj−1/2
n+1 n+1

jun

jun+1

Figure 1: Remapping stage. The old and new densities are the bullets. The high
order reconstruction stage are represented with the slopes.

to transport. So let us consider a uniform mesh. (The uniformity of the mesh is not
absolutely necessary however this hypothesis simplifies a lot the proof.).

At time step n, the value of the unknown is un
j in the cell j. The boundaries of

cell j are xn
j− 1

2

and xn
j+ 1

2

= xn
j− 1

2

+ ∆x, where ∆x is the mesh size. Then the mesh

changes. We assume the simplest change: a uniform translation to the left, then

xn+1
j+ 1

2

= xn
j+ 1

2

− a∆t, ∀j, (42)

where a > 0 is a kind of mesh velocity and ∆t is an equivalent time step. We assume
that the mesh does not move too fast, that is we assume the CFL condition

ν = a
∆t

∆x
≤ 1.

A standard remapping algorithm is divided in two stages : first reconstruct a
high order profile using a MUSCL like algorithm, then project on the new mesh. Let
us detail these operations. An illustration is given in figure 1.

The reconstruction amounts to the definition of the slopes in function of the old
values. So we define

vn
j (x) = un

j + wn
j (x), (43)

where wn
j is the slope function which is added to the average value at step n. A

natural hypothesis is that the average value of wn
j (x) is zero

∫ xn

j+1
2

xn

j− 1
2

wn
j (x) = 0, (44)

and that wn
j (x) is a local reconstruction, that is

|wn
j (x)| ≤ C3

∑

j−k≤q≤j+k

|un
q − un

q−1|. (45)
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Then we project the reconstructed function onto the new mesh. Thus

un+1
j =

∫ xn+1

j+1
2

xn+1

j− 1
2

vn(x)dx. (46)

That is

un+1
j =

∫ xn

j− 1
2

xn+1

j− 1
2

vn
j−1(x)dx+

∫ xn+1

j+1
2

xn

j− 1
2

vn
j (x)dx.

Replacing vn
j (x) and vn

j−1(x) using (43), one gets

un+1
j = νun

j−1 + (1 − ν)un
j +

∫ xn

j− 1
2

xn+1

j− 1
2

wn
j−1(x)dx+

∫ xn+1

j+1
2

xn

j− 1
2

wn
j (x)dx.

Let us define

cn
j− 1

2
= − 1

xn
j− 1

2

− xn+1
j− 1

2

∫ xn

j− 1
2

xn+1

j− 1
2

wn
j−1(x)dx = − 1

a∆t

∫ xn+1

j− 1
2

+a∆t

xn+1

j− 1
2

wn
j−1(x)dx. (47)

Hypothesis (45) turns into

|cn
j+ 1

2

| ≤ C3

∑

j−k≤q≤j+k

|un
q − un

q−1|. (48)

Moreover using (44) — the fact that the mean value of the correction is zero —
yields to the definition of the new value un+1

j

un+1
j − un

j

∆t
+ a

un
j + cn

j+ 1
2

− un
j−1 − cn

j− 1
2

∆x
= 0. (49)

With these notations the remapping algorithm is equivalent to a non linear transport.
Thus we easily generalize the results of the previous section to remapping.

The repair algorithm for remapping is then :

1) reconstruct a high order approximation as in (43-45) ;
2) make the correction step as in subsection 2.2 ;
3) repair.

The generalization of the correction step of subsection 2.2 is easy to write down,
since the notations are quite similar between section 2 and section 3. It is sufficient
to notice that once p ∈ N?, the size of the boxes, has been chosen, then the correction
step checks if the inequalities (7-8) become true. If one of them is not true, then we
need to minimize the value of cn

j+ 1
2

at the borders of the boxes until the inequalities

are true.
Then the convergence result of theorem 2.5 is extended to Repair remapping

algorithms. For a given size of the boxes p, the difference between the Repair
Algorithm and the upwind or donor cell method is bounded by estimate (40) (with
C1 = C3).
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4 Numerical results

In the numerical result presented, we tried the Lax-Wendroff scheme plus Repair
and the Downwind scheme plus Repair. The velocity is a = 1.

The Lax-Wendroff scheme is given by

(LW)
un+1

j − un
j

∆t
+
un

j + 1
2(1 − ν)(un

j+1 − un
j ) − un

j−1 + 1
2 (1 − ν)(un

j − un
j−1)

∆x
= 0.

The Downwind scheme is

(DW)
un+1

j − un
j

∆t
+
un

j+1 − un
j

∆x
= 0.

The LW intends to be representative of high-order prediction schemes. The DW
scheme intends to be representative of highly anti-dissipative prediction schemes.
Concerning the Repair algorithm we used different box sizes.
We advected two initial profiles: a smooth one (u0(x) = − cos 2πx on [0, 1]) and a
discontinuous one (u0(x) = 1 for 0 < x < 0.5 and u0(x) = 0 for 0.5 < x < 1) on a
domain with periodic boundary conditions.

4.1 Figures

Essentially the results LW+Repair show good convergence properties independently
to the size of the box p. See Figures 2 and 3. However one sees for the cosine initial
condition that p = 1 leads to some discrepancy at the extrema of the solution, that
p = 50, 100 leads to a prediction of the extrema that is less accurate. On the other
hand a relative small box of size p = 4 gives the best result. On this case, a small
amount of local repairing gives good results. For the step initial condition of Figure
3, the spreading is quite the same with all box sizes.

On the other hand the DW+repair results may be very sensitive to the size of the
box. For a given number of cells, one gets the best results for the smaller size of the
box, see Figure 4, staircases appear, exactly as with the UltraBee scheme as reported
in [6], see also [2] and [12]. For a given box size the numerical solution converges
to the exact one as the number of cells increases, see Figure 5. Unfortunately the
global algorithm where the size of the box is equal to the number of cells (i.e. p = n)
seems to diverge as the time increases, see Figure 6. Our experiments showed that
this pathology is highly sensitive to the CFL number. For CFL = .5, the global
algorithm seems to be correct. We retain that the global algorithm is not reliable
for such test cases.

4.2 Order of convergence

In tables 1 to 3 are gathered some errors in various norms. The size of the boxes is
p = 4. The final time is t = 1. We increase the number of cells from 100 to 1600.
The order of convergence of the Lax-Wendroff plus Repair algorithm is ≈ 1

2 in L1 for
a discontinuous profile. This is in accordance with the theoretical result of Theorem
2.5. For a smooth profile the order is ≈ 2 in all norms.
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Figure 2: Lax-Wendroff plus Repair : 100 cells. The initial condition is u0(x) =
− cos 2πx. The size of the box is p = 1, 2, 4, 10, 50, 100 from top left to bottom right.
The final time is t = 10
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Figure 3: Lax-Wendroff plus Repair : 100 cells. The initial condition is u0(x) = 1
for 0 < x < 0.5 and u0(x) = 0 for 0.5 < x < 1. The size of the box is p =
1, 2, 4, 10, 50, 100 from top left to bottom right. The final time is t = 1
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Figure 4: Downwind plus Repair. The initial condition is u0(x) = − cos 2πx. The
size of the box is p = 1, 2, 4, 10, 50, 100 from top left to bottom right. The number
of cells is N = 100. The Courant number is CFL = 0.12345. The final time is t = 1
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Figure 5: Downwind plus Repair. The initial condition is u0(x) = − cos 2πx. The
size of the box is p = 4. The number of cells is n = 100, 200, 400, 800, 1600, 3200.
The final time is t = 1
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Figure 6: Downwind plus Repair : 100 cells. The initial condition is u0(x) = 1
for 0 < x < 0.5 and u0(x) = 0 for 0.5 < x < 1. The size of the box is p =
1, 2, 4, 10, 50, 100 from top left to bottom right. The final time is t = 1. The results
are quite good, except for the global algorithm which seems to be in advance.
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Figure 7: Downwind plus Repair : 100 cells. The initial condition is u0(x) = 1 for
0 < x < 0.5 and u0(x) = 0 for 0.5 < x < 1. The size of the box is p = 100. The
final time is t = 1, 2, 3, 4, 5, 6. The global algorithm is in advance.
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Figure 2.6 – Description of a ReALE (Reconnection ALE) scheme within ALE INC(ubator). A Lagrangian scheme is
followed by a reconnection stage which determines the Voronoi tesselation from moving generators (computed within the
Lagrangian stage) onto which a remapping phase conservatively projects the physical variables and ultimately provides
physically relevant variables (thanks to a so-called repair technique). The remapping must be done by exact intersec-
tion between the old Lagrangian mesh and the new mesh from the reconnection stage, the later may have a different
connectivity.

In this section we present the joint effort with colleagues from LANL (M. Shashkov) and CEA
(J. Breil, S. Galera, P.-H. Maire) to extend the ALE technique to allow mesh reconnection during the
simulation. In Fig.2.6 one proposes a sketch of our Reconnection ALE (ReALE) algorithm to provide
the big picture to be compared to a fixed connectivity ALE in Fig. 2.3. Some of the work made
within this context is described in details in this chapter. This work has led us to write paper [26]
entitled “ReALE : a reconnection-based arbitrary-Lagrangian-Eulerian method” which sets the fundation
of two reconnection-based ALE codes : a cell-centered ReALE code named CHIC developed and
maintained at CELIA in Bordeaux , and ALE INC(ubator) in its ReALE version maintained at IMT
in Toulouse. In paper [27] an extension to cylindrical geometry is also proposed.
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In this section we recall the genesis of ReALE and the reasons why this work has been undertaken.
Then a quick refresher on Voronoi machinery is proposed followed by a some details and specific
treatment that a ReALE code needs. Finally ReALE results are provided.

“Why fooling around with a Reconnection ALE method ?”

The genesis of this work starts with the following statement : The most difficult and least developed
phase of ALE is the rezoning phase. A review of existing rezone strategies for ALE methods is
presented in [124] including analysis of alternative approaches [145, 146, 147, 108, 148, 112, 149,
116, 150, 151, 115]. A review of a more general class of methods, namely moving mesh methods, is
presented in [152]. Ideally the mesh has to adapt to the solution. Any adaptive scheme is composed
of three main ingredients : an optimal-mesh criterion, an error estimator or error indicator, and
an algorithm of the strategy for the mesh improvement. These ingredients answer to the following
questions : How should the optimal mesh be defined ? Where are mesh changes required ? And
how should the improved mesh be constructed ? For standard ALE methods a strategy for mesh
improvement is based on moving the spatial grid.
Generally speaking the goal of rezoning is to improve the efficiency of the ALE method However,

to design an adaptive method one needs a quantitative assessment of optimality. The problem is
that, for non-linear equations of gas dynamics in 2D and 3D, at the moment, it is not feasible to
obtain such quantitative assessment. For this reason practitioners are usually using some qualita-
tive approaches. In real complex ALE simulation the most basic goal of rezoning is simply to run
calculation to completion without user intervention and still achieve reasonable accuracy (recall
that we always can run ALE in Eulerian=Lagrange-Plus-Remap mode, which will be robust but less
accurate). Even this goal is usually not achieved in most production ALE codes. For example, even
for very popular methods based on Winslow smoothing, [115, 116], practical simulations require
the introduction of numerous geometrical and physics based triggers and lockers, that is, mesh
constraints that typically keep a node Lagrangian until some condition is reached e.g. element qual-
ity criterion (to detect cell distortion or collapse) or physical condition is reached in surrounding
elements (for example, did the cell fully detonate ?) [112, 153, 154, 138].
As it is mentioned in [153, 154], the mesh movement philosophy applied to most applications,

related to high-speed multimaterial flows, is to develop algorithms that will move the mesh in
such a way as to maintain robustness while staying as close as possible to the Lagrangian mesh
motion. The Lagrangian mesh motion naturally follows most flow features of interest such as shocks,
material interfaces and steep gradients and allows users to focus zoning in materials of interest.
Mesh relaxation is then used in regions of high material deformation to improve mesh quality. In
standard ALE methods, which use fixed mesh topology, nodes are moved to refine some areas of
the problem at the expense of derefining other parts of the problem. Generally, the increase of mesh
resolution is limited, and, most importantly it can degrade the mesh quality leading to robustness
problems.
One if not the main reason for this is that standard ALE codes utilize a fixed topology mesh, defined

at the outset, which in general will not be able to adapt to the dynamically evolving interface shape



2.3. ReALE : Reconnection ALE 131

(or contact discontinuity) in spite of efforts at regularization, see the next figure for an illustration.
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The most general solution to this difficulty, while preserving a Lagrangian nature of mesh motion
is to relax the constraints on mesh topology and allow reconnection. The idea of using mesh recon-
nection to solve partial differential equations is not new. To the best of our knowledge, in context of
computational gas dynamics the ideas related to mesh reconnection were first used in [155] In this
seminal paper the authors suggest to use a set of point Lagrangian particles and surround them
with domains (parcels) to describe the media. The shape and size of these parcels are determined
by the positions of the particles. The connectivity of the set of particles is not fixed but can vary
with time depending on relative positions of the particles. After connectivity is established the set
of neighboring particles defines the stencil on which Lagrangian equations are discretized.
Paper [155] has all basic ideas that lead to development of so-called free-Lagrange (or free-
Lagrangian) methods, [156, 157, 158], which were very popular in 80’s and early 90’s The name
free-Lagrange was introduced in [159] and the corresponding code was called FLAG at LANL.
More recently in the context of cell centered Lagrangian scheme S. Del Pino in [160] has developed
a metric-based adaptation technique which also allows automatic triangular mesh reconnection. Al-
lowing mesh reconnection is not a new idea per se and several related subjects can be found in the
recent literature such as [161], [160] and [162, 163].
In paper [26] a detailed discussion on so called free-Lagrangian methods enlights that these are not

genuinely “Lagrangian” methods. Because free-Lagrangian methods are not really Lagrangian then,
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Figure 2.7 – Example of Voronoi meshes from mother nature. Left : dragonfly wings. Middle : girafes. Right : turtle.

explicitly or implicitly, they incorporate a rezone phase, and consequently, a corresponding remap
phase. Some of them explicitely states this remap phase. Nevertheless if the free-Lagrange method
does not have a remap phase, errors related to it will manifest itself one way or another. It leads us
to the conclusion that methods where connectivity of the mesh can change have to be developed
in reconnection-based ALE (ReALE) framework, where rezone stage includes reconnection. Let us
note that similar philosophy was used in [147], even so authors of [147] do not call their method
ALE or free-Lagrange.
As standard for ALE method, the main elements in ReALE simulation are an explicit Lagrangian

phase in which the solution and grid are updated (without changing connectivity), a rezoning
phase in which a new grid is defined (which includes changing connectivity and also adding or
deleting cells or vertices of the parcels), and a remapping phase in which the Lagrangian solution
is transferred (conservatively interpolated) onto the new grid. Our rezoning phase allowing mesh
reconnection is based on the Voronoi machinery, however for the sake of clarity we remind some
aspects of it in the next paragraph.

“Voronoi machinery”

Voronoi diagrams were first investigated by René Descartes (French philosopher 1596-1650)
and applied by Lejeune Dirichlet (Belgium/German mathematician 1805-1859) when exploring
quadratic forms, however the diagrams were named after Georgy E. Voronoi (Ukrainian mathe-
matician 1868-1908). To be fair the real inventor of these diagrams is Mother Nature as illustrated
in Fig.2.7.

Given generators Gi, i = 1, 2, . . . , G, a distance function d(Gi,Gj) the Voronoi cell Ωj is the set of
all points closer to Gj than to any of the other Gi

Ωj =
{
X s.t d(G,Gj) < d(X ,Gi), ∀ i = 1, . . . , G, i 6= j

}
. (2.3)

A collection of Voronoi cells {Ω1, Ω2, . . . , ΩG} defines the Voronoi tesselation of IR2 associated to the
set of generators. For now we implicitely clip the Voronoi tesselation to the computational polygonal
domain.
The “Voronoi machinery” denotes the ability of Voronoi tesselation to assimilate new generators
and to perform the necessary modification of connectivity that the presence of these new generators
implies. For example in Fig. 2.8 the Voronoi machinery is illustrated when generators (red dots) are
successively added (two sequences are shown : 5, 6, 7 and 11, 12, 13 generators). On purpose the
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Figure 2.8 – Example of Voronoi meshes obtained from a set of generators (red dots). Cell centroids (blue crosses) gen-
erally do not coincide with generators. This illustrate the reconnection ability of the Voronoi machinery when generators
are added. Top panels : sequence with 5, 6, 7 generators. Bottom panels : sequence with 11, 12, 13 generators.

generators are located close to the domain center, this illustrates the possible roughness of a Voronoi
mesh : close cells can have very different surfaces, number and size of edges, shape, etc. Moreover
if Xc denotes the centroid of the Lagrangian cell Ωc, according to

Xc =
1
| Ωc |

∫

Ωc

XdV,

where | Ωc | denotes the volume of the cell Ωc then we observe in Fig. 2.8 that the centroids (blue
crosses) almost never coincide with the generators (red bullets). In fact when these two coincide
then the Voronoi tesselation is called Centroidal Voronoi Tesselation (CVT), see Fig.2.9 last panel. In
IR2 a CVT is a mesh made of perfect hexagonal cells. One simple constructive iterative algorithm to
obtain a CVT (and smooth a Voronoi tesselation when convergence is not reached) is due to Lloyd
[164] :

0. Iteration k. Start with generators
{
Gk

i
}

, i = 1, . . . , G.

1. Build Voronoi cells Ωk
i associated to Gk

i for all i = 1, . . . , G.

2. Compute Xk
i centroid of Voronoi cell Ωk

i for all i = 1, . . . , G.

3. Set Gk+1
i = X i for all i = 1, . . . , G.

4. If satisfied with obtained mesh quit, else k← k + 1 and go back to 1.

In Fig.2.9 one presents an example of the result of the iterative Llyod’s algorithm [164] for iterations
1, 2, 3, 10, 20 and 100. This shows that initialy non uniformly distributed generators produce a
non-smooth Voronoi tesselation whereas the successive meshes obtained with Llyod’s algorithm are
more and more regular. At convergence (last panel) a centroidal Voronoi tesselation for which cen-
troid and generator do coincide is produced. A last drawback of Voronoi tesselation is its unpleasant
ability to create arbitrary small edges. For a hydrodynamical Lagrangian scheme small edge may
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Figure 2.9 – First panel : example of Voronoi mesh made of 106 generators (blue squares). Notice that cell centroid (red
circles) usually does not coincide with cell generator. Second to sixth panels : iterations 2, 3, 10, 20 and 100 of Llyod’s
algorithm which ultimately produces a centroidal Voronoi tesselation for which centroid and generator do coincide.
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drive the time step to zero, consequently we have added a specific “small edge cleaning” procedure.
Given a user-specified threshold edges which length is smaller are discarded and the connectivity
is modified accordingly. As instance on the last panel of Fig.2.9 some small edges have been kept,
as instance around point X = (0.2, 0.72) or (0.38, 0.28), and some edges have been discarded as
instance around X = (0.78, 0.56). As we will see in this the following sections incomplete CVT and
Voronoi machinery are heavily used in ReALE.

ReALE specifics : initialisation and Lagrangian phases

For ReALE all three phases (Lagrangian, Rezone and Remap) are supposed to satisfy specific re-
quirements which are different from standard ALE methods. We assume, that at the beginning of
the calculation (t = 0) as well at the beginning of each time step (after rezone phase) the com-
putational mesh consists of Voronoi cells corresponding to some set of generators. In other words
the distribution of generators entirely defines the mesh, see Fig. 2.8 for examples of Voronoi mesh.
Because of reconnection in rezone phase, the Lagrangian phase of the ReALE method has to deal
with discretization of the Lagrangian equations on general polygonal meshes and corresponding
update of this polygonal mesh is supposed to be Lagrangian. There are several papers dealing with
discretization of Lagrangian equation on general polygonal meshes [74, 78, 114, 147, 165, 166]. We
used the compatible mimetic finite discretizations [53, 54] on staggered mesh, which is historically
close to [74, 78, 114] for ALE INC(ubator) (see previous chapter) and the CELIA team used the
newly developed cell-centered discretizations based on Godunov approach [45, 49, 50].

ReALE specifics : rezone phase

The rezone phase of ReALE has to include both mesh movement and reconnection procedure.
In paper [26] we used a set of generators and the machinery of Voronoi diagrams to do both
mesh movement and mesh reconnection, see Fig.2.8 for an illustration of mesh reconnection via
the Voronoi machinery. More precisely our rezone strategy consists of a special movement of gener-
ators. It is close to Lagrangian in some sense, but also include some smoothing procedure based on
notion of centroidal Voronoi tesselation (CVT see the previous paragraph) [167]. The final position
of a generator at time tn+1 = tn + ∆t where ∆t is the current time step is

Gn+1
c = G

n+1,lag
c + ωc

(
Xn+1

c −Gn+1,lag
c

)
, (2.4)

where the position vector of the generator of the Lagrangian cell Ωn
c is denoted Gn

c , and Gn+1,lag
c is

a Lagrangian-like displacement of the generator obtained by :

G
n+1,lag
c = Gn

c + ∆tUc, (2.5)

where Uc is the “Lagrangian” velocity of the generator within the cell. This velocity is computed so
that the generator remains located in the new Lagrangian cell. To this end we define this velocity to
be the average of the velocities of the points of the cell, namely

Uc =
1

| P(c) | ∑
p∈P(c)

U
n+ 1

2
p .

Remind that P(c) denotes the set of points of the Lagrangian cell Ωc and U n+ 1
2

p is the time-centered
velocity of point p between times tn and tn+1 used to displace mesh point Xn

p to its new position
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Xn+1
p , that is to say following equation

Xn+1
p = Xn

p + ∆t U n+1/2
p .

Finally ωc ∈ [0; 1] in (2.4) is a parameter that remains to be determined. The updated position of
the generator is therefore defined by mean of a convex combination between the new Lagrangian-
like position, Gn+1,lag

c and the centroid Xn+1
c of the Lagrangian cell. With this convex combination,

the updated generator lies in between its Lagrangian position at time tn+1 and the centroid of the
Lagrangian cell Ωn+1

c . We note that for ωc = 0 we get a Lagrangian-like motion of the generator
whereas for ωc = 1 we obtain a centroidal-like motion, which tends to produce a smoothed mesh.
This latter case is equivalent to perform one Lloyd iteration [167, 168], see section 2.3 and Fig.2.9.
We compute ωc requiring that the generator displacement satisfies the principle of material frame
indifference, that is for pure uniform translation or rotation we want ωc to be zero. To this end, we
construct ωc using invariants of the right Cauchy-Green strain tensor associated to the Lagrangian
cell Ωc between times tn and tn+1. First, we define the deformation gradient tensor F

F =
∂Xn+1

∂Xn ,

where Xn+1 = (Xn+1, Yn+1)t denotes the vector position of a point at time tn+1 that was located
at position Xn = (Xn, Yn)t at time tn. The deformation gradient tensor is nothing but the Jacobian
matrix of the map that connects the Lagrangian configurations of the flow at time tn and tn+1, in
the two-dimensional case its components write

F =

(
∂Xn+1

∂Xn
∂Xn+1

∂Yn

∂Yn+1

∂Xn
∂Yn+1

∂Yn

)
.

The right Cauchy-Green strain tensor, C, is obtained by right-multiplying F by its transpose, i.e.

C = FtF.

In our case, C is a 2× 2 symmetric positive definite tensor. This tensor reduces to the unitary tensor
in case of uniform translation or rotation. It admits two positive eigenvalues, which are denoted λ1
and λ2 with the convention λ1 ≤ λ2. These eigenvalues can be viewed as the rates of expansion in
directions given by the eigenvectors during the transformation. To determine ωc, we first construct
the cell-averaged value of the deformation gradient tensor, Fc, and then the cell-averaged value of
the Cauchy-Green tensor by setting Cc = Ft

cFc. Noticing that the two rows of the F matrix correspond
to the gradient vectors of the X and Y coordinates, we can set Ft =

[∇nXn+1,∇nYn+1], where for

any functions ψ = ψ(Xn), ∇nψ =
(

∂ψ
∂Xn , ∂ψ

∂Yn

)t
. With these notations, let us define the cell-averaged

value of the gradient of the ψ function over the Lagrangian cell Ωn
c

(∇nψ)c =
1
| Ωn

c |
∫

Ωn
c

∇nψdV =
1
| Ωn

c |
∫

∂Ωn
c

ψNdS.

Here, we have used the Green formula and N is the unit outward normal to the boundary of the
cell Ωn

c refered as to ∂Ωn
c . Assuming that this cell is a polygon and using the trapezoidal rule we

obtain the following approximation for the previous integral

(∇nψ)c =
1
| Ωn

c |
|P(c)|
∑
p=1

1
2

(
ψn

p + ψn
p+1

)
Ln

p,p+1N
n
p,p+1, (2.6)
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where ψn
p is the value of ψ evaluated at point Xn

p and Ln
p,p+1N

n
p,p+1 is the unit outward normal to

the edge [Xn
p ,Xn+1

p ]. Applying (2.6) to ψ = Xn+1 and ψ = Yn+1 we get a cell-averaged expression
of the gradient tensor F and then deduce from it the cell-averaged value of the right Cauchy-Green
tensor Cc. Knowing this symmetric positive definite tensor in each cell, we compute its real positive
eigenvalues λ1,c, λ2,c. We finally define the parameter ωc as follows

ωc = f (λ1, λ2) =
1− αc

1− αmin
, (2.7)

where αc =
λ1,c
λ2,c

and αmin = minc αc. We emphasize the fact that for uniform translation or rotation
λ1,c = λ2,c = 1 and ωc = 0, therefore the motion of the generator is quasi Lagrangian and we fulfill
the material frame indifference requirement. For other cases, ωc smoothly varies between 0 and 1.
The behavior of ωc parameter has been tested with ReALE on Sedov problem [169] in Fig. 2.10 for
three different generator displacement strategies : ωc = 0 to get a Lagrangian-like motion, ωc = 1
to obtain a centroidal-like motion, and ωc defined by (2.7) using the strategy previously described.
While the quasi-Lagrangian motion produces irregular mesh and results the centroidal-like motion
generates an ultra regular and smoothed solution. However the mesh is so smoothed that the flow
features (compressed cells after the shock wave as instance) have been litteraly washed out. Also
notice that the part of the mesh at radius greater than 1 has not been attained by any wave at
time t = 1. Consequently one expects the rezone/reconnection strategy to spare this region from
smoothing. This is clearly not the case for the centroidal motion 7. Conversely the deformation-
tensor based generator motion furnishes a regular mesh and a more accurate solution than the
quasi-centroidal motion. Above and over the generators have followed the fluid motion in an almost
Lagrangian fashion without washing out the flow feature. Finally for the region beyond radius one,
the generator velocity being zero, the original mesh is maintained untouched. This is due to the fact
that λ1,c = λ2,c = 1 then ωc = 0 leading to a Lagrangian motion of generators the velocity of which
is 0 (no wave has attained this region yet).

ReALE specifics : remap phase

In the remapping phase, the Lagrangian solution is transferred (conservatively interpolated) onto
the rezoned mesh. Lagrangian mesh is the result of one time step Lagrangian movement of the
Voronoi mesh corresponding to the distribution of the generators at the previous time step. The
new rezoned mesh is the Voronoi mesh corresponding to the positions of generators created by
the rezone phase. During the rezone phase generators are moved in an "almost" Lagrangian way
and because Voronoi cells are changing their shape continuously with respect to positions of the
generators ; rezoned and Lagrangian meshes are "close". However, in general, the connectivity of
the Lagrangian and rezoned mesh are different. Consequently remapping methods have to be able
to conservatively transfer flow parameters from one polygonal mesh to another. We use an exact
intersection (overlay) based remap [129, 147, 127, 128], see the Remap phase paragraph of the section
history and presentation in this chapter. However, one could take advantage of how Lagrangian
and rezoned meshes are constructed and design more efficient methods [170, 171, 172, 173] which
has been done for CHIC code as instance.

7. Modifying untouched regions is one unacceptable feature of many rezoning strategies. Intrinsically, if the initial
mesh is not optimal with respect to the underlying metric of the rezoner, sooner or later the algorithm will try to
“optimize” the mesh in places where the user does not expect it to happen. Some solutions using triggers and filters can
delay this feature but once nodes are marked for rezoning then the flaw will emerge.
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Figure 2.10 – Results from [26]. Sedov problem at time t = 1.0 for different generator displacement strategies—
Staggered ALE INC(ubator) code — Top panels : mesh. Bottom panels : density as a function of radius for all cells vs
the exact solution (line) — (a) Quasi-Lagrangian generator motion ωc = 0 — (b) Quasi-centroidal generator motion
ωc = 1 — (c) Deformation-tensor based generator motion ωc = f (λ1, λ2).
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ReALE results

In paper [26] we have performed a set of test cases to show the behaviors of the ReALE technique
with ALE INC(ubator) and CHIC codes. The Sedov test case has been used as a sanity check as
almost no reconnection occurs and it has been shown that the reconnection treatment does not
pollute the computation.
Next we have considered a two-material Riemann problem in 2D, the so-called triple point problem
depicted in Fig. 2.11.

ρ
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γ =1.5

p=1
1

1

ρ
3
=0.125

3p =0.1
γ
3
=1.5

ρ
2
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p
2=0.1
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3

70 1

y

x

1.5

Figure 2.11 – Figure from paper [26]. Triple point problem initialization.

Due to the difference of density and gamma, two shocks in top and bottom domains propagate with
different speeds. This creates a shear along initial horizontal contact discontinuity and a vorticity
formation. Capturing the vorticity is the difficult part of such simulation when standard Lagrangian
or ALE methods are used. In the following figure one reproduces the triple point problem results for
Lagrangian, ALE and ReALE. These figures are devoted to visually measure “how much Lagrangian
a method is”. In such figures one displays the mesh where the cells have been colored according
to in which domain they were initially located (white, red or orange). This way of presenting the
results allows to observe if each cell move in an almost Lagrangian fashion. (In fact in this test case
the orange cells must roll over with the white ones due to the vortex motion.)
In Fig.2.12 the first panel (time t = 1.67) corresponds, more or less, to the time after which any

Lagrangian scheme inexorably fails due to mesh tangling. In the second and third panels of Fig.2.12

are displayed the ALE/ReALE results at final time t = 5. The second panel clearly shows the stag-
nation of the ALE mesh. During the Lagrangian stage of ALE the mesh is trying to follow the flow,
but the development vorticity eventually leads to a tangled mesh. Next the rezoning step slightly
relaxes the mesh and as such acts against the mesh motion. On the next time step of the Lagrangian
phase, the mesh is trying to follow vorticity development and, again, is approaching a tangling
situation. The fixed connectivity ALE mesh is the result of these competing processes : ultimately
the mesh stagnates. ALE regime freezes the mesh to a position and the computation continues in
an almost Eulerian fashion (as Lagrange+Remap because the rezone phase systematically backs up
the Lagrangian tn+1 mesh onto the previous tn Lagrangian mesh).
ReALE regime, third panel of Fig.2.12 nicely follows the vortex as cells are carried within the vortex
in an almost Lagrangian fashion. As a consequence ReALE has a better accuracy as Voronoi cells
are able to roll up and reconnect to new neighbors when necessary. This attests the ability of ReALE
to properly follow such type of fluid motion.

In Fig. 2.13 one reproduces on the left the mesh and specific internal energy (left panels) and, the
mesh where the cells have been colored according to the domain they were initially located (middle
panels). On right panels we display the value of ωc which shows that the regions where ωc > 0.7 are
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Figure 2.12 – Results from paper [26]. Triple point problem results for Lagrangian, ALE and ReALE. The colors
corresponds to the initial position of the cell within the three materials in Fig. 2.11 (Results from CHIC code.)

clearly the regions where directional deformation occurs and where the mesh must be smoothed by
the CVT technique.

The last test case proposed in [26] is the Rayleigh-Taylor instability. While fixed ALE results
present the mesh stagnation as for the triple point problem (ultimately fixed ALE runs in a La-
grangian+Remap regime), the ReALE approach is able to follow the complex motion of the fluids
see Fig. 2.14. In this figure one only reproduces the results at later time t = 15 when the top heavy
fluid has reached the bottom and moves upward. Due to the vorticity, mixing between the two fluids
does occur. (Usually with fixed ALE one shows the final time t = 7 or 8 before stagnation occurs. In
paper [26] we have also presented intermediate times from t = 8 to t = 15 showing the efficiency of
ReALE). The density, mesh, vorticity and cells colored by initial location are shown.

The paper [27] entitled “ReALE : a Reconnection Arbitrary-Lagrangian-Eulerian method in cylindrical
geometry” has extended the ReALE concept to cylindrical geometry. In this paper we have shown
that the whole ReALE concept does adapt to an already existing ALE code in cylindrical geometry
(CHIC code in this case). Several test cases in cylindrical geometry have been run to assess this
point, Sedov blastwave, an Helium/bubble shock interaction test (compared with experimental
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results), and the rise of a light bubble under gravity. In Fig. 2.15 one reproduces the results on the
Helium/bubble shock interaction test case for different times (the test case is depicted on the very
next figure). In Fig. 2.16 one reproduces the rise of a light bubble under gravity (density, vorticity,
velocity vector and mesh are displayed). The velocity vectors clearly show that due to high vorticity
mesh reconnection occurs. Details and comments are to be found in paper [27].

The papers [26, 27] are reproduced in the following pages.



142 Chapter 2. Arbitrary-Lagrangian-Eulerian schemes

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.13 – Numerical results from paper [26]. Triple point problem at several times for ReALE for internal energy
and mesh (left) and cell color corresponds to the initial position in the domain (middle) and factor ωc (right). From top
to bottom : times t = 1, 3, 4.5, 5. t = 1 corresponds to the failure time for the Lagrangian version of the code, t = 4.5
roughly corresponds to the mesh stagnation time for the fixed ALE version although the ALE code runs until completion.
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Figure 2.14 – Numerical results from paper [26]. Rayleigh-Taylor instability with CHIC code — ReALE with 66× 200
generators at t = 15 — Density, vorticity and, mesh and cells colored from their initial domain (red : from top-heavy
fluid, white : from bottom-light fluid). Vorticity scale is from −11.78 to 9.63 (blue for the minimal value to red for the
maximal one).
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Figure 2.15 – Numerical results from paper [27]. ReALE in cylindrical geometry results on the M = 1.25 shock
interaction with a spherical helium bubble — Left : density waves in the domain. Middle : zoom on mesh and density
(color) around the bubble. Right : Schlieren graphics (experimental results from [174]) — From top to bottom : tb =
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Figure 2.16 – Numerical results from paper [27]. Top sketch : rise of a light bubble under gravity, the light bubble
(Zone I) has a radius of R1 and a transition layer is initialized between R1 and R2 (Zone II). The rest of the domain
R > R2 is some air at rest (Zone III) where R =

√
R2 + Z2. Gravity is oriented in the Z direction. The pressure and

internal energy profiles are sketched in the right panel — 3× 3 panels : numerical results from ReALE in cylindrical
geometry — Left column : density and mesh — Middle column : vorticity and mesh — Right column : velocity vectors
— Top-bottom : time t0 = 0, t1 = 1, t2 = 8, t4 = 14.
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a b s t r a c t

We present a new reconnection-based arbitrary-Lagrangian–Eulerian (ALE) method. The
main elements in a standard ALE simulation are an explicit Lagrangian phase in which
the solution and grid are updated, a rezoning phase in which a new grid is defined, and
a remapping phase in which the Lagrangian solution is transferred (conservatively interpo-
lated) onto the new grid. In standard ALE methods the new mesh from the rezone phase is
obtained by moving grid nodes without changing connectivity of the mesh. Such rezone
strategy has its limitation due to the fixed topology of the mesh. In our new method we
allow connectivity of the mesh to change in rezone phase, which leads to general polygonal
mesh and allows to follow Lagrangian features of the mesh much better than for standard
ALE methods. Rezone strategy with reconnection is based on using Voronoi tessellation.
We demonstrate performance of our new method on series of numerical examples and
show it superiority in comparison with standard ALE methods without reconnection.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In numerical simulations of multi-dimensional fluid flow, the relationship of the motion of the computational grid to the
motion of the fluid is an important issue. One of two choices is typically made: a Lagrangian framework or an Eulerian frame-
work. In the Lagrangian framework, the grid moves with the local fluid velocity, while in the Eulerian framework, the fluid
flows through a grid fixed in space. More generally, the motion of the grid can be chosen arbitrarily. The philosophy of the
arbitrary-Lagrangian–Eulerian methodology (ALE; cf. [64,19,20,70,71,81,100,93]) is to exploit this degree of freedom to im-
prove the accuracy and efficiency of the simulation. The main elements in an standard ALE simulation are an explicit
Lagrangian phase in which the solution and grid are updated, a rezoning phase in which a new grid is defined, and a remap-
ping phase in which the Lagrangian solution is transferred (conservatively interpolated) onto the new grid [93]. Clearly ALE
also includes Lagrangian approach when the mesh is not changing during rezone phase. It is important to note that Eulerian
simulation can be considered as a limiting case of ALE when the rezoned mesh coincides with the mesh at the beginning of
the Lagrangian step – such implementation of Eulerian methodology is usually called Eulerian-as-Lagrange-Plus-Remap
[123,101] as opposed to direct Eulerian approach [38] in which gas dynamics equations in Eulerian form are directly solved.
Therefore, ALE methodology is very flexible and successfully used to solve complicated problems.

The numerical methods related to Lagrangian phase of ALE are relatively well developed (for example [20,28,29,18,31,
83,30,32,40,33,109,108,110,34,91,16,104,88,89,87]), as well as the remapping phase (being considered as conservative inter-
polation or advection) [20,94,77,61,84,101,124,49,21,48,98].
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Our opinion is that the most difficult and least developed phase of ALE is the rezoning phase. A review of existing rezone
strategies for ALE methods is presented in [74] including analysis of alternative approaches [81,120,45,19,57,100,24,
129,9,47,128]. A review of a more general class of methods, namely moving mesh methods, is presented in [79].

Ideally the mesh has to adapt to the solution. Any adaptive scheme is composed of three main ingredients: an optimal-
mesh criterion, an error estimator or error indicator, and an algorithm of the strategy for the mesh improvement. These
ingredients answer to the following questions: How should the optimal mesh be defined? Where are mesh changes re-
quired? And how should the improved mesh be constructed? For standard ALE methods a strategy for mesh improvement
is based on moving the spatial grid. Generally speaking the goal of rezoning is to improve the efficiency of the ALE method,
that is, to achieve a given accuracy with the least amount of ‘‘work”. ‘‘Work” in this context should be understood not only as
the CPU time but also as memory and man-hour resources. However, to design an adaptive method one needs a quantitative
assessment of optimality. The problem is that, for non-linear equations of gas dynamics in 2D and 3D, at the moment, it is
not feasible to obtain such quantitative assessment. For this reason practitioners are usually using some qualitative ap-
proaches. In real complex ALE simulation the most basic goal of rezoning is simply to run calculation to completion without
user intervention and still achieve reasonable accuracy (recall that we always can run ALE in Eulerian = Lagrange-Plus-Re-
map mode, which will be robust but less accurate). Even this goal is usually not achieved in most production ALE codes.
For example, even for very popular methods based on Winslow smoothing, [128,129], practical simulations require the intro-
duction of numerous geometrical and physics-based triggers and lockers, that is, mesh constraints that typically keep a node
Lagrangian until some condition is reached e.g. element quality criterion (to detect cell distortion or collapse) or physical
condition is reached in surrounding elements (for example, did the cell fully detonate?) [100,14,15,65].

As it is mentioned in [14,15], the mesh movement philosophy applied to most applications, related to high-speed multi-
material flows, is to develop algorithms that will move the mesh in such a way as to maintain robustness while staying as
close as possible to the Lagrangian mesh motion. The Lagrangian mesh motion naturally follows most flow features of inter-
est such as shocks, material interfaces and steep gradients and allows users to focus zoning in materials of interest. Mesh
relaxation is then used in regions of high material deformation to improve mesh quality. In standard ALE methods, which
use fixed mesh topology, nodes are moved to refine mesh some areas of the problem at the expense of coarsening mesh
in other parts of the problem. Generally, the increase of mesh resolution is limited, and, most importantly it can degrade
the mesh quality leading to robustness problems. One of the most cited papers in mesh rezoning is [24], where authors
use variational approach to combine requirements related to maintaining geometric quality of the mesh and some mesh
adaptation based on equidistribution of some error indicator. Functional which is responsible for mesh smoothness essen-
tially can be considered as a variational form of Winslow approach for which the corresponding optimization problem is well
behaved. In contrast, the functional responsible for error equidistribution, if used by itself, has multiple local minima and its
minimization can lead to tangled mesh. A difficulty arises when one tries to combine these – how should one weight the
relative importance of these separate goals and still obtain a well behaved optimization process? In particular, the two global
functionals have distinct (physical) dimensions, and so, can only be combined with some dimensional constant. At present,
there is no theoretical basis for choosing this constant, thus delegating the decision to the user. In practice, bad choice of this
parameter can lead to loss of accuracy (if the mesh is over-smoothed) or robustness problem (if the mesh becomes tangled).

In our opinion, the main reason for this is that standard ALE codes utilize a fixed topology mesh, defined at the outset,
which in general will not be able to adapt to the dynamically evolving interface shape (or contact discontinuity) in spite
of efforts at regularization (see Section 2 for more details). The most general solution to this difficulty, while preserving a
Lagrangian nature of mesh motion is to relax the constraints on mesh topology and allow reconnection.1

The idea of using mesh reconnection to solve partial differential equations is not new. To the best of our knowledge, in
context of computational gas dynamics the ideas related to mesh reconnection were first used in [99].2 In this seminal paper
the authors suggest to use a set of point Lagrangian particles and surround them with domains (parcels) to describe the media.
The shape and size of these parcels are determined by the positions of the particles. The connectivity of the set of particles is not
fixed but can vary with time depending on relative positions of the particles. After connectivity is established the set of neigh-
boring particles defines the stencil on which Lagrangian equations are discretized.

In our opinion paper [99] has all basic ideas that lead to development of so-called free-Lagrange (or free-Lagrangian)
methods, [55,23,121], which were very popular in 80s and early 90s The name free-Lagrange was introduced in [39] and
the corresponding code was called FLAG. We need to analyze the main features of free-Lagrange approach in order to pre-
cisely position our new reconnection-based ALE method with respect to well established methods.

We start our analysis with methods, which we will call pure free-Lagrangian methods, [95,122,54,114,113,107,10]. In
these methods, the fluid is represented by point particles surrounded by parcels. Each particle and its corresponding parcel
represent a single material, that is, there is no mixed (containing several materials) parcel. Mass exchange between par-
ticles is forbidden. Flow variables are stored at the particle within each parcel, which moves in a ‘‘Lagrangian” fashion.
The shape of the parcel is determined by constructing Voronoi mesh [96], in which each particle (generator, site) is en-

1 Let us also mention interesting approach of combining standard ALE method with adaptive mesh refinement (AMR) [3]. In this, approach authors allows
subdivision of the cell into smaller cells similar to standard Eulerian AMR methods. Formally, it can be considered as connectivity change. Our opinion is that
objective of ALE AMR is to increase local resolution. This method has all drawbacks of standard ALE methods with fixed connectivity.

2 In this paper we are not considering meshless methods, like smoothed particle hydrodynamics – SPH – interested readers can refer for example to
[23,80,66].
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closed within convex polygonal cell. By definition, in a Voronoi mesh each cell encloses all points in the domain which are
closer to the corresponding particle than to any other particle. The mesh is fully reconstructed after some number of time
steps to allow grid connectivity to change naturally under influence of shear or vorticity. Connectivity of Voronoi mesh
uniquely defines the ‘‘neighbors” that is particles which parcels share edge with given particle. These neighbors define
the stencil on which gas dynamics equations are approximated. In ‘‘pure” free-Lagrange, one approximates some form
of Lagrangian equations. Several discretization approaches are possible, for example, mimetic finite difference [95], or
Godunov-type methods [10]. The energy equation can be approximated in conservative form [10], or in non-conservative
form as in [95]. In later case mimetic approach is used to guarantee conservation of total energy. There are also different
approximations used for continuity equation. Most standard approach is to define density as ratio of particle mass (which
is constant in time) and volume of the corresponding parcel. However, one also can define the volume from a special evo-
lution equation as it is usually done in Godunov based methods. Let us emphasize that there is no ‘‘remapping” phase in
‘‘pure” free-Lagrangian methods.

Now let us discuss how pure are ‘‘pure” free-Lagrangian methods. Such analysis requires the definition of what is a
Lagrangian method. One can define a Lagrangian method as a method where equations in Lagrangian coordinates are
approximated. That is to say, governing equations do not have advective terms; in other words no exchange of mass,
momentum and energy between these particles is allowed. In case of ‘‘pure” free-Lagrangian methods these two criteria
are satisfied. But this is not enough to call method Lagrangian. For a Lagrangian method the boundary of parcel has to move
in Lagrangian fashion too. Unfortunately, for ‘‘pure” free-Lagrange it is not the case because parcels are Voronoi cells and the
vertices of the Voronoi cell are not moved independently in a Lagrangian way but defined from positions of the particles in a
very non-linear way [95]. It is well known [55,23,121] that a Voronoi cell is not a Lagrangian object and it is rigorously pro-
ven in [118] that for ‘‘pure” free-Lagrangian methods discrete continuity equation is not consistent (order of approximation
is zero) with continuous continuity equation; it also means that the so-called Geometric Conservation Law (GCL), [53,87],
which can affect stability of the method, [53], is not fulfilled. It usually implies that small changes in the particle positions
(especially if two particles are very close to each other) can lead to very large change of the volume. Non-Lagrangian behav-
ior of Voronoi cell dramatically decreases accuracy near contact discontinuity. There are several approaches which intend to
mitigate non-Lagrangian behavior of Voronoi cells. For example, in [95,114] special type of artificial viscosity was introduced
which helps to regularize the particle positions and do not allow particles to be to close to each other. In [10] some correc-
tions to velocity of generators are introduced and in [67] special artificial forces are introduced to correct shape of parcels.
Another approach is to keep Voronoi mesh inducing connectivity, but define parcel shape using so-called median mesh
[107], where the coordinates of vertices are defined by simple interpolation of a particle position and its two consecutive
neighbors. It leads to non-convex shape of parcels and abrupt change in parcel volume when the connectivity of the mesh
is changing (in contrast volume and shape of Voronoi cells are continuous in time, but are not Lagrangian objects). This
clearly contradicts another important property of Lagrangian parcel: its shape is supposed to change continuously in time
including instances when connectivity changes. Because of abrupt change of volume of the parcel some remapping is needed.
The conclusion of this analysis is that even pure-Lagrangian method are neither ‘‘pure” nor ‘‘Lagrangian”. Still as demon-
strated, for example in [10,67,12,68,11,114] these types of methods can be very successful for particular problems, but each
problem requires some special strategy to mitigate non-Lagrangian nature of Voronoi cells.

There were several other ‘‘free-Lagrangian” methods, which differ in how connectivity of the mesh is established, spatial
centering of flow parameters (particle centered, parcel centered, staggered), what form of equations are used, what type of
discretization is used, implicit or explicit, some of the methods having explicit remap phase, and so on. Interested reader can
refer to the following papers [51,39,50,115,35,36,63,126,6,97,13,5,56]. Very educational are the roundtable discussions
published in [55,121]. The conclusion is that these ‘‘free-Lagrangian” methods are even less Lagrangian than ‘‘pure” free-
Lagrangian methods, which we have analyzed in previous paragraph. However, all of these methods allow change of connec-
tivity of the mesh with time.

Our belief is that because free-Lagrangian methods are not really Lagrangian then, explicitly or implicitly, they incorpo-
rate a rezone phase, and consequently, a corresponding remap phase. Some of them explicitly states this remap phase. Nev-
ertheless if the free-Lagrange method does not have a remap phase, errors related to it will manifest itself one way or
another.

It leads us to the conclusion that methods where connectivity of the mesh can change have to be developed in reconnec-
tion-based ALE (ReALE) framework, where rezone stage includes reconnection. Let us note that similar philosophy was used
in [45,1,37], even so authors of [45,1,37] do not call their method ALE or free-Lagrange.

Let us finally note that when we were writing this paper we became aware of the paper [119]. In this paper the author
proposed a new formulation of continuum hydrodynamics based on an unstructured grid. In this work the mesh is defined as
the Voronoi tessellation of a set of discrete mesh-generating points. The gas dynamics equations are solved using a Godunov-
type finite-volume scheme on a moving Voronoi mesh. This approach corresponds to a direct ALE strategy (no explicit
Lagrangian, rezone and remap phases-governing equations are written in moving coordinate system) in which the motion
of the grid is ruled by prescribing the velocities of the mesh generators. The numerical results obtained with this method
are quite impressive and display its robustness and accuracy. However, we note that this method may suffer from several
limitations. First, this is by construction a mono-material formulation since the author is using a direct ALE strategy. We be-
lieve that its multi-material extension is far from being obvious. We also note that this ALE scheme does not fulfill GCL
requirement. This flaw can lead to severe problems.
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As standard for ALE method, the main elements in ReALE simulation are an explicit Lagrangian phase in which the solu-
tion and grid are updated (without changing connectivity), a rezoning phase in which a new grid is defined (which includes
changing connectivity and also adding or deleting cells or vertices of the parcels), and a remapping phase in which the
Lagrangian solution is transferred (conservatively interpolated) onto the new grid. Flowchart of the entire ReALE algorithm
is presented in Section 5. For ReALE all three phases are supposed to satisfy specific requirements which are different from
standard ALE methods.

We assume, that at the beginning of the calculation (t = 0) as well at the beginning of each time step (after rezone phase)
the computational mesh consists of Voronoi cells corresponding to some set of particles (generators, sites), that is, distribu-
tion of generators defines the mesh. Initialization of the mesh as well as necessary definitions related to Voronoi diagrams
are given in Sections 3 and 4.

Because of reconnection in rezone phase, the Lagrangian phase of the ReALE method has to deal with discretization of the
Lagrangian equations on general polygonal meshes and corresponding update of this polygonal mesh is supposed to be
Lagrangian. There are several papers dealing with discretization of Lagrangian equation on general polygonal meshes
[25,27,26,45,116,117]. In this paper we will use compatible mimetic finite discretizations [28,29] on staggered mesh, which
historically close to [25,27,26] and newly developed cell-centered discretizations based on Godunov approach [91,89,87],
which satisfy GCL (contrarily to [45], which does not satisfy GCL). Necessary details about discretizations used in Lagrangian
phase of our ReALE methodology are presented in Section 6.

The rezone phase of ReALE has to include both mesh movement and reconnection procedure. In this paper we used a set
of particles (generators) and the machinery of Voronoi diagrams to do both mesh movement and mesh reconnection. That is
our rezone strategy consists of a special movement of generators. It is close to Lagrangian in some sense, but also include
some smoothing procedure based on notion of centroidal Voronoi diagrams [43]. The rezone phase of our new ReALE ap-
proach is described in Section 7.

In the remapping phase, the Lagrangian solution is transferred (conservatively interpolated) onto the rezoned mesh.
Lagrangian mesh is the result of one time step Lagrangian movement of the Voronoi mesh corresponding to the distribution
of the generators at the previous time step. The new rezoned mesh is the Voronoi mesh corresponding to the positions of
generators created by the rezone phase. During the rezone phase generators are moved in an ‘‘almost” Lagrangian way
and because Voronoi cells are changing their shape continuously with respect to positions of the generators; rezoned and
Lagrangian meshes are ‘‘close”. However, in general, the connectivity of the Lagrangian and rezoned mesh are different. Con-
sequently remapping methods have to be able to conservatively transfer flow parameters from one polygonal mesh to an-
other. In this paper intersection (overlay) based remap is used [61,45,94,77], however, one can take advantage of how
Lagrangian and rezoned meshes are constructed and design more efficient methods [76]. The remapping phase is described
in Section 8.

We demonstrate the performance of our method on a set of numerical tests presented in Section 9. Finally, conclusions
and future work are summarized in Section 10.

2. Motivation

To motivate our research let us consider the Rayleigh–Taylor instability problem. It consists of two ideal gases with initial
densities qtop = 2 and qbottom = 1; in both cases the adiabatic constant is c = 1.4. Initially, the heavier gas is above the lighter
gas in a rectangular vessel [0:1/6] � [0:1], with gravitational field directed vertically downward and with magnitude g = 0.1.
The interface has been deliberately perturbed as described by formula yi(x) = 1/2 + 0.01 cos(6px). Initially both gases are at
rest; the pressure distribution is approximately hydrostatic and is defined in the lighter gas

P ¼ 1þ qtopg0:5þ qbottomgð0:5� yÞ;

and in the heavier as

P ¼ 1þ qtopgð1� yÞ:

It is well known that such configuration is unstable and as time progresses, the heavier gas will sink and the lighter gas will
rise through the formation of bubbles and spikes. Further details of the general theory of Rayleigh–Taylor instabilities can be
found in [78]. The time evolution of this problem leads to a rollup of the interface and the generation of significant vorticity.
This problem is poorly suited for Lagrangian methods, and is usually tackled using Eulerian or ALE techniques. As discussed
in Section 1, for standard ALE methods the mesh does not change connectivity. Improvement of the mesh on the rezone stage
is achieved only by moving nodes. Here we consider a standard ALE approach based on cell-centered Lagrangian method
described in [90,87], which uses Winslow approach at rezone phase [128]. In Fig. 1(a) we present meshes for time moments
t = 7, 8, 9; in Fig. 1(b) we present vorticity color map at the same time moments. On Lagrangian stage of ALE the mesh is
trying to follow the flow, but because of development vorticity it eventually leads to a tangled mesh. On rezone stage the
mesh is slightly relaxed, however on the next time step of the Lagrangian phase, the mesh is trying to follow vorticity devel-
opment and, again, is approaching a tangling situation. The meshes in Fig. 1(a) are the result of these competing processes.

In standard ALE method the mesh cannot change connectivity, and mesh with fixed connectivity has some limitation in
how much it can deform. In Fig. 2 we present fragment of the mesh at t = 8 (panel a) as well as only ‘‘horizontal” (panel b)
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and only ‘‘vertical” (panel c) logical lines of the mesh. From this figure it is clear that logically rectangular mesh cannot de-
form much further in regions where vorticity is developing. At some time moment the mesh eventually stagnates in subre-
gions where vorticity is still developing. Similar pictures can be found in [74] for ALE using staggered discretization and
reference Jacobian rezone strategy.

This stagnation means that in subregions where vorticity is developing ALE method with fixed connectivity actually be-
comes Eulerian in its Lagrange + Remap form. It leads to excessive smoothing of flow parameters at remapping stage, and
eventually to loss of accuracy in these regions. Moreover, because the mesh is logically rectangular, stagnation of the mesh
in some regions leads to locking of the mesh in other regions, resulting to loss of overall accuracy. Also stagnated mesh has a
low geometrical quality which additionally contributes to the loss of accuracy. One clearly sees that behavior of vorticity
presented in Fig. 1(b) is not physical because it oscillates from positive to negative at neighboring cells, which is especially
pronounced at t = 9. We believe that the resolution of this problem lies in allowing reconnection during the rezone stage of
ALE method. However, allowing reconnection at rezone phase has its implications on all phases of ALE. First of all, we need to
decide what is the mechanism of the reconnection. In this paper we use Voronoi tessellation machinery.

3. Voronoi tessellation

Let us consider a convex computational domain X in 2D. For a set of generators Gc = (xc,yc) 2X the Voronoi cell Xc is de-
fined as follows [96]:
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Fig. 1. Rayleigh–Taylor problem at time moments t = 7, 8, 9 – (a) Mesh fragments. (b) Vorticity color map. Color scale is from blue (minimal negative
vorticity) to red (maximal positive vorticity). White color corresponds to zero vorticity. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Xc ¼ fX ¼ ðx; yÞ 2 X : jX� Gcj 6 jX� Gc0 j; for all c – c0g ð1Þ

Voronoi cell Xc is a convex polygon, and the set of Voronoi cells defines the tessellation of X, that is, it covers X without
holes or overlaps. There are several generalizations of the definition of Voronoi cell for non-convex domains, like bounded
and constrained Voronoi diagrams [7,8,72], VPS (visibility shortest path) Voronoi diagrams [96, pp. 163–156]. In this paper
we will only consider convex computational domains and will not describe these generalizations. We use an incremental
algorithm for the construction of Voronoi tessellation which is described in [113]. In general any other available algorithm
can be used. In Fig. 3(a) we present Voronoi cells in the unit square which correspond to generators marked by�. For now on,
a cell Xc is referred to with its unique index c. By definition cell ~c is a neighbor of cell c if it shares a face with it. The set of
neighbors of cell c is denoted by CðcÞ. The set of vertices of cell c is denoted by PðcÞ. Any vertex of a Voronoi mesh is shared by
three cells only. The set of faces of cell c is denotes as FðcÞ, each face shares only by two cells. These relationships completely
define the connectivity of the mesh.

Depending on the position of generators, the Voronoi mesh can be genuinely non-uniform. One of the possible measures
of non-uniformity is how far is the centroid of a Voronoi cell from the generator corresponding to this cell. Let us introduce,
Xc, the centroid of the cell Xc as follows:

Xc ¼
1
jXcj

Z
Xc

X dV ;

where |Xc| denotes the volume of the cell Xc.
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Fig. 2. Fragment of mesh at t = 8: (a) Mesh fragment. (b) ‘‘Horizontal” logical lines. (c) ‘‘Vertical” logical lines.
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Fig. 3. Lloyd’s algorithm to smooth Voronoi mesh: (a) Initial mesh – (b) mesh after one iteration – (c) mesh after 10 iterations – (d) final ‘‘converged” mesh –
Crosses � correspond to positions of the generators. A circle � is the position of the centroid of the Voronoi cell which corresponds to a unique generator.

R. Loubère et al. / Journal of Computational Physics 229 (2010) 4724–4761 4729

In all panels of Fig. 3 positions of centroids are marked by circles � and position of generators are marked by crosses �.
Clearly, the closer the centroids and the generators are, the more uniform the mesh is. It brings us to an important new def-
inition: centroidal Voronoi tessellation (CVT) [43]. Voronoi tessellation is called centroidal Voronoi tessellation if the position
of the cell centroid coincides with the position of the corresponding generator. CVT type of meshes are asymptotically (as
number of generators goes to infinity) made of perfect hexagons inside the computational domain. Meshes of CVT type have
several attractive properties, in particular discretizations of partial differential equations are usually more accurate on such
meshes [69].

There is a very simple algorithm to create CVT depicted in Fig. 3. It starts with an arbitrary distribution of generators,
Fig. 3(a), and constructs its corresponding Voronoi tessellation. Then it computes centroids of the constructed Voronoi cells
and uses them as generators for a next iteration. The resulting mesh after one iteration is presented in Fig. 3(b). Let us note
that regularity of the mesh is visibly improved. The mesh after 10 iterations is presented in Fig. 3(c). Finally the converged
mesh is presented in Fig. 3(d). This algorithm is called Lloyd’s method, readers can refer to [43,42] for more details.

For the purposes of our paper one iteration of Lloyd’s algorithm can be considered as a mesh smoothing step, which, in
some sense, is analogous to a Winslow iteration for meshes with fixed connectivity. However, in Lloyd’s algorithm connec-
tivity of the mesh may change at each iteration.

4. Initialization

Modeling of any problem starts with the creation of an initial mesh. In our approach, an initial mesh is created by the
distribution of generators and the construction of the associated Voronoi mesh. As with any ALE method the initial mesh
reflects the knowledge about the underlying physical problem, for example, initial distribution of materials, direction and
shape of the main shocks and other important features of the flow. Let us repeat that the initial mesh has to be Voronoi mesh
and has to be consistent with rezone strategy. ‘‘Consistent” means that the initial mesh has to be constructed in such a way
that it will not change dramatically at rezone stage. This issue will be clarified in Sections 7 and 9. Another important issue is
that, as for any ALE method, we want to track material boundaries as close as possible. Therefore, initially, we are trying to
create a mesh, the cell faces of which coincide with material boundaries. Let us demonstrate some ideas on a simple example
of a bubble containing one material in a rectangular computational domain filled with another material, see Fig. 4 (this is a
fragment of the initial mesh for the shock–bubble interaction problem described in details in Section 9.3). For this problem it
is important to have an orthogonal mesh with mesh lines aligned with coordinate directions outside the bubble because a
vertical shock will approach the bubble from the right. As a consequence the shock direction will be aligned with the mesh. A
square mesh is the degenerate Voronoi mesh obtained with a regular distribution of generators; these are located at the cen-
ters of the squares. In order for the boundary of the bubble to be represented by faces of Voronoi cells, the generators have to
be located on the same distance from the boundary in orthogonal direction. In this case because the boundary is a circle of
some radius r, generators are located also on concentric circles of smaller, (r � Dr), an bigger, (r + Dr) radii. Inside the bubble,
generators are located on circles, which radii are equally distributed between 0 and r. On each circle we put a different num-
ber of generators such that the arc length between generators on each circle is approximately the same for all circles. It then
creates a pseudo polar mesh. This mesh is a little bit extended outside the bubble. Technically to combine a square mesh and
a pseudo polar mesh we first create generators which produce the square mesh, then generators which are located in disk of
radius r + 2Dr are removed and replaced by generators corresponding to the pseudo polar mesh. The resulting mesh is pre-
sented in Fig 4.

Similar techniques can be applied for fitting more complicated shapes, some ideas are presented in [102].
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Fig. 4. Mesh for a bubble in a rectangle.
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In some cases the faces of a Voronoi cell can be very small. In degenerate cases like a rectangular Voronoi mesh, some
edges actually have zero length. This situation is schematically presented in Fig. 5(a). In this figure the edge PACD PABC has
an almost zero length. Time step control for Lagrangian phase of ReALE method is based on minimal edge length over the
cell, see Section 6. Therefore, the presence of small edges can dramatically reduce the time step. The solution lays in the
introduction of a ‘‘cleaning” step that removes edges of the cell, which are small in comparison with a local characteristic
length.

In situation presented in Fig. 5 cell A has neighbors . . .B,C,D. . .. Cells D and B are not a neighbors. Removing edge PACD PABC

is equivalent to collapsing the two points into one point PABCD (the midpoint of segment [PACD,PABC]) schematically presented
in Fig. 5(b). It means that point PABCD is now shared by four cells A,B,C,D. Cells A and C do not share any edge, and cells A and C
do not have zero length edge anymore. We call this process small-edge cleaning. Cleaning is applied not only to zero length
edges but to all edges which are small in comparison with the local characteristic length. More details on cleaning is given in
Section 7. It is important to note that after the cleaning step, the computational mesh is not a Voronoi tessellation anymore.
In particular each point can be shared by more than three cells.

5. Flowchart of ReALE method

In Fig. 6 we describe the flowchart of ReALE method. Initialization stage is described in previous section. The result of this
stage is the mesh In = 0, which, in general, is an unstructured polygonal mesh obtained by the cleaning of a Voronoi mesh. On
the initialization stage we also define the initial condition for the degrees of freedom Un = 0 related to each particular Lagrang-
ian scheme, for example, for cell-centered discretization, these are density, velocity and pressure of the cell (any other var-
iable being deduced from them). First, the Lagrangian step uses the mesh I0. At time step n the Lagrangian scheme starts with
the rezoned mesh obtained from the previous time step. On Lagrangian stage the mesh is moving with the flow. The result of
the Lagrangian step is the Lagrangian mesh Ln + 1 and all physical quantities on this mesh – Unþ1

L . Recall that Lagrangian algo-
rithm has to deal with general polygonal meshes. Let us note that in the Lagrangian stage the generators do not play any role.
During the Lagrangian step the mesh does not change connectivity. This stage is described in Section 6.

On the rezone stage we define positions of generators Gnþ1
c and construct the associated Voronoi tessellation. It is followed

by a cleaning step. The result of the rezone phase is a general polygonal mesh Rn + 1. In general, connectivity of mesh Rn + 1 is
different from connectivity of mesh Ln + 1. However, the number of cells is the same. Details of the rezone stage are provided
in Section 7. For the remap stage we perform a conservative interpolation of flow parameters from Lagrangian mesh Ln + 1

onto rezoned mesh Rn + 1. Because in general these two meshes are polygonal meshes with different connectivities, one needs
to use an intersection (overlay) based remap method. The remapping stage is described in details in Section 8. Finally to start
new time step we set In + 1 as being the rezoned mesh Rn + 1. In other words the new Lagrangian step starts with the polygonal
mesh obtained as result of rezoning from the previous time step and the physical variables Un + 1 from the remap phase.

6. Lagrangian phase

In this section we present the discretization of the Lagrangian hydrodynamics over a general two-dimensional polygonal
grid that will be the first phase of our ReALE algorithm. We present two discretizations, the first one is based on a staggered
placement of the variables, whereas the second one is cell-centered. In Lagrangian hydrodynamics methods, a computational
cell moves with the flow velocity. In practice, this means that the cell vertices move with a computed velocity, the cell faces
being uniquely specified by the vertex positions. Thus, Lagrangian methods can capture contact discontinuity sharply in mul-
ti-material fluid flows. However, in the Lagrangian framework, one has to discretize not only the gas dynamics equations but
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Fig. 5. Cleaning of small edges: (a) before cleaning and (b) after cleaning.
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also the vertex motion in order to move the mesh. Moreover, the numerical fluxes of the physical conservation laws must be
determined in a compatible way with the vertex velocity so that the geometric conservation law (GCL) is satisfied, namely
the rate of change of a Lagrangian volume has to be computed coherently with the node motion. This critical requirement is
the cornerstone of any Lagrangian multi-dimensional scheme.

The most natural way to solve this problem employs a staggered discretization in which position, velocity and kinetic
energy are centered at points, while density, pressure and internal energy are within cells. The dissipation of kinetic energy
into internal energy through shock waves is ensured by an artificial viscosity term. Since the seminal works of von Neumann
and Richtmyer [125], and Wilkins [127], many developments have been made in order to improve the accuracy and the
robustness of staggered hydrodynamics [32,33,28]. More specifically, the construction of a compatible staggered discretiza-
tion leads to a scheme that conserves total energy in a rigorous manner [30,29].

An alternative to the previous discretizations is to derive a Lagrangian scheme based on the Godunov method [60]. In the
Godunov-type method approach, all conserved quantities, including momentum, and hence cell velocity are cell-centered.
The cell-face quantities, including a face-normal component of the velocity, are available from the solution of an approxi-
mate Riemann problem at each cell face. However, it remains to determine the vertex velocity in order to move the mesh.
In one of the first papers related to application of Godunov methods on general polygonal mesh in 2D [1], the flux compu-
tation was not compatible with the node displacement, and hence the GCL was not satisfied. This incompatibility generated
additional spurious components in the vertex velocity field whose correction required a very expensive treatment [46]. An

Fig. 6. Flowchart of ReALE Method.
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important breakthrough concerning the compatibility between flux discretization and vertex velocity computation has been
introduced in [40,88]. In these papers, authors present schemes in which the interface fluxes and the node velocity are com-
puted coherently thanks to an approximate Riemann solver located at the nodes. This original approach leads to first-order
conservative schemes which satisfy a local semi-discrete entropy inequality. The multi-dimensional high-order extension of
these schemes are developed in [34,91,87,86].

In what follows, we recall briefly the main features of the two Lagrangian schemes, staggered and cell-centered, that will
be used to construct our ReALE algorithm. The necessary details concerning the discretization can be found in previously
published papers.

6.1. Governing equations

The gas dynamics equations, in Lagrangian form, write as follows:

q
d
dt

1
q

� �
�r � U ¼ 0; ð2aÞ

q
d
dt

U þrP ¼ 0; ð2bÞ

q
d
dt

Eþr � PUð Þ ¼ 0; ð2cÞ

where d
dt is the material time derivative. Here, q,P,U and E denote the density, pressure, velocity and specific total energy of

the fluid. The previous equations express the conservation of volume, momentum and total energy in a frame which moves
with the fluid. The thermodynamic closure of this set of equations is obtained by the addition of an equation of state which is
taken to be of the form

P ¼ P q; eð Þ;

where the specific internal energy, e, is related to the specific total energy by e ¼ E� 1
2 kUk

2. We note that for smooth flows,
by subtracting kinetic energy equation from total energy equation, we get the time rate of change of specific internal energy

q
d
dt

eþ Pr � U ¼ 0; ð3Þ

using (2a), this equation rewrites

q
d
dt

eþ Pq
d
dt

1
q

� �
¼ 0: ð4Þ

Recalling the Gibbs relation, T dS ¼ deþ Pdð1qÞ, where T denotes the temperature and S the specific entropy, it turns out that
the previous internal energy Eq. (4) is equivalent to the conservation of entropy. We emphasize that this conclusion is valid
only for smooth flows. The case of non-smooth flows, such as shock waves, is taken into account requiring that the second
law of thermodynamics must be satisfied. To this end, we write the internal energy equation in the following non-conser-
vative form:

q
d
dt

eþ Pq
d
dt

1
q

� �
¼ qT

d
dt

S P 0: ð5Þ

This thermodynamic framework will be used in what follows to derive the staggered discretization.
Let us remark that Eq. (2a) is also named the Geometric Conservation Law (GCL) and is strongly linked to the motion of

the fluid which is ruled by the trajectory equation

dX
dt
¼ U XðtÞ; tð Þ; Xð0Þ ¼ x: ð6Þ

Here, X(t), denotes the position vector of a fluid particle at time t > 0, whose initial location was x.
Here, we are deriving a discretization that is compatible with the GCL. By GCL compatibility, we mean that we are deriv-

ing a discrete divergence operator for the volume Eq. (2a) by requiring consistency of the divergence of the velocity field with
the time rate of change of volume of the cell (cf. [92]). To highlight this particularly important point, it is instructive to re-
write Eq. (2a) in finite-volume form. To this end, let us consider a finite Lagrangian volume, Vc(t), characterized by a constant
mass, mc, and a mass density defined as qcðtÞ ¼ mc

VcðtÞ. With this notation, one might substitute the following for Eq. (2a):

d
dt

Vc � Vc

Z
@Vc ðtÞ

U � N dS ¼ 0; ð7aÞ

d
dt

mc ¼ 0; ð7bÞ

qcðtÞ ¼
mc

VcðtÞ
; ð7cÞ
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Eq. (7a) states that the time rate of change of the cell volume must be equal to the volume swept by the element boundary
during its displacement with the flow velocity. One has to discretize it with great care so that the discrete GCL over a cell
remains compatible with the discrete motion of the cell vertices. Namely, the time rate of change of a Lagrangian volume
has to be computed coherently with the node motion. It means that change of volume computed from Eq. (7a) has to be
the same as one corresponding to computing volume at new time step from geometry of the cell, that is, in discrete case
from positions of vertices of the cell, which are advance in time according to trajectory Eq. (6).

Another way of expressing CGL is to require that discrete divergence operator DIV is defined consistently with the follow-
ing formula

divU ¼ 1
V

dV
dt

ð8Þ

where V is volume of fluid parcel. In discrete case fluid parcel is represented by cell Vc and its volume depend on time not
directly but by means of coordinates of vertices dependence on time. That is,

DIV Uð Þc ¼
1
Vc

dVc

dt
¼ 1

Vc

X
p

dVc

dxp

dxp

dt
þ dVc

dyp

dyp

dt

 !
¼ 1

Vc

X
p

dVc

dxp
up þ

dVc

dyp
vp

 !
; ð9Þ

where sum is taken over all vertices p of cell c, and xp, yp, up, vp, coordinates and velocities of vertices correspondingly. One
can find details in (cf. [92]). The essence of GCL is do discretize Eq. (7a) consistently with Eq. (9). In application to cell-cen-
tered discretization process of deriving GCL compatible discretization is described in detail in [88]. This is the cornerstone of
any Lagrangian discretization.

6.2. Compatible staggered scheme

The staggered discretization used in this paper is based on a staggered placement of the variables. Namely, the kine-
matic variables, including the velocity, are located at the nodes while the thermodynamic variables (density, pressure and
specific internal energy) are defined at the cell center. We note that this placement of the variables allows the staggered
scheme to fulfill naturally the GCL compatibility requirement and at the same time to construct a discrete divergence
operator.

The discretizations of momentum and specific internal energy are derived from each other by use of important concept of
compatible discretization [28], which is based on detailed balance between kinetic and internal energy and uses subzonal
masses and subzonal forces. This compatible hydrodynamics algorithm is thus designed to conserve momentum and total
energy exactly in discrete form. The dissipation of kinetic energy into internal energy through shock waves is ensured by
means of an artificial viscosity which can be edge based [33] or tensorial [28]. This mechanism leads to a dissipation that
is coherent with the second law of thermodynamics. The subzonal pressure method is also used for the control of hour-
glass-type motion [32]. Finally, the time integration method is a predictor–corrector technique which is detailed in [30].
The extension of this compatible Lagrangian hydrodynamics algorithm to unstructured grids, where each zone is a polygon
with an arbitrary number of sides, has been presented in [29].

6.3. Cell-centered scheme

This discretization employs a centered placement of the variables. That is density, pressure, momentum and total energy
are piecewise constant over each cell. The interface fluxes and the nodal velocity are computed by means of a node-centered
approximate Riemann solver. The resulting nodal velocity allows to calculate zone volumes in a consistent manner with their
geometric definition. In this way, the GCL compatibility requirement is ensured [40,88]. The main new feature of the algo-
rithm used here, is the introduction of four pressures on each edge, two for each node on each side of the edge [88]. This
extra degree of freedom allows to construct a nodal solver which fulfills two properties. First, momentum and total energy
are rigorously conserved at the discrete level. Second, a semi-discrete entropy inequality is provided, which shows that ki-
netic energy is correctly dissipated into internal energy through shock wave. The node based feature of this scheme makes it
naturally unstructured and thus able to deal with polygonal meshes. The high-order extension is derived using a one-step
time integrator, based on the Generalized Riemann Problem (GRP) methodology [87]. It consists in solving the high-order
Riemann problem with piecewise linear polynomial, whereby the approximate solution is given as a time power series
expansion right at the interface. The acoustic version of the GRP method has been implemented and extended to the frame-
work of the two-dimensional node-centered Riemann solver. In this way, we get an acoustic node-centered Generalized Rie-
mann solver which provides the time derivatives of the nodal velocity and pressures, needed for the high-order flux
computation.

6.4. Time step control

The Lagrangian discretizations require a time step control to ensure the stability of the schemes. Let Dtn denotes the cur-
rent time step, the next time step, Dtn + 1, for both discretizations is evaluated using several criteria. The first one is a standard
CFL criterion based on the characteristic time
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Dtcfl ¼ Ccfl min
c

lnc
aH;n

c

;

where Ccfl is a strictly positive coefficient, ln
c a characteristic zone length defined as the minimum of edge lengths in the cell.

The generalized sound speed, aH;n
c , writes aH;n

c ¼
ffiffiffiffiffiffiffiffiffiffi
cc PH;n

c
qn

c

r
, where cc is the ratio of specific heats, qn

c the mean zone density. The

generalized pressure, PH;n
c , writes PH;n

c ¼ Pn
c for the cell-centered scheme and PH;n

c ¼ Pn
c þ Qn

c for the staggered scheme, where
Pn

c denotes the mean zone pressure and Q n
c the scalar part of the artificial viscosity tensors in a zone.

The second criterion ensures that a zone does not change its volume by too large an amount in a time step. To this end, we
define the characteristic time

Dtvol ¼ Cvol min
c

1
j r � Uð Þnc j

;

where Cvol is a user defined coefficient and ðr � UÞnc stands for the discrete divergence operator related to cell c.
Finally, the new value of the time step reads

Dtnþ1 ¼min Dtcfl;Dtvol;CmulDtnð Þ:

Here, Cmul is a multiplicative coefficient which does not allow time step to increase too fast. For numerical applications, we
set (Ccfl,Cvol,Cmul) = (0.25, 0.1, 1.05). Note that for the staggered discretization the new value of the time step is always chosen
on the predictor step.

When we have to deal with polygonal cells containing small edges we need to supplement the previous time step control
with a criterion that prevents the cells from being non-convex or tangling during the Lagrangian phase. To this end, let us
consider a polygonal cell Xc and one of its vertex indexed by p. We also consider the previous and the next point of p in the
counter-clockwise ordered list of points of Xc. We label them respectively p� and p+. The triangle formed with these points is
denoted Tpc, its area writes

jTpcj ¼
1
2

XpXpþ � XpXp�
� �

� ez;

where ez supplements the orthonormal basis (ex, ey), i.e. ez = ex � ey. It is well known that the cell Xc is convex provided that
the area of Tpc is strictly positive for each point p of the cell. We will use this sufficient condition to predict an admissible time
step. During the Lagrangian phase, the position vector of the points is updated according to

Xnþ1
p ¼ Xn

p þ DtUnþ1
2

p ;

where Unþ1
2

p is the time-centered point velocity and Dt is the current time step. It turns out that the area of Tnþ1
pc is a quadratic

function of Dt. Thus, for each triangle Tpc we compute the strictly positive time step so that Tnþ1
pc > 0. Next, we compute its

minimum over the cell and the global minimum over the whole polygonal mesh to get the characteristic time Dtpol. Finally,
we modify the time step control as follows to take into account this new criterion

Dtnþ1 ¼min Dtcfl;Dtvol;CpolDtpol;CmulDtn
� �

;

where the safety coefficient is set to Cpol = 0.25.

6.5. Multi-species thermodynamic closure

In this paragraph, we describe the multi-species thermodynamic closure model that we are using to obtain an
effective equation of state for our multi-component fluid mixture. Every components are completely miscible from
a continuum view point. Let us denote by the subscript f the fth component of the mixture. We suppose that each
fluid follows a gamma gas law, namely its pressure, Pf, and specific internal energy, ef, write as function of temper-
ature Tf

Pf ¼
R
Mf

qf Tf ;

ef ¼
R

ðcf � 1ÞMf
Tf ;

where R denotes the perfect gas constant, cf the polytropic index of fluid f and Mf its molar mass. Each fluid is
characterized by its mass fraction Cf, which represents the ratio between the mass of the fluid f and the total mass
of the mixture. The mixture EOS closure problem requires to find the equilibrium mixture pressure, P, and temper-
ature, T, such that
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1
q
¼
XF

f¼1

Cf

qf
; volume conservation;

e ¼
XF

f¼1

Cf ef ; energy conservation;

Pf ¼ P; 8f ¼ 1 � � � F; pressure equilibrium;

Tf ¼ T; 8f ¼ 1 � � � F; temperature equilibrium;

where F denotes the total number of fluids, q, e are the density and the specific internal energy of the mixture and qf, ef the
density and specific internal energy of fluid f. The solution of the previous set of equations allows to write the following
effective mixture gamma gas law:

P ¼ ðc� 1Þqe;
where c is the effective polytropic index of the mixture, which writes

c ¼ 1þ
PF

f¼1
Cf

MfPF
f¼1

Cf

ðcf�1ÞMf

: ð10Þ

During the Lagrangian phase, the concentration of each fluid evolves following the trivial equation d
dt Cf ¼ 0.

7. Rezone phase

7.1. Generators displacement

Let Xn
c and Xnþ1

c denotes the Lagrangian cells at time tn and tn+1 = tn + Dt where Dt is the current time step. The position
vector of the generator of the Lagrangian cell Xn

c is denoted Gn
c . In this section we define the new position of the generator at

time tn + 1. First, we compute a Lagrangian-like displacement of the generator by setting

Gnþ1;lag
c ¼ Gn

c þ DtUc; ð11Þ

where Uc is the ‘‘Lagrangian” velocity of the generator within the cell. This velocity is computed so that the generator re-
mains located in the new Lagrangian cell. To this end we define this velocity to be the average of the velocities of the points
of the cell, namely

Uc ¼
1
jPðcÞj

X
p2PðcÞ

Unþ1
2

p :

Here, PðcÞ denotes the set of vertices of the Lagrangian cell Xc and Unþ1
2

p is the time-centered velocity of point p between
times tn and tn + 1.

Let us introduce, Xnþ1
c , the centroid of the Lagrangian cell Xnþ1

c , according to

Xnþ1
c ¼ 1

jXnþ1
c j

Z
Xnþ1

c

X dV ;

where jXnþ1
c j denotes the volume of the cell Xnþ1

c . The updated position of the generator is defined by mean of a convex com-
bination between the new Lagrangian-like position, Gnþ1;lag

c and the centroid Xnþ1
c of the Lagrangian cell at time tn + 1

Gnþ1
c ¼ Gnþ1;lag

c þxc Xnþ1
c � Gnþ1;lag

c

� �
; ð12Þ

where xc 2 [0;1] is a parameter that remains to determine. With this convex combination, the updated generator lies in be-
tween its Lagrangian position at time tn + 1 and the centroid of the Lagrangian cell Xnþ1

c . We note that for xc = 0 we get a
Lagrangian-like motion of the generator whereas for xc = 1 we obtain a centroidal-like motion, which tends to produce a
smoothed mesh. This latter case is equivalent to perform one Lloyd iteration [43,42]. It remains to determine xc.

7.2. Computation of the x parameter

The first role of the x parameter is to construct a convex combination between the Lagrangian grid and the centroidal
Voronoi grid, that is why we want it to be in [0,1]. Moreover, we want it to vanish smoothly for rigid rotation and translation
and recover the pure Lagrangian motion in these cases. In a nutshell, we want it to be Galilean invariant. To construct a
parameter that fulfills the previous requirements we utilize mechanical objects that characterize properly the mechanical
features of the flow.

A good candidate for this task is the right Cauchy–Green tensor, [22], evaluated between two consecutive Lagrangian time
steps. It can be regarded as quantifying the ratio of squared lengths of infinitesimal fibers between the initial and the initial
configurations. To be more precise, let dX1 = L1N1 denotes a material fiber of length L1 in the initial configuration, where N1 is
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a unit vector. This elementary fiber is stretched and rotated to dX2 = L2N2, in the final configuration, where N2 is a unit vector.
Introducing F as the deformation gradient between the initial and the final configuration, one has dX2 = FdX1. Therefore, one
can deduce that the length of the fiber in the final configuration is given by

L2
2 ¼ dX2 � dX2 ¼ L1FN1 � L1FN1 ¼ L2

1F
tFN1 � N1: ð13Þ

Hence, the ration of the squared lengths writes as

L2

L1

� �2

¼ CN1 � N1;

where C = FtF is the Cauchy–Green tensor, which is symmetric definite positive and fulfills the requirements of Galilean
invariance. Here, the subscripts 1 and 2 refer to the initial and final configurations corresponding to the beginning and
the end of the Lagrangian time step.

Returning to our standard notations, we construct xc using invariants of the right Cauchy–Green strain tensor associated
with deformation of the Lagrangian cell Xc between times tn and tn + 1.

Let us recall some general notions of continuum mechanics to define this tensor. First, we define the deformation gradient
tensor F

F ¼ @Xnþ1

@Xn ;

where Xn+1 = (Xn + 1, Yn + 1)t denotes the vector position of a point at time tn + 1 that was located at position Xn = (Xn, Yn)t at time
tn. The deformation gradient tensor is nothing but the Jacobian matrix of the map that connects the Lagrangian configura-
tions of the flow at time tn and tn + 1, in the two-dimensional case its components write

F ¼
@Xnþ1

@Xn
@Xnþ1

@Yn

@Ynþ1

@Xn
@Ynþ1

@Yn

 !
:
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The right Cauchy–Green strain tensor, C, is obtained by right-multiplying F by its transpose, i.e.

C ¼ FtF:
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Fig. 9. Sedov problem at time t = 1.0 for Lagrangian, ALE and ReALE strategies – Cell-centered CHIC code – Left column: Mesh. Right column: Density as a
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In our case, C is a 2 � 2 symmetric positive definite tensor. We notice that this tensor reduces to the unitary tensor in
case of uniform translation or rotation. It admits two positive eigenvalues, which are denoted k1 and k2 with the conven-
tion k1 6 k2. These eigenvalues can be viewed as the rates of expansion in a given direction during the transformation. To
determine xc, we first construct the cell-averaged value of the deformation gradient tensor, Fc, and then the cell-aver-
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aged value of the Cauchy–Green tensor by setting Cc ¼ Ft
cFc. Noticing that the two rows of the F matrix correspond to the

gradient vectors of the X and Y coordinates, we can set Ft = [rnXn + 1, rnYn + 1], where for any functions
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w ¼ wðXnÞ;rnw ¼ ð @w@Xn ;
@w
@Yn Þt . With these notations, let us define the cell-averaged value of the gradient of the w function

over the Lagrangian cell Xn
c

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

Y

X

ReALE omega=0

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1  1.2

D
en

si
ty

Radius

Exact solution
ReALE omega=0

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

Y

X

ReALE omega=1

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1  1.2

D
en

si
ty

Radius

Exact solution
ReALE omega=1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

Y

X

ReALE

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1  1.2

D
en

si
ty

Radius

Exact solution
ReALE

Fig. 12. Sedov problem at time t = 1.0 for different generator displacement strategies – Staggered ALE INC. code – Left column: Mesh. Right column: Density
as a function of radius for all cells vs. the exact solution (line) – (a) and (b) Quasi-Lagrangian generator motion xc = 0 – (c) and (d) Quasi-centroidal
generator motion xc = 1 – (e) and (f) Deformation-tensor based generator motion xc = f(k1,k2).

R. Loubère et al. / Journal of Computational Physics 229 (2010) 4724–4761 4741

rnwð Þc ¼
1
jXn

c j

Z
Xn

c

rnwdV ¼ 1
jXn

c j

Z
@Xn

c

wNdS:

Here, we have used the Green formula and N is the unit outward normal to the boundary of the cell Xn
c referred as to @Xn

c .
Knowing that this cell is a polygon, we make use of the trapezoidal rule to obtain the following approximation for the pre-
vious integral

rnwð Þc ¼
1
jXn

c j
XjPðcÞj
p¼1

1
2

wn
p þ wn

pþ1

� �
Ln

p;pþ1N
n
p;pþ1; ð14Þ

where wn
p is the value of w evaluated at point Xn

p and Ln
p;pþ1N

n
p;pþ1 is the outward normal to the edge ½Xn

p;X
nþ1
p �. Applying (14) to

w = Xn + 1 and w = Yn + 1 we get a cell-averaged expression of the gradient tensor F and then deduce from it the cell-averaged
value of the right Cauchy–Green tensor Cc.

Knowing this symmetric positive definite tensor in each cell, we compute its real positive eigenvalues k1,c, k2,c. We finally
define the parameter xc as follows:

xc ¼
1� ac

1� amin
; ð15Þ

where ac ¼ k1;c
k2;c

and amin = mincac. We emphasize the fact that for uniform translation or rotation k1,c = k2,c = 1 and xc = 0,
therefore the motion of the generator is quasi Lagrangian and we fulfill the material frame indifference requirement. For
other cases, xc smoothly varies between 0 and 1. Note that more complex formulae for xc are also possible, however we
limit ourselves to the previous simple formula and postpone deeper investigations in this area for future papers.

In Section 9 we demonstrate sensitivity of choice of parameter xc on geometrical quality of the mesh and accuracy of
ReALE calculations on the example of Sedov problem. We also present color map for values of the xc for 2D Riemann prob-
lem, which demonstrate its ability to follow main features of the flow. These results justify the choice of xc described by
Eq. (15).

7.3. Cleaning

Once the new position of generators Gnþ1
c are computed one constructs the corresponding Voronoi mesh. This mesh needs

a last treatment as this Voronoi mesh may have arbitrary small faces (edges). Such faces can drastically and artificially re-
duce the time step, and, more important can lead to a lack of robustness. Consequently one defines a cutoff length Le

c ¼ eLc ,
where Lc is a characteristic length of the cell and e a small parameter. Any face f of cell c of length Lf smaller than the cutoff
length Le

c , is removed from the Voronoi mesh , which lead to corresponding change in the connectivity. More specifically the
vertices of such a face are merged (see Fig. 5 in Section 4); one vertex is then discarded from the vertex list and the connec-

tivity structure. In our calculations we have chosen e = 0.01 and Lc ¼
P

f2FðcÞ
Lf

jFðcÞj being the average of face lengths of cell c with
FðcÞ is the set of edges of cell c.

This ‘‘cleaned” polygonal mesh is no more of Voronoi kind but is well suited from a computational point of view.
In current code results of cleaning procedure depend on order in which cells are processed, that is, cleaning is order

dependent. For unstable flows like Rayleigh–Taylor problem, it can lead to symmetry breaking, as one can see in
Section 9.4.2.

One clearly can make cleaning procedure more symmetric and order ‘‘independent”. For example, we can use Jacobi like
cleaning procedure, when on the first pass one marks edges to be eliminated based on the minimal cut off length from two
neighboring cells and then, on second pass, eliminates them all at the same time and makes corresponding changes in data
structures.

One need to recognize that there is always be potential to developing non-symmetry in unstable flows like Rayleigh–
Taylor example because of round off error. It can happen even without any cleaning.
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Fig. 13. Triple point problem.

4742 R. Loubère et al. / Journal of Computational Physics 229 (2010) 4724–4761

8. Remap phase

The remapping phase consists of a conservative interpolation of physical variables from the Lagrangian polygonal mesh at
the end of the Lagrangian step onto the new polygonal mesh after the rezone step. The remapping phase must provide valid
physical variables to the Lagrangian scheme, moreover conservation of mass, momentum and total energy must be ensured,
and, second-order accuracy conservative interpolation must be performed.
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Fig. 14. Triple point problem at time tfail for which Lagrangian scheme fails – Cell-centered CHIC code – Left column: Internal energy and mesh. Right
column: Cell color corresponds to the initial domain (X1,X2 and X3) – Top: Lagrangian method; Middle: ALE method; Bottom: ReALE method. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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As the old (Lagrangian) and new (rezoned) polygonal meshes may not have the same connectivity, the remapping phase
of our ReALE codes is based on exact intersection of a priori two different polygonal meshes.

Primary variables are cell-centered density, velocity and specific total energy for the cell-centered discretization whereas
they are subcell density, nodal velocity and cell-centered specific internal energy for staggered discretization. Conservative
quantities are cell-centered mass, momentum and total energy for the cell-centered approach whereas they are subcell mass,
momentum and total energy for the staggered discretization.

8.1. Cell-centered based remap

If the primary variables are located at the same position, as it is the case for the cell-centered Lagrangian scheme, then the
remapping phase is fairly simple [77,61,49]. The quantities on the old Lagrangian mesh are cell-centered density, velocity
and total energy that must be transfered on the rezoned mesh. First piecewise linear representations of cell-centered vari-
ables qc, qcUc, qcEc are constructed on the Lagrangian mesh. Then a slope limiting process [17] is performed to enforce phys-
ically justified bounds. Conservative quantities, namely mass, momentum and total energy, are obtained by integration of
these representations. New conservative quantities are calculated by integration over polygons of intersection of new (re-
zoned) and old (Lagrangian) meshes. Finally, primary variables are simply recovered by division by new volume eV c (for den-
sity) or new mass ~mc (for momentum and energy).

8.2. Subcell-centered based remap

Some difficulties arise when staggered location of variables is used, as for any staggered Lagrangian scheme. Conservative
quantities are therefore not located on the same ‘‘entity”; mass is located at subcells, momentum at points. As a consequence,
total energy is not properly defined at a given location. In [84] a gathering-remapping-scattering algorithm has been devel-
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Fig. 15. Triple point problem at final time to observe stagnation of ALE mesh – Cell-centered CHIC code – Left column: Internal energy and mesh. Right
column: Cell color corresponds to the initial domain (X1,X2 and X3) – Top: ALE method; Bottom: Cell-centered (CHIC-based) ReALE method. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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oped (see Fig. 7 for a sketch); the main idea being to gather any conservative variable at subcell level, remap on subcell base
similarly to the cell-centered remapper from the previous paragraph, and scatter back primary variables from subcells (den-
sity) to cell (internal energy) or node (velocity). More specifically this method consists in the following three stage algorithm:

� Gathering: Mass, momentum, internal and kinetic energies are defined on subcells from subcell density, nodal velocity
and cell-centered specific internal energy in such a way that conservation is preserved.

� Subcell remapping: Conservative remapping from Lagrangian mesh subcells onto rezoned mesh subcells.
� Scattering: Conservative recovery of primary variables (subcell density, nodal velocity, cell-centered internal energy)

on the rezoned mesh.

This remapping stage is followed by a repair technique to ensure physically justified bound preservation [77,112,85].

8.3. Remapping of concentrations

To use the multi-species EOS, we need to remap the concentrations of the F fluids from the Lagrangian grid onto the re-
zoned one. To this end, we first compute the mass of fluid f in the Lagrangian cell Xnþ1

c ;mf ;c ¼
R

Xnþ1
c

qC dV . We note that

mc ¼
PF

f¼1mf ;c since
PF

f¼1Cf ;c ¼ 1. Then, the mass of each fluid is interpolated conservatively onto the rezoned grid following
the methodology previously described for the cell-centered quantities. We denote its new value by ~mf ;c . At this point we no-

tice that ~mc –
PF

f¼1 ~mf ;c , this discrepancy comes from the fact that our second-order remapping does not preserve linearity

due to the slope limiting. Hence, we define the new concentrations eC f ;c ¼ ~mc
~mf ;c

and impose the renormalization eCf ;c  
eC f ;cPF

f¼1
eC f ;c

so that
PF

f¼1
eCf ;c ¼ 1. We point out that this renormalization does not affect the global mass conservation.
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Fig. 16. Triple point problem at several times for ReALE – Cell-centered CHIC results for internal energy and mesh –From top-left to bottom-right: times
t = 1, 3, 4.5, 5.
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9. Numerical tests

In this section we present the numerical results obtained by the cell-centered ReALE code based on CHIC ALE code [87],
and, the staggered ReALE code based on ALE INC(ubator) [82]. All calculations are performed in Cartesian geometry – (x,y).

The first test is the well-known Sedov test case in planar geometry, it is used as a sanity check as no physical vorticity is
expected to occur and therefore reconnection-based methods are not required. The second is a ‘‘triple point” problem. It in-
volves interaction of the shock with obstacle, which leads to vorticity formation. Most of the ReALE studies are performed
using this problem. Third problem, shock interaction with a helium bubbler, is run in order to show the predictive capabil-
ities of ReALE technique-we compare numerical results with experimental data. Finally, a Rayleigh–Taylor instability is run
in order to assess the feasibility of capturing physical instability in an almost Lagrangian fashion. For this problem we com-
pare our results with results obtained by the front tracking code (FronTier – [41,58,59]) and a an implicit large eddy simu-
lation (ILES) incompressible Eulerian code (RTI3D – [4]).

All these tests, besides the Sedov test, generate high vorticity which is a classical cause of failure for Lagrangian schemes.
For ALE codes with fixed connectivity it usually leads to a conflict between: a physics-based vortex-like motion with a ten-
dency to tangle the mesh and, a geometrical-based opposite motion enforced by the rezoning to avoid bad geometric quality
cells. Such a conflict leads to a stagnation of the mesh that reconnection is intended to cure.

9.1. Sedov problem

Let’s consider the Sedov blast wave problem in Cartesian coordinates. This problem models an intense explosion in a per-
fect gas; it is an example of a diverging shock wave.

The computational domain is X, a quarter of a disk of radius 1.2 centered at the origin.
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Fig. 17. Triple point problem at several times for ReALE – Cell-centered CHIC results – Cell color corresponds to the initial domain. From top-left to bottom-
right: times t = 1, 3, 4.5, 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The initial conditions are characterized by (q0,P0,U0) = (1,10�6,0) for a perfect gas with polytropic index set to c ¼ 7
5. We

model an initial delta-function energy source at the origin by prescribing internal energy in the cell adjacent to the origin
(see Fig. 8)

eor ¼
E0

Vor
; ð16Þ

where Vor denotes the volume of the cell and E0 is the total amount of released energy. For E0 ¼ 0:244816, the front of a
diverging shock is located at the radius R = 1 at the time t = 1. The peak density reaches the value 6. Symmetry boundary
conditions are applied on the axis whereas zero velocity boundary condition is applied at radius 1.2.

The initial polygonal mesh is a Voronoi tessellation computed using 441 generators, see Fig. 8. The positions of generators
are arranged similarly to how it described in Section 4 for meshing bubble, Fig. 4.

To run this test we do not need ALE, and a fortiori ReALE, technique; pure Lagrangian schemes usually perform well. How-
ever, we will present the Lagrangian, ALE and ReALE results (both for the cell-centered and staggered code) for the sake of
comparison. Different generator motions are also compared.

9.1.1. Lagrangian, ALE and ReALE results
We present the meshes in Fig. 9 (resp. Fig. 10) panels (a)–(c)–(e) for the cell-centered CHIC-based methods (resp. for the

staggered ALE INC.-based methods). The density for these methods is presented as a function of the cell radius for all cells in
Figs. 9 and 10 panels (b), (d), (f); it is plotted against an exact solution (straight line). As known, Lagrangian schemes behave
properly for the Sedov test case as seen on Figs. 9 and 10 panel (a) and (b). The final Lagrangian mesh presents expanded cells
in the rarefaction wave and compressed ones after the shock wave. ALE techniques (panels (c) and (d)) can improve the
smoothness of the mesh; some numerical diffusion is added during the remapping phase as can be seen on panels (d) of
Figs. 9 and 10. ReALE technique used with deformation-tensor based generator motion (see panels (e) and (f)) is able to pro-
duce a smooth mesh and density profiles comparable with standard ALE.
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Fig. 18. Triple point problem at several times for ReALE – Cell-centered CHIC results for variable xc – From top-left to bottom-right: times t = 1, 3, 4.5, 5.
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The CHIC-based methods give higher pick density value in comparison with ALE INC.-based methods because formally
Lagrangian phase in CHIC method is second-order accurate and Lagrangian phase in ALE INC. method is first-order accurate.
Small differences in ALE results (panels (c) and (d)) can be attributed to slightly different rezone strategy.

9.1.2. Generator displacement
The same problem is run with the cell-centered CHIC-based ReALE code and staggered ALE INC.-based ReALE code with

three different generator the quasi-Lagrangian one (xc = 0), the quasi-centroidal one (xc = 1) and the motion based on the
deformation tensor (xc = f(k1,k2)).

The results for CHIC-based ReALE code presented in Fig. 11. As expected the quasi-Lagrangian generator motion leads to
non-smooth mesh which, however, adapted quite well to the flow. One can mention that symmetry is not well preserved,
which in particular can be attributed to non-smoothness of the mesh (Fig. 11(a) and (b)). On the other hand, the quasi-cent-
roidal generator motion (Fig. 11(c) and (d)), leads to a smooth mesh that is not adapted anymore to the fluid flow; density is
over-smoothed due to excessive remapping. Finally the motion based on the deformation tensor described in Section 7
(Fig. 11(e) and (f)), produces a locally smooth mesh and keeps finer cell region after the shock wave passes through, and coar-
ser cell region after expansion.

In Fig. 12 we present the same results for the staggered ALE INC.-based ReALE, code and the same conclusions apply.
Results presented here justify rezone strategy based on the analysis of the deformation tensor described in Section 7 and

the rest of the paper in all numerical ReALE simulations we use only this rezone strategy.
The Sedov test case is not extremely demanding neither for Lagrangian nor ALE scheme. Contrarily, the next test cases

involve generation of the vorticity and are intended to demonstrate the capabilities of the new ReALE method.

9.2. Triple point problem – two material Riemann problem

This problem is a three state two material 2D Riemann problem in a rectangular vessel. The triple point problem simu-
lation domain is X = [0;7] � [0;3] as described in Fig. 13. X is split into three regions filled with two perfect gases leading to
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Fig. 19. Triple point problem at several times for ReALE – Staggered-ALE INC. results – internal energy and mesh. From top-left to bottom-right: times t = 1,
3, 4.5, 5.
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a two material problem. The high pressure high density state is X1 = [0;1] � [0;3], the low pressure high density state is
X2 = [1;7] � [0;1.5] and the low pressure low density is X3 = [1;7] � [1.5;3]. The initial densities are q1 = q3 = 1,
q2 = 0.125, the initial pressures are p1 = 1, p3 = p2 = 0.1, the initial velocity is zero everywhere. The perfect equation of state
is used with c1 = c3 = 1.5, c2 = 1.4.

Due to the discrepancy in density, two shocks in domains X2 and X3 propagate with different speeds. This creates a shear
along initial contact discontinuity and a vorticity formation. We note that the Lagrangian computation fails before vortex is
developed due to the mesh tangling. Capturing the vorticity is the difficult part of such simulation when standard ALE meth-
od is used.

Initially 72 � 32 generators are positioned on a perfect quadrangular grid leading to 2304 degenerate Voronoi cells. The
generators are located in such a way that, initially there is no mixed cells and the triple point coincides with a vertex of the
mesh. This mesh is intentionally coarse, such that differences between the methods can be visually observed. The boundary
conditions are reflective ones.

The fluid flow after the breakup of the initial discontinuity is characterized by a left facing rarefaction wave and
two right facing shock waves separated by an ‘‘horizontal” contact discontinuity. These two shocks travels with dif-
ferent speeds since the densities of the materials are different. This leads to a strong vortex formation. The final time
is t = 5.

9.2.1. Results obtained by cell-centered ReALE method
Lagrangian scheme failure. Time tfail ’ 1.67 corresponds, more or less, to the time after which any Lagrangian scheme

inexorably fails. In Fig. 14 we present the Lagrangian (top panels), ALE (middle panels) and ReALE (bottom panels) results
for the cell-centered CHIC code for this time moment. The internal energy and meshes are displayed in the left panel (top
part is mesh and internal energy, bottom part is color map for internal energy). In the right panels of Fig. 14 we present
the mesh for each method such that the cells have been colored according to in which domain (X1 in dark-red, X2 in or-
ange, X3 in white) they were initially located. The Lagrangian scheme produces results that follow the motion of the fluid
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Fig. 20. Triple point problem at several times for ReALE – Staggered ALE INC. results – Cell color corresponds to the initial domain. From top-left to bottom-
right: times t = 1, 3, 4.5, 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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but the scheme fails because of mesh tangling in vicinity of the vortex. The ALE method does not allow the mesh to follow
the fluid motion and the mesh does not tangle. The ReALE seems to allow the cells to follow the vortex-shaped fluid mo-
tion, and up to this moment color map related to the initial location for Lagrangian and ReALE methods are very close,
Fig. 14. This is indication that our rezone strategy is able to keep ‘‘centers” of the cells very close to its Lagrangian
positions.

It is important to note that due to our choice of parameter xc, participating in movement of generators in ReALE method,
meshes in front of shocks have not changed.

‘‘Stagnation” of the mesh in ALE method. ALE and ReALE perform up to the final time t = 5. In Fig. 15 we present results for
ALE and ReALE for final time-arrangements are the same as in Fig. 14. Results of the ALE calculation clearly show a mesh
‘‘stagnation” behavior as can be seen on the initial domain color map, whereas the ReALE allows the cells to be carried along
with the vortex.
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Fig. 22. Shock/Bubble interaction. A piston (right-boundary) moving to the left and compresses air initially at rest sending a shock wave that passes
through an helium bubble.
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Fig. 21. Triple point problem. Comparison of cell-centered (left panels) and staggered (right panels) ReALE methods at the final time moment. Top panels –
internal energy and mesh, bottom panels – coloring by initial region. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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In ALE calculation (top panels of Fig. 15), the mesh is ‘‘freezes” near the vortex center and the computation continues in an
almost Eulerian fashion (as Lagrange + Remap because the rezone phase systematically backs up the Lagrangian tn + 1 mesh
onto the previous tn Lagrangian mesh).

In ReALE calculation (bottom panels of Fig. 15), mesh is not Lagrangian, but it preserves Lagrangian character of the flow,
because mesh follows the vortex as generators are carried within the fluid in an almost Lagrangian fashion (bottom-right
panel in Fig. 15).3 As a consequence ReALE has a better accuracy, which can be seen comparing internal energy color maps
for ALE and ReALE. In ReALE results one can see roll up formation and in ALE results it is not that pronounced. Let as note that
quantitative analysis of accuracy will be presented in the separate paper.

ReALE results. In Fig. 16 we present dynamics of the ReALE simulation by showing the mesh and the specific internal en-
ergy at different time moments t = 1 (beginning of vortex development), t = 3 (before the fastest shock reaches right wall),
t = 4.5 (after shock reflection), t = 5 (after reflected shock reaches contact discontinuity). The meshes with initial domain col-
oring are presented in Fig. 17.

Features of the flow and xc factor. In Fig. 18 are presented the xc factors for different snapshots of the simulation. The xc

factor shows the deformation encountered by the mesh between two last time steps. Comparison of these plots with struc-
ture of the main waves presented in Fig. 16 clearly demonstrate that xc dynamically detect main features of the flow. It is
important to note that xc is very small in high vorticity regions (as it intended to be) and therefore movement of the gen-
erators in these areas is almost Lagrangian.
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Fig. 23. Shock/Bubble interaction problem. Top: Initial density; Middle: Final density; Bottom: Zoom on the initial bubble and final bubble density and
mesh.
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9.2.2. Comparison of cell-centered and staggered ReALE methods
In this section we give brief comparison of ReALE calculations based on cell-centered CHIC method with results obtained

by ReALE method based on staggered ALE INC. method.
In Fig. 19 we present internal energy and mesh plots for ALE INC.-based ReALE method for different time moments. It has

to be compared with CHIC-based ReALE results presented in Fig. 16. In Fig. 20 we present coloring by initial region for stag-
gered method.

Finally, we present side by side comparison of two methods in Fig. 21.
One can see only very small differences between cell-centered and staggered ReALE methods.
Results presented in this section and results for Sedov problem allows us to conclude that ReALE approach can be used for

either cell-centered or staggered discretization basic Lagrangian scheme.
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Detailed comparison of cell-centered and staggered discretizations is beyond of the goal. Actually it will require full new
paper. At this moment it will be premature to recommend one discretization over the other. Our goal in this paper is to dem-
onstrate that ReALE methodology can be used for both types of discretizations. For the sake of space, in the reminder of the
paper we will present only results for cell-centered discretization.

9.3. Bubble shock interaction

The computational domain is X = [0;0.65] � [0;0.178]. The bubble is a disk defined by the coordinates of its center
(xc,yc) = (0.320,0) and its radius Rb = 0.025 (see Fig. 22). We prescribe reflective boundary conditions at each boundary except
the right-boundary (initially at x = 0.65); right-boundary is the piston which moves inward with velocity Vw = (uw,0). The inci-
dent shock wave is defined by its Mach number, Ms = 1.22. The bubble and the air are initially at rest. The initial data for Helium
bubble is (q1,P1) = (0.182,105), its molar mass isM1 ¼ 5:269� 10�3 and its polytropic index is c1 = 1.648. The initial data for air
is (q2,P2) = (1,105), its molar mass isM2 ¼ 28:963� 10�3 and its polytropic index is c2 = 1.4. It is two material problem. Specific
internal energies are e1 = 8.4792 � 105 and e2 = 2.5 � 105. Using the Rankine–Hugoniot relations, we find that the x-velocity of
the piston is given by uw = �124.824. The x-component of the incident shock velocity is Dc = �456.482. The incident shock wave
hits the bubble at time ti = 668.153 � 10�6. The stopping time for our computation is tend = ti + 674 � 10�6 = 1342.153 � 10�6. It
corresponds to the time for which experimental Schlieren graph (results from [62]) is displayed in [103] (Fig. 9(i)). Initial mesh
is constructed with a set of 19,061 generators and designed to produce a Voronoi mesh that has a mesh lines which matches the
bubble boundary (see bottom left panel in Fig. 23, where a zoom of the initial mesh around the bubble is presented). The
description of initial mesh generation given in Section 4. Initial density is presented in top panel in Fig. 23. The middle panel
presents the final density which corresponds to the deformed bubble. The bottom panels of this figure show a zoom on the ini-
tial and final bubble location and the underlying initial and final meshes.

In Fig. 24 (left column) we present density at several intermediate time moments for a zoomed region around the bubble
(t = 1005.15 � 10�6 (top panel), t = 1101.44 � 10�6 (middle panel) and t = tend = 1342.153 � 10�6 (bottom panel)). Color
maps related to coloring by initial region are presented in right column of Fig. 24 (white color for the cells originally in
the air; red color for the cells originally in the bubble). One can conclude that Lagrangian motion is well preserved by ReALE
method.

In Fig. 25 (left panel) we present the cell-centered value Ic = Ch,c (1 � Ch,c) at final time tend = 1342.153 � 10�6, where Ch,c is
the concentration of helium in cell c. Originally Ch,c is equal to 1 if generator c belongs to helium bubble and 0
otherwise. Therefore, Ic is initially 0 for all cell. As the simulation advances, mixed cells are created close to the interface
between the different materials, leading to values Ic – 0. The Ic map show how much interface is diffused; grayscale
spreads from Ic = 0 (white) to Ic = 1/4 (black). As seen in left panel in Fig. 25 interface region is spread only over one or two cells.

Experimental results for this test case can be found in [62] and high-resolution numerical experiments performed with an
AMR Eulerian code in [103]. In Fig. 25 (middle and right panels) a comparison of the Schlieren image of the experimental
results from [62] (right panel) with our numerical results (middle panel) at tend = 1342.153 � 10�6.
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Fig. 26. Rayleigh–Taylor instability – ReALE results at times t = 0, 3, 5, 7, 9 (from (a) to (e)) – Mesh and density – Color scale is from blue (q = 1) to red
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Presented numerical results show that qualitatively ReALE technique can reproduce experimental results (Fig. 25). We are
planning to perform quantitative comparison with available experimental results as well as with high-resolution numerical
results presented in [103] in special paper.
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Fig. 27. Rayleigh–Taylor instability – Top panel: ReALE results. Middle panel: ALE results. Bottom panel: RTI3D Eulerian code results – Left to Right: Density
at t = 7, 8, 9, Vorticity at t = 7, 8, 9. Color scale is from blue (minimal negative vorticity) to red (maximal positive vorticity). White color corresponds to zero
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version of this article.)
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9.4. Rayleigh–Taylor instability

Our final test in this paper is Rayleigh–Taylor instability problem. It consists of two ideal gases with densities qtop = 2 and
qbottom = 1; in both cases the adiabatic constant c = 1.4. Initially, the heavier gas is above the lighter gas in rectangular vessel
X = [0:1/3] � [0:1], with gravitational field directed vertically downward and with magnitude g = 0.1. The interface has been
deliberately perturbed as described by formula yðxÞ ¼ 1

2þ 1
100 cosð6pxÞ. Initially both gases are at the rest; the pressure dis-

tribution is approximately hydrostatic and is defined in the lighter gas

pbottomðx; yÞ ¼ 1þ 1
2
qtopg þ qbottomg

1
2
� y

� �
;

and in the heavier gas:

ptopðx; yÞ ¼ 1þ qtopgð1� yÞ:

It is well known that this configuration is unstable and as time progresses, the heavier gas will sink and the lighter gas
will rise through the formation of bubbles and spikes. This problem does not involve any shock wave, but the vorticity is so
high that pure Lagrangian schemes eventually fail.

9.4.1. Initial phase of instability
The ReALE simulation starts with a Voronoi cleaned mesh obtained via 24 � 72 generators (24 in x-direction, 72 in y, see

Fig. 26(a)). These are initially set so that the interface y(x) is well approximated by edges of cells (see Fig. 26(a)).
In Fig. 26 we present the density and mesh for several time moments: t = 0, 3, 5, 8, 9.
As a matter of comparison and verification we use results obtained by others methods:

� FronTier (front tracking) code [41,58,59] is used to get a reference solution for the interface between the two fluids. The
results of this code are used by the courtesy of J. Grove of the Los Alamos National Laboratory. FronTier is run with much
more finer resolution (106 � 320 cells). This interface is plotted with a black thick lines in Fig. 27.
� RTI3D code (an implicit large eddy simulation (ILES) incompressible Eulerian code based on control volume approach,

using a second-order Van-Leer method for volume fraction and momentum advection, see [4]). It is used with a grid res-
olution of 24 � 74 fixed cells. This Eulerian code provides a qualitative spatial and temporal behavior of vorticity. The
results of this code are used by the courtesy of M.J. Andrews of the Los Alamos National Laboratory.
� Finally the CHIC-based ALE code without reconnection is used with an initial logically rectangular grid of 24 � 72.
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In Fig. 27 we present the density (t = 7, 8, 9) and the vorticity (t = 7, 8, 9) for the ReALE, ALE codes (top and middle panels)
and the RTI3D code (bottom panel). The FronTier interface is plotted as a thick black line on the top of each graph. The color
scale for density is the same for all calculations, it is from 1 to 2. The general shape is resolved reasonably well by all three
methods The tip of the interface is better resolved by ReALE method, Fig. 27 – left panels.

In the right panels in Fig. 27 we present color maps for vorticity, curlh
c u which is finite difference approximation of curlu

in the cell Xc based on Green formula. For vorticity we have following ranges. For time t = 7 – ReALE:�3.53/3.55; ALE:�3.04/
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Fig. 29. Rayleigh–Taylor instability – ReALE with 66 � 200 generators at t = 8, 9, 10, 11, 12, 13, 14, 15 (from top-left to bottom-right) – Density.
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3.04; RTI3D: �5.00/5.00. For time t = 8 – ReALE: �3.72/3.84; ALE: �3.68/3.68; RTI3D: �4.95/4.95. For time t = 9 – ReALE:
�3.81/3.89; ALE: �4.52/4.52; RTI3D: �5.61/5.61.

We think that because RTI3D is incompressible code its vorticity color map is more sharp. ReALE clearly gives results clo-
ser to RTI3D and much sharper than ALE results. The ReALE results seem to better match spatial distribution of the vorticity,
which matches interface shape. We wish to point that with this low resolution the ALE simulation code produces acceptable
results. However, if a finer resolution is to be used, the mesh becomes very pinched and stretched so that numerical oscil-
lations are generated (see Fig. 1 from the motivation section as example). As a consequence vorticity and, in general, most
physical variables are contaminated leading to stability issues. In ReALE due to reconnection mesh follows the fluid, which
allows to obtain more meaningful results (see Section 9.4.2 for high-resolution ReALE results).

Finally in Fig. 28 we show the mean vorticity, as a function of time for all three methods ReALE, ALE and RTI3D. Discrete
mean vorticity is defined as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

c jcurlh
c uj2jXcj

n o
jXj

vuut
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
X jcurluj2dV
jXj

s
:

We observe that the ReALE suppresses vorticity less than ALE does. Qualitatively time evolution of mean vorticity is very
similar for all three methods.

9.4.2. ReALE simulation of the later stages of the Rayleigh–Taylor instability
In this section we present high-resolution (66 � 200 generators are used leading to 13,200 cells) results for later stages of

Rayleigh–Taylor instability. We perform our calculations up to time t = 15 when the heavy fluid has reached the bottom of
the vessel and lighter fluid almost reached top of the vessel. In Fig. 29 we present color maps of the density at time moments
t = 8, 9, 10, 11, 12, 13, 14, 15. In the last three figures one can clearly see violation of symmetry with respect to central ver-
tical line. This is because this flow is very unstable and also because cleaning procedure in our rezone strategy is non-sym-
metric and depends on cell ordering.

Finally, in Fig. 30, we present density, vorticity and cells colored by initial domain at time t = 15. Right panel in Fig. 30 also
shows the mesh.

Results presented in this section shows that ReALE method can be used to run problems with strong shear deformation
without any special tuning of the parameters of the rezone strategy during the calculations. This is impossible for standard
ALE methods without mesh reconnection, where user intervention is usually required.
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Fig. 30. Rayleigh–Taylor instability – ReALE with 66 � 200 generators at t = 15 – Density, vorticity and, mesh and cells colored by their initial domain;
Vorticity scale is from �11.78 to 9.63 (blue for the minimal value to red for the maximal one). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.).
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10. Conclusion and perspectives

We have presented a new reconnection-based ALE method. It includes three main elements.

� An explicit Lagrangian phase in which the solution on polygonal mesh is updated (without changing mesh connectivity).
� A rezoning phase in which a new grid is defined using specific movement of generators and formalism of Voronoi dia-

grams. It allows the change of mesh connectivity. In this work we keep number of cells unchanged, but number of vertices
of each cell can change due to connectivity evolution. Generator movement is chosen in such a way that cell movement is
close to Lagrangian and cell shape is close to regular hexagon.
� A remapping phase in which the Lagrangian solution is transferred (conservatively interpolated) from one polygonal

mesh to another.

On numerical examples we have demonstrated that our new method is more accurate and robust in comparison with
standard ALE methods with fixed connectivity.

We recognize that our new method requires more testing, which we are planning to do in the future. We also recognize
that the question of efficiency is very important. The particular implementation of our method used to obtain numerical re-
sults in this paper was not intended to be optimal and uses pieces which originally were not intended to work together. For
this reason we do not present any comparison of efficiency of ALE and ReALE. We will do it in the future paper.

Also we are planning to explore different mechanisms for mesh adaptation. In the framework of current ReALE method at
rezone stage we can develop new strategies for the choice of x parameter to reflect features of the flow. We also could move
vertices (as in standard ALE) after reconnection is done. We are planning to use mechanism of weighted Voronoi diagrams
[44] to introduce adaptivity by choosing weight proportional to some monitor function, which may be an error indicator or
may just reflect some physics which requires mesh refinement. The adaptation can be also achieved by adding or deleting
cells. In principle, ReALE-like methods are perfectly suited for this strategy (cf. [37]).

In next paper we are planning to present 2D results in r � z- axisymmetric geometry, which will allow to demonstrate
performance of our method for interesting and more realistic problems.

Also in future we will incorporate interface reconstruction methods such as volume of fluid (VOF) [105,106] and moment
of fluid (MOF) [52,2,75]. Moreover, we plan to incorporate more advanced closure models for mixed multi-material cells
[111]. This will increase accuracy of multi-material calculations.

There is no conceptual difficulties in extending ReALE methodology to 3D, however, first, we plan to improve efficiency of
our new method in 2D by making code parallel.

Finally, we are planning to incorporate material strength into ReALE code. We are considering approach described in the
recent paper [73].
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a b s t r a c t

This paper deals with the extension to the cylindrical geometry of the recently introduced Reconnection
algorithm for Arbitrary-Lagrangian–Eulerian (ReALE) framework. The main elements in standard ALE
methods are an explicit Lagrangian phase, a rezoning phase, and a remapping phase. Usually the new
mesh provided by the rezone phase is obtained by moving grid nodes without changing connectivity
of the underlying mesh. Such rezone strategy has its limitation due to the fixed topology of the mesh.
In ReALE we allow connectivity of the mesh to change in rezone phase, which leads to general polygonal
mesh and permits to follow Lagrangian features much better than for standard ALE methods. Rezone
strategy with reconnection is based on using Voronoi tesselation machinery. In this work we focus on
the extension of each phase of ReALE to cylindrical geometry. The Lagrangian, rezone with reconnection
and remap phases are revamped to take into account the cylindrical geometry. We demonstrate the effi-
ciency of our ReALE in cylindrical geometry on series of numerical examples.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A new reconnection-based Arbitrary-Lagrangian–Eulerian (ALE)
framework called Reconnection ALE (ReALE) has been recently
introduced in [1]. The main elements in standard ALE methods
are an explicit Lagrangian phase, a rezoning phase, and a remap-
ping phase. Usually the new mesh provided by the rezone phase
is obtained by moving grid nodes without changing connectivity
of the underlying mesh. Such rezone strategy has its limitation
due to the fixed topology of the mesh and may lead to stagnation
of the mesh in certain situations [1]. Contrarily to classical ALE
framework, the rezone part of ReALE allows topological mesh
reconnection using the machinery of Voronoi tesselation [2]. The
new feature of this technique is an underlying set of generators
moving with the fluid as ‘‘pseudo-Lagrangian particles”. The new
generator position is a combination between its Lagrangian new
position and the displaced Lagrangian cell centroid. These genera-
tors, as particles, can change neighbors especially when shear or
vortex motions occur. The Voronoi machinery is then used on this
set of generators to define the rezone mesh: Each generator is asso-
ciated to the same Voronoi cell which, accordingly, may have chan-
ged its neighborhood. This Voronoi mesh is the rezone mesh onto

which the physical variables are further remapped. Consequently
as the Lagrangian and rezone meshes are a priori different, the con-
servative remap phase must be modified to handle polygonal
meshes possibly with different connectivity.

In [1] the 2D Cartesian geometry was only considered as to
prove the feasibility of this ALE with reconnection approach. Con-
trarily in this work we investigate the extension of ReALE to cylin-
drical geometry. Although staggered and cell-centered Lagrangian
schemes were considered in [1] to prove the generality of ReALE,
in this work we focus on Lagrangian cell-centered discretization
because the presentation and implementation are simpler. How-
ever there is no theoretical limitation in using a staggered place-
ment of variable for ReALE in cylindrical geometry. High-order
cell-centered discretization of the Lagrangian hydrodynamics
equations has been described [3]; all conserved quantities, includ-
ing momentum, and hence cell velocity are cell-centered. Exten-
sion to cylindrical geometry has also been studied in [4] in a
control volume or area-weighted discretization. The control vol-
ume scheme conserves momentum, total energy and satisfies a lo-
cal entropy inequality in its first-order semi-discrete form. The
main difference between these approaches relies on the problem
of preserving spherical symmetry in two-dimensional cylindrical
geometry. Being given a one-dimensional spherical flow on a polar
grid, equally spaced in angle, Maire [4] analyzed the ability of the
schemes to maintain spherical symmetry. It turns out that the
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control volume formulation does not preserve symmetry whereas
the area-weighted formulation does similarly to staggered
Lagrangian schemes [5]. In the context of ReALE the preservation
of symmetric polar grid is not a goal as we are dealing with polyg-
onal meshes by nature. We leave this issue for later investigation.
However this cylindrical geometry extension of ReALE is motivated
since in many application problems, such as inertial confinement
problems, physical domains have axisymmetric features. This
paper is organized as follows; we first recall some notion of
cylindrical geometry, then in a second section we derive the cell-
centered Lagrangian scheme. In the third section the rezone and
remap parts are extended to cylindrical geometry. Numerical test
case are provided in the fourth section where comparisons to exact
solution and/or experimental solution are proposed. Finally con-
clusions and perspectives are drawn.

2. Cylindrical geometry

We are interested in discretizing the equations of the 2D
Lagrangian hydrodynamics in cylindrical geometry, taking into ac-
count under the same form both Cartesian and cylindrical geome-
try. To this end, we re-use the notations introduced by Dukowicz in
[6]. In the Lagrangian formalism the rates of change of mass, vol-
ume, momentum and total energy are computed assuming that
the computational volumes follow the material motion. This repre-
sentation leads to the following set of equations for an arbitrary
moving control volume V(t):

d
dt

Z
VðtÞ

qdV ¼ 0; ð1aÞ

d
dt

Z
VðtÞ

dV �
Z

VðtÞ
r � U dV ¼ 0; ð1bÞ

d
dt

Z
VðtÞ

qU dV þ
Z

VðtÞ
$P dV ¼ 0; ð1cÞ

d
dt

Z
VðtÞ

qEdV þ
Z

VðtÞ
r � ðPUÞdV ¼ 0: ð1dÞ

where d
dt denotes the material, or Lagrangian, time derivative. Here,

q, U, P, E respectively denote the mass density, velocity, pressure
and specific total energy of the fluid. Eqs. 1a, 1c, 1d express the con-
servation of mass, momentum and total energy. The thermody-
namic closure is obtained by adding the Equation Of State (EOS)
of the form P = P(q,e), where the specific internal energy, e, is re-
lated to the specific total energy by e ¼ E� 1

2 kUk
2. We note that vol-

ume variation Eq. (1b) which is also named Geometric Conservation
Law (GCL), is equivalent to the local kinematic equation

d
dt

X ¼ UðXðtÞ; tÞ; Xð0Þ ¼ x; ð2Þ

where X is a point located on the control volume surface, S(t), at
time t > 0 and x corresponds to its initial position. We note that
the case of Cartesian or cylindrical geometry can be combined by
introducing the pseudo Cartesian frame (O,X,Y), equipped with
the orthonormal basis (eX,eY), through the use of the pseudo radius
RðYÞ ¼ 1� aþ aY , where a = 1 for cylindrical geometry and a = 0
for Cartesian geometry. We remark that Y corresponds to the radial
coordinate in the cylindrical case meaning that we assume rota-
tional symmetry about X-axis, refer to Fig. 1. We note that if we re-
fer to standard cylindrical coordinates, (Z,R), then X corresponds to
Z and Y to R. In this framework, the volume V is obtained by rotating
the area A about the X-axis. Thus, the volume element, dV, writes
dV ¼ RdA, where dA = dXdY is the area element in the pseudo
Cartesian coordinates. Note that we have omitted the factor 2p
due to the integration in the azimuthal direction, namely we
consider all integrated quantities to be defined per unit radian.

The surface S, which bounds the volume V, is obtained by rotating,
L, the boundary of the area A, about the X-axis. Thus, the surface ele-
ment, dS, writes dS ¼ RdL, where dL is the line element along the
perimeter of A.

In view of subsequent spatial discretization, we shall express
the volume integrals associated with the divergence and gradient
operators using the Green formula. We recall that, in the pseudo
Cartesian frame, the divergence operator writes

r � U ¼ @u
@X
þ 1
R

@

@Y
ðRvÞ ¼ @u

@X
þ @v
@Y
þ a

v
R

¼ 1
R

@

@X
ðRuÞ þ @

@Y
ðRvÞ

� �

where (u,v) are the components of the vector U. The gradient oper-
ator writes as usual

$P ¼ @P
@X

eX þ
@P
@Y

eY :

By replacing the volume integral form of the divergence operator by
its surface integral form and by employing the previous notations
one deduces the Green formula in the pseudo Cartesian framework
asZ

V
r � U dV ¼

Z
L

U � NRdL: ð3Þ

where N is the unit outward normal associated with the contour L.
To derive the surface integral form of the gradient operator, we use
the vector identity U � $P ¼ r � ðPUÞ � Pr � U, which holds for any
vector U. The integration of this identity over the volume V leads toZ

V
U � $P dV ¼

Z
L

PU � NRdL�
Z

A
Pr � URdA:

Assuming a constant U vector, we finally getZ
V
$P dV ¼

Z
L

PNRdL� aeY

Z
A

P dA; ð4Þ

since for a constant U vector, we have r � U ¼ a
R

U � eY . We have ex-
pressed the volume integral of the gradient operator as a function of
a surface integral plus a source term, which ensures the compatibil-
ity with the surface integral form of the divergence operator. This
approach leads to a discretization which is known as Control Volume
formulation (CV). An alternative approach to define the surface inte-
gral form of the gradient operator is obtained by settingZ

V
$P dV ¼

Z
A
$PRdA ¼ R

Z
A
$P dA:

Here, we have used the mean value theorem, hence R is defined as
the averaged pseudo radius R ¼ 1

jAj
R

A RdA, where jAj is the surface

Fig. 1. Notation related to the pseudo Cartesian geometry.
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of the area A. We remark that in the case of Cartesian geometry
R ¼ 1 since a = 0. Finally, applying the Green formula, we getZ

V
$P dV ¼ R

Z
L

PN dL: ð5Þ

We recover the Cartesian definition of the gradient operator
weighted by the averaged pseudo radius. This alternative approach
leads to the so-called Area-Weighted formulation (AW). We point out
that, in this case, the compatibility between the surface integrals of
the divergence and gradient operators is lost. Finally let us remark
that formulae (5) and (4) coincide in the case of the Cartesian geom-
etry since a = 0 and R ¼ 1.

3. Compatible cell-centered Lagrangian scheme

We develop a sub-cell force-based discretization over a domain
D which is paved using a collection of polygonal cells without gap
or overlaps. Such discretization has been introduced in [7,8]. Using
the previous results and particularly the gradient operator defini-
tion given by (4), we rewrite the set of Eq. (1) in the control volume
formulation over the moving polygonal cell Xc(t) as

mc
d
dt

1
qc

� �
�
Z
@XcðtÞ

U � NRdL ¼ 0; ð6aÞ

mc
d
dt

Uc þ
Z
@XcðtÞ

PNRdL ¼ aAcPceY ; ð6bÞ

mc
d
dt

Ec þ
Z
@XcðtÞ

PU � NRdL ¼ 0: ð6cÞ

Here, Ac is the area of the cell Xc(t) and mc its constant mass. For any
fluid variable /, /c denotes its mass density average, i.e.
/c ¼ 1

mc

R
XcðtÞ q/dV . The area-weighted formulation is obtained

using (5) for the gradient operator definition. In comparison to
the control volume formulation, the previous system only differs
in the momentum equation. Using the notations previously intro-
duced, the area-weighted formulation of the momentum equation
writes

mc
d
dt

Uc þRc

Z
@XcðtÞ

PN dL ¼ 0; ð7Þ

where the cell averaged pseudo radius is Rc ¼ 1
Ac

R
Ac
RdA. We point

out that, in the case of Cartesian geometry Rc ¼ 1 for all c, therefore
the area-weighted formulation coincides with the control volume
formulation. Moreover recalling that mc = Vcqc and Rc ¼ Vc=Ac im-
plies that (7) can be rewritten as

lc
d
dt

Uc þ
Z
@XcðtÞ

PN dL ¼ 0; ð8Þ

where lc ¼ Acqc ¼ mcRc denotes the Cartesian inertia. Conse-
quently (8) has the same form as the momentum equation written
in Cartesian geometry although the Cartesian inertia is not a
Lagrangian mass (i.e it is not constant in time).

We have written a set of semi-discrete evolution equations for

the cell-centered variables 1
qc
;Uc; Ec

� �
, whose thermodynamic clo-

sure is given by the EOS, Pc = P(qc,ec), where ec ¼ Ec � 1
2 kUck2. The

motion of the grid is ruled by the discrete trajectory equation writ-
ten at each point: d

dt Xp ¼ UpðXpðtÞ; tÞ;Xpð0Þ ¼ xp, where Xp denotes
the position vector of point p and Up its velocity. Let us note that by
setting a = 0 in the previous set of equations we recover the same
system as in Cartesian geometry [3]. In the following we determine
the numerical fluxes and the nodal velocity used to move the grid.

3.1. Geometric conservation law

Introducing Vc ¼
R

XcðtÞRdA the measure of the volume obtained
by rotation of the polygonal cell Xc about X-axis, Eq. (6a) writes as
the GCL

d
dt

Vc �
Z
@Xc ðtÞ

U � NRdL ¼ 0: ð9Þ

Likewise in the case of Cartesian geometry, we use the fact that Vc is
a function of the position vector Xp of point p 2 PðcÞ, where PðcÞ de-
notes the set of points of the Lagrangian cell Xc. The cylindrical cor-
ner area vector, refer to Fig. 2 is given by

ApcNpc ¼
1
2

Rp� þ 2Rp

3
ðXp � Xp� Þ þ

Rpþ þ 2Rp

3
ðXpþ � XpÞ

� �
� ez

where Apc is the corner area that can be computed knowing that
N2

pc ¼ 1. Noticing that the half-edge outward normals are given by
L�pcN�pc ¼ � 1

2 ðXp� � XpÞ � ez, we rewrite the previous equation as

ApcNpc ¼
Rp� þ 2Rp

3
L�pcN�pc þ

Rpþ þ 2Rp

3
LþpcNþpc: ð10Þ

As noticed by Whalen in [9], the corner area vector is the funda-
mental geometric object that uniquely defines the time rate of
change of the cell volume as

d
dt

Vc ¼
X

p2PðcÞ
ApcNpc � Up: ð11Þ

This last result yields the definition of the discrete divergence oper-
ator over cell Xc as follows:

ðr � UÞc ¼
1
Vc

d
dt

Vc ¼
1
Vc

X
p2PðcÞ

ApcNpc � Up: ð12Þ

We claim that we have completely defined the volume flux in terms
of the corner area vector and the nodal velocity, moreover this der-
ivation is compatible with the mesh motion.

3.2. Sub-cell force-based discretization

Let us discretize momentum and total energy equations by
means of sub-cell forces. To this end we use the partition of each
polygonal cell Xc into sub-cells Xpc, where p 2 PðcÞ (see Fig. 2).
The sub-cell force that acts from sub-cell onto point is defined as

Fpc ¼
Z
@Xpc\@Xc

PNRdL: ð13Þ

We also use the sub-cell based partition to approximate the total
energy flux as

Fig. 2. Polygonal cell Xc in cylindrical geometry. Given the half-edge outward
normals L�pcN

�
pc at point p and two consecutive points p�, p+ one defines the

cylindrical corner area vector as ApcNpc ¼ Rp� þ2Rp

3 L�pcN
�
pc þ

Rpþ þ2Rp

3 LþpcN
þ
pc . The parti-

tion into sub-cells Xpc is shown.
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Z
@Xc

PU � NRdL ¼
X

p2PðcÞ

Z
@Xpc\@Xc

PNRdL

 !
� Up ¼

X
p2PðcÞ

Fpc � Up:

Substituting the previous results into system (6c) yields

mc
d
dt

1
qc

� �
�
X

p2PðcÞ
ApcNpc � Up ¼ 0; ð14aÞ

mc
d
dt

Uc þ
X

p2PðcÞ
Fpc ¼ aPcAceY ; ð14bÞ

mc
d
dt

Ec þ
X

p2PðcÞ
Fpc � Up ¼ 0: ð14cÞ

We have expressed the numerical fluxes in terms of the corner area
vector, the sub-cell force and the nodal velocity. The last two re-
main to be determined to complete the discretization. This task is
achieved by investigating the thermodynamic consistency and the
conservation of the sub-cell force-based discretization [4]. To en-
sure a local entropy inequality, it is sufficient to postulate the fol-
lowing form for the sub-cell force:

Fpc ¼ApcPcNpc �MpcðUp � UcÞ: ð15Þ

Here Mpc is a sub-cell based 2 � 2 matrix such that: Mpc is symmet-
ric, and, Mpc is positive semi-definite. The physical dimension of Mpc

corresponds to an area times a density times a velocity. We remark
that entropy production within cell c is directly governed by the
general form of the sub-cell matrix Mpc and the velocity jump be-
tween the nodal and the cell-centered velocity, DUpc = Up � Uc. Fi-
nally total energy conservation is ensured provided that for all
point pX
c2CðpÞ

Fpc ¼ 0: ð16Þ

We remark that this last equation is the same condition than the
one obtained in Cartesian geometry for any compatible cell-cen-
tered or staggered sub-cell based discretization. Moreover under
this condition, and, up to the boundary terms and the radial source
term contributions, momentum is conserved over the entire do-
main. This result is remarkable in the sense that it is written under
the same form regardless the geometry.

The last unknowns of the scheme, namely the sub-cell matrix
Mpc and the node velocity Up, are obtained thanks to a node-cen-
tered Riemann solver.

3.3. Node-centered Riemann solver

The node-centered solver that provides the grid velocity is
obtained as a consequence of total energy conservation. Substitut-
ing the sub-cell force (15) into (16) gives for all point p

MpUp ¼
X

c2CðpÞ
ðApcPcNpc þMpcUcÞ; ð17Þ

where Mp is the sum of the corner matrices around node p, which is
defined as Mp ¼

P
c2CðpÞMpc . We construct the natural extension of

the Cartesian cell-centered scheme [3] to cylindrical geometry by
defining the corner matrix as

Mpc ¼ z�pcR
�
pcL�pc N�pc � N�pc

� �
þ zþpcR

þ
pcLþpc Nþpc � Nþpc

� �
; ð18Þ

where R�pc ¼ 1
3 Rp� þ 2Rp
� 	

. We recall that z�pc are the generalized
non-linear corner impedances given by z�pc ¼ qc ac þ Ccj½
ðUp � UcÞ � N�pcj�, where ac is the isentropic sound speed and Cc is a
material dependent parameter, which is given by cþ1

2 in case of a
gamma gas law. Note that this formula is the two-dimensional
extension of the 2-shock swept mass flux defined for one-dimen-
sional approximate Riemann problem initially proposed by

Dukowicz [10] for shock wave. We also mention that we recover
the acoustic approximation by setting Cc = 0. One can easily check
that this definition leads to a symmetric positive definite Mpc ma-
trix. Therefore, Mp is also symmetric positive definite and thus al-
ways invertible, which defines a unique nodal velocity Up by
inverting Eq. (17). Let us mention that this solver preserves the
spherical symmetry in the case of a one-dimensional spherical flow
computed on an equal angle polar grid.

The high-order extension of our control volume discretization,
both in time and space, is obtained by using the Generalized Rie-
mann Problem (GRP) methodology in the acoustic approximation
(see [4] for the details). Moreover an extension of this cell-centered
Lagrangian scheme in area-weighted formulation is also available
[4]. For multi-species computation one simply considers the iso-
pressure, iso-temperature closure model. Each fluid is character-
ized by its mass fraction Cf, and during the Lagrangian phase, the
concentration of each fluid evolves following the trivial equation
d
dt Cf ¼ 0 (refer to [1]).

4. Rezone and remap in cylindrical geometry

As mentioned in [1] ReALE consists in modifying the rezone and
remap phases of an ALE code assuming that the Lagrangian scheme
can handle polygonal mesh. The cell-centered Lagrangian scheme
previously described in its control volume or area-weighted ver-
sion is well suited for this purpose. Therefore it is adopted as the
first phase of our ReALE algorithm. The extension of the rezone
and remap phases is presented in the following subsections.

4.1. Rezone phase through Voronoi machinery

In cylindrical geometry the simulation is performed on an ac-
tual 2D mesh. Any notion of mesh symmetry is therefore to be con-
sidered in the plane (Z,R). Consequently, the rezone phase is
assumed to operate on this plane behaving ‘‘as a Cartesian plane”.
Therefore neither the generator displacement nor the Voronoi
machinery is modified compared to [1]. However because ReALE
cornerstone lays in the generator displacement and for the sake
of clarity we recall these steps.

Let Xn
c and Xnþ1

c denotes the Lagrangian cells at time tn and
tn+1 = tn + Dt, where Dt is the current time step. The position vector
of the generator of the Lagrangian cell Xn

c is denoted Gn
c (see Fig. 3).

We will define the new position of the generator at time tn+1. First,
we compute a Lagrangian-like displacement of the generator by
setting

Gnþ1;lag
c ¼ Gn

c þ DtUc; ð19Þ

where Uc is the ‘‘pseudo-Lagrangian” velocity of the generator with-
in the cell. This velocity is computed so that the generator remains
located in the new Lagrangian cell. To this end we define this veloc-
ity to be the average of the velocities of the points of the cell,
namely Uc ¼ 1

jPðcÞj
P

p2PðcÞU
nþ1

2
p . Here U

nþ1
2

p is the time-centered veloc-
ity of point p between times tn and tn+1. Any other formula could
be used, as instance by weighting the point velocity by the distance
between Gn

c and Xn
c . Let us introduce the centroid of the Lagrangian

cell Xnþ1
c ¼ 1

jXnþ1
c j

R
Xnþ1

c
XdV , where jXnþ1

c j denotes the volume of the
cell Xnþ1

c . The updated position of the generator is defined by mean
of a convex combination between the new Lagrangian-like position,
Gnþ1;lag

c and the centroid Xnþ1
c of the Lagrangian cell

Gnþ1
c ¼ Gnþ1;lag

c þxc Xnþ1
c � Gnþ1;lag

c

� �
; ð20Þ

where xc 2 [0;1] is a parameter that remains to determine.With
this convex combination, the updated generator lies in between
its Lagrangian position at time tn+1 and the centroid of the Lagrang-
ian cell Xnþ1

c .We note that for xc = 0 we get a Lagrangian-like
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motion of the generator whereas for xc = 1 we obtain a centroidal-
like motion, which tends to produce a smooth mesh.1 We compute
xc requiring that the generator displacement satisfies the principle
of material frame indifference, that is for pure uniform translation
or rotation we want xc to be zero.To this end, we construct xc using
invariants of the right Cauchy–Green strain tensor associated to the
Lagrangian cell Xc between times tn and tn+1.Let us recall some gen-
eral notions of continuum mechanics to define this tensor.First, we
define the Cartesian deformation gradient tensor F ¼ @Xnþ1

@Xn , where
Xn+1 = (Xn+1,Yn+1)t denotes the vector position of a point at time
tn+1 that was located at position Xn = (Xn,Yn)t at time tn.The Carte-
sian deformation gradient tensor is the Jacobian matrix of the
map that connects the Lagrangian configurations at time tn and
tn+1.The right Cauchy–Green strain tensor, C = FtF, is a 2 � 2 sym-
metric positive definite tensor.We notice that this tensor reduces
to the unitary tensor in case of uniform translation or rotation. It ad-
mits two positive eigenvalues, k1 and k2 with the convention
k1 6 k2.These can be viewed as the rates of expansion in a given
direction during the transformation.To determine xc, we first con-
struct the cell-averaged value of the deformation gradient tensor,
Fc, and then the cell-averaged value of the Cauchy–Green tensor
by setting Cc ¼ Ft

cFc .Noticing that the two rows of the F matrix cor-
respond to the gradient vectors of the X and Y-coordinates, we can
set Ft ¼ ½$nXnþ1;$nYnþ1�, where for any functionsw = w(Xn), we have
$nw ¼ @w

@Xn ;
@w
@Yn

� 	t
. With these notations, one defines the cell-aver-

aged value of the gradient of the w function over the Lagrangian cell
Xn

c

ð$nwÞc ¼
1
jXn

c j

Z
Xn

c

$nwdV ¼ 1
jXn

c j

Z
@Xn

c

wNdS

’ 1
jXn

c j
XjPðcÞj
p¼1

1
2

wn
p þ wn

pþ1

� �
Ln

p;pþ1N
n
p;pþ1 ð21Þ

where wn
p � wðXn

pÞ and Ln
p;pþ1N

n
p;pþ1 is the unit outward normal to the

edge Xn
p;X

nþ1
p

h i
. In the previous equation, we have first used the

Green formula then an approximation of the integral using the trap-
ezoidal rule on a polygonal cell. Applying (21) to w = Xn+1 and
w = Yn+1 we get a cell-averaged expression of the gradient tensor F

and, consequently deduce the cell-averaged value of the tensor Cc.

Knowing this symmetric positive definite tensor in each cell, we
compute its real positive eigenvalues k1,c, k2,c and define the param-
eter xc ¼ 1�ac

1�amin
, where ac ¼ k1;c

k2;c
and amin = mincac. We emphasize the

fact that for uniform translation or rotation k1,c = k2,c = 1 and xc = 0,
therefore the motion of the generator is quasi Lagrangian and we ful-
fill the material frame indifference requirement. For other cases, xc

smoothly varies between 0 and 1. Once the new generator position
Gnþ1

c is computed one constructs the corresponding Voronoi mesh
using the Voronoi machinery. This mesh needs a last treatment as
this Voronoi mesh may have arbitrary small edges. Such edges can
drastically and artificially reduce the time step, and, more important
can lead to a lack of robustness. Even if in theory such faces could be
kept, we prefer to remove/clean them, see [1].

4.2. Remap phase by exact-intersection

The remapping phase is a conservative interpolation of physical
variables from the Lagrangian polygonal mesh at the end of the
Lagrangian step onto the new polygonal mesh after the rezone
step. The remapping phase must provide valid physical variables
to the Lagrangian scheme, and conservation of mass, momentum
and total energy must be ensured. Moreover at least a second-or-
der accuracy remapping has to be constructed. In ReALE the re-
zoned mesh may have a different connectivity than the
Lagrangian mesh. Therefore the remapping phase of ReALE is based
on exact-intersection of a priori two different polygonal meshes.
Primary variables are cell-centered density, velocity and specific
total energy. Conservative quantities are cell-centered mass,
momentum and total energy. First piecewise linear representations
of cell-centered variables qc, qcUc, qcEc are constructed on the
Lagrangian mesh. Then a slope limiting process [12] is performed
to enforce physically justified bounds. This phase does not change
compared to the Cartesian geometry. Then conservative quantities,
namely mass, momentum and total energy, are obtained by inte-
gration of these representations in cylindrical geometry. Moreover
for multi-species computation each mass fraction is remapped.

4.2.1. Control volume based remap
In control volume formulation, volume integrations are per-

formed using the true cylindrical volume, V ¼
R

X RdA, that is to
say the measure of the volume obtained by rotation of the surface
X about the Z-axis. New conservative quantities are calculated by
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1 This latter case is equivalent to perform one Lloyd iteration [11].
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integration over polygons of intersection of new (rezoned) and old
(Lagrangian) meshes. Let us consider one non empty polygon
resulting from the intersection between an old cell Xold

c and a
new cell Xnew

d namely Xcd ¼ Xold
c

T
Xnew

d . Then the mass embedded
into this polygon is obtained by integration over Xcd of the piece-
wise linear limited representation of cell-centered density qc(X)

Dmcd ¼
Z

Xcd

qcðXÞRdA: ð22Þ

Due to the linear representation of qc(X), the previous equation
exhibits the integrals of R; R2; RZ which are reduced by the Green
theorem to the boundary integrals, and subsequently evaluated
from the coordinates of the Xcd region vertices. As a consequence
the mass in any new cell Xnew

d ¼
S

cXcd is simply obtained by
summation

mnew
d ¼

Z
Xnew

d

qðXÞRdA ¼
Z
S

c
Xcd

qðXÞRdA ¼
X

cnXcd–;
Dmcd: ð23Þ

Momentum and total energy are calculated likewise. Finally, pri-
mary variables in Xd are recovered by division by new volume
Vnew

d (for density) or new mass mnew
d (for momentum and energy).

To use the multi-species EOS, we need to remap the concentra-
tions of the F fluids from the Lagrangian grid onto the rezoned one.
To this end, we first compute the mass of fluid f in the Lagrangian

cell Xold
c ; mf ;c ¼

R
Xold

c
qCRdA. We note that mold

c ¼
PF

f¼1mf ;c sincePF
f¼1Cf ;c ¼ 1. Then, the mass of each fluid is conservatively interpo-

lated onto the rezoned grid following the methodology previously
described. We denote its new value by mnew

f ;c . At this point we no-

tice that mnew
c –

PF
f¼1mnew

f ;c , this discrepancy comes from the fact
that our second-order remapping does not preserve linearity due
to the slope limiting. Hence, we define the new concentrations

Cnew
f ;c ¼

mf ;cnew

mnew
c

and impose the renormalization Cnew
f ;c  

Cnew
f ;cPF

f¼1
Cnew

f ;c

so

that
PF

f¼1Cnew
f ;c ¼ 1. We point out that this renormalization does

not affect the global mass conservation.

4.2.2. Area-weighted based remap
The difference between control volume and area-weighted for-

mulation lays in the form of the momentum equation. As previ-
ously mentioned Eq. (7) has the same form as in Cartesian
geometry modulo the presence of the Cartesian inertia
lc ¼ mcRc . Consequently the remapping of the momentum equa-
tion in area-weighted cylindrical geometry is performed as in
Cartesian geometry. Then the momentum embedded into
Xcd ¼ X old

c

T
Xnew

d is obtained by integration of the piecewise linear
limited representation of cell-centered momentum (qU)c(X)

DWcd ¼
Z

Xcd

ðqUÞcðXÞRdA ¼ Rc

Z
Xcd

ðqUÞcðXÞdXdY ;

where the integration is performed over the Cartesian volume dXdY.
The momentum in a new cell Xnew

d is given by

Wnew
d ¼

Z
Xnew

d

ðqUÞcðXÞRdA ¼
Z
S

c
Xcd

ðqUÞcðXÞRdA ¼
X

cnXcd–;
DWcd:

The new velocity in cell Xnew
d is finally given by

Unew
d ¼Wnew

d

ld
¼Wnew

d

mnew
d

Rd
new;

where mnew
d has been remapped using the true cylindrical volume

and Rd
new has been recomputed on the new area Anew

d .

5. Numerical tests

In this section we present the numerical results obtained by the
cylindrical cell-centered ReALE code based on CHIC code, [3]. Let us
remind that any vector is written in the (Z,R) space and that multi-
species test cases are run with concentration equations. The first
test is the well-known Sedov test case; it is used as a sanity check
as no physical vorticity is expected to occur and therefore recon-
nection-based methods are not required. The second is a helium
bubble shock interaction in cylindrical geometry, it is run in order
to show the predictive capabilities of ReALE technique. This test
generates vorticity which is a classical cause of failure for Lagrang-
ian schemes. For a fixed-connectivity ALE code, it usually leads to a
conflict between the Lagrangian motion with a tendency to tangle
the mesh and, the mesh-regularization motion with a tendency to
avoid bad quality cells. Such a conflict produces a stagnation of the
mesh that reconnection technique is intended to cure [1]. Experi-
mental results of the shock/bubble interaction are compared to
the simulations. The last test problem is the rise of a light bubble
under gravity for which the same type of vortex motion is ex-
pected. As no mesh symmetry is supposed to be preserved, we
run the code in its control volume formulation for the last two test
cases. Only the Sedov problem is run in area-weighted formulation
to show the ability of the code to handle this formulation.

5.1. Sedov problem

Let us consider the Sedov blast wave problem with spherical
symmetry. This problem models an intense explosion in a perfect
gas with a diverging shock wave. The computational domain is
X = [0,1.2] � [0,1.2]. The initial conditions are characterized by
(q0,P0,U0) = (1,10�6,0) for a perfect gas with polytropic index set
to c ¼ 7

5. We set an initial delta-function energy source at the origin
prescribing the pressure in the cell containing the origin as
P or ¼ ðc� 1Þq0

E0
Vor

, where Vor denotes the volume of the cell and
E0 is the total amount of released energy. Choosing E0 ¼
0:425536, the solution consists of a diverging shock whose front
is located at radius R = 1 at time t = 1. The peak density reaches
the value 6. Symmetry boundary conditions are applied on the axis.
The initial mesh is a degenerate Voronoi mesh obtained from
50 � 50 uniformly distributed generators and four more generators
on the corners of the domain. This test does not need ALE, and a
fortiori ReALE, technique; pure Lagrangian schemes usually per-
form well. However this is used to assess the validity of ReALE ap-
proach. We present the density and mesh in Fig. 4 left-panel.
Moreover density is presented as a function of the cell radius for
any cell against the exact solution (straight line) in the right-panel
of Fig. 4. The final Lagrangian mesh presents expanded cells in the
rarefaction wave and compressed ones after the shock wave. On
this sanity check ReALE technique in cylindrical geometry is able
to produce a smooth mesh and accurate results.

5.2. Helium bubble shock interaction

The computational domain is X = [0;0.65] � [0;0.089] which
represents a cylinder of diameter 0.178 and initial length 0.65.
The spherical helium bubble is represented as a disk defined by
the coordinates of its center (Zc,Rc) = (0.320,0) and its radius
Rb = 0.0225 (see Fig. 5). We prescribe wall boundary conditions at
each boundary except at Z = 0.65, where we impose a piston-like
boundary condition defined by the inward velocity Vw = (uw,0).
The incident shock wave is defined by its Mach number,
Ms = 1.25. The bubble and the air are initially at rest. The initial
data for helium are (q1,P1) = (0.182,105), its molar mass is
M1 ¼ 5:269� 10�3 and its polytropic index is c1 = 1.648. The initial
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data for air are (q2,P2) = (1,105), its molar mass is M2 ¼ 28:963
�10�3 and its polytropic index is c2 = 1.4. Specific internal energies
are e1 = 8.4792 � 105 and e2 = 2.5 � 105. Using the Rankine–
Hugoniot relations, we find that the velocity of the piston is given
by uw = �140.312. The incident shock velocity is Dc = �467.707.
The incident shock wave hits the bubble at time ti = 657.463 � 10�6.
The stopping time for our computation is tend = ti + 1594 � 10�6 =
2251.463 � 10�6. The mesh is built with a set of 4856 generators
designed to produce a Voronoi mesh that has a mesh line which
exactly matches the bubble boundary, see Fig. 5. In all figures the
top part is the actual computational domain that is mirrored
around the Z-axis for visualization purposes. In Fig. 6 are displayed
density and mesh around the bubble for five intermediate times
and the final time of the simulation, namely ta = ti + 20 � 10�6,
tc = ti + 145 � 10�6, td = ti + 223 � 10�6, tf = ti + 600 � 10�6 and
tg = ti + 1594 � 10�6. These correspond to five shadow-photo-
graphs of experimental results from [13] (Fig. 8 of page 53) that
we reproduced in Fig. 6 (right-panels). Let us note that the final
time has a different color scale and that the visualization window
follows the bubble. We observe a quite good agreement with the
experimental results even for this coarse mesh; the timing of the
shock waves and the shape of the deformed bubble fit the sha-
dow-graphs of the experimental results. Of great importance is
the fact that the bubble detaches from the Z-axis at tf and more
clearly at tg, this can be also guessed from the experimental sha-
dow-graphs. Finally in Fig. 7 are displayed the density waves pres-
ent in the full domain at intermediate times tb = ti + 82 � 10�6,

tc = ti + 145 � 10�6, td = ti + 223 � 10�6, and te = ti + 1007 � 10�6.
The dark zones are the inside bubble and the air that has not been
yet attained by the initial shock wave. Multiple reflections and
refractions can be observed in the density wave patterns.

5.3. Rise of a light bubble under gravity

This problem consists in the rise of a light bubble in a heavy gas
bubble under gravity [14]. The statement of the problem is sketched
in Fig. 8. The computational domain is X = [�15,20] � [0,15]. This
domain is split into three regions filled with air (ideal gas EOS with
c = 1.4) at rest. One defines for each point (Z,R) its radius

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ Z2

p
and angle h so that Z(R,h) = Rcosh. The initial data

are given in Zone I (inside the bubble), Zone II (transition layer)
and Zone III (exterior) by

Zone I Zone II Zone III
R 6 R1 R1 < R < R2 R P R2

e1 = 3 � 103 e2(R) e3 = 15.6
p1 = 0.6 p2(R,h) p3(R,h) = 0.6e�Z(R, h)/D

R1 = 6.6 is the radius of the light bubble, R2 = 8.5 is the radius of the
transition layer towards the atmosphere, D = 63.7 is the inhomoge-
neity parameter for the atmosphere. In Zone II a linear transition is
applied between the values of p and e of Zones I and III
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p2ðR; hÞ ¼ ð1� aðRÞÞp1 þ aðRÞp3ðR; hÞ;
e2ðRÞ ¼ ð1� aðRÞÞe1 þ aðRÞe3;

with a(R) = (R � R1)/(R2 � R1). Gravity is set downward the Z direc-
tion with magnitude G = 9.8 � 10�2 see Fig. 8.The bubble rises in
the Z direction because of the density gradients and velocity. In
its motion it further deforms into a classical mushroom shape.
The final time is tfinal = 14. The initial mesh is made of a total of

1901 cells split into roughly 1200 quadrangles outside Zone II
and 653 polygonal cells inside refer to Fig. 9 top-middle panel.
Walls boundary conditions are assumed everywhere besides for
the Z-axis where symmetry boundary condition is applied. In
Fig. 9 left column are plotted the density and mesh for the time
moments t0 = 0, t1 = 1, t2 = 8 and t3 = 14. As for the bubble/shock
problem the visualization is performed after reflection against
the Z-axis. The colored vorticity and vector velocity fields are
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shown in Fig. 9 middle and right columns respectively. As ex-
pected the bubble rises upwards the Z direction. It adopts a mush-
room shape as can be seen in Fig. 9 at t3 = 14. Time t1 = 1 shows
how the ReALE technology starts to adapt the mesh while waves
are emanating from the bubble. At time t2 = 8 the bubble starts
to deform while the cells ahead the tip of the bubble are highly
compressed; this process is pursued up to final time. Vorticity
and velocity vector plots confirm that the fluid undergoes a vor-
tex-like motion. Such a vortex-like motion has a natural tendency
to highly stretch cells in classical ALE simulation without recon-
nection leading to inaccuracy or failure of the simulation. Con-
trarily ReALE is able to undergo such motion while allowing
cells to change neighborhood. These ReALE results are in agree-
ment with the numerical results provided in [14]. In this paper
the authors use a different numerical method that leads to a
non smooth polygonal mesh as shown in Fig. 4.19 of page 111.

ReALE technique form this point of view seems superior as our
mesh keeps a general good geometrical quality.

6. Conclusion and perspectives

In this paper we investigate the extension to cylindrical geom-
etry of the recently developed Reconnection Arbitrary-Lagrangian–
Eulerian (ReALE) technology [1]. This extension is fairly obvious;
indeed, the cell-centered Lagrangian scheme was already available
in cylindrical geometry using a control volume or area-weighted
formulation. Moreover, the rezone technology using Voronoi
machinery with moving generators introduced in [1] can be used
likewise. The last part of our ReALE code, namely the remapping
part, is more demanding as it must utilize a control volume based
exact-intersection of a priori two different polygonal meshes
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provided by the Lagrangian and rezone phases. In the control
volume formulation true volume integrals are used to remap mass,
momentum and total energy whereas in area-weighted formula-
tion the momentum is remapped as in Cartesian geometry.
Multi-fluid is treated with concentration equations that must be
remapped likewise.

We show that the extension of ReALE to cylindrical geometry
produces good results on numerical test cases. First we run the Se-
dov problem as a sanity check. Then we simulate an helium bubble
shock interaction problem. We compare our multi-species simula-
tion against experimental shadow-graphs proving the validity and
accuracy of the ReALE technology in cylindrical geometry. The last
problem is the rise of a light bubble under gravity that presents
vortex-like motion. Unlike ReALE, a classical fixed-connectivity
ALE code usually presents difficulties to capture such a motion.

In the near future we plan to investigate the association of ReALE
with interface reconstruction in planar and cylindrical geometries.
Moreover we will investigate the possible extension of ReALE to 3D.
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2.4 ALE codes comparison

In 2007-2008 with Richard Liska and Pavel Váchal (from the Czech connection in Prague) and
J. Breil, S. Galera and P.-H. Maire (CELIA, university of Bordeaux) we have investigated the behav-
iors of our three ALE codes. At this time the codes’ description was

CHIC code uses the cell-centered Lagrangian method, condition number rezoning and cell-
centered swept region remapping.

PALE standing for Prague ALE. A staggered Lagrangian compatible Lagrangian scheme with
Winslow rezoner for this study 8 and partial subcell swept region remapper.

ALE INC(ubator) code uses the staggered Lagrangian method, the Reference Jacobian rezoning
and a full subcell swept region remapping.

The goal was to run these codes in their nominal configuration 9 and compare their general behav-
iors.
As an illustration we reproduce here the Sedov blast wave problem [169] in Cartesian 2D geometry.

In the paper we have also run sanity checks (1D Sod shock tube) and shock/bubble interaction test
cases. In Fig.2.17 are presented the results of the three ALE codes and an Eulerian scheme based on
Lax and Liu scheme [175],[176] for the density variable for the final time t f inal = 1. The top/middle
rows correspond to a 30× 30 initial Cartesian mesh, the bottom row corresponds to a 60× 60 mesh.
The top row presents the meshes colored by density. We plot in middle and bottom rows the cell
density (for all cells) as a function of the cell radius versus the exact solution which consists of
a shock wave located at r = 1 at t f inal = 1 and an exponential type of density function before the
diverging shock (travelling then towards to the right of the pictures) the peak of which is at ρmax = 6.
The three Lagrangian codes produce decent results, the cell-centered being the most accurate one
(see the maximum peak as instance). The two staggered Lagrangian codes perform alike and the
Eulerian scheme is the least performing of the four methods. Notice, that all Lagrangian methods
are performing for this test much better than the Eulerian method as the moving Lagrangian mesh
concentrates more cells close to the circular shock.

The paper [20] is reproduced in the following pages.

8. PALE also enjoys Reference Jacobian rezoning, condition number smoothing.
9. In other words not trying to tweak all fixes and parameters that may help.
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Figure 2.17 – Sedov problem — Density at t = 1 — (a) : CHIC 30× 30 cells — (b) : ALE INC 30× 30 cells — (c) :
PALE 30× 30 cells — (d) : Eulerian scheme 30× 30 cells — (e) : CHIC 60× 60 cells — (f) : ALE INC 60× 60 cells
— (g) : PALE 60× 60 cells — (h) : Eulerian scheme 60× 60 cells.
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Abstract. Three Arbitrary Lagrangian-Eulerian codes are compared on a
set of test problems. Code CHIC is based on cell-centered Lagrangian scheme
while codes ALE INC and PALE are based on staggered Lagrangian scheme.
Pure Lagrangian methods are first tested on Sod and Sedov problems. The
full ALE methods are then compared on two more advanced problems, namely
triple point and shock bubble interaction problems, which cannot be treated
by pure Lagrangian method due to severe distortion of moving Lagrangian
mesh.

1. Introduction

Lagrangian framework for Euler equations, describing dynamics of compressible
fluid, offers several advantages compared to standard Eulerian one. In Lagrangian
case the computational mesh is moving together with the simulated fluid with
zero mass flux between computational cells while Eulerian method employs fixed
static computational mesh with advection flux between cells. Clearly Lagrangian
methods are superior for problems which involve changing computational domain
with moving boundary conditions for which Eulerian setup would be very difficult.
For some problems, e.g. those involving shear flow or vorticity, moving Lagrangian
mesh suffers from mesh distortion which can lead to failure of pure Lagrangian
method. The problems with mesh distortion can however be treated by the ALE
(Arbitrary Lagrangian Eulerian) method [HAC74] which, either regularly or when
needed, smooths the distorted mesh and remaps the conserved quantities to the
new smoothed mesh.
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2. Numerical methods

The Euler equations for compressible gas dynamics written in Lagrangian co-
ordinates are

ρ
d τ

d t
+ div u = 0,

ρ
d u

d t
+ grad p = 0,(2.1)

ρ
d e

d t
+ div (p u) = 0,

where ρ is density, τ = 1/ρ is specific volume, u is velocity, p is pressure, e =
ǫ + u2/2 is specific total energy and ǫ is specific internal energy. The system of
Euler equations which express the conservation of mass, momentum and energy is
closed by the equation of state p = p(ρ, ǫ).

The traditional standard Lagrangian methods, such as compatible method
[CBSW98], use the staggered discretization with scalar quantities (density, inter-
nal energy, pressure) defined inside the computational cells and vector quantities
(velocity and position) defined at the mesh nodes. The compatible method is based
on forces acting on the node which replace the pressure gradient in the momentum
equation. The internal energy is then updated by the work done by the forces
which is directly derived from total energy conservation. The subzonal pressure
forces [CS98] are used to prevent hourglass type of cell motion. The staggered
method adds the necessary dissipation at compression regions by means of artificial
viscosity [CSW98, CS01] applied also in the form of forces.

Recently several cell-centered Lagrangian methods with all quantities defined
in the cells have been proposed [DM05, MABO07, MB08]. These methods
are finite volume schemes for which the pressures and velocities on mesh edges
(which are needed in the numerical fluxes) are obtained from Riemann solver at
nodes of the mesh. The obtained nodal velocities are used to move the mesh. The
dissipation for cell-centered schemes is being added through the Riemann solver
and the entropy inequality is satisfied.

This paper employs an indirect ALE method which consists of three phases.
The first phase is one or several Lagrangian steps described above. Rezoning, which
is the second phase, performs computational mesh smoothing and untangling to
improve the quality of the Lagrangian mesh while trying to keep the smoothed
mesh close to the Lagrangian one. In the third phase the conservative quantities
are remapped from the Lagrangian mesh to the smoothed mesh.

The simplest rezoning method is Winslow smoothing [Win63]. A better re-
zoning method is condition number smoothing [Knu00]. Even more advanced is
the Reference Jacobian method [KMS02].

The remapping phase performs conservative interpolation of conservative quan-
tities from the old Lagrangian mesh to the new rezoned mesh. The conservative
quantities are first linearly reconstructed with limited slopes on the cells of the old
mesh. This piecewise linear reconstruction is then integrated over intersections of
the old cells with the new cell to get integral average over the new cell. As the
new smoothed mesh and old mesh do not differ much, this exact integration can
be replaced by approximate integration over the regions swept by the cell edges
moving from the old mesh to the new one [KSW03].
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Here we compare the performance of three Lagrangian and ALE codes: CHIC
code developed at CELIA laboratory at Bordeaux university, ALE INC(ubator)
code developed at Los Alamos National Laboratory and maintained at Toulouse
university and PALE (Prague ALE) developed at Czech Technical University in
Prague. The CHIC code uses the cell-centered Lagrangian method, condition num-
ber rezoning and cell-centered swept region remapping. The ALE INC code uses the
staggered Lagrangian method, the Reference Jacobian rezoning and a full subcell
swept region remapping [LS05]. The PALE code uses the staggered Lagrangian
method, Winslow rezoning and a partial subcell swept region remapping.

3. Numerical results

For the comparison we have selected several test cases including Sod shock
tube problem, Sedov blast wave problem, triple point problem and shock bubble
interaction problem.

The first two tests, Sod and Sedov problems, have known exact solution and
can be computed by pure Lagrangian method as the moving Lagrangian mesh does
not degenerate. On these problems we compare the Lagrangian methods.

The exact solutions for the other two test problems are not known. These tests
cannot be handled by pure Lagrangian methods as the moving mesh degenerates
(some computational cells become non-convex or even inverted). The latter two
test problems can be formulated in Eulerian framework and we obtain their ref-
erence numerical solutions by high order Eulerian numerical method on very fine
computational mesh. The results of the staggered and cell-centered Lagrangian
methods computed on rather coarse meshes are compared with reference Eulerian
solutions.

3.1. Sod problem. The classical Sod problem is a 1D Riemann shock tube.
Its solution consists of a left moving rarefaction, a contact discontinuity and a right
moving shock. The discontinuity is initially located at 0.5. The domain is filled
with an ideal gas at rest with γ = 1.4. The density/pressure values on the left side
of the discontinuity are 1.0/1.0, while those on the right side are 0.125/0.1. We
simulate this problem on domain Ω = [0; 1]× [0; ymax] (where ymax is chosen so that
the cells are initially squares) using 200 × 1 cells up to the final time tfinal = 0.25.

Results for the Sod problem computed by pure Lagrangian methods are pre-
sented in Fig. 1 together with exact solution of this Riemann problem plotted by
solid line. Fig. 1(a) shows the result by cell-centered CHIC and Fig. 1(b) results
by staggered ALE INC and PALE, which are the same. The shock wave on the
right is better resolved by the cell-centered method. Its resolution by staggered
method can be improved by adjusting the artificial viscosity parameters, however
here in all tests we use the standard parameters without any adjustments. The
contact discontinuity in the middle is resolved better by the staggered methods
with jump in one cell, while cell-centered result is slightly diffused on the top left
of the contact, which is typical for Godunov-like methods. On the other hand stag-
gered method produces worse undershoot on the right of the contact. At the tail
of the rarefaction wave on the left the staggered method produces an undershoot
which is typical for this method, while the cell-centered method diffuses the tail of
the rarefaction. At the head of the rarefaction both methods diffuse the jump in
gradient, with cell-centered method producing slightly better resolution.
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Figure 1. Density for Sod problem at t = 0.25 for 200 cells –
(a) CHIC; (b) ALE INC and PALE give the same result. Exact
solution by solid line.

3.2. Sedov problem. Sedov problem [Sed59] describes the evolution of a
blast wave in a point-symmetric explosion. The total energy of the explosion is
concentrated in one cell c at the origin and has magnitude Etotal = 0.244816. The
specific internal energy of this cell is defined as ǫ(c) = Etotal/V (c). Initial density
is equal to 1, pressure is 10−6 (except in cell c at the origin), γ = 1.4 and gas is
initially at rest. We solve this problem on region Ω = [0; 1.2] × [0; 1.2] with 30 × 30
and 60 × 60 cells. At final time tfinal = 1.0 the exact solution is a cylindrically

symmetric diverging shock whose front is at radius r =
√
x2 + y2 = 1 and has a

density peak ρ = 6.0.
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Figure 2. Density for Sedov problem at t = 1 for 30 × 30 cells –
(a) CHIC; (b) ALE INC; (c) PALE; (d) Euler LL. Bottom row is
the scatter plot of density in each cell versus radius (its distance
from origin) with exact solution by solid line.
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Mesh 30 × 30 60 × 60
CHIC 0.14 0.07
ALE INC 0.15 0.08
PALE 0.16 0.11
Euler LL 0.44 0.23

Table 1. Convergence table of relative L1 errors for Sedov problem.

We compute this problem not only by our three Lagrangian/ALE codes, but
for comparison also by Eulerian Lax and Liu (LL) positive scheme [LL98] at the
same resolution on the static computational mesh. The results are presented in
Fig. 2, where the upper row shows density colormaps with computational mesh

and the lower row shows the scatter plots of density versus radius r =
√
x2 + y2

in each cell together with the exact solution of the problem by [KT07]. As the
exact solution is available, we can compute the errors of the numerical solution for
objective comparison. The relative L1 errors eL1 =

∫
|ρn − ρe|dV /

∫
|ρe|dV (ρn is

numerical density and ρe the exact density) of both meshes are compared in Tab. 1.
The table shows the best results by CHIC, followed by ALE INC and PALE. The
Eulerian methods are much worse than all the Lagrangian ones which is clearly
visible also in Fig. 2. This demonstrates another advantage of Lagrangian methods
which for some problems are able to concentrate more cells in interesting areas,
here around the diverging shock wave.

3.3. Triple point problem. The triple point is the point where three contact
discontinuities meet. A planar shock wave generated by moving piston impacts the
triple point and creates a vortex of heavy material into the lighter one.

The setup of the problem is in Fig. 3(a). The solution domain Ω = [0; 1.6] ×
[0; 2.4] is divided into three regions: the medium region [0; 1.6]×[0; 1] on the bottom
with (ρm, pm,um) = (4, 4/3, (0, 1)), the heavy region [0; 1] × [1; 2.4] on the top left
with (ρh, ph,uh) = (16, 10−6, (0, 0)) and the light region [1; 1.6]× [1; 2.4] on the top
right with (ρl, pl,ul) = (1, 10−6, (0, 0)). The gas constant is γ = 5/3 everywhere.
The problem is simulated until final time tfinal = 0.8 on two meshes with 40 × 60
and 80 × 120 cells.
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Figure 3. Triple point problem – (a) initial setup; (b) density
of reference Euler LL solution with 1000 × 1000 cells at t = 0.8.
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Figure 4. Density for triple point problem at t = 0.8 for 40× 60
cells – (a) CHIC; (b) ALE INC; (c) PALE.

Mesh 40×60 80×120
CHIC 0.14 0.08
ALE INC 0.14 0.10
PALE 0.16 0.10

Table 2. Convergence tables of relative L1 density deviations for
triple point problem.

For this problem the exact solution is not known, so we compute the reference
solution by the Eulerian positive LL scheme on the fine mesh with 1000×1000 cells
on the domain [0.2; 1.6]× [0.8; 2.1]. Density of the reference solution is presented in
Fig. 3(b) and is used to compute the relative L1 deviations of numerical solution
from the reference solution in Tab. 2. From the table we can conclude, that the
best results are achieved by CHIC and the worst by PALE, which can be visually
confirmed also from density colormaps presented in Fig. 4 (compare the maximum
density value in the middle and the ridge going left-up from this maximum). In
Fig. 4 one can also distinguish different meshes of the three codes which are related
both to different Lagrangian methods and different rezoning methods used by our
codes. This problem cannot be solved by pure Lagrangian method due to severe
mesh distortion.

3.4. Shock bubble interaction problem. In the shock bubble interaction
problem a piston-generated planar shock wave passes through a square-shaped bub-
ble of low density and generates a diverging lens shaped deformation of the bubble.

The initial setup is presented in Fig. 5. The domain Ω = [−1; 1]×[0; 0.5] is filled
with air (ρa, pa,ua = (1, 1, (0, 0)). A squared bubble [0.25; 0.35]× [0; 0.1] within this
tube is filled with low density gas at rest with (ρb, pb,ub = (0.1, 1, (0, 0)). A piston
at the left end of the tube moving with velocity up = (2, 0) sends a planar shock
wave into the tube which interacts with the bubble. The problem is simulated until
final time tfinal = 0.5 on two meshes with 100 × 25 and 200 × 50 cells.

For this problem the exact solution is not known, so we compute the reference
solution by the Eulerian positive WENO scheme [JS96] on the fine mesh with
1100 × 250 cells on the domain [−1.2; 1] × [0; 0.5]. The density and the vorticity
curl u of the reference solution are presented in Fig. 7. The reference solution is
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t=0
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AirAir

Figure 5. Initial setup for shock bubble interaction problem.
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Figure 6. Density in upper row and vorticity in lower row for
shock bubble interaction problem at t = 0.5 for 200×50 cells – (a)
CHIC; (b) ALE INC; (c) PALE.

Mesh 100x25 200x50
CHIC 0.036 0.021
ALE INC 0.062 0.036
PALE 0.061 0.035

Table 3. Convergence tables of relative L1 density deviations for
shock bubble interaction problem.

used to compute the relative L1 deviations of numerical solution from the reference
solution in Tab. 3. From the table we can conclude, that the best results are
achieved by CHIC. The deviations of results by ALE INC and PALE are very close.
The numerical results of the three ALE codes are presented in Fig. 6 by density
colormap in the upper row and vorticity colormap in the lower row. The contact
discontinuity at the bubble surface is resolved best by ALE INC and PALE which
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Figure 7. Reference Euler WENO solution with 1100×250 cells
at t = 0.5 for shock bubble interaction problem – (a) density; (b)
vorticity.

employ the staggered Lagrangian method. The nice, really jump-like resolution of
contacts is a typical feature of staggered methods (see also contact resolution for
the Sod problem in Fig. 1). The contact is diffused in Eulerian reference solution in
Fig. 7(a), which is typical for Eulerian methods as their fluxes include convective
terms transporting mass, momentum and energy between computational cells. The
surface of the upper part of bubble by cell-centered CHIC is diffused, however as
mentioned above its overall precision is better. This problem cannot be solved by
pure Lagrangian method due to severe mesh distortion.

It is well known that Lagrangian methods have trouble with resolution of vor-
texes as they distort the Lagrangian moving mesh. This is why we present vortic-
ity results. The maximum vorticity for the Eulerian reference solution shown in
Fig. 7(b) is 600, while our colormap ends at 200, which is the maximum vorticity
of the CHIC results. Maximum vorticity for ALE INC and PALE is even much
lower. Cell-centered CHIC is able to compute results with vorticity, while stag-
gered ALE INC and PALE seems for kill almost all the vorticity in the solution.
Killing of vorticity by the staggered method is certainly influenced by the employed
artificial viscosity which tends to damp vorticity [CL06]. Vorticity damping might
be also influenced by the rezone/remap step of the ALE method.

4. Conclusion

We have compared three ALE codes on a set of test problems. First they have
been compared in the pure Lagrangian mode on Sod and Sedov problems for which
exact solutions exist. Then we have compared them on two more tests involving
triple point and shock bubble interaction problems which cannot be treated by
pure Lagrangian method and the full ALE methodology has to be employed. We
were pleasantly surprised by very good performance of the recently developed cell-
centered Lagrangian method based code CHIC, whose results are often superior to
results of traditional staggered methods being used for many years.
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2.5 Multi-material treatment

Dealing with more than one material requires several new developements in a staggered ALE code.

The staggered Lagrangian scheme should be extended to treat mixed cells. Several techniques are
well documented, see as instance [177]. One simple technique is based on concentration equa-
tions. The multi-material flow is considered as a multi-component mixture of miscible fluids.
Each fluid is characterized by its concentration being a passive scalar used to define the loca-
tion of an interface within mixed cells. The equation of state of the mixture of materials must
be determined usually by an ad hoc assumption like pressure/temperature equilibrium. An-
other approach based on volume of fluid (VOF) [178] method which introduces a Lagrangian
tracking of material interfaces is often prefered when no mixing between materials is expected.
Consequently mixed cells are present in the computational domain. These consists of the col-
location of two or more materials within the same cell. The time evolution of a mixed cell is
obtained using a closure model that computes a mixed thermodynamic state function of the
thermodynamic states of each material taking into account the volume fractions (i.e. the rates
of presence). Several closure models have been developed as instance pressure/temperature
equilibrium or relaxation [179, 180, 181, 182, 183], subcell dynamics formulations [184] and
other comparable techniques [185, 186, 187, 188]. As already seen each mixed cell must be
split into pure materials knowing the volume fractions fields. Generally a reconstruction of
the interface between two materials in mixed cell is performed using a straight segment fol-
lowing the well-known Youngs’ method [189, 190] (or also known after [191] as PLIC Piecewise
Linear Interface Calculation the extension of SLIC method Simple Line Interface Calculation [192]).

Some requirements could also be added to the rezone method, as instance some interfaces between
materials can be preserved during the rezone phase. However most of the time the rezoning
phase is kept as it is.

The remapping phase should adapt to the mixing model employed in the Lagrangian phase. In the
case of concentration equations each concentration must be consistently remapped as instance
by using some scaling as in [177]. On the other hand in the case of a VOF method remapping
is made material by material and usually demands the use of an exact intersection between
the rezoned mesh and the Lagrangian mesh with reconstructed interfaces in mixed cells.

Due to their strict conservation of materials, volume-of-fluid (VOF) methods using interface recon-
struction are widely used. However the effective management and capture of interfaces is essential
for accurate and reliable simulation of multi-material and multi-phase flows. As already said VOF
methods do not explicitly track the interface between materials, but rather advect volume fractions
which prescribe the material composition of each cell of the mesh. When the interface between ma-
terials is needed, the interface is recreated based on the material volume fraction in the cell and its
surrounding cells [52, 191, 193, 194]. A common problem impacting these reconstruction methods
is their dependence on a specified material ordering, i.e. if more than two materials are present in
a cell, the reconstruction may depend on the sequence in which the materials are processed. As
an illustration we present in Fig. 2.18 the nested dissections obtained by Youngs’ method in one
mixed cell with three materials : two different orders of treatment produce different final interfaces
(see panels (d) and (h)). This is undesirable as it may improperly locate materials within the cell.
Moreover this may result in material being incorrectly fluxed into neighbouring cells.
In 2005 with some colleagues from the Los Alamos National Laboratory we have put some effort to
develop an order-independent interface reconstruction method for general grids.
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Figure 2.18 – Nested dissection interface reconstruction for three materials (a) the first material is removed leaving
a smaller available polygon, (b) the second material is removed from the available polygon, (c) the remaining available
polygon is assigned to material 3, (d) the resulting partitioning of the computational cell. (e)-(g) show the same procedure
but the materials are processed in a different order leading to a different reconstruction (h).

2.5.1 Interface reconstruction techniques using Power Diagram

In a set of two articles [13, 17] respectively entitled Material order independent interface reconstruction
using power diagrams and A second-order accurate material-order-independent interface reconstruction
technique for multi-material flow simulations with my colleagues from Los Alamos S.P. Schofield,
R.V. Garimella and M.M. Francois we have developed a method that can reconstruct a multi-
material interface with no dependence on material ordering. The method is very general : it works
on unstructured grids, accommodates an arbitrary number of materials and extends naturally to
three dimensions. The method does not assume a topology for the material regions, i.e. a layer
structure or triple point configuration. Furthermore, all of the material regions created are convex.
Notice that at the same time V. Dyadechko with M. Shashkov from Los Alamos have developed an
alternative and concurrent technique called Moment of Fluid method (MOF) [195]. This technique
has been tested in 3D [196] and in [197] a comparative study between different methods including
the power diagram method from [13, 17] and MOF has been carried out.

The method proposed in [13] consists of two steps :

First, the relative location of the materials within the mixed cell is approximated ;

Second, a power diagram is used to split the mixed cell into pure polygons the surfaces of which
fulfill the volume fractions of the materials.

Relative location of the materials within the mixed cell. The method utilizes a particle attraction
model or approximate centroid calculation to infer the relative location of the materials in the cell.
In the first step of the method, a number of particles representing the materials are placed in multi-
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Figure 2.19 – Particle attraction and repulsion “forces” used in the model.

material cells and any pure or mixed neighboring cells. A particle, Pi, has a position, xi, velocity Vi =
dxi
dt and material m(i), and is constrained to stay within the cell in which it is initially placed. Taking

inspiration from molecular dynamics [198, 199] and smoothed particle hydrodynamics [200, 201],
we evolve the particle positions according to “forces” based on the particles’ relative locations and
materials. The positions of the particles are updated through time integration of a set of ordinary
differential equations,

dxi

dt
= Vi (2.8)

Vi = ∑
j: m(j)=m(i)

Vatt(xi, xj) + ∑
j: m(j) 6=m(i)

Vrep(xi, xj)

where Vatt and Vrep are the prescribed attractive and repulsive “forces” in the direction xj − xi.
Particles of the same material attract each other until they are very close, at which point they start
to repel each other. Particles of different materials repel each other. In our tests, the particles start
at random locations within their cell, but they can be initialized using other means such as their
relative locations in a cell at a previous time step.
The particle-particle “forces” (plotted in Fig. 2.19) are prescribed as

Vatt(xi, xj) =





−1, dij < δ
1− 2d4

ij + d8
ij, δ ≤ dij ≤ 1
0, dij > 1

(2.9)

Vrep(xi, xj) =

{ −(1− 2d4
ij + d8

ij), dij ≤ 1
0, dij > 1

(2.10)

(2.11)

where dij =
||xi−xj||

2.5h is the distance between points scaled by an interaction distance, taken to be
2.5 times the characteristic mesh size h, and δ = 0.05. Unlike a traditional mechanical model, the
“forces” here actually prescribe the instantaneous velocities of the particles. In a cell, Ci, the number
of particles, N(Ci) is

N(Ci) =

⌊
Np ×

‖Ci‖
A0

⌋
(2.12)
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where Np is a prescribed constant (usually around 30), ‖Ci‖ is the area of the cell, A0 is a reference
cell area for the grid (for example on a uniform Cartesian grid, A0 = h2 where h is the grid spacing)
and bac is the floor function giving the greatest integer less than or equal to a. Each particle has
a designated material type, corresponding to a material present in the cell. Each material that is
present in the cell is represented by the same number of particles, N(Ci)/Ni

m, where Ni
m is the num-

ber of materials present in the cell. We found that making the number of particles representing each
material proportional to the volume fraction of the material often leads to unsatisfactory results. If
the volume fraction is small, the material will be represented by only a few particles, which are not
sufficient to provide a reliable estimate of the location of the material within the cell. In addition, we
found that for unstructured, general polygonal grids, making the number of particles proportional
to the area of the cell was important. Otherwise, the particles tend to cluster in regions of the mesh
with a concentration of smaller cells.
Once the particles are distributed, the particle model is run. Since the model prescribes instanta-
neous velocities and not true forces, the particles may remain in perpetual motion unless the system
is forced to cool. The velocities determine the kinetic energy of the system which in turn defines
the temperature. The velocity of each particle is rescaled at each time step to decrease the kinetic
energy of the system and force the particles to settle into a final configuration. At time step n in the
time integration of Equation 2.8, the kinetic energy of all the particles is

KEn = ∑
i

1
2
||Vi||2 (2.13)

After the system is sufficiently agitated, typically after 5 to 10 time steps, we force the kinetic energy
to decrease as,

KEn+1 ≤ αKEn (2.14)

where 0 < α < 1. In practice, α is set to be 0.7− 0.9. If KEn+1 ≥ KEn, all the particle velocities are
scaled as

V′i =

√
α

KEn

KEn+1 Vi. (2.15)

To speed up the calculation, we use a variable time step with a new ∆t calculated after each time
step as

∆t =
0.1

2||Vmax||
, (2.16)

where ||Vmax|| = maxi ||Vi|| where Vi is as defined in Equation 2.8. The positions are then updated
as

xn+1
i = xn

i + ∆t V′i. (2.17)

If a particle goes outside the cell, it is placed back in the cell by repositioning it to the center of the
triangle formed by the old position, the new position, and the center of the cell. If that fails, the
particle is kept in its old position.
The particles are allowed to evolve for a number of time steps until the average kinetic energy of
each particle has dropped below a specified stopping criteria. The particle model exhibits rapid
convergence to the particle clusters, usually requiring under 20 time steps to converge to approx-
imately the final positions. We have conducted statistical tests that show the model displays little
sensitivity to the random initial particle positions, with standard deviations in the final material
locations typically less than 5 percent of the mesh spacing [202].
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This particle technique is able to produce the results in Fig. 2.20 where in a mixed cell, for each
material randomly initialised particles (the number of which depend on the volume fraction) ap-
proximately gather around the material centroid. This particle method can produce approximate
centroids in 2D and 3D.
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Figure 2.20 – Numerical results obtained with the particle attraction model to infer the relative location of the materials
in mixed cells. Top panels : two enlaced disks (left panel) are described by particles which are randomly distributed with
mixed cells (middle). At convergence of the partcle model (right panel) particles do represent an accurate approximation
of the material centroids — Bottom panels : approximation for 3D eight materials case (zoom on the central 8 materials
mixed cell on the left panel), initial distribution of particles in the neighborhood of the central mixed cell (middle panel)
and final location of particles in the enighborhood (right panel).

An alternative technique in [13] is the direct calculation of an approximate center of mass of each
material in a subset of the mesh around the cell being reconstructed.
Given the volume fractions of materials in cells in a mesh, our task is to determine the relative

locations of materials in a multi-material cell. To do this, we must ideally recover the characteristic
function for each material in the domain. While it is possible to reconstruct the characteristic func-
tion in 1D [203], no method (other than interface reconstruction itself) exists to do this in higher
dimensions. Therefore, we make a simplifying assumption that a smooth function, called the vol-
ume fraction function, exists for each material and that its pointwise cell-centered values are given
by cell-wise volume fraction data. This smooth function represents the distribution of material in
the mesh cells and in that sense, it can be considered analogous to a density distribution function
for the material. However, we should note that the volume fraction function is not a clearly defined
mesh-independent continuous function like the density function. Swartz [204] describes it as the
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function that quantifies the relative amount of a material present in a small window that moves
around in a domain with a sharp interface. Defined this way, it is clear that the volume fraction
function steepens as the size of the window (or in other words, the mesh size) gets smaller and the
gradient of the function blows up as the window size goes to zero. Nevertheless, for a given mesh,
we will treat the volume fraction function like a smooth, density distribution function.
We then compute a piecewise linear approximation for this smooth volume fraction function using

standard methods used in higher-order finite-volume methods [205]. Finally, continuing the analogy
with the density function, we compute the center of mass of the materials in cells from the linear
reconstruction as described below.
Consider a mesh on which we have cell-centered values fi of a function f (x). In each cell Ci, we

reconstruct a linear approximation, f̃i(x), of the function such that

f̃i(x) = fi +∇ f · (x− xc(Ci)), (2.18)

where xc(Ci) is the centroid of the cell. ∇ f is the gradient of the function that we wish to approx-
imate and it is considered to be constant within the cell. The gradient may be computed either by
a Green-Gauss [205] or a least-squares technique [191]. On structured and unstructured grids, we
use all vertex and edge connected neighbors in the gradient computation. For a least-squares tech-
nique, the same mesh cells are used in the computation with each entry weighted by the inverse of
the squared distance between the centroid of the cell being reconstructed and the centroid of the
neighboring cell as described in [191]. The computed gradient is limited using Barth-Jesperson-type
limiter [206] to preserve local bounds on the volume fraction function. The limiter is calculated us-
ing all vertex connected neighbors. The limited gradient is indicated by δ = φ∇ f with φ ∈ (0, 1].
Then, the approximate center of mass of the function f (x) over the domain Ωi as approximated by
the function f̃i(x) is given by

x̄ =

∫
Ωi

x f̃i(x)dΩ
∫

Ωi
f̃i(x)dΩ

=
1

‖Ωi‖ fi

∫

Ωi

x( fi + δ · (x− xc(Ci)))dΩ (2.19)

where ‖Ωi‖ is the area of the domain Ωi.
The obvious choice of domain Ωi for integrating this equation is the cell, Ci and this works well for
structured meshes. The calculation of equation 2.19 for a polygon may be done with the application
of Stokes’ theorem in the plane, for details see [207]. However, for unstructured meshes, we have
found that integrating over the cell domain induces a strong bias in the orientation of the recon-
structed interface based on the cell geometry. In order to eliminate this effect, we integrate instead
over the smallest square, S(Ci) ⊇ Ci, whose center coincides with the centroid of the cell, xc(Ci) and
encloses the computational cell.
For two materials, this choice of integration domain is equivalent to a gradient-based method when
using a power diagram interface reconstruction. In a power diagram based reconstruction of a two
material cell, the interface normal depends only on the direction of the vector pointing from one
material locator to the other. For two materials, m and n, with material locators xm and xn and
volume fractions fm and 1− fm respectively, the normal to the interface between them given by the
power diagram reconstruction will be

xm − xn =
1

‖S(Ci)‖

(
1
f̄m

+
1

1− f̄m

) ∫ y1

y0

∫ x1

x0

x (δ · (x− xc)) dx dy

=
∆2

12

(
1

f̄m(1− f̄m)

)(
δx
δy

)
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where S(Ωi) = [x0, x1] × [y0, y1] and ∆ = x1 − x0 = y1 − y0 =
√
||S(Ci)||. That is, the normal is

a positive constant times the gradient. Hence, the interface normal will be the computed gradient.
In addition, this choice of integration domain makes the calculation of equation 2.19 trivial and
provides a better initial reconstruction for a starting point to the interface smoothing procedures.

Power diagram Using the relative location of materials obtained from the particle method or from
a piecewise linear reconstruction of the volume fraction function, the interface is reconstructed using
a weighted Voronoi diagram, known as a power diagram, such that the required volume fractions
are exactly matched [208, 209].
In [13] we propose several static test cases to show the behavior of this new method. We repro-
duce in the following Fig. 2.21 the static four material interface reconstruction on structured and
unstructured meshes using (a) particles and power diagrams, (b) approximate centroids and power
diagrams, and in (c), (d) Youngs’ method [190, 189] with two different material orderings. Notice
that Youngs’ method can not represent quadruple point, therefore no material ordering will provide
an acceptable and accurate result.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 2.21 – Numerical results from paper [13]. Four material interface reconstruction on structured and unstruc-
tured meshes using (a) particles and power diagrams (b) approximate centroids and power diagrams (c), (d) Youngs’
method with two different material orderings. The insets show the four material cell at the center of the mesh. The
converged particles locations for the center cell are also shown in the inset in (a). The approximate centers of mass for
the center cell are shown in (b).

Neither the particle model nor the approximate center of mass method when combined with a
power diagram-based reconstruction exactly reproduces a straight line, indicating that both meth-
ods are only first-order accurate in this sense. Consequently in [17] the interfaces are improved by
minimizing an objective function that smoothes interface normals while enforcing convexity and
volume constraints for the pure material subcells.
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Three material cell case.

Consider a 2D cell with Nm materials, Ns interface
segments and Np interface points. The smoothing
procedure repositions the cell’s Np interface points
so that it minimizes the discrepancy between the
normal of each of its interface segments and nor-
mals of reference interface segments in neighbor-
ing cells (separating the same materials). The con-
straints imposed on this process are that the vol-
ume fractions of the materials in the cells must be
matched exactly and that all the pure material sub-
cells remain convex. Naturally, interface points on
the boundary of the cell must remain on the bound-
ary and interior points must remain strictly inside
the cell. The local objective function for smoothing
in a particular cell is written as :

Fi(s) =
Ns

∑
j=1

(Nr)j

∑
k=1
‖n̂j(s)− n̂r

k‖2.

As an illustration the figure to the left presents the
definition of reference normals.

In order to numerically validate this approach we have proposed in [17] a set of test cases : the
diagonal translation of a four material disk and a four material vortex test in an incompressible
reversible velocity field. Convergence tests from the article show the second-order accuracy of the
proposed method.
As instance one presents in Fig. 2.22 the translation of a four material disk In this figures one
compares our second-order approach with Youngs’ method using two different prescribed material
orders. The four material vortex test case’s results are presented in Fig. 2.23 where our first-order
method is also presented.

The paper [13] is reproduced in the following pages.
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Figure 2.22 – Numerical results from paper [17]. Final configuration of the four material circle shown in (A1) with
material numbers after diagonal translation with a velocity of (1, 1) at time t = 0.5 using the interface reconstruction
methods : (B1) Youngs’ with material order (0, 1, 2, 3, 4) (C1) Youngs’ with material order (1, 2, 3, 4, 0) (D1) our second
order method. (A2)-(D2) show the same results on an unstructured mixed triangle and quadrilateral grid.
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Figure 2.23 – Numerical results from paper [17]. Material interface configuration for the four material vortex test
initialy t = 0 (left column) at maximum stretch t = 2 (middle column) and at complete reversal time t = 4 (right
column) run on a 64× 64 grid. The material numbers are 0 for the white material, 1 for blue, 2 for yellow, 3 for red
and 4 for green. For the method Youngs’ (1), the material ordering was (0, 1, 2, 3, 4). For method Youngs’ (2), the order
was (1, 2, 3, 4, 0). Power diagram corresponds to the firts-order method from [13] whereas smoothed corresponds to the
second-order method from [17].
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SUMMARY

We have developed a new, multi-material, piecewise linear interface reconstruction method that correctly
locates the position of each material in the mesh cell and matches the required volume fractions with no
material ordering required. This is different from other volume tracking interface reconstruction methods
in which an improper material ordering may result in materials being incorrectly located within the cell.
The new method utilizes a type of weighted Voronoi diagram, known as a power diagram, to reconstruct
the interface from approximate material locations derived either from a particle model or quadrature
formula. It works on structured and general polygonal grids, for an arbitrary number of materials and can
be naturally extended to three dimensions. Published in 2007 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The effective management and capture of interfaces is essential for accurate and reliable simulation
of multi-material and multi-phase flows. Due to their strict conservation of materials, volume-of-
fluid (VOF) methods using interface reconstruction are widely used and will be the focus of this
article. VOF methods do not explicitly track the interface between materials, but rather advect
volume fractions which prescribe the material composition of each cell of the mesh. When the
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interface between materials is needed, the interface is recreated based on the material volume
fraction in the cell and its surrounding cells [1–4].

A common problem impacting these reconstruction methods is their dependence on a specified
material ordering, i.e. if more than two materials are present in a cell, the reconstruction may depend
on the sequence in which the materials are processed. This is undesirable as it may improperly
locate materials within the cell. In a finite volume implementation, this may result in material
being incorrectly fluxed into neighbouring cells.

In this article, we propose and demonstrate a method that can reconstruct a multi-material
interface with no dependence on material ordering. The method is very general: it works on
unstructured grids, accommodates an arbitrary number of materials and extends naturally to three
dimensions. The method utilizes a particle attraction model or approximate centroid calculation
to infer the relative location of the materials in the cell. Using that information, the interface is
reconstructed using a weighted Voronoi diagram, known as a power diagram, such that the required
volume fractions are matched.

2. INTERFACE RECONSTRUCTION IN VOLUME-OF-FLUID METHODS

The VOF method, originally developed by Hirt and Nichols [5], advects the fractional volumes of
each fluid in the cell to track materials in a flow simulation. The volume fraction, fm(Ci ), of a
material, m, in a cell, Ci of volume ‖Ci‖ is defined as

fm(Ci ) = Am(Ci )

‖Ci‖ (1)

where Am(Ci ) is the volume of the material in the cell. Early VOF methods used a simple interface
that was defined to be a coordinate axis aligned line within each cell that partitioned the cell into
the correct volume fractions. This is often referred to as the simple line interface calculation
(SLIC) due to Noh and Woodward [6]. This interface structure was natural when combined with
directionally split advection.

Youngs [7, 8] extended the method to permit the material interface to have an arbitrary orientation
within the cell. In Youngs’ method, the outward normal of the interface separating a material within
a computational cell is taken to be the negative gradient of the volume fraction function, estimated
using the volume fractions of that material in the neighbouring cells. On unstructured grids, the
gradient of the volume fraction function is calculated with either a Green–Gauss formula [9] or a
least-squares technique [3]. On either structured or unstructured grids, the interface is then defined
by locating a line having the prescribed normal that cuts off the correct volume of material from
the computational cell. This and other methods that allow an arbitrarily oriented linear interface
within a cell are referred to as piecewise linear interface calculation (PLIC) methods. In general,
the methods are first order and the interfaces will be discontinuous at cell boundaries. However,
there are extensions that make the reconstruction second order using a local optimization [10] or
interface smoothing [11, 12].

While PLIC methods work well for two-material cells, the method must be extended to recon-
struct the interfaces between materials in computational cells with three or more materials present.
In the ‘onion-skin’ approach, each material interface is assumed to separate two materials and
consists of a single line segment with both endpoints on the computational cell boundary. This
form of reconstruction works for simple layer structures only [7, 13]. A more general approach is
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Figure 1. Nested dissection interface reconstruction for three materials: (a) the first material is
removed leaving a smaller available polygon; (b) the second material is removed from the available
polygon; (c) the remaining available polygon is assigned to material 3; (d) the resulting partitioning
of the computational cell; and (e)–(g) show the same procedure but the materials are processed in a

different order leading to a different reconstruction (h).

‘nested dissection’ [14], where each material is separated from the others in a specified order. This
process is illustrated in Figure 1. In Figure 1(a) the first material is separated from the remaining
materials leaving a pure material region and an available polygon. Then in Figure 1(b), the second
material is removed from the available polygon according to its calculated normal and required
volume. Finally, in Figure 1(c), the remaining available polygon is assigned to the last material.
This same process can be used for an arbitrary number of materials. Unfortunately, the result of
this method depends on the order in which the materials are processed. In Figures 1(e)–(g), the
reconstruction of the cell with the same volume fractions and interface normals is performed, but
with the materials processed in a different order, leading to a different reconstruction as is seen
by comparing Figures 1(d) and (h).

The effects of material order dependency are further illustrated in Figure 2. With the correct
material ordering used in Figure 2(b), the interface reconstructed by a first-order PLIC method, is
close to the correct configuration shown in Figure 2(a). In this example, the reconstruction would
be identical to the correct configuration using a second-order reconstruction method. Using an
incorrect ordering results in substantial degradation of the interface as shown in the reconstructions
in Figures 2(c) and (d).

The calculation of the interface normal is also affected by the presence of multiple materials.
In Youngs’ method, the gradient of the volume fraction function gives the normal of the interface.
In two-material simulations, the orientation of the interface is independent of which material is
used to calculate the normal since the volume fractions satisfy the relationship f1 = 1− f2 which
gives ∇ f1 =−∇ f2. However, for multi-material simulations this simple relationship between the
volume fractions does not hold. Since the gradient or normal direction is calculated using the
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2

1

3

(a) (b)

(c) (d)

3

32

1 2

1

Figure 2. (a) Correct reconstruction and (b)–(d) first-order PLIC-based reconstruction using different
material orderings. The numbers designate the order in which the materials were processed.

volume fraction data in a neighbourhood of the cell being reconstructed, it may happen that
in a two-material cell, Ci , ∇ f1(Ci ) �=−∇ f2(Ci ) due to the presence of another material in
the neighbourhood used for the gradient calculation. Two different reconstructions are possible
depending on whether ∇ f1(Ci ) or ∇ f2(Ci ) is chosen as the direction for the interface normal. This
introduces a material order dependence in even two-material cells. This is shown in Figures 2(c)
and (d) as the interface of the two-material cell on the right side of the mesh has a different normal
depending on which material was processed first.

These incorrect reconstructions may adversely impact the material advection in the simulation.
If the advection routine is based on fluxing volumes through the edges of the cell, the improper
material ordering may result in a material being fluxed early or not at all. For example, if the flow
is moving diagonally towards the top right in Figure 2(c), the white material will move into the
top right cell prematurely. This can lead to a breakup of the interface, a phenomenon known as
‘flotsam and jetsam’.

Selecting a global ordering can be problematic as the appropriate ordering for one region of
the mesh may be quite wrong for another. To remedy this, there has been some work on deriving the
material order. The geometrically derived material priority byMosso and Clancy [15] is based on the
assumption of a layer structure and works by approximating the local centre of mass of each mate-
rial; then, based on the relative locations along a line, it selects an ordering. A similar approach
was developed by Benson [16]. However, both methods can fail in the presence of a triple point.

In order to eliminate the material order dependence in multi-material interface reconstruction,
we have developed a novel method consisting of two steps:

1. Relative locations of materials in multi-material cells are inferred using a particle model or
quadrature formula.
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2. Using these locations, the interface is reconstructed using a form of weighted Voronoi diagram
known as a power diagram.

The method is completely general, working on general polygonal grids with an arbitrary number
of materials in each cell. In addition, it can be naturally extended to three dimensions. In contrast to
existing SLIC or PLIC methods, all materials are processed simultaneously and, as such, have no
material order dependency. Furthermore, unlike methods such as the triple point method of Choi
and Bussmann [13], no additional extensions are required to accommodate an arbitrary number of
materials within the cell. The reconstruction will automatically give either the appropriate layer
structure or multiple triple point configuration.

3. DETERMINATION OF MATERIAL LOCATIONS

We describe two methods for determining the approximate location of each material in the cell:

1. A particle model, where particles representing the materials evolve according to an attrac-
tion/repulsion model.

2. A method of approximately calculating the centre of mass of a material in a neighbourhood
of the cell.

3.1. Material location with a particle attraction–repulsion model

In the first step of the method, a number of particles representing the materials are placed in
multi-material cells and any pure or mixed neighbouring cells. A particle, Pi , has a position, xi,
velocity vi = dxi/dt and material m(i), and is constrained to stay within the cell in which it is
initially placed.

Taking inspiration from molecular dynamics [17, 18] and smoothed particle hydrodynamics
[19, 20], we evolve the particle positions according to ‘forces’ based on the particles’ relative
locations and materials. The positions of the particles are updated through time integration of a
set of ordinary differential equations,

dxi
dt

=Vi

Vi = ∑
j :m( j)=m(i)

Vatt(xi, xj) + ∑
j :m( j)�=m(i)

Vrep(xi, xj)
(2)

where Vatt and Vrep are the prescribed attractive and repulsive ‘forces’ in the direction xj − xi.
Particles of the same material attract each other until they are very close, at which point they start
to repel each other. Particles of different materials repel each other. In our tests, the particles start
at random locations within their cell, but they can be initialized using other means such as their
relative locations in a cell at a previous time step.

The particle–particle ‘forces’ (plotted in Figure 3) are prescribed as

Vatt(xi, xj) =

⎧⎪⎪⎨
⎪⎪⎩

−1, di j<�

1 − 2d4i j + d8i j , ��di j�1

0, di j>1

(3)
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Figure 3. Particle attraction and repulsion ‘forces’ used in the model.

Vrep(xi, xj) =
{−(1 − 2d4i j + d8i j ), di j�1 (4)

0, di j>1

where di j =‖xi − xj‖/2.5h is the distance between points scaled by an interaction distance, taken
to be 2.5 times the characteristic mesh size h, and � = 0.05. Unlike a traditional mechanical model,
the ‘forces’ here actually prescribe the instantaneous velocities of the particles.

In a cell, Ci , the number of particles, N (Ci ) is

N (Ci ) =
⌊
Np × ‖Ci‖

A0

⌋
(5)

where Np is a prescribed constant (usually around 30), ‖Ci‖ is the area of the cell, A0 is a
reference cell area for the grid (for example, on a uniform Cartesian grid, A0 = h2 where h is
the grid spacing) and �a� is the floor function giving the greatest integer less than or equal to a.
Each particle has a designated material type, corresponding to a material present in the cell. Each
material that is present in the cell is represented by the same number of particles, N (Ci )/Ni

m ,
where Ni

m is the number of materials present in the cell. We found that making the number of
particles representing each material proportional to the volume fraction of the material often leads
to unsatisfactory results. If the volume fraction is small, the material will be represented only by a
few particles, which are not sufficient to provide a reliable estimate of the location of the material
within the cell. In addition, we found that for unstructured, general polygonal grids, making the
number of particles proportional to the area of the cell was important. Otherwise, the particles
tend to cluster in regions of the mesh with a concentration of smaller cells.
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Once the particles are distributed, the particle model is run. Since the model prescribes in-
stantaneous velocities and not true forces, the particles may remain in perpetual motion unless
the system is forced to ‘cool’. The velocity of each particle is rescaled at each time step to
decrease the kinetic energy of the system and force the particles to settle into a final config-
uration. At time step n in the time integration of Equation (2), the kinetic energy of all the
particles is

KEn =∑
i

1

2
‖Vi‖2 (6)

After the system is sufficiently agitated, typically after 5 to 10 time steps, we force the kinetic
energy to decrease as,

KEn+1��KEn (7)

where 0<�<1. In practice, � is set to be 0.7–0.9. If KEn+1�KEn , all the particle velocities are
scaled as

V′
i =

√
�

KEn

KEn+1
Vi (8)

To speed up the calculation, we use a variable time step with a new �t calculated after each time
step as

�t = 0.1

2‖Vmax‖ (9)

where ‖Vmax|| = maxi ‖Vi‖ where Vi is as defined in Equation (2).
The positions are then updated as

xn+1
i = xni + �tV′

i (10)

If a particle goes outside the cell, it is placed back in the cell by repositioning it to the centre
of the triangle formed by the old position, the new position, and the centre of the cell. If that fails,
the particle is kept in its old position.

The particles are allowed to evolve for a number of time steps until the average kinetic energy
of each particle has dropped below a specified stopping criterion. The particle model exhibits
rapid convergence to the particle clusters, usually requiring under 20 time steps to converge to
approximately the final positions. We have conducted statistical tests that show the model displays
little sensitivity to the random initial particle positions, with standard deviations in the final material
locations typically less than 5% of the mesh spacing [21].

Once the velocity of the particle has dropped to a sufficiently low threshold, the positions of
the materials in the cell need to be derived from the final location of the particles. However,
the particles of a material may form multiple groups. A clustering algorithm is needed to detect
the multiple clusters and utilize that information to capture the subcell structure. A naive averaging
of the particle positions for each material can yield reasonable results if each material in the cell
is accurately described by a single convex polygon, but it will not detect the presence of multiple
clusters of particles which may occur when thin filament-like structures are present.
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(a) (b)

Figure 4. (a) Thin filament structure and (b) converged particle locations from the volume fraction data.
The cluster locations are designated with the dark circles. The highlighted cells show where the filament
has multiple interfaces within the cell. In these cells, away from the boundary, multiple clusters of particles

are detected by the k-means clustering algorithm.

A simplified version of the k-means clustering algorithm [22], is used to detect if the particles
of a material form one or two clusters. The algorithm proceeds as follows, for each material:

1. Initialize cluster 1 with the position of any particle of that material.
2. Initialize cluster 2 with the position of the particle of the same material farthest from cluster 1.
3. Assign each particle to the closest cluster.
4. Compute the mean position of all particles in each cluster to obtain new cluster locations.
5. Repeat steps 3 and 4 until the cluster locations converge or one cluster contains no particles.
6. If the two clusters are sufficiently close, that is, the distance between them is less than 10%

of the characteristic mesh size, then use the average location of all of the particles of that
material instead.

The clustering algorithm converges rapidly and is robust.
Figure 4 shows the example of a narrow filament. The particles reflect the thin filament structure

present. The clustering algorithm is able to detect the presence of the multiple clusters within a
cell. With the exception of cells at the boundary, multiple clusters are present and detected in all
of the cells where the filament has two interfaces within the cell. These cells are indicated as the
highlighted cells in Figure 4.

If there are multiple clusters of a material, the volume of material must be partitioned between
the clusters. The number of particles in each cluster does not give a reliable means to do this as
it can vary depending on the initial conditions. Instead, we partition the material volume equally
between the clusters as we have no knowledge of the relative volume of the two regions of the
material within the mesh cell.

3.2. Material location via approximate centres of mass

An alternative to the particle model is the direct calculation of an approximate centre of mass of
each material in a subset of the mesh around the cell being reconstructed. In a region of the mesh,
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�, assume a material occupies a non-trivial subset �m ⊆�. The centre of mass of the material in
the mesh region, � is given as

xm(�) =
∫
� x�m(x) dx∫
� �m(x) dx

(11)

where �m(x) is the characteristic function for material m, defined as

�m(x)=
{
1, x∈ �m

0, x /∈ �m
(12)

However, �m and �m are unknown.
If we assume that within each cell the centre of mass of each material contained within that

cell is approximately the centroid of the mesh cell, then Equation (11) may be approximated for
a region of the mesh larger than the cell of interest. In particular, if we take � to be the mesh cell
we wish to reconstruct and all of its neighbours, the approximation takes the form

x̃m(Ci ) =
∑

C j∈Ni
fm(C j )‖C j‖xc(C j )∑

C j∈Ni
fm(C j )‖C j‖ (13)

where Ni is the set of mesh cells including the cell being reconstructed, Ci , and all of its
neighbouring cells. xc(C j ) is the centroid of mesh cell C j . Similar formulations for a regional
centre of mass derived from the volume fraction data have been used by a number of investigators
[15, 16, 23].

These approximate centres of mass will be for the regionNi and will in general not be contained
within the cell Ci . However, it gives some information regarding the relative location of materials
in a cell.

4. POWER DIAGRAM-BASED INTERFACE RECONSTRUCTION

Once the materials are located in a cell, the interfaces within the cell, separating the materials,
are constructed using a power diagram. A power diagram or Laguerre diagram [24, 25] is a
generalization of a Voronoi diagram generated from a set of points, S, each with an associated
radius or weight. In this context, the generators will be the points determined either by the particle
clusters or the approximate centroids. The Laguerre distance from a point x∈ Rn to a point mass,
si ∈ S with si = (xi, wi ) is defined as

d2L(x, si ) = d2(x, xi) − wi (14)

where d2(x, xi) = ∑n
i=1 (x − xi )2 is the usual Euclidean distance in Rn . If wi is replaced with w2

i
in Equation (14), the resulting distance is called the power of the point x with respect to xi.

Each cell in the power diagram is the set of points

cell(si ) ={x∈ Rn|d2L(x, si )<d2L(x, s j ) ∀s j ∈ S, s j �= si } (15)

As with Voronoi diagrams, each power diagram cell is convex.
The weight associated with a point generator can be interpreted as the square of the radius

of a circle centred at that point. The power bisector (a chordale in Aurenhammer’s terminology
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cell(V3)

cell(V4)

V1

V2
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Figure 5. Power diagram with four generators (V 1–V 4) and their weight circles. The generators V 1 and
V 2 do not lie within their corresponding cells.

[24]) between two points si = (xi , wi ) and s j = (x j , w j ) is the line perpendicular to the segment
connecting the points xi and x j and is located by finding a point, x0 on that segment such that
d2L(x0, si ) = d2L(x0, s j ).

An example of power diagram is shown in Figure 5. Clearly, if all point masses have equal
weight (or radius), the power diagram reduces to the usual Voronoi diagram. Unlike a Voronoi
diagram, a point in the point set generating the diagram does not necessarily lie in the cell to
which it corresponds, as is this case for generators V 1 and V 2 in Figure 5. Furthermore, the cell
corresponding to a given point mass, may be trivial, that is cell(si ) =∅. In practice, this is not a
problem. Imai et al. [25] provide a useful lemma that provides a sufficient condition for the power
diagram cell of a point to be non-trivial:

Given the power diagram for a finite set of point masses, S ={s1, . . . , sn}, cell(si ) is non-trivial
if si lies on a corner of the convex hull of S.

If only three materials are present (i.e. S consists of only three point masses), then the point
mass corresponding to each material must necessarily be a corner of the convex hull assuming the
three points are not collinear. This ensures that the power diagram in each cell with three materials
will always be non-trivial for all choices of weights. If the points are collinear, then the cell is
partitioned by two parallel lines which can obviously be made to cut off the appropriate volume
fractions. The same argument applies to three and four material cells in 3D. Proving this for larger
numbers of materials is more difficult. However, we have not encountered a scenario where we
are unable to find a power diagram that matches the required volume fractions.

The power diagram can be constructed in a number of ways. A power diagram may be created
through a randomized, incremental algorithm [26], similar to the incremental construction of a
Delaunay triangulation. A Voronoi diagram of the point generators may also be efficiently converted
into a power diagram [27]. However, we have chosen a simple algorithm that intersects all of the
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mutual power bisectors. It has O(n2) asymptotic complexity in the number of generator points.
For our applications, the number of materials in a cell, corresponding to the maximum possible
number of power diagram cells, is small (typically 5 or less), so the asymptotic complexity of the
construction algorithm is not a problem. In addition, it has proven to be robust in finite precision
arithmetic.

4.1. Matching volume fractions

The volume fractions of the materials in a cell are matched by iteratively adjusting the weights
of the point generators, thereby adjusting the area of the power diagram cells once clipped to the
mesh cell. This requires the solution of a set of non-linear equations

Am(�1, . . . , �Nm ) =‖Ci‖ fm, m = 1, . . . , Nm (16)

where Am(�1, . . . , �Nm ) is the area of the power diagram corresponding to material m after it
has been clipped by the bounding mesh cell polygon with area ‖Ci‖. fm(Ci ) is again the volume
fraction for material m in cell Ci . The constraint

Nm∑
m

Am(�1, . . . , �n) =‖Ci‖ (17)

reduces the number of equations to Nm −1. Specifically, this is done by forcing one of the weights
to be a specified value. This enforces a unique set of weights for the desired power diagram.

A Newton procedure with a finite-difference Jacobian is used to solve Equations (16) and (17).
Some caution is required, since the area of each cell is bounded above and below, that is

0�Am(�1, . . . , �n)�‖Ci‖, m = 1, . . . , Nm (18)

For extreme values of the weights, some of the power diagram cells will be outside of the mesh
cell and as such have zero area once clipped to the mesh cell. Furthermore, the Am will be flat
(that is they have a zero gradient) making the Newton procedure fail. As a result, the Newton
procedure needs to adjust for overshoots to make sure it does not end up in this region. This is
simply done by reducing the size of the Newton step at each iteration if it exceeds those bounds.
We found the procedure to be robust and efficient, typically matching the required volumes to
within 10−12‖Ci‖ in 3–6 iterations.

For the initial guess, we use equal weights for all the point generators if all of the generators
lie within the mesh cell being reconstructed. If any of the generators are outside the cell, as may
happen with the approximate centre of mass calculation, the initial weights are assigned such that
the power bisectors between all the generators go through the centroid of the cell. This ensures
that the initial power diagram will not have any cells outside of the mesh cell.

4.2. Reconstruction fidelity

The use of the power diagram to reconstruct the interface is based on the assumption that we
have been able to obtain an approximation to the location of each material in the cell. Indeed, if
the point generators for the power diagram are the exact centres of mass of the material subcells,
the reconstruction is representative of the actual configuration. In Figures 6 and 7, the power
diagram reconstruction of different three-material cells, using the actual material centres of mass
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Figure 6. The true material interfaces and their centres of mass are shown in the top row with the power
diagram reconstruction using the centres of mass in the bottom row. Here, the radius of curvature of all

of the true interfaces is set to R/h = 1.

Figure 7. The asymptotic convergence of the power diagram reconstruction using the centres of mass as
the radius of curvature of the interfaces becomes large. The power diagrams are unable to recreate the

interfaces exactly. Here R/h = 256.

as generators, are shown. The power diagram provides a reasonable approximation to the true
interface for interfaces with a radius of curvature comparable to the mesh spacing. As the radius
of curvature goes to infinity, the interfaces straighten, but the power diagram does not necessarily
converge to the true interface as illustrated in Figure 7. Still, the materials retain their relative
locations within the cell.

In the following section, we present some static interface reconstruction examples using the
power diagram-based reconstruction with point generators derived from the particle model and the
approximate centroid calculation.

Published in 2007 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:643–659
DOI: 10.1002/fld

176



POWER DIAGRAM RECONSTRUCTION 655

5. NUMERICAL EXPERIMENTS

To assess the overall performance of the method, a number of numerical experiments were per-
formed.

In Figure 8, a four-material interface reconstruction on a structured grid is shown. As can
be seen, our reconstructions respect the symmetry in the problem. The particle model derived
material locations shown in Figure 8(a) are completely symmetric and result in a near perfect
reconstruction. The reconstruction using approximate centre of mass-derived material locations
shown in Figure 8(b) is exact. Observe that the material locations shown in the inset are outside
of the centre cell. In the material order-dependent Youngs’ method reconstructions in Figures 8(c)
and (d), the reconstruction in the centre cell is not symmetric due to the material ordering. In
fact, for this example, no material ordering will enable Youngs’ method to create a completely
symmetric reconstruction.

For the unstructured grid shown in Figure 9, neither power diagram-based reconstruction exactly
reproduces a straight line, indicating that the reconstruction cannot be second order [10]. Still, in

(b)(a)

(d)(c)

Figure 8. Four-material interface reconstruction using: (a) particles and power diagrams;
(b) approximate centroids and power diagrams; and (c), (d) Youngs’ method with two dif-
ferent material orderings. The insets show the four-material cell at the centre of the mesh.
The converged particles locations for the centre cell are also shown in the inset in (a). The

approximate centres of mass for the centre cell are shown in (b).
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(b)(a)

(d)(c)

Figure 9. Four-material interface reconstruction on an unstructured grid using: (a) particles and power
diagrams; (b) approximate centroids and power diagrams; and (c), (d) Youngs’ method with two different
material orderings. The insets show the four material cell at the centre of the mesh with the particles for

the centre cell in (a) and the approximate centres of mass for the centre cell in (b).

the multi-material centre cell, the power diagram-based reconstructions in Figures 9(a) and (b)
are more representative of the structure of the true configuration. In Figures 9(c) and (d), the
material order dependency provides significantly different reconstructions for the four-material
centre cell. This and the structured example in Figure 8 demonstrate the strength of our method
in reconstructing multi-material cells. In two-material cells, Youngs’ and related methods do quite
well, as is shown in Figures 9(c) and (d) in the regions away from the centre. An effective strategy
is to use existing methods for two-material cells, and a power diagram-based method for cells
containing three or more materials. In Figures 8 and 9, the power diagram reconstruction was
used on the entire mesh, which would not typically be done in practice.

Figure 10 shows the reconstruction of a filament-type structure that is not aligned with the grid.
The filament is preserved with all the three-material cells showing the proper material positions.
The power diagram reconstructions shown in Figures 10(c) and (d) do not reverse the location
of the materials relative to the filament as does Youngs’ reconstruction with the wrong material
ordering as shown in Figure 10(b). The power diagram-based method fails to exactly reproduce
a straight line in both Figures 10(c) and (d). The reconstruction in the cells at the top and
bottom of the grid in Figures 10(c) and (d) could be improved with better boundary treatment. No
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(b)(a)

(d)(c)

(f)(e)

Figure 10. Multi-material interface reconstruction for a filament: Youngs’ reconstruction with (a) correct
material ordering and (b) incorrect material ordering; (c) particles and power diagram reconstruction in all
cells; (d) approximate centroids and power diagram-based reconstruction in all cells; (e) mixed approach
using Youngs’ method for two-material cells and particles and power diagram reconstruction in three or
more material cells; and (f ) mixed approach using Youngs’ method and approximate centroids and power
diagram reconstruction. The three-material cells using the power diagram-based reconstructions are in
bold in (e) and (f). Notice the presence of the white material on the right-hand side of the filament in

Youngs’ reconstruction in (b). This can lead to ‘flotsam and jetsam’.

special treatment was used at the boundary for either the particle method or approximate centroid
method. With the correct material ordering, Youngs’ method produces a very good reconstruction
as shown in Figure 10(a). This motivates the use of a mixed method using Youngs’ method for
two-material cells and a power diagram-based reconstruction for three or more material cells.
These reconstructions are shown in Figures 10(e) and (f). The multi-material cells, shown with
bold outlines, used a power diagram-based method while the rest of the interface was reconstructed
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using Youngs’ method. These reconstructions do not have the material ordering problems as would
Youngs’ method used on all mesh cells.

6. CONCLUSIONS

We have developed a first-order method for material order-independent reconstruction of multi-
material cells. It is based on the determination of the relative locations of each material in a cell
and then reconstructing the interface using a power diagram, that once clipped to the mesh cell,
matches the desired volume fractions. The method does not assume a topology for the material
regions, i.e. a layer structure or triple point configuration. Furthermore, all of the material regions
created will be convex.

The performance of the particle model is good. The average particle position converges to within
a few per cent of its converged position in under 20 time steps of the attraction–repulsion model.
Furthermore, the particles do not show much sensitivity to the random initial conditions used.

The approximate centre of mass approach typically gives better results, and relies on no externally
supplied parameters. In addition, while being highly problem dependent, it can be around 50 times
faster than the particle method. Neither the particle model nor approximate centre of mass method
when combined with a power diagram-based reconstruction exactly reproduces a straight line,
indicating both methods are only first-order accurate. While the potential for the particles to detect
the presence of a thin filament within the mesh through the determination of multiple particle
clusters is intriguing, we recommend the approximate centre of mass approach, particularly when
subcell details such as thin filaments do not have to be resolved.

The power diagram-based interface reconstruction maintains the relative location of the mate-
rials within the cell and may be useful in other methods utilizing approximate material location
information.

As two-material reconstruction algorithms are reliable and well established, this method would
be most applicable for reconstruction of only cells containing more than two materials. This
reconstruction method is currently being implemented in multi-material flow codes to further
understand the combined errors of advection and interface reconstruction.
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a b s t r a c t

A new, second-order accurate, volume conservative, material-order-independent interface
reconstruction method for multi-material flow simulations is presented. First, materials
are located in multi-material computational cells using a piecewise linear reconstruction
of the volume fraction function. These material locator points are then used as generators
to reconstruct the interface with a weighted Voronoi diagram that matches the volume
fractions. The interfaces are then improved by minimizing an objective function that
smoothes interface normals while enforcing convexity and volume constraints for the pure
material subcells. Convergence tests are shown demonstrating second-order accuracy. Sta-
tic and dynamic examples are shown illustrating the superior performance of the method
over existing material-order-dependent methods.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Multi-material and multi-phase flows occur in a variety of natural phenomena and industrial processes. To accurately
model such flows, it is essential to effectively capture and manage material interfaces. Due to their ability to strictly conserve
mass, volume-of-fluid (VOF) methods using interface reconstruction are widely used in such simulations [1–4]. Originally
developed by Hirt and Nichols [5], VOF methods do not explicitly track interfaces but rather track the volume of each mate-
rial. When required, the interface position is computed using the volume fraction data. In a flow simulation, the volume frac-
tions are updated by determining the flux of each material into or out of a computational cell although in multi-material
compressible simulations, volume fractions may also be modified by mixture models like pressure equilibration [1]. Contem-
porary schemes use the reconstructed interface to obtain a better approximation to the material fluxes. Poor interface recon-
struction directly affects material fluxes and can result in material being transported to the wrong locations and unphysical
fragmentation of material.

Early VOF methods used a straight line aligned with a coordinate axis to partition the cell according to the material vol-
ume fractions [6]. Youngs [7,8] extended the method to permit the material interface to have an arbitrary orientation within
the cell. Such methods, that allow a generally oriented interface within the cell, are referred to as piecewise linear interface
calculation (PLIC) methods [3]. In Youngs’ method, the outward normal of the interface separating a material from the rest of
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the cell is taken to be the negative gradient of the ‘‘volume fraction function.” The ‘‘volume fraction function” is assumed to
be a smooth function whose cell-centered values are given by the cell-wise material volume fractions. The gradient may be
computed by finite-difference formulas [8], Green–Gauss formula [9] or a least-squares technique [3]. The interface is then
defined as a line with the calculated normal that cuts off the correct volume of material from the computational cell. We will
refer to all methods that compute the interface from the gradient of the volume fraction function as gradient-based methods.
In general, gradient-based methods for interface reconstruction are only first-order accurate although they may exhibit
nearly second-order accurate behavior for rectangular grids. However, there are extensions that make the reconstruction
second-order accurate by smoothing the interface normals [10–12]. Finally, there is a class of methods that attempts to
reconstruct curved interfaces but these methods are not in widespread use [13].

VOF–PLIC techniques have been successfully used to accurately simulate two-phase (or two-material) flows and free-sur-
face flows in two and three dimensions. However, their application to flows involving three or more materials that come
closer than the mesh spacing and even form junctions has been mostly ad hoc. Examples of such phenomena are flows of
immiscible fluids (e.g. oil–water–gas), inertial confinement fusion (ICF), hypervelocity impact and penetration, dynamic
compaction of multi-material powders [2] and detonation shock dynamics with multiple inert and energetic materials
[14]. In the oil–water–gas flow example, the three-immiscible fluids can statically or dynamically exhibit a thin film struc-
ture along the interface (Fig. 1(a)) or form a contact line (triple point in 2D) at the intersection between the three fluids
(Fig. 1(b)). In inertial confinement fusion (ICF), a spherical plastic target filled with deuterium–tritium (solid and gas, see
Fig. 2) is compressed by laser-initiated X-rays while located within an experimental chamber called a hohlraum that is usu-
ally made of gold or tantalum. The resulting compression and possible fragmentation of the multi-material target imply that
thin layers and multi-material junctions are expected in the simulation and must be properly resolved.

The most common extensions of PLIC to cells with more than two materials (multi-material cells) is to process materials
one-by-one leading to a reconstruction that is strongly dependent on the order in which the materials are processed. In a
strict sense, any cell with more than one material is a multi-material cell. However, we choose to distinguish two-material
cells from cells with more than two materials by calling the latter multi-material cells. This is because we have to reconstruct
the interface for only one material in a two material cell whereas we have to reconstruct multiple interfaces in a cell with
three or more materials. In the ‘‘onion-skin” approach, each material interface is assumed to separate two materials and con-
sists of a single line segment with both endpoints on the computational cell boundary. This form of reconstruction works
only for simple layer structures [7,15] and even there it may create overlapping layers. A more general and correct approach
is the ‘‘nested dissection” method [16,17], where each material is separated from the others in a specified order. In the meth-
od, a pure polygon (or polyhedron) representing the first material is marked out from the cell, leaving a mixed polygon for
the remaining materials. Then, a polygon representing the second material is marked out from the mixed polygon and the
process continues until the last material is processed.

With the ‘‘correct” material ordering, the interface reconstructed by one of the above methods is close to the correct con-
figuration (Fig. 3(a)). However an incorrect ordering results in substantial degradation of the interface as shown Fig. 3(b) and
(c). Sometimes, there may not be an ordering which will give the correct configuration by nested dissection (Fig. 4) or the
correct ordering in one part of the domain may be incorrect in a different part. Two-material cells next to multi-material
cells may also be affected by the order in which materials are processed as discussed in [18].

Finally, the presence of multiple materials in simulations creates special considerations for second-order accurate meth-
ods like LVIRA. In the LVIRA method [10], the interface normal within a cell is updated by minimizing an objective function
for each cell, Ci

FLVIRA ¼
X
j2N i

ðfmðCjÞ � ~f mðCj;n; bÞÞ2 ð1Þ

where N i are the vertex connected neighbors of cell Ci; fmðCjÞ is the prescribed volume fraction for material m in cell j, and
~f mðCj;n; bÞ is the volume fraction cut off in cell j by continuing the line with normal n and line constant b from cell i through
cell j. However, in multi-material cells the volume of a cell cut off by extending the interface may not be representative of the
error. This is because the procedure fails to account for the presence of an additional material behind the extended line, giv-
ing a large error in the volume fraction even when the interface normal is correct as illustrated in Fig. 5.

Fig. 1. Example of immiscible fluid interfaces (e.g. oil–water–air): (a) thin film and (b) triple point.
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Fig. 2. (a) Sketch of an ICF target. (b) The target in the Holhraum (made of gold or tantalum), lasers enter the chamber generating X-ray emission that
ultimately compress the target up to ignition of the deuterium–tritium gas.

Fig. 3. (a) Reconstruction with the correct order, (b) and (c) reconstructions with an incorrect order.

Fig. 4. (a) Four material junction and (b) order dependent reconstruction. In this example, the right configuration cannot be generated by any order of
materials in a nested dissection process.

Fig. 5. In LVIRA, the interface normal for the white material in the center cell is adjusted by extending the interface from the center cell to the neighboring
cells and minimizing the discrepancy between the volumes it cuts off in the neighboring cell, here labeled E2; E3, and E8, and the prescribed volume fraction
for that material in the neighboring cell. However, in computing the volume discrepancy the procedure may not be accounting for another material behind
the interface as in E8 where the volume cutoff becomes the polygon abcd instead of abfe.
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Most importantly, these incorrect reconstructions adversely impact the material advection in flow simulations. In most
cases, an improper material ordering may result in materials being advected prematurely (or belatedly) into neighboring
cells. This can further lead to small pieces of the material getting separated and drifting away from the bulk of the material,
a phenomenon known as ‘‘flotsam and jetsam”.

To address this problem, there has been some work on deriving the material order automatically. The geometrically de-
rived material priority by Mosso and Clancy [19] first approximates the local center of mass of each material; then, assuming
a layer structure, it selects an ordering based on the relative locations of the approximate centroids along a line. A similar
approach was developed by Benson [20]. However, both methods are primarily designed to capture layers and may fail
for multi-material junctions.

Choi and Bussman [15] have addressed the material ordering problem by developing a method for reconstructing three-
material T-junctions in two-dimensions. In a three-material cell, the interface between material 1 and materials 2 and 3 are
reconstructed as in a gradient-based method. Then the normal of the interface between materials 2 and 3 are determined by
a minimization procedure similar to LVIRA. This method is not truly order-independent since the first material must be cho-
sen a priori and it is restricted to three-material cells. Also, the feasibility of applying it to 3D is not clear.

Caboussat et al. [21] also addressed the reconstruction of a triple point using a minimization procedure given by the
neighboring normals. However, it is also restricted to three materials.

Bonnell et al. [22] have also described an interface reconstruction method that draws upon ideas of isosurfacing. This meth-
od can handle multiple materials in a cell automatically but the method is not guaranteed to match volume fractions exactly.

Previously, we presented a method that reconstructed interfaces in a material-order independent manner using a particle
attraction–repulsion model or a regional quadrature formula to locate materials in cells and subdividing the cell using a
weighted Voronoi diagram or power diagram [18]. This method is capable of generating a material-order independent par-
titioning of multi-material cells but is not second-order accurate.

In this article, we present a new second-order accurate VOF–PLIC method that reconstructs a multi-material interface
with no dependence on the order in which materials are specified. The method matches volume fractions exactly as required
by VOF interface reconstruction methods. The method works for arbitrary number of materials in general polygonal meshes.
The reconstruction automatically gives either the appropriate layer structure or configurations with multiple material junc-
tions. Finally, the method ensures that the reconstructed interface partitions the cell into convex material regions, an impor-
tant consideration for a majority of material advection and remapping schemes. Finally, it reproduces straight line interfaces
exactly and reconstructs interfaces with second-order accuracy.

Unlike the particle model method or quadrature formula method of [18], the new technique infers relative locations of
materials based on a piecewise linear approximation to the characteristic function of each material. Using the approximate
material locations, the cell is partitioned into material regions by a weighted Voronoi diagram while matching the volume
fractions. Finally, the interface segments in the multi-material cells are smoothed with respect to their neighbors so that the
method reproduces smooth interfaces with second-order accuracy even around multi-material junctions.

The following sections describe the three main steps of the new method, i.e. material location, power diagram reconstruc-
tion and smoothing. These are followed by results demonstrating that the method performs better than material order-
dependent methods in static, geometric reconstructions and in dynamic advection tests. Convergence tests are presented
to demonstrate that the method is second-order accurate.

2. Material location by piecewise linear reconstruction of the volume fraction function

Given the volume fractions of materials in cells in a mesh, our task is to determine the relative locations of materials in a
multi-material cell. To do this, we must ideally recover the characteristic function for each material in the domain. While it is
possible to reconstruct the characteristic function in 1D [23], no method (other than interface reconstruction itself) exists to
do this in higher dimensions. Therefore, we make a simplifying assumption that a smooth function, called the volume frac-
tion function, exists for each material and that its pointwise cell-centered values are given by cell-wise volume fraction data.
This smooth function represents the distribution of material in the mesh cells and in that sense, it can be considered anal-
ogous to a density distribution function for the material. However, we should note that the volume fraction function is not a
clearly defined mesh-independent continuous function like the density function. Swartz [24] describes it as the function that
quantifies the relative amount of a material present in a small window that moves around in a domain with a sharp interface.
Defined this way, it is clear that the volume fraction function steepens as the size of the window (or in other words, the mesh
size) gets smaller and the gradient of the function blows up as the window size goes to zero. Nevertheless, for a given mesh,
we will treat the volume fraction function like a smooth, density distribution function.

We then compute a piecewise linear approximation for this smooth volume fraction function using standard methods
used in higher-order finite-volume methods [9]. Finally, continuing the analogy with the density function, we compute
the center of mass of the materials in cells from the linear reconstruction as described below.

Consider a mesh on which we have cell-centered values fi of a function f ðxÞ. In each cell Ci, we reconstruct a linear approx-
imation, ~f iðxÞ, of the function such that

~f iðxÞ ¼ fi þ $f � ðx� xcðCiÞÞ; ð2Þ
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where xcðCiÞ is the centroid of the cell. $f is the gradient of the function that we wish to approximate and it is considered to
be constant within the cell. The gradient may be computed either by a Green–Gauss [9] or a least-squares technique [3]. On
structured and unstructured grids, we use all vertex and edge connected neighbors in the gradient computation. In Fig. 6, the
path used for the Green–Gauss technique is shown with the dotted line. For a least-squares technique, the same mesh cells
are used in the computation with each entry weighted by the inverse of the squared distance between the centroid of the cell
being reconstructed and the centroid of the neighboring cell as described in [3]. The computed gradient is limited using
Barth–Jesperson-type limiter [25] to preserve local bounds on the volume fraction function. The limiter is calculated using
all vertex connected neighbors. The limited gradient is indicated by d ¼ /rf with / 2 ½0;1�. Then, the approximate center of
mass of the function f ðxÞ over the domain Xi as approximated by the function ~f iðxÞ is given by

�x ¼
R

Xi
x~f iðxÞdXR

Xi

~f iðxÞdX
¼ 1
kXikfi

Z
Xi

xðfi þ d � ðx� xcðCiÞÞÞdX ð3Þ

where kXik is the area of the domain Xi.
The obvious choice of domain Xi for integrating this equation is the cell, Ci and this works well for structured meshes. The

calculation of Eq. (3) for a polygon may be done with the application of Stokes’ theorem in the plane, for details see [26].
However, for unstructured meshes, we have found that integrating over the cell domain induces a strong bias in the orien-
tation of the reconstructed interface based on the cell geometry. In order to eliminate this effect, we integrate instead over
the smallest square, SðCiÞ � Ci, whose center coincides with the centroid of the cell, xcðCiÞ and encloses the computational
cell. An example of this domain is shown with the solid line in Fig. 6.

For two materials, this choice of integration domain is equivalent to a gradient-based method when using a power dia-
gram interface reconstruction. In a power diagram based reconstruction of a two material cell, the interface normal depends
only on the direction of the vector pointing from one material locator to the other. For two materials, m and n, with material
locators xm and xn and volume fractions fm and 1� fm, respectively, the normal to the interface between them given by the
power diagram reconstruction will be

xm � xn ¼
1

kSðCiÞk
1
�f m
þ 1

1� �f m

� �Z y1

y0

Z x1

x0

xðd � ðx� xcÞÞdxdy ¼ D2

12
1

�f mð1� �f mÞ

 !
dx

dy

� �

where SðXiÞ ¼ ½x0; x1� � ½y0; y1� and D ¼ x1 � x0 ¼ y1 � y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kSðCiÞk

p
. That is, the normal is a positive constant times the gra-

dient. Hence, the interface normal will be the computed gradient. In addition, this choice of integration domain makes the
calculation of Eq. (3) trivial and provides a better initial reconstruction for a starting point to the interface smoothing
procedures.

For meshes and simulations with special symmetries such as uniform-in-angle grids and problems with cylindrical sym-
metry [27], the choice of the square integration domain may break symmetry. In such cases, a different integration domain,
such as the mesh cell itself, may be preferable.

3. Power diagram based interface reconstruction

Once the materials are located in a cell, the interfaces within the cell, separating the materials, are constructed using a
power diagram. A power diagram or Laguerre diagram [28,29] is a generalized Voronoi diagram of a set of points, S, each
with an associated weight, xi. In this context, the generators are the material locators determined by the method detailed
in Section 2.

The power of a point x 2 Rn with respect to a point mass, si 2 S with si ¼ ðxi;xiÞ is defined as

powðx; siÞ ¼ d2ðx;xiÞ �x2
i ð4Þ

where d2ðx;xiÞ ¼
Pn

j¼1ðxj � xj
iÞ

2 is the usual Euclidean distance in Rn.

Fig. 6. The dotted line shows the path used for the Green–Gauss computation of the gradient in the center cell. The dark solid line shows the square domain,
SðXiÞ, used for the material location calculation. It is the smallest square that covers the center cell and has the same centroid, xc , as the center cell.
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Each cell of the power diagram is the set of points

cellðsiÞ ¼ fx 2 Rnjpowðx; siÞ < powðx; sjÞ8sj 2 S; sj–sig: ð5Þ

As with Voronoi diagrams, each power diagram cell is convex with a piecewise linear boundary. If all the weights are equal,
the power diagram degenerates to a Voronoi diagram. The weight associated with a point generator can be interpreted as the
square of the radius of a circle centered at that point. An example power diagram is shown in Fig. 7.

A power diagram can be constructed by a randomized incremental algorithm [30] or by conversion from a Voronoi dia-
gram [31] which may be created using a number of efficient algorithms such as Fortune’s sweepline algorithm [32]. How-
ever, we use a simple half-space intersection algorithm because it is simple and robust for a small number of materials in
each cell. The half-space intersection algorithm computes the power diagram cell for each generator by clipping the polygon
by each bisector between that generator and all other generators, starting with the original computational cell.

3.1. Matching volume fractions

The volume fractions of the materials in a cell are matched by iteratively adjusting the weights of the point generators in a
power diagram, thereby adjusting the area of the power diagram cells once clipped to the mesh cell. This requires the solu-
tion of a set of non-linear equations

Amðx2
1; . . . ;x2

Nm
Þ ¼ kCikfm; m ¼ 1; . . . ;Nm ð6Þ

where Amðx2
1; . . . ;x2

Nm
Þ is the area of the power diagram corresponding to material m after it has been clipped by the bound-

ing mesh cell polygon with area kCik. fm is the volume fraction for material m in cell Ci. The constraint:

XNm

m

Amðx2
1; . . . ;x2

nÞ ¼ kCik ð7Þ

reduces the number of equations to Nm � 1. Since for any power diagram

Amðx2
1 þ c2; . . . ;x2

n þ c2Þ ¼ Amðx2
1; . . . ;x2

nÞ ð8Þ

for any real number c, a normalized set of weights must be chosen. Specifically, this is done by forcing one of the weights to
be a specified value and varying the others.

A Newton procedure with a finite-difference Jacobian is used to solve Eqs. (6) and (7). At each iteration of the Newton
procedure, a power diagram, clipped to the mesh cell is computed to determine the Am and approximate the Jacobian. Some
caution is required, since the area of each cell is bounded above and below, that is

0 6 Amðx2
1; . . . ;x2

nÞ 6 kCikm ¼ 1; . . . ;Nm ð9Þ

For extreme values of the weights, some of the power diagram cells will be outside of the mesh cell and as such have zero
area once clipped to the mesh cell, Ci, under consideration. In such cases, one or more of Amðx2

1; . . . ;x2
nÞwill be constant with

value 0 or kCik and as a function of the weights ðx2
1; . . . ;x2

nÞ it will have a zero gradient making a straightforward Newton
procedure fail. As a result, the Newton procedure needs to adjust for overshoots to make sure it does not end up in this re-
gion. This is simply done by reducing the size of the Newton step at each iteration if it exceeds those bounds. We found the
procedure to be robust and efficient, typically matching the required volumes to within 10�12 in 3–6 iterations.

For the initial guess, we use equal weights for all the point generators if all of the generators lie within the mesh cell being
reconstructed. If any of the generators are outside the cell the initial weights are assigned such that the power bisectors be-

Fig. 7. Power diagram with four generators (V1;V2;V3, and V4) and their weight circles. The generators V1 and V2 do not lie within their corresponding cells.
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tween all the generators go through the centroid of the cell. This ensures that the initial power diagram will have non-zero
areas for each power diagram cell once clipped to the mesh cell.

4. Interface smoothing

Once an initial reconstruction of the interface is available, we apply an order-independent optimization-based smoothing
procedure to improve the approximation of the interface.

Consider a 2D cell with Nm materials, Ns interface segments and Np interface points. The smoothing procedure repositions
the cell’s Np interface points so that it minimizes the discrepancy between the normal of each of its interface segments and
normals of reference interface segments in neighboring cells (separating the same materials). The constraints imposed on
this process are that the volume fractions of the materials in the cells must be matched exactly and that all the pure material
subcells remain convex. Naturally, interface points on the boundary of the cell must remain on the boundary and interior
points must remain strictly inside the cell.

The local objective function for smoothing in a particular cell, Ci is written as

FiðsÞ ¼
XNs

j¼1

XðNrÞj

k¼1

kn̂jðsÞ � n̂r
kk

2 ð10Þ

In the above equation, n̂j is the normal of the jth interface segment, n̂r
k is the normal of the kth reference segment, and finally,

ðNrÞj ¼ 0;1 or 2 is the number of reference segments for the jth interface segment. Also, s is the vector of optimization vari-
ables which includes the x; y coordinates of interior interface points and 1D parameters of points on cell edges.

The reference segments for an interface segment are chosen according to the smoothing procedure laid out by Swartz [24]
for smoothing two material interfaces. Given an interface segment in cell Ci, we first find its endpoints that lie on the bound-
ary of the cell. If the endpoint lies on a cell edge, we find the neighboring cell on the other side of the edge. In this neigh-
boring cell, we attempt to find another interface segment that separates the same two materials as the interface segment
in Ci that is under consideration. The reference normal for the interface segment is then the normal of the line segment con-
necting the midpoints of the two interface segments (see Fig. 8). Using this normal leads to a second-order accurate method
for smooth interfaces in Swartz’s work. If a neighboring cell does not exist (because the edge is on the domain boundary) or a
suitable interface segment does not exist in the neighboring cell, we attempt to find a suitable reference segment in a cell
connected to the vertices of the cell edge that the interface endpoint lies on. If the endpoint of an interface segment lies on a
vertex, the reference interface segment is chosen from one of the vertex connected neighbors. Thus, the algorithm will pick
two, one or zero reference segments for each interface segment. While it is possible that there may be more than two neigh-
boring mixed cells with candidate reference segments, such a situation usually represents noisy volume fraction data or a
feature of the flow that is not well resolved; in such situations, no perfect solution exists and therefore, any choice will prob-
ably lead to unsatisfactory results.

The formulation of the objective function is illustrated with the help of the examples shown in Fig. 8. The first example
(Fig. 8(a)) shows a two-material cell of interest (shaded). Since there is only one interface segment with normal n̂1 and its
endpoints on the cell boundaries, this interface segment has two reference normals. Therefore, the objective function is

FiðsÞ ¼ kn̂1ðsÞ � n̂r
1k

2 þ kn̂1ðsÞ � n̂r
2k

2 ð11Þ

and the optimization variables are the 1D parameters of points x1 and x2. In the second example (Fig. 8(b)), there are three
interface segments with normals n̂1; n̂2 and n̂3 and endpoints x1;x2;x3 and x4. Therefore, the objective function is

FiðsÞ ¼ kn̂1ðsÞ � n̂r
1k

2 þ kn̂2ðsÞ � n̂r
2k

2 þ kn̂3ðsÞ � n̂r
3k

2 ð12Þ

Fig. 8. Definition of reference normals for smoothing in (a) two-material cell and (b) three-material cell. The cell of interest is shaded.
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the optimization variables are the 1D parameters of boundary points x1;x2 and x3, and the x; y coordinates of the interior
point, x4.

The volume conservation constraint for the optimization can be expressed in the form of an equality constraint as

GiðsÞ ¼
1

kCik2

XNm

m¼1

ðVmðxÞ � Vr
mÞ

2 ¼ 0 ð13Þ

where VmðxÞ is the computed volume and Vr
m is the reference or specified volume of the mth material.

The convexity constraint on the subpolygons is expressed as a constraint on all interior angles of the subpolygons in the
cell. The constraint function for convexity, HiðsÞ is a step function which is zero if all the interior angles of all material poly-
gons in the cell are greater than 0 but less than or equal to p, and a very large penalty number ð106Þ otherwise.

The optimization is then set up to minimize the composite function:

F�i ðsÞ ¼ FiðsÞ þ kGiðsÞ þ HiðsÞ ð14Þ

where k is a penalty parameter. When the penalty parameter is sufficiently large, the constraints are enforced exactly [33].
The procedure minimizes F�i ðsÞ in each cell using a multi-dimensional non-linear conjugate gradient minimization pro-

cedure [33] with increasing values of the penalty parameters. Since the original reconstruction will satisfy the volume
and convexity constraints, the penalty parameter k is initially set to one, then incrementally increased by multiplying by
10 and smoothing using that value in the objective function until the penalty parameter reaches a desired value (typically
105).

For two materials cells the minimum of the objective functional in Eq. (14) may be constructed explicitly. It is the recon-
struction corresponding to a single line with a normal taken by averaging the reference normals and matching the volume
fraction. The multi-dimensional minimization procedure does not need to be invoked.

Multiple iterations ðNglobal ¼ 3 to 5Þ over all mixed cells are performed so as to minimize the global objective function that
can be formed by summing the F�s over all mixed cells. The optimization converges to a correct solution quickly in all but a
few very difficult cases for which convergence is impractically slow. The overall minimization algorithm is given in pseudo-
code in Fig. 9.

In Fig. 10, the initial power diagram reconstruction is shown along with the material locators for a three material, curved
interface. After smoothing, the interface is much improved.

5. Numerical experiments

In this section, we present some static interface reconstruction examples and demonstrate second-order convergence. To
demonstrate that our method leads to significant improvements in dynamic simulations, we present results of advection of
multi-material configurations on structured and unstructured meshes.

5.1. Interface reconstruction

To demonstrate the performance of the method, two multi-material interface reconstructions are shown in Fig. 11. Both
examples are on a domain of ½0;1� � ½0;1�.

The first row in Fig. 11 shows the reconstruction of a triple point. In the center cell, the volume fractions are (0.5, 0.3, 0.2).
In the top center and bottom center cells the volume fractions are (0.5, 0.0, 0.5) and (0.5, 0.5, 0.0), respectively. The right
center cell has volume fractions of (0.0, 0.6, 0.4).

Fig. 9. Material order independent interface smoothing algorithm. Here In is the interface reconstruction at global iteration n. sk is the vector of
optimization variables at each stage of the inner loop which increases the penalty parameter k. minimizerF�ðsk; kÞ returns the variables at the local minimum
starting from initial guess sk. The routine interfacesðF�; sÞ gives the polygonal decomposition of the cell corresponding to the values of the optimization
variables, s.

738 S.P. Schofield et al. / Journal of Computational Physics 228 (2009) 731–745

181



The second row of Fig. 11 shows the reconstruction of a three circle configuration containing two, three and four material
cells. The volume fractions are defined by three circles given by (A) radius 0.5385, center (0.3, 1.0) (B) radius 0.7071, center
(0.99, 0.97) and (C) radius 0.7071, center (0.99, 0.01) with circle (C) overlaying (B) which overlays (A).

The method correctly reconstructs the triple point in Fig. 11(c), although the white region in the center cell is only mar-
ginally convex due to the node at the center of the T-junction. Note in Fig. 11(d) and (e), the effect of multiple materials on a
gradient-based method even in the two material cells near the four material center cell.

In Fig. 11(f), the method significantly improves the interface reconstruction in the four material and surrounding cells.
However, due to the convexity constraints and the initial topology of the power diagram reconstruction the method is unable
to perfectly match the interfaces in the four material cell.

Fig. 10. (a) Interface reconstruction before smoothing showing material locators and (b) interface reconstruction after smoothing.

a b c

d e f

Fig. 11. Static interface reconstruction tests. (a) and (b) Triple point configuration using a nested dissection/gradient-based method with the material
ordering indicated in the figure. (c) Triple point configuration using our second order method. (d) and (e) Three circle intersection test using nested
dissection method with two different material orderings. (f) The interface reconstruction using our second order method. The convexity restrictions and
initial topology of the power diagram prevent the optimization from completely smoothing the interface in the four material cells.
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5.2. Convergence

A number of tests have been conducted to demonstrate that the method converges and is second-order accurate. The er-
ror in each cell is measured as the symmetric area difference between the approximate and ‘‘true” reconstructions. Given
two shapes X1 and X2, the symmetric area difference is measured as

e ¼ ðkX1k � kX1 \X2kÞ þ ðkX2k � kX1 \X2kÞ ð15Þ

The overall error, E, in the reconstruction is obtained by summing e over all materials and all cells. The symmetric area dif-
ference for a single cell is illustrated in Fig. 12.

The volume fraction initialization uses a sampling method based on adaptive mesh refinement. To compute the volume
fractions of materials in a cell, the vertices of the cell are assigned material IDs based on an in-out test. If the vertices of the
cell are of the same material, the cell is assigned that material, If not, the cell has multiple materials and is then subdivided
into four equal subcells (assuming the cell is a regular quadrilateral). The new points generated by refinement are assigned
material IDs based on further in-out tests. The refinement continues in this way until all subcells are pure or the size of a
subcell is below the required volume fraction tolerance. The areas of subcells are then added up to compute volume fractions
up to the desired tolerance.

Three multi-material examples where chosen for the convergence tests. The problem domain was ½0;1� � ½0;1� for all
three tests.

� The first test (circle) shown in Fig. 13(a) consists of a circle of radius 0.25 with center (0.5, 0.5).
� The second test (two-arcs) shown in Fig. 13(b) is a three-material problem with two intersecting circular arcs. The bottom

circle has a radius of 0.7 and center (0.5, 0.0). The circle on the right overlays the bottom circle and has radius of 0.5 and
center (1.0, 0.5).

� The third test (curved-filament) is a curved filament with a varying thickness as shown in (Fig. 13(c)). It is composed of two
circles, one with a radius of 0.7 and center (0.5, 0.0) which is partially covered by a circle of radius 0.64 and center (0.5,
0.05).

The coarsest mesh was a regular mesh of 32� 32 and the finest mesh was 256� 256, which had a characteristic mesh
spacing of h ¼ 1

256.
The errors for these examples along with errors of an exactly second-order accurate scheme are plotted in Fig. 14. From

this plot, it can be seen that the scheme reconstructs interfaces with second-order accuracy.

5.3. Advection

Interface reconstruction methods are generally applied in dynamic simulations where the materials, as described by the
volume fractions, move over time. In simple, multiple passive scalar transport each material satisfies an advection equation,

d
dt

f mðCiÞ ¼ �
1
kCik

Z
@Ci

vmðxÞuðxÞ � ndx ð16Þ

where vmðxÞ is the characteristic function for material m and u is the prescribed transport velocity and n(x) is the unit out-
ward normal on the cell boundary. Furthermore, we assume the velocity field is divergence free and the materials are immis-
cible but with no surface tension.

Fig. 12. Illustration of symmetric area difference with exact and approximate straight line interfaces. The darkly shaded part shows the area of overlap
between the areas behind the two reconstructions and the remaining shaded parts show the area of non-overlap.
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A number of material advection schemes exist to simulate Eq. (16). For unstructured grids, an attractive advection scheme
is the Lagrangian step plus Eulerian remap approach [34]. In this scheme, the advection step consists of a Lagrangian phase,
where the mesh cell is moved in a Lagrangian fashion, followed by a conservative remap, where the cell contents from the
Lagrangian step are mapped back to the Eulerian mesh. This approach has been suggested for material advection by a num-
ber of authors including [11,35–37].

There are two basic formulations of this method: a forward trajectory remap or a backward trajectory remap. In the for-
ward trajectory remap, the position of the cell is calculated at time tnþ1 and the interface reconstruction is performed using
the updated cell positions. The material interfaces are then intersected with the original Cartesian mesh to determine the
updated material quantities.

In the backward trajectory remap method, used in this work, the Eulerian mesh is taken as the cell positions at time tnþ1.
The position of the cell is then integrated backwards in time to determine its location at the previous time step, tn, which we
refer to as the ‘‘preimage” of the cell. The interface reconstruction is performed using the volume fractions at time tn on the
original mesh. The preimage of the cell is then intersected with the interfaces on the Eulerian mesh. This process is illus-
trated in Fig. 15. The primary advantage of the backward trajectory remap, is that the interface reconstruction is always per-
formed on the same, usually more regular, Eulerian mesh unlike the forward method where the interface reconstruction is
performed on the Lagrangian mesh, which may consist of deformed cells even if the original Eulerian mesh was structured.

Fig. 13. Test cases used to study convergence – (a) two-material circular interface (circle) (b) three-material junction with circular arcs (two-arcs) and (c)
varying thickness curved filament (curved-filament).
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Fig. 14. Convergence plots for the three examples showing second-order accuracy. Here h is the mesh spacing and E the overall error.
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In addition, the computation of the gradient of the volume fraction function depends on cell geometry which is fixed for the
backward scheme, but may change each timestep in the Lagrangian phase using the forward method.

In the first step of the backward trajectory remap method, the position of the cell vertices, xi, at the previous time step are
determined by integrating the ODE backwards in time

dxn
i

dt
¼ uðx; tÞt 2 ½tnþ1; tn� ð17Þ

with initial condition

xnþ1
i ðtnþ1Þ ¼ xi ð18Þ

using the computed velocities from times tn and tnþ1. We use a fourth order Runge–Kutta method, although many other time
integrators are suitable.

Once the location of the vertices at the previous time step are calculated, the preimage of the cell is taken to be the poly-
gon consisting of those vertices connected with straight lines. There are some errors introduced in computing the preimage
in this manner. For a solenoidal velocity field ðr � u ¼ 0Þ, the area of the preimage will be the same as the area of the original
cell. For a general velocity field, the preimage of a line will typically be a curve. Failing to account for the curvature of the
edges of the preimage introduces a defect in the cell area estimated to be Oðh3DtÞ in addition to area defects associated with
backward time integration of the vertices.

Fig. 15. Backward Lagrangian advection scheme. (a) The ‘‘preimage”, X0 of the center computational cell of the fixed Eulerian mesh, obtained by integrating
the nodes backward in time. (b) To determine the cell contents at the new time, the ‘‘preimage” is intersected with the interface reconstruction for each
material at the previous time.

Fig. 16. Final configuration of the four material circle shown in (A1) with material numbers after diagonal translation with a velocity of (1, 1) at time t ¼ 0:5
using the interface reconstruction methods: (B1) Youngs’ with material order (0, 1, 2, 3, 4) (C1) Youngs’ with material order (1, 2, 3, 4, 0) (D1) our second
order method. (A2)–(D2) show the same results on an unstructured mixed triangle and quadrilateral grid.
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In the second step of the backward trajectory remap method, the preimage of the cell is intersected with the material
polygons on the original mesh at time tn as shown in Fig. 15(b). The areas of each material that lie within the preimage
are added to obtain the material contents of the cell. Since the area of the preimage may not exactly match the area of
the original cell, the volume fractions are taken with respect to the preimage area. Volume fractions less than 10�8 are
suppressed.

Fig. 17. Material interface configuration for the four material vortex test at maximum stretch time t ¼ 2:0 and at complete reversal time t ¼ 4:0 run on a
64� 64 grid. For the method Youngs’ (1), the material ordering was (0, 1, 2, 3, 4). For method Youngs’ (2), the order was (1, 2, 3, 4, 0). The initial condition
and material numbers are the same as the four material circle shown in Fig. 16 but with the circle center located at (0.5, 0.75).
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5.4. Example: diagonal translation of a four material disk

To illustrate the performance of our method in a dynamic example, we choose a simple, five material example that
consists of diagonal translation of a four material disk at constant velocity. A four material disk of radius 0.15 is placed
at (0.25, 0.25) on a mesh comprising the domain ½0;1� � ½0;1�. The disk is then translated diagonally with a constant veloc-
ity of u ¼ ð1;1Þ to a final time of t ¼ 0:5. While the backward Lagrangian advection scheme has no restrictions on timestep
for stability, here the timestep was restricted to emphasize the effect of repeated interface reconstructions. For all simu-
lations, the CFL number, m ¼ kuk Dt

h , was 1
8
ffiffi
2
p . The grid spacing, h, is taken as the square root of the area of the smallest grid

cell.
In Fig. 16, the final configuration of the circle is shown using different interface reconstruction methods on a 32� 32

structured grid and a comparable unstructured, mixed quadrilateral and triangular grid. The material order independent,
second-order method (Fig. 16(D1) and (D2)) exhibits no grid artifacts and clearly preserves the structure better than the first
order, material order dependent method (Fig. 16(B1),(C1), (B2) and (D2)).

5.5. Example: four material vortex test

A standard volume tracking test case is the vortex consisting of a circle of radius 0.15 centered at (0.5, 0.75) in a
½0;1� � ½0;1� domain. To demonstrate material ordering issues, we again use a four material circle. The incompressible veloc-
ity field is given by the streamfunction

W ¼ cos
p
4

t
� � 1

p
sin2ðpxÞ sin2ðpyÞ ð19Þ

with the velocity field defined to be ðu;vÞ ¼ ð� oW
oy ;

oW
ox Þ. At time t ¼ 4, the material configuration should be identical to the

initial condition at time t ¼ 0.
Here the time step used was Dt ¼ 1

4 h where h ¼ 1
64 is the mesh spacing and the simulations were run to a final time of

t ¼ 4:0. The results are shown in Fig. 17. The material order issues with Youngs’ method lead to excessive breakup of the
interface. On the 64� 64 mesh, the solution computed using the second-order method shows problems at the tail of the
material. This is due to a poor initial reconstruction and the difficulty in obtaining reliable reference normals for the smooth-
ing procedure when the material has broken up or is very poorly resolved. Overall, our method shows significantly better
results than the material order dependent methods. In addition, the power diagram based reconstruction without the
smoothing step also shows very good results.

The total change in material volume is defined as

evol ¼
XNm¼5

m¼1

kVfinal
m � V0

mk
V0

m

ð20Þ

where Vfinal
m is the total volume of material m after the final time step, and V0

m is the total initial volume of material m. For the
methods shown, the change in material volume was for Youngs’ method with order 01234, evol ¼ 2:54e� 3, for Youngs’
method with order 12,340, evol ¼ 1:28e� 3, for the power diagram reconstruction, evol ¼ 1:35e� 4, and for the material order
independent second-order method, evol ¼ 3:10e� 3. The volume discrepancy in the backward Lagrangian advection method
is largely responsible for the error as all methods exhibit similar errors.

6. Conclusions

We have developed a second-order accurate method for material order independent interface reconstruction of multi-
material cells. It is based on the determination of the relative locations of each material in a cell using linear reconstruction
of the volume fraction function, reconstructing the interface using a power diagram and smoothing the interface with re-
spect to its neighbors. The method does not assume a topology for the material regions, i.e. a layer structure or triple point
configuration. Furthermore, all of the material regions created are convex which is a requirement for most advection and
remapping schemes.

The extension of the smoothing algorithm to three dimensions is challenging. However, extending the material location
by linear reconstruction is straightforward as it only relies on computation of the gradient. In addition, the construction of
the power diagram to three dimensions only requires the ability to intersect polyhedrons with a halfspace, a procedure de-
tailed in [38]. For the power diagram based reconstruction, the volume fraction matching procedure is dimension
independent.

This reconstruction method is currently being implemented in multi-material flow codes to further understand the com-
bined errors of advection and interface reconstruction.
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184 Chapter 2. Arbitrary-Lagrangian-Eulerian schemes

∼

This chapter was devoted to the description of some of our investigations of the rezone and
remap phases of and ALE code. Rezone has been extended to allow mesh reconnection and gave
rise to the so-called ReALE method. Finally we have presented our contribution to interface recon-
struction methods which are able to deal with more than two materials in multi-material fluid flows.

The next chapter presents some of our investigations which are not genuinely related to ALE per
se. This chapter deals with very high-order MOOD schemes, kinetic schemes and interface recon-
struction technique in an Eulerian context.
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In this chapter we present some topics that we have treated which are more or less related to
Lagrangian and ALE numerical schemes. I came across these projects thanks to colleagues and

collaborators, and I would like to take the opportunity to thank them for feeding me with their idea.
An exhaustive description of the context, the existing methods and the details of our approaches is
available in the published papers and are not rephrased here. Instead we justify why these topics
of research have been initiated and emphasize some difficulties that have been resolved and also
some others which are still to be solved. Moreover several numerical results from our papers will
be reproduced in order to show how and why these investigations led to numerical methods and
simulation codes that are of interest for the community.
More precisely this chapter is organized in the following sections :

A section devoted to the Multi-dimensional Optimal Order Detection (MOOD) method. This
method has been developed during the three years of a PhD (2009-2012) S. Diot shared with
S. Clain (university Do Minho, Guimaraes Portugal). The Multidimensional Optimal Order
Detection (MOOD) method which has been developed and improved in set of three successive
papers [29, 32, 33] and also a set of proceedings [30, 31]. This method is a very high order finite
volume method based on polynomial reconstruction based on a posteriori polynomial degree
decrementing which plays the role of a classical limitation. This provides a different manner
of considering how, where and when limitation is needed.

A section dedicated to the presentation of an ultra Fast Kinetic Scheme (FKS) [39]. This work has
been done with G. Dimarco (IMT) following one of his idea. This consists of a new ultra
efficient numerical method for solving kinetic equations in the case of the BGK relaxation op-
erator. The scheme is based on a splitting technique between transport and collision. The key
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idea is to solve the collision part on a grid and then to solve exactly the transport linear part
by following the characteristics backward in time. The main difference between the method
proposed and semi-Lagrangian methods is that here we do not need to reconstruct the distri-
bution function at each time step. This allows to tremendously reduce the computational cost
of the method and it permits to compute solutions of full six dimensional kinetic equations on
a single processor laptop machine.

A section devoted to the interface reconstruction technique within the Finite Volume with Charac-
teristic Flux scheme [210]. This scheme is an Eulerian finite volume scheme based on charac-
teristic decomposition of the flux between neighbor cells. A two material extension has been
proposed by J.-P Braeunig et al in [211, 212], this extension employs a VOF approach with
a SLIC interface reconstruction method. However we have shown that some inconsistency in
the interface reconstruction method led to poor advection results. Our contribution proposed
an improvement of this so-called Natural Interface Positioning (NIP) method [211, 212]. Our
modification, called Enhanced Natural Interface Positioning has been published in [18] and its
extension to deal with more than two materials is to be published in a forthcoming paper [41].



3.1. Very high order finite volume scheme : The Multidimensional Optimal Order Detection
method (MOOD) 187

3.1 Very high order finite volume scheme : The Multidimensional Opti-
mal Order Detection method (MOOD)

In this work we solve the advection equation and the Euler system of hydrodynamics with a
method built on the basics of the Finite Volume (FV) numerical scheme. FV method considers
piecewise constant values of the variables per cell (i.e mean values) and computes their evolution in
time. As already known FV method using constant states is only first-order accurate in space. Higher
order accurate methods can be obtained as instance using polynomial reconstruction using mean
values to evaluate more accurately the flux. Unfortunately some sort of limitation is needed to avoid
spurious oscillations near discontinuous profiles (shock wave or contact discontinuity as instance).
Close to discontinuities any stable scheme must degenerate to an at most first-order accurate one.

3.1.1 MOOD key idea : “a posteriori” limitation

Classical high order polynomial reconstruction schemes such as the Monotonic Upstream-centered
Schemes for Conservation Laws (MUSCL) based on Godunov approach and introduced by van
Leer [213], or various Essentially Non-Oscillatory schemes (ENO) proposed by Harten, Osher and
Shu [214, 215, 216], are based on an a priori limiting procedure to achieve some stability property.
In MUSCL like methods unlimited slopes are reduced through the use of a slope limiter whereas
the least oscillating polynomial is chosen for ENO/WENO like methods. There is a vast litera-
ture about slope/flux limiters, some of them are now known after their discoverers (van Leer
[217, 218, 213], van Albada [219], Sweby [220], Barth-Jespersen [221], Venkatakrishnan [222], Ko-
ren [223], etc.) or their particularity (minmod [224], superbee [224], monotonized central [218], etc.).
Finding the Essentially Non-Oscillating polynomial (hence the name of the method (W)ENO), im-
proving the choice of reconstruction stencils and reducing the possible huge number of stencils have
also led to a considerable sum of articles see as instance [214, 215, 216], more specifically [225] and
the bibliography herein.
In any case these types of limitation are performed a priori by a clever analyze of the available data.
This implies that the “worst case scenario” must always be considered as plausible, and, as a con-
sequence, the “precautionary principle” applies. In other words because scientific investigation has
found a plausible risk of instability development, a priori limitations strike more often and harder
than necessary. We believe that these limitations can be relaxed only if further information emerges
that provides evidence that no harm will result when using unlimited reconstruction. One way to
attain this goal is to check a posteriori if a solution has failed to fulfill some stability criteria 1

The principles of the MOOD method are as simple as : first compute a candidate solution without
any limitation, then detect if this solution locally fails to fulfill some stability criteria (problematic
regions) and further uses limiter only on problematic regions to recompute the new candidate so-
lution. The new candidate solution is then checked again for eligibility. The MOOD method follows
this fundamentally different way. A maximal polynomial degree is set. Then a polynomial degree
reduction plays the role of a posteriori limitation. An iterative procedure which decrements poly-
nomial degree in problematic regions provides the optimal local polynomial reconstruction which
satisfies given stability criteria.
Doing so we can ensure the positivity of the scheme by construction if the lowest order scheme
is. Moreover we ensure that the numerical solution obtained is one of the most accurate solution
achievable because every higher order polynomial reconstructions have been tested but the first

1. Treating a posteriori if a solution is valid is not new and can be found in the context of remapping methods (decreas-
ing of polynomial order in [226], repair methods [141, 142, 8, 9]) and presumably in many other areas.
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reconstruction leading to an acceptable solution 2.
In [29] we introduced this MOOD concept which provides up to third-order approximations to hy-
perbolic scalar or vectorial solutions for two-dimensional geometry. Then in [32] we have extended
to general unstructured 2D meshes and to sixth-order convergence in space. Finally in [33] the 3D
version has been deployed. We refer the reader to these papers to an exhaustive description of the
MOOD method.

3.1.2 MOOD performances in 1D, 2D and 3D

The MOOD method has been entirely developed and extensively tested by S. Diot with his 2D
and 3D codes. It has led to three publications [29, 32] and [33]. For the first paper [29] we have
presented the method and the associated concepts of cell and edge polynomial degree. An effective
third order of accuracy of the MOOD method on advection equation on irregular structured grid
has been achieved. Then on Euler equations we have shown that the MOOD method with piecewise
parabolic or linear reconstructions is nicely performing on classical test cases (Sod shock tube, four
state Riemann problem, Mach 3 step problem, double Mach reflection). The MOOD method is also
favorably compared to classical Finite Volume and MUSCL like methods.
The second publication [32] introduces the extension of MOOD to 2D unstructured meshes with
higher order polynomials (up to six). In this paper we have shown that the expected high order of
convergence is reached both for advection and on smooth solutions of the Euler equations. To reach
the sixth-order of accuracy for a P5 polynomial reconstruction we have relaxed the strict discrete
maximum principle which is a cause of limitation to second-order of accuracy along with the use of
non-conservative variable reconstructions, see also [227] on this point. A detector of smooth solution
has been designed, it avoids polynomial degree decrementing and ensures a high order of accuracy
on smooth profiles. The method has been tested on unstructured and non-conformal meshes. For the
advection section we have tested the MOOD method on a smooth solution (double sine translation)
and on discontinuous profiles (solid body rotation). For the Euler equations we have considered and
isentropic vortex problem which admits a smooth exact solution. The MOOD method can effectively
produce the optimal order of accuracy, up to sixth-order for a P5 polynomial reconstruction. The
1D Lax shock tube has further been run to compare MOOD with classical WENO method. The
double Mach problem has been used to assess the low storage and speed-up of the MOOD method
on three different single core machines. We finally have tested the ability of MOOD method to
capture physics in realistic conditions by simulating the experiment proposed in where a planar
shock impacts a cylindrical cavity, see Figs. 3.1.
The last paper deals with the 3D version of the method on unstructured grid. This paper is meant
to prove that the MOOD method can be developed in 3D on single core machines. The method has
been extensively tested on different machines to estimate its actual cost. On advection equation we
have shown that the method can reach effective high order of accuracy. For Euler equations we have
designed a 3D extension of the impact of a shock wave on a cylindrical cavity. A spherical version
of the Sod shock tube has also been simulated. Last the interaction of a shock wave with a quarter
of cone has been run with the fourth order accurate MOOD method. This is a 3D extension of the
so-called “interaction of a shock wave with a wedge” problem. We reproduce in Fig. 3.2 the figure
from the paper where the mesh (colored by the cell volume) and the principal waves are shown.

2. defined as a solution fulfilling user-given stability criteria such as physical admissibility of the solution, positivity
of some variables, non-oscillatory solution, etc.
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Figure 3.1 – Results of the 2D MOOD-P3 method on the impact of a shock wave on a cylindrical cavity. Gradient
density magnitude is shown at different times. Time 0 corresponds to the initial shock at position x=0. The bottom panel
presents a zoom on the vortices.
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Figure 3.2 – Results of the 3D MOOD-P3 method on interaction of a shock wave with a half cone. Top panel : view
of the interior of the tetrahedral mesh with the different zones of refinement. Bottom panel : isosurfaces corresponding to
the principal waves.
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a b s t r a c t

In this paper, we investigate an original way to deal with the problems generated by the
limitation process of high-order finite volume methods based on polynomial reconstruc-
tions. Multi-dimensional Optimal Order Detection (MOOD) breaks away from classical lim-
itations employed in high-order methods. The proposed method consists of detecting
problematic situations after each time update of the solution and of reducing the local
polynomial degree before recomputing the solution. As multi-dimensional MUSCL meth-
ods, the concept is simple and independent of mesh structure. Moreover MOOD is able
to take physical constraints such as density and pressure positivity into account through
an ‘‘a posteriori’’ detection. Numerical results on classical and demanding test cases for
advection and Euler system are presented on quadrangular meshes to support the promis-
ing potential of this approach.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

High-order methods for systems of nonlinear conservation laws are an important challenging question with a wide range
of applications. Furthermore in an engineering context such methods may deal with complex multi-dimensional domains
requiring unstructured, heterogeneous or even non-conformal meshes. To handle highly stretched unstructured meshes
made with different cell shapes, one has to design genuinely multi-dimensional numerical methods which exclude dimen-
sional splitting techniques.

Due to its simplicity (one unknown mean value per cell) and built-in conservativity property, first-order finite volume
method is very popular in today’s engineering applications or commercial codes. However, it suffers from a major drawback,
namely the presence of a large amount of numerical diffusion leading to a poor accuracy and over smoothed discontinuities.
High-order space and time finite volume methods based on local polynomial reconstructions and Runge–Kunta algorithm
have been developed to improve the approximation accuracy. MUSCL methods are probably the most popular second-order
finite volume schemes. First developed in the one-dimensional situation with linear reconstructions [14,27,15,16], the tech-
nique has been extended to genuinely multi-dimensional case using structured or unstructured meshes [3,2,12,20,7,21,4].
Stability is achieved using a limiting procedure based on the Maximum Principle. In the present study, the Multi-
dimensional Limiting Process (MLP) of [20,21] is employed since it is one of the most up-to-date MUSCL methods. Besides,
(Weighted) Essentially Non Oscillatory polynomial reconstruction procedures (ENO/WENO) were designed to reach
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higher-order of accuracy [10,11,1,24,23] using less restrictive conditions for the limitation which do not guarantee a strict
Maximum Principle for scalar problems. Moreover, although ENO/WENO schemes can retain high-order spatial accuracy
even at points of extrema, extra difficulties and complexities have to be faced for the implementation on multi-dimensional
unstructured grids (see [1,28]) as a large number of stencils for the polynomial reconstructions must be proceeded. Such
drawbacks lead us to put ENO/WENO methods aside from the present study.

In this work we propose a genuinely multi-dimensional high-order method within a finite volume Eulerian framework on
non-uniform meshes, the Multi-dimensional Optimal Order Detection (MOOD) method. In contrast to the traditional meth-
ods which use an a priori limitation procedure, the MOOD technique is based on an a posteriori detection of problematic cells.
In each cell optimal polynomial degrees are determined to build approximated states leading to a discrete maximum prin-
ciple preserving solution. In an hydrodynamics context, physical properties such as the density and the pressure positivity
are considered. Roughly speaking, the polynomial degree may drop to zero in the vicinity of discontinuities leading to a local
stable first-order finite volume scheme whereas high-order scheme is achieved in smooth regions. As for other methods, the
MOOD method is embedded into the sub-steps of a high-order Runge–Kutta time discretization.

The paper is organized as follows. Section 2 is dedicated to the generic framework used to describe the MOOD method.
Section 3 is devoted to the linear reconstruction and to a short presentation of the MLP method [20,21]. The MOOD method
for scalar problems is detailed in the fourth section while Section 5 is dedicated to an extension of MOOD method to the
Euler equations. At last, the numerical results for the advection and the Euler equations problems are respectively gathered
in Sections 6 and 7. Classical tests are carried out and comparisons to the results of MLP method are provided. Several
numerical examples prove the efficiency of the MOOD method in its second- and third-order version. The last section finally
gathers conclusion and perspectives.

2. General framework

We consider the generic scalar hyperbolic equation defined on a domain X � R2, t > 0 cast in the conservative form

@tuþr � FðuÞ ¼ 0; ð1aÞ
uð�; 0Þ ¼ u0; ð1bÞ

where u = u(x, t) is the unknown function, x = (x1,x2) denotes a point of X and t the time. F is the physical flux and u0 is the
initial condition. Boundary conditions shall be prescribed in the following.

To elaborate the discretization in space and time, we introduce the following ingredients. We assume that the computa-
tion domain X is a polygonal bounded set of R2 divided into quadrangles Ki; i 2 Eel where Eel is the cell index set with ci being
the cell centroid. For each cell Ki, k(i) is the set of all the nodes Pm, m 2 k(i) while eij denotes the common edge between Ki and
Kj with j 2 m(i), m(i) being the index set of all the elements which share a common side with Ki. Moreover, mðiÞ represents the
index set of all Kj such that Ki \ Kj – ; (see Fig. 1). At last, jKij and jeijj measure the surface of Ki and the length of eij, respec-
tively, and nij is the unit outward normal vector of Ki.

To compute an approximation of the solution of Eq. (1), we recall the generic first-order explicit finite volume scheme

unþ1
i ¼ un

i � Dt
X
j2mðiÞ

jeijj
jKij

F un
i ;u

n
j ;nij

� �
; ð2Þ

Fig. 1. Mesh notation. Ki is a generic element with the centroid ci. Index set m(i) corresponds to blue cells with dots, mðiÞ corresponds to every non-white
cells and k(i) is the set of red Pm node indexes. Edges are denoted by eij with nij the unit outward normal vector of element Ki. Numerical integration on edge
eil is performed with the two Gauss points q1

il ; q
2
il . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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where Fðun
i ;u

n
j ;nijÞ is a numerical flux which satisfies the classical properties of consistency and monotonicity.

Unfortunately, such a scheme only provides first-order accuracy in space and higher-order reconstruction techniques are
used to improve the solution approximation. To this end, we substitute in Eq. (2) the first-order approximation un

i and un
j

with better approximations of u on the eij edge and consider the generic spatial high-order finite volume scheme

unþ1
i ¼ un

i � Dt
X
j2mðiÞ

jeijj
jKij

XR

r¼1

nrFðun
ij;r;u

n
ji;r;nijÞ; ð3Þ

where un
ij;r and un

ji;r; r ¼ 1; . . . ;R are high-order representations of u on both sides of edge eij and nr denote the quadrature
weights for the numerical integration. In practice, un

ij;r and un
ji;r are two approximations of uðqr

ij; t
nÞ at quadrature points

qr
ij 2 eij, r = 1, . . . ,R (see Fig. 1).

For the sake of simplicity, let us write the scheme under the compact form

unþ1
h ¼ un

h þ DtHRðun
hÞ ð4Þ

with un
h ¼

P
i2Eel

un
i 1Ki

the constant piecewise approximation of function u and operator HR being defined as

HRðun
hÞ :¼

X
i2Eel

�
X
j2mðiÞ

jeijj
jKij

XR

r¼1

nrF un
ij;r ;u

n
ji;r ;nij

� �0
@

1
A1Ki

: ð5Þ

To provide a high-order method in time, we use the third-order TVD Runge–Kutta method (see [24]) which corresponds to a
convex combination of three explicit steps

uð1Þh ¼ un
h þ DtHR un

h

� �
; ð6aÞ

uð2Þh ¼ uð1Þh þ DtHRðuð1Þh Þ; ð6bÞ

uð3Þh ¼
3un

h þ uð2Þh

4

 !
þ DtHR 3un

h þ uð2Þh

4

 !
; ð6cÞ

unþ1
h ¼ un

h þ 2uð3Þh

3
: ð6dÞ

Remark 1. Note that a high-order scheme in space and time can be rewritten as convex combinations of the first-order
scheme. From a practical point of view, implementation of the high-order scheme from an initial first-order scheme is then
straightforward.

The main challenge is to build the approximations un
ij;r and un

ji;r on both sides of edge eij with r = 1, . . . ,R to be plugged into
relations (5) and (6). Polynomial reconstructions provide high-order approximations but unphysical oscillations arise in the
vicinity of discontinuities. Indeed, the exact solution of an autonomous scalar conservation law (1) satisfies a local Maximum
Principle and we intend to build the reconstructions such that this stability property is fulfilled at the numerical level
(see [5,6] and references herein). To this end, we state the following definition.

Definition 2. A numerical scheme (4) satisfies the Discrete Maximum Principle (DMP) if for any cell index i 2 Eel one has

min
j2mðiÞ
ðun

i ;u
n
j Þ 6 unþ1

i 6max
j2mðiÞ
ðun

i ;u
n
j Þ: ð7Þ

3. A short review on a multi-dimensional MUSCL method

All L1 stable second-order schemes are based on piecewise linear reconstructions equipped with a limiting procedure.
The polynomial reconstruction provides the accuracy while the limitation algorithm ensures the physical relevancy of the
numerical approximation. We briefly present the piecewise linear reconstruction step and recall the MLP method proposed
in [21] which is used in the numerical part of this paper.

3.1. Linear reconstruction

Let ðuiÞi2Eel
be a set of cell centered mean values given on cells Ki. In order to simplify notations, let K be a generic cell with

centroid c = (c1,c2). Considering mean values on a chosen neighborhood made of cells Kj, j 2 m, we seek a polynomial function
~uðxÞ of degree d = 1. Let us define the notation for the mean value as

~uðxÞh iK ¼
def 1
jKj

Z
K

~uðxÞdx:

Usually we ask for the following criteria
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Criterion 3. The polynomial reconstruction ~u must fulfill

(1) h~uðxÞiK ¼ �u where �u is the mean value approximation of u on K.
(2) The polynomial coefficients are the ones minimizing the functional

Eð~uÞ ¼
X
j2m

uj � ~uðxÞh iKj

� �2
; ð8Þ

A classic way to write ~u is

~uðxÞ ¼ �uþ G � ðx� cÞ; ð9Þ

where G ¼ ðG1;G2Þ is a constant approximation ofru on K. The first condition of Criterion 3 is directly satisfied and classical
techniques like least squares methods are used to determine vector G that minimizes the functional E in Eq. (8).

3.2. Gradient limitation

As we mentioned above, a finite volume scheme only based on a local polynomial reconstruction without limiting
procedure produces spurious oscillations. Initiated by the pioneer works of Kolgan and Van Leer [14,15,27,16], the MUSCL
technique deals with a local linear reconstruction like (9) on each cell K where the gradient G is reduced by a limiter
coefficient / 2 [0,1]

~uðxÞ ¼ �uþ / G � ðx� cÞð Þ; ð10Þ

such that any reconstructed values satisfy the Discrete Maximum Principle (see [2,3,12]). We choose to detail and use the
MLP limiter instead of the classical Barth–Jespersen limiter because it provides more accurate results (see [21]). The MLP
limiter applies the following procedure:

� Construction of an unlimited slope G using the neighbor cells Kj; j 2 m.
� Evaluation of the unlimited reconstruction (9) at the vertices Pm of K : um ¼ ~uðPmÞ;m 2 k the nodes index set of K.
� Evaluation of the bounds for each node Pm

dumax
m ¼ max

j;Pm2kðjÞ
ðuj � �uÞ; dumin

m ¼ min
j;Pm2kðjÞ

ðuj � �uÞ:

� Evaluation of the vertex based limiter /m

/m ¼

min 1; dumax
m

um��u

� �
if um � �u > 0;

min 1; dumin
m

um��u

� �
if um � �u < 0;

1 if um � �u ¼ 0:

8>>><
>>>:

� Cell-centered limiter / ¼ min
m2k

/m.

The MLP technique provides a second-order finite volume scheme which satisfies the Discrete Maximum Principle under
a more restrictive CFL condition than the CFL condition of the first-order scheme.

Remark 4. Although there exists a large literature about piecewise linear limitation, the extension of MUSCL type methods
to piecewise quadratic or even higher degree polynomials in a multi-dimensional context is not yet achieved. An efficient
limitation process is still an under-investigation field of research.

4. The Multi-dimensional Optimal Order Detection method (MOOD)

Classical high-order methods are based on an a priori limitation of the reconstructed values which are plugged into a one
time step generic finite volume scheme to update the mean values (see Fig. 2 top).

Unlike existing methods, the MOOD technique proceeds with an a posteriori limitation. Over each cell, an unlimited poly-
nomial reconstruction is carried out to build a prediction uH

h of the updated solution. Then the a posteriori limitation consists
of reducing the polynomial degree and recomputing the predicted solution uH

h until the DMP property (7) is achieved. To this
end, a prescribed maximum degree dmax is introduced and used to perform an initial polynomial reconstruction on each cell.
Through an iterative decremental procedure, we determine the optimal degree di 6 dmax on each cell Ki such that each up-
dated mean value uH

i fulfills the DMP property (see Fig. 2 bottom).
In the following we focus on the quadratic polynomial case dmax = 2 and first present the local quadratic reconstruction of

[19]. Then the MOOD method is detailed and we prove that the numerical approximations satisfy the DMP property.
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4.1. Quadratic reconstruction

Using the same framework as in Section 3.1, the quadratic polynomial reconstruction is written

~uðxÞ ¼ �uþ G � ðx� cÞ þ 1
2
ðx� cÞtHðx� cÞ � H
� �

ð11Þ

with

H ¼ ðx� cÞtHðx� cÞ
� �

K ; H ¼
H11 H12

H12 H22

� 	
;

where matrix H is an approximation of the Hessian matrix r2u on K. Note that by construction, the mean value of ~u on K is
still equal to �u. A minimization technique is used to compute G and H. To this end, for a cell Kj, let us define the integrals

xfa;bgKj
¼ ðx� c1Þaðy� c2Þb
D E

Kj

� ðx� c1Þaðy� c2Þb
D E

K
:

Algebraic manipulations yield the following expression for ~uðxÞh iKj

~uðxÞh iKj
¼ �uþ G1xf1;0gKj

þ G2xf0;1gKj

� �
þ 1

2
H11xf2;0gKj

þ 2H12xf1;1gKj
þ H22xf0;2gKj

� �
: ð12Þ

This expression is further derived for any cell Kj with j 2 m to form an over-determined linear system of the form AK = B with

A ¼

xf1;0gK1
xf0;1gK1

xf2;0gK1
xf1;1gK1

xf0;2gK1

xf1;0gK2
xf0;1gK2

xf2;0gK2
xf1;1gK2

xf0;2gK2

..

. ..
. ..

. ..
. ..

.

xf1;0gKN
xf0;1gKN

xf2;0gKN
xf1;1gKN

xf0;2gKN

0
BBBBBB@

1
CCCCCCA
; K ¼

G1

G2
1
2 H11

H12
1
2 H22

0
BBBBBB@

1
CCCCCCA
; B ¼

u1 � �u
u2 � �u

..

.

uN � �u

0
BBBB@

1
CCCCA ð13Þ

with N = #m. This system is solved with a QR decomposition of A using Householder transformations, such that Q 2 MN�NðRÞ
is an orthogonal matrix and R 2 MN�5ðRÞ an upper-triangular one. Finally back-substitution of RK = QtB defines ~u (see [19]).

Remark 5. A left preconditioner matrix can be applied to reduce the system sensitivity and improve the reconstruction
quality. For example, in [19], the authors use a diagonal matrix whose coefficients xjj = kcj � ck�2 (j = 1, . . . ,N) correspond to
geometrical weights in order to promote closest informations.

4.2. Description of the MOOD method

We now detail the MOOD technique considering the simple case where an explicit time discretization is employed. More-
over, without loss of generality, we present the method using only one quadrature point (R = 1) and skip the subscript r
denoting uij in place of uij,r. Extension to several quadrature points (R > 1) is straightforward.

Assume that we have un
h ¼

P
i2Eel

un
i 1Ki

an approximation of u at time tn, the goal is to build a relevant unþ1
h ¼

P
i2Eel

unþ1
i 1Ki

at
time tnþ1 ¼ tn þ Dt. To this end, we define the following fundamental notions:

� di is the Cell Polynomial Degree (CellPD) which represents the degree of the polynomial reconstruction on cell Ki.
� dij and dji are the Edge Polynomial Degrees (EdgePD) which correspond to the effective degrees used to respectively build

uij and uji on both sides of edge eij.

Fig. 2. Classical high-order methods idea (top) and MOOD idea (bottom).
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The MOOD method consists of the following iterative procedure:

1. CellPD initialization. Each CellPD is initialized to dmax.
2. EdgePD evaluation. Each EdgePD is set up as a function of the neighboring CellPD (see Table 1).
3. Quadrature points evaluation. Each uij is evaluated with the polynomial reconstruction of degree dij.
4. Mean values update. The updated values uH

h are computed using the finite volume scheme (3).
5. DMP test. The DMP criterion is checked on each cell Ki

min
j2mðiÞ
ðun

i ;u
n
j Þ 6 uH

i 6 max
j2mðiÞ
ðun

i ;u
n
j Þ: ð14Þ

If uH

i does not satisfy (14) the CellPD is decremented, di :¼max(0,di � 1).
6. Stopping criterion. If all cells satisfy the DMP property, the iterative procedure stops with ðq;u1;u2; EÞnþ1

h ¼
ðq;qu1;qu2; EÞHh else go to step 2.

We give in Table 1 three possible strategies of EdgePD calculation. The simplest one named EPD0 consists of setting dij = di

and dji = dj whereas EPD1 chooses the minimal value between di and dj for both dij and dji. At last, the smallest CellPD of all the
direct neighbor cells is taken in the EPD2 strategy.

To conclude the section, there are two important remarks which dramatically reduce the computational cost.

Remark 6. If dij < dmax, there is no need to recompute a polynomial of degree dij, a simple truncation of the initial polynomial
of degree dmax should be performed.

Remark 7. Only cells Ki where CellPD has been decremented and their neighbors in a compact stencil have to be updated.
Consequently only these cells have to be checked during next iterations of the MOOD procedure in the current time step. For
instance the compact stencil for EPD0 and EPD1 is m(i) while for EPD2 it is {m(i) [ {m(j), j 2 m(i)}}.

4.3. Convergence of the MOOD method

We first recall the classical stability result (see [6] and references herein).

Proposition 8. Let us consider the generic first-order finite volume scheme (2) with reflective boundary conditions. If the
numerical flux is consistent and monotone, then the DMP property given by Definition 2 is satisfied.

It implies that if uij = ui and uji = uj for all j 2 m(i) then relation (7) holds. To prove that the iterative MOOD method provides
a solution which satisfies the DMP, we introduce the following definition.

Definition 9. An EPD strategy is said upper-limiting (with respect to the CellPD) if for any Ki

di ¼ �d ) dij 6
�d and dji 6

�d; 8j 2 mðiÞ: ð15Þ

We then have the following theorem.

Theorem 10. Let us consider the generic high-order finite volume scheme with reflective boundary conditions and assume that the
numerical flux is consistent and monotone. If the EPD strategy is upper-limiting then the MOOD method provides an updated
solution unþ1

h which satisfies the DMP property after a finite number of iterations.

Table 1
Evaluation of the EdgePD dij using the CellPD of the two neighbor elements. Analytic formula on first line. Examples on the second line where CellPD are
surrounded in red and EdgePD for internal edges are in black. Missing cells are assumed to have CellPD equal to 2.

EPD0 strategy EPD1 strategy EPD2 strategy

EdgePD dij di min(di,dj) minj2m(i)(di,dj)
Example
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Proof. Let di be the CellPD of cell Ki. If di = 0, then Eq. (15) implies that dij = dji = 0, hence un
ij ¼ un

i and un
ji ¼ un

j , for all j 2 m(i). We
recover the first-order scheme (2) and Proposition 8 yields that unþ1

i satisfies the DMP property (7). Otherwise, if di > 0 then
two situations arise. Either the Maximum Principle is satisfied and we do not modify di or we decrement di. Consequently if
the maximum principle is not satisfied for all cells, then there is at least one cell having its CellPD positive which has to be
decremented. Since we cannot decrement more than dmax �#ðEelÞ times, the iterative procedure stops after a finite number
of iterations and the solution satisfies the DMP property. h

Remark 11. Note that EPD1 and EPD2 are upper-limiting strategies whereas EPD0 strategy does not satisfy condition (15).
Thus EPD0 cannot be used since MOOD iterative procedure may loop endlessly.

Remark 12. To carry out a third-order Runge–Kutta time discretization (6) which provides a solution satisfying the DMP
property, one has to perform the MOOD technique for each explicit sub-step since (6d) can be written as a convex
combination.

5. Extension to the Euler equations

In this section, we propose an extension of the MOOD method to the Euler equations

@t

q
qu1

qu2

E

0
BBB@

1
CCCAþ @x1

qu1

qu2
1 þ p

qu1u2

u1ðEþ pÞ

0
BBB@

1
CCCAþ @x2

qu2

qu1u2

qu2
2 þ p

u2ðEþ pÞ

0
BBB@

1
CCCA ¼ 0; ð16Þ

where q, V = (u1,u2) and p are the density, velocity and pressure, respectively, while the total energy per unit volume E is
given by

E ¼ q
1
2

V2 þ e

 �

; V2 ¼ u2
1 þ u2

2;

where e is the specific internal energy. For an ideal gas, this system is closed by the equation of state

e ¼ p
qðc� 1Þ

with c the ratio of specific heats.
Despite that the physical variables do not have to respect the maximum principle, classical methods such as the MUSCL

technique use a limiting procedure derived from the scalar case to keep the numerical solution from producing spurious
oscillations. A popular choice consists of reconstructing and limiting the density, the velocity components and the pressure
variables but other limitations can be carried out: the internal energy, the specific volume or the characteristic variables for
instance.

Although applying the MOOD technique to each variable independently gives physically admissible solutions, an exces-
sive diffusion is noticed. We thus propose a strategy to both have an accurate approximation where the solution is smooth
and prevent the oscillations from appearing close to the discontinuities. In the following we consider q, u1, u2 and p as the
variables to be reconstructed.

First we have to provide physically relevant reconstructed values at quadrature points, and since no limitation is used in
the MOOD method, negative reconstructed values for pressure or density must be avoided (it would be the same for energy
or specific volume). In that case, first-order values are substituted to the unphysical reconstructed values, for instance if the
reconstructed value qij is negative on cell Ki, we replace it with the mean value qi.

We now describe how we choose to use the two fundamental notions of the MOOD method (CellPD and EdgePD)
in the Euler equations framework. Instead of using one CellPD per cell and per variable, we choose to define only one
CellPD per cell and to use it for all variables. Consequently only one EdgePD is defined per side of an edge and used for all
variables.

As in the scalar case, we first build the local polynomial reconstruction of maximal degree dmax for each variable. Then we
apply the MOOD algorithm of Section 4.2 where we substitute steps 5 and 6 with the following stages:
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5. Density DMP test. The DMP criterion is checked on the density

min
j2mðiÞ
ðqn

i ;q
n
j Þ 6 qH

i 6 max
j2mðiÞ
ðqn

i ;q
n
j Þ: ð17Þ

If qH

i does not satisfy (17) the CellPD is decremented, di :¼max(0,di � 1).
6. Pressure positivity test. The pressure positivity is checked and if pH

i 6 0 and di has not been altered by step 5 then the
CellPD is decremented, di :¼max(0,di � 1).

7. Stopping criterion. If, for all i 2 Eel, di has not been altered by steps 5 and 6 then the iterative procedure stops and
returns unþ1

h ¼ uH

h else go to step 2.

Next section is dedicated to numerical experiments to assess the computational efficiency of the MOOD method.

6. Numerical results — the scalar case

Let X be the unit square [0,1] � [0,1]. We first consider the linear advection problem of a scalar quantity u with velocity
V(x):

@tuþr:ðVuÞ ¼ 0; ð18aÞ
uð:;0Þ ¼ u0; ð18bÞ

where V(x) is a given continuous function on X and u0 is the initial function we shall characterize in the following. In this
section periodic boundary conditions are prescribed on oX.

Comparisons are drawn between the simple first-order finite volume method (denoted FV with an abuse of terminology),
the MUSCL method proposed in [21] (MLP) and the MOOD method with dmax = 1 (MOOD-P1) and dmax = 2 (MOOD-P2).

We use the following monotone upwind numerical flux (see Eq. (2))

Fðun
i ;u

n
j ;nijÞ ¼ ½VðxÞ � nij�þun

i þ ½VðxÞ � nij��un
j ;

where the velocity is evaluated at the quadrature point x and the positive and negative parts are respectively defined by

½a�þ ¼maxð0;aÞ and ½a�� ¼minð0;aÞ:

Notice that we use mðiÞ as the reconstruction stencil. Lastly two Gauss points are used on each edge to provide a third-order
accurate spatial integration while time integration is performed with a forward Euler scheme for the FV method and with the
RK3-TVD method given by system (6) for the MLP and MOOD methods.

Following Remark 12, we simply apply the MOOD procedure detailed in Section 4.2 to each sub-step of the RK3-TVD. The
CellPD are thus reinitialized to dmax at the beginning of each time sub-step.

6.1. Test descriptions

The method accuracy is measured using L1 and L1 errors which are computed with

err1 ¼
X
i2Eel

juN
i � u0

i jjKij and err1 ¼max
i2Eel

juN
i � u0

i j;

where ðu0
i Þi and ðuN

i Þi are respectively the cell mean values at initial time t = 0 and final time t = tf = NDt.
Two classical numerical experiments are carried out to demonstrate the ability of the method to provide effective third-

order accuracy and to handle discontinuities with a very low numerical diffusion.
Double Sine Translation (DST): We consider a constant velocity V = (2,1) and the initial condition is the C1 function

u0ðx1; x2Þ ¼ sinð2px1Þ sinð2px2Þ:

The final time is tf = 2.0. Since we use periodic boundary conditions, the final time corresponds to a full revolution such that
the exact solution coincides with the initial one.

Solid Body Rotation (SBR): First introduced by Leveque [17], this solid body rotation test uses three shapes which are a
hump, a cone and a slotted cylinder. Each shape is located within a circle of radius r0 = 0.15 and centered at ðx0

1; y
0
2Þ.

Hump centered at ðx0
1; x

0
2Þ ¼ ð0:25;0:5Þ

u0ðx1; x2Þ ¼
1
4
ð1þ cosðpminðrðx1; x2Þ;1ÞÞÞ:

Cone centered at ðx0
1; x

0
2Þ ¼ ð0:5;0:25Þ

u0ðx1; x2Þ ¼ 1� rðx1; x2Þ:
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Slotted cylinder centered at ðx0
1; x

0
2Þ ¼ ð0:5;0:75Þ

u0ðx1; x2Þ ¼
1 if jx1 � 0:5j < 0:25; or x2 > 0:85;
0 elsewhere;

�

where rðx1; x2Þ ¼ 1
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x0

1Þ
2 þ ðx2 � x0

2Þ
2

q
. To perform the rotation, we use the velocity V(x) = (�x2 + 0.5,x1 � 0.5) and the

final time tf = 2p corresponds to one full rotation.

6.2. Numerical results

6.2.1. Comparison between EPD1 and EPD2 strategies
We consider the DST test case on uniform meshes from 20 � 20 to 160 � 160 cells and compare the L1 and L1 errors and

convergence rates displayed in Table 2 using EPD1 and EPD2 strategies with the MOOD-P2 method. We obtain an almost
effective third-order convergence in L1 norm and a 1.6 convergence rate in L1 norm for the two strategies. We observe in
this case that the L1 and L1 errors for EPD1 are slightly less important than for EPD2 and the convergence orders seem to
indicate that the EPD1 strategy should be privileged. Moreover, from a practical point of view, the EPD1 implementation
is performed with a more compact stencil than the EPD2 (see Remark 7). In the sequel, only EPD1 strategy is used.

6.2.2. Comparison between FV, MLP, MOOD-P1 and MOOD-P2 with EPD1 strategy on uniform meshes
Double Sine Translation. We report in Tables 3–5 the L1 and L1 errors and convergence rates for FV, MLP, MOOD-P1,

MOOD-P2, unlimited P1 and P2 reconstruction methods, respectively. At last, we plot in Fig. 3 the convergence curves for
the four methods as well as the convergence curves for the unlimited versions.

The high-order finite volume methods with the two Gauss points and the RK3 time scheme reach the optimal conver-
gence rate for the unlimited P1 and P2 reconstructions hence the limiting procedure has to be blamed for the accuracy
discrepancy.

Fig. 3 shows that the optimal convergence rate in L1 error for P1, MOOD-P1 and MLP methods is achieved since the curves
fit very well. On the other hand, the P2 and MOOD-P2 curves are very close and parallel which confirms that MOOD-P2 is an
effective third-order method for the L1 norm. For the L1 norm, none of the limited methods is over the effective second-order
while the unlimited P1 and P2 provide an effective second- and third-order, respectively. Indeed the strict maximum

Table 2
L1 and L1 errors and convergence rates for DST problem with the MOOD-P2 method: EPD1 strategy (left) and EPD2 strategy (right).

Nb of cells EPD1 EPD2

err1 err1 err1 err1

20 � 20 9.469E�02 — 3.960E�01 — 1.104E�01 — 4.506E�01 —
40 � 40 1.113E�02 3.09 1.333E�01 1.57 1.382E�02 3.00 1.566E�01 1.52
80 � 80 1.768E�03 2.65 4.164E�02 1.68 2.309E�03 2.58 5.196E�02 1.59
160 � 160 2.481E�04 2.83 1.304E�02 1.68 3.262E�04 2.82 1.698E�02 1.61

Table 3
L1 and L1 errors and convergence rates for the DST on uniform meshes with FV and MLP methods.

Nb of cells FV MLP

err1 err1 err1 err1

20 � 20 3.924E�01 — 9.371E�01 — 1.417E�01 — 3.765E�01 —
40 � 40 3.480E�01 0.17 8.375E�01 0.16 3.038E�02 2.22 1.121E�01 1.75
80 � 80 2.663E�01 0.39 6.241E�01 0.42 6.904E�03 2.14 3.534E�02 1.67
160 � 160 1.734E�01 0.62 3.964E�01 0.65 1.693E�03 2.03 1.167E�02 1.60

Table 4
L1 and L1 errors and convergence rates for the DST on uniform meshes with MOOD-P1 and MOOD-P2 methods.

Nb of cells MOOD-P1 MOOD-P2

err1 err1 err1 err1

20 � 20 1.502E�01 — 4.876E�01 — 9.469E�02 — 3.960E�01 —
40 � 40 3.141E�02 2.26 1.629E�01 1.58 1.113E�02 3.09 1.333E�01 1.57
80 � 80 7.438E�03 2.08 5.188E�02 1.65 1.768E�03 2.65 4.164E�02 1.68
160 � 160 1.787E�03 2.06 1.675E�02 1.63 2.481E�04 2.83 1.304E�02 1.68
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principle application at extrema is responsible for the L1 error discrepancy and we can expect nothing more than a second-
order scheme in L1 norm, whatever the polynomial degree is when the DMP condition is enforced.

Solid Body Rotation. We employ a 140 � 140 uniform mesh of square elements in order to compare our results with
100 � 100 � 2 triangular mesh in Ref. [21]. We display in the left panels of Fig. 4 three-dimensional elevations while top
views of ten uniformly distributed isolines from 0 to 1 are printed in the right panels. We can measure the scheme accuracy
by counting the number of isolines outside of the slot since the exact solution isolines would fit the slot shape. The smaller
number of isolines outside of the slot is, the more accurate the scheme is. With the MLP reconstruction, we observe three
isolines outside while we have only two with the MOOD-P1. At last, the outstanding result is that we have just one isoline
outside of the slot with the MOOD-P2 method which proves the great ability of the technique to handle and preserve
discontinuities.

6.2.3. Comparison between FV, MLP, MOOD-P1 and MOOD-P2 with EPD1 strategy on non-uniform meshes
Approximation accuracy is reduced when one employs meshes with large deformations, i.e. the elements are no longer

rectangular but quadrilateral with large aspect ratios. The present subsection investigates the MOOD method sensitivity
to mesh distortion.

To obtain the distorted mesh for the DST, we proceed in two stages. First the following transformation is applied to an
uniform mesh

x1 !
x1ð10x2

1 þ 5x1 þ 1Þ; if x1 6 0:5;

ðx1 � 1Þð10ðx1 � 1Þ2 þ 5ðx1 � 1ÞÞ þ 1; elsewhere

(

and we operate in the same way with variable x2.
Then we apply a second transformation

x1 ! x1 þ 0:1jx1 � 0:5j cosð6pðx2 � 0:5ÞÞ sinð4pðx1 � 0:5ÞÞ;
x2 ! x2 þ 0:1jx2 � 0:5j cosð4pðx1 � 0:5ÞÞ sinð6pðx2 � 0:5ÞÞ:

As an example two non-uniform meshes are given in Fig. 5. Notice that the shape of domain X is preserved by the
transformation.

Double Sine Translation. We report in Tables 6–8 the L1 and L1 errors and convergence rates for FV, MLP, MOOD-P1,
MOOD-P2, unlimited P1 and P2 reconstruction methods, respectively. At last, we plot in Fig. 6 the convergence curves for
the four methods as well as the convergence curves for the unlimited versions.

Table 5
L1 and L1 errors and convergence orders for the DST on uniform meshes with P1 and P2 methods.

Nb of cells P1 P2

err1 err1 err1 err1

20 � 20 1.334E�01 — 3.227E�01 — 7.130E�02 — 1.729E�01 —
40 � 40 2.896E�02 2.20 6.593E�02 2.29 9.877E�03 2.85 2.427E�02 2.83
80 � 80 6.604E�03 2.13 1.408E�02 2.23 1.255E�03 2.98 3.091E�03 2.97
160 � 160 1.603E�03 2.04 3.310E�03 2.09 1.573E�04 3.00 3.876E�04 3.00
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Fig. 3. Convergence curves of err1(left) and err1(right) for the DST on uniform meshes.
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We first observe in Table 8 an accuracy discrepancy with the unlimited reconstructions since the L1 errors are roughly 10
times larger for the distorted mesh than for the uniform one given in Table 5. Nevertheless, we obtain good effective rates of

Fig. 4. Results of SBR on a 140 � 140 uniform mesh. Isolines are from 0 to 1 by 0.1. Top: MLP method — Middle: MOOD-P1 method — Bottom: MOOD-P2
method.
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convergence both in L1 and L1 norm for the P1 and P2 reconstructions. Optimal second-order scheme is achieved for the P1
method and convergence rate is around 2.9 for the P2 reconstruction.

For the L1 norm, P1, MOOD-P1 and MLP convergence curves fit well hence we get the optimal accuracy with the three
methods. In the same way, the P2 and MOOD-P2 are also superimposed which means that MOOD-P2 is optimal with respect
to the unlimited case. For the L1 norm, MLP method convergence rate is around 1.6 whereas the MOOD-P1, MOOD-P2 and P1
provide a 1.9 convergence rate. Notice that the MOOD-P2 produces more accurate results but does not reach the third-order
convergence since it has to respect a strict DMP property. Finally, Table 9 shows that the extrema are better approximated
with respect to the exact solution with the MOOD methods than the MLP method, in particular when coarse meshes are
employed.

Fig. 5. The 40 � 40 and 80 � 80 non-uniform meshes for the DST.

Table 6
L1 and L1 errors and convergence rates for the DST on non-uniform meshes with FV and MLP methods.

Nb of cells FV MLP

err1 err1 err1 err1

20 � 20 4.053E�01 — 9.032E�01 — 3.907E�01 — 8.752E�01 —
40 � 40 4.038E�01 0.01 9.822E�01 �0.12 1.893E�01 1.05 5.306E�01 0.72
80 � 80 3.834E�01 0.07 9.486E�01 0.05 4.370E�02 2.11 1.806E�01 1.55
160 � 160 3.144E�01 0.29 7.825E�01 0.28 9.846E�03 2.15 5.889E�02 1.62

Table 7
L1 and L1 errors and convergence rates for the DST on non-uniform meshes with MOOD-P1 and MOOD-P2 methods.

Nb of cells MOOD-P1 MOOD-P2

err1 err1 err1 err1

20 � 20 3.770E�01 — 8.557E�01 — 3.408E�01 — 7.897E�01 —
40 � 40 1.599E�01 1.24 4.541E�01 0.91 8.992E�02 1.92 3.222E�01 1.29
80 � 80 3.892E�02 2.04 1.314E�01 1.79 1.375E�02 2.71 9.199E�02 1.81
160 � 160 9.170E�03 2.09 3.374E�02 1.96 1.922E�03 2.84 2.483E�02 1.89

Table 8
L1 and L1 errors and convergence rates for the DST on non-uniform meshes with P1 and P2 methods.

Nb of cells P1 P2

err1 err1 err1 err1

20 � 20 3.658E�01 — 8.312E�01 — FAIL — FAIL —
40 � 40 1.534E�01 1.25 3.793E�01 1.13 8.328E�02 — 2.135E�01 —
80 � 80 3.856E�02 1.99 9.760E�02 1.96 1.403E�02 2.57 3.582E�02 2.58
160 � 160 9.052E�03 2.09 2.643E�02 1.88 1.920E�03 2.87 4.917E�03 2.86
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Solid Body Rotation. The mesh deformation presented above is not as relevant for the SBR as for the DST since the solid
bodies rotate and do not go through the boundaries. A slight modification of the first step has been done

x1 !
x1ð5x2

1 þ 2:5x1 þ 1Þ; if x1 6 0:5;

ðx1 � 1Þð5ðx1 � 1Þ2 þ 2:5ðx1 � 1ÞÞ þ 1; elsewhere

(

and we operate in the same way with variable x2.
The 140 � 140 non-uniform mesh is visible on the isolines top views. We display in the left panels of Fig. 7 three-dimen-

sional elevations while top views of 10 uniformly distributed isolines from 0 to 1 are in the right panels.
As in the smooth case, MOOD methods perform better than MLP on the distorted mesh. Although they are both second-

order methods, we notice that MOOD-P1 gives a clearly better solution than the one computed with MLP, even on the
smooth profiles. Moreover the MOOD-P2 result supports the usefulness of using a third-order method since an important
gain in symmetry of the solution is obtained.

7. Numerical results — the Euler case

We now turn to the Euler Eq. (16) to test the MOOD method. Efficiency, accuracy and stability of the method are inves-
tigated on classical tests. In the present article, we use the HLL numerical flux detailed in [26]. Once again comparisons are
drawn with the MLP technique proposed in [21]. We apply the MOOD method using the detection strategy presented in Sec-
tion 5 to each sub-step of the RK3-TVD time discretization.

First the classical 1D Sod shock tube is used to test the ability of MOOD in reproducing simple waves. This test is first run
on an uniform mesh and then on a non-uniform one to estimate the gain obtained when using MOOD method. Then we pro-
ceed with a 2D Riemann problem proposed by [25] (see also [18]). We conclude the series of tests with two classical refer-
ences, the Mach 3 wind tunnel with a step problem [21,29] and the double Mach problem [21,29]. These two tests are run
with MLP, MOOD-P1 and MOOD-P2 on uniform meshes for comparison purposes with classical results from literature.

7.1. Sod shock tube

The one dimensional Sod problem is used as a sanity check for the MOOD method. The computational domain is the rect-
angular domain X = [0,1] � [0,0.2]. The exact solution is invariant in x2-direction. The interface between the left state
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Fig. 6. Convergence curves of err1(left) and err1(right) for the DST on non-uniform meshes.

Table 9
Min and Max for DST on non-uniform meshes with MLP, MOOD-P1 and MOOD-P2.

Nb of cells MLP MOOD-P1 MOOD-P2

Min Max Min Max Min Max

20 � 20 �3.740E�02 3.479E�02 �7.168E�02 7.566E�02 �1.376E�01 1.516E�01
40 � 40 �4.634E�01 4.645E�01 �5.445E�01 5.458E�01 �6.738E�01 6.792E�01
80 � 80 �8.179E�01 8.204E�01 �8.747E�01 8.743E�01 �9.098E�01 9.079E�01
160 � 160 �9.433E�01 9.431E�01 �9.655E�01 9.668E�01 �9.752E�01 9.748E�01
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(q,u1,u2,p) = (1,0,0,1) and the right one (0.125,0,0,0.1) is located at x1 = 0.5. Reflective boundary conditions are prescribed.
The final time is tf = 0.2.

Fig. 7. Results of SBR on a 140 � 140 non-uniform mesh. Isolines are from 0 to 1 by 0.1. Top: MLP method — Middle: MOOD-P1 method — Bottom: MOOD-
P2 method.
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Uniform mesh. The computational domain is uniformly meshed by 100 cells in the x1 direction and 10 cells in the x2 direc-
tion. We plot the density and the x1-velocity at the final time with the exact solution using the MLP, MOOD-P1 and MOOD-P2
methods in Fig. 8. The curves show a very good agreement between the three methods. The plateau between the contact and
the shock is wavy with the MLP method while MOOD produces better constant states. However we observe an undershoot
(resp. overshoot) at the tail of the rarefaction with MOOD-P2 for the density (resp. velocity).

Non-uniform mesh. The same simulation is performed on the non-uniform mesh plotted in Fig. 9. The density and the x1-
velocity solutions at the final time using the MLP, MOOD-P1 and MOOD-P2 methods are also printed in Fig. 9. All cell values
are represented so that the preservation of the 1D symmetry in the x2 direction can be evaluated by the thickness of the
points cloud. Clearly the MLP method provides the largest dispersion whereas the MOOD-P2 method manages to better pre-
serve the x2 invariance. Such a test case suggests that the MOOD method is less sensitive to mesh deformation. As in the
uniform case an undershoot at the tail of the rarefaction wave appears for MOOD-P2 method but the solution is genuinely
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Fig. 8. Sod shock tube problem: density and x1-velocity solutions on 100 � 10 uniform mesh for (a and b): MLP — (c and d): MOOD-P1 — (e and f): MOOD-
P2.
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improved by comparison with MLP. The MOOD-P1 is an intermediate case where the dispersion is reduced in comparison
with the MLP method but where the MOOD-P2 accuracy is not reached.

0.0

0.2

1.0

0 0.2 0.4 0.6 0.8 1 00.20.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 00.20
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

(a) (b)

0 0.2 0.4 0.6 0.8 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 00.20
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

(c) (d)

0 0.2 0.4 0.6 0.8 1 00.20.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 00.20
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

(e) (f )
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7.2. Four states Riemann problem

We now deal with one of the four states Riemann problem which corresponds to a truly 2D Riemann problem. The com-
putational domain X = [0,1] � [0,1] is first uniformly meshed by a 100 � 100 and then by a 400 � 400 quadrangles grid. The
four sub-domains correspond to four identical squares separated by the lines x1 = 0.5 and x2 = 0.5. Initial conditions on each
sub-domains are

� for the lower-left domain Xll, (q,u1,u2,p) = (0.029,0.138,1.206,1.206),
� for the lower-right domain Xlr, (0.3,0.5323,0,1.206),
� for the upper-right domain Xur, (1.5,1.5,0,0),
� for the upper-left domain Xul, (0.3,0.5323,1.206,0).

Each sub-domain is filled with a perfect gas of constant c = 1.4. Outflow boundary conditions are prescribed and the com-
putation is carried out till the final time tf = 0.3. Density at the final time is presented for the three methods in Fig. 10. For
each method on the left side one displays a three-dimensional elevation on the 100 � 100 mesh while in the right panels 30
isolines are plotted between the minimal density, qm, and maximal one, qM of each method on the 400 � 400 mesh. The 3D
views clearly show that some artificial oscillations on the plateau are generated by the MLP method whereas the MOOD
method better preserves the constant states. On the isoline view, we observe that the MOOD-P2 method gives thinner shocks
and a finer resolved central peak at x1 = x2 = 0.35. As expected, this suggests that the MOOD-P2 method is more accurate.
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Fig. 11. Mach 3 problem — density solutions with 30 isolines between qm and qM on a 120 � 40 uniform mesh. Top: MLP method qm = 0.5437, qM = 6.75 —
Middle: MOOD-P1 method qm = 0.5589, qM = 6.58 — Bottom: MOOD-P2 method qm = 0.5358, qM = 6.047.
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7.3. Mach 3 wind tunnel with a step

The test was initially proposed in [29]. A uniform Mach 3 flow enters in a tunnel which contains a 0.2 unit length step
leading to a flow with complex structures of interacting shocks. The wind tunnel is 1 length unit wide and 3 length units
long and the step is located at 0.6 length unit from the left-hand side of the domain. At the initial time we consider a perfect
gas (c = 1.4) with constant density q0 = 1.4, uniform pressure p0 = 1.0 and constant velocity V0 = (3,0). Reflective boundary
conditions are prescribed for the upper and lower sides as well as in front of the step. An inflow condition is set on the left
boundary and an outflow condition on the right one. Numerical simulations are carried out till the final time tf = 4.

We plot a series of figures presenting 30 density isolines for two different uniform meshes on which the three methods
are tested. We first consider the situation with coarse mesh using 120 � 40 cells. Fig. 11 represents the density computed
with the MLP, the MOOD-P1 and MOOD-P2 methods, respectively on top, middle and bottom panels. It is noticeable that
the MOOD method results are the most accurate. The shocks are less diffused and we can already observe the contact dis-
continuity formation of the upper slip line. With the MLP method, we remark that the formation of a triple point at x1 = 1.25
above the step (at a distance of about 0.1) while the junction point should be exactly on the step interface. With the MOOD-
P2 method, the triple point is closer to the interface (half the distance with respect to the MLP case).

We plot the density obtained with a finer uniform mesh of 480 � 160 cells in Fig. 12. The mesh refinement implies more
accurate solutions for any method. Nevertheless MOOD methods still provide the best numerical approximations. However
the method does not reveal the Kelvin–Helmholtz instabilities as in [8] as the strict DMP on the density reduces the scheme
accuracy along the slip line and consequently increases the numerical dissipation.
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Fig. 12. Mach 3 problem — density solutions with 30 isolines between qm and qM on 480 � 160 mesh. Top: MLP method qm = 0.176, qM = 6.802 — Middle:
MOOD-P1 method qm = 0.150, qM = 6.483 — Bottom: MOOD-P2 method qm = 0.123, qM = 6.257.
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7.4. Double Mach reflection of a strong shock

The last problem is the double mach reflection of a strong shock proposed in [29]. This test problem involves a Mach 10
shock which initially makes a 60� angle with a reflecting wall. The air ahead of the shock is at rest and has uniform initial
density q0 = 1.4 and pressure p0 = 1. A perfect gas with c = 1.4 is considered. The reflecting wall lies along the bottom of the
domain, beginning at x1 = 1/6. The shock makes a 60� angle with the x1 axis and extends to the top of the domain at x2 = 1.
The short region from x1 = 0 to x1 = 1/6 along the bottom boundary at x2 = 0 is always assigned values for the initial post-
shock flow. We prescribe a reflective condition on the bottom part for x1 > 1/6, inflow boundary condition on the left side
and outflow condition on the right side. At the top boundary, the boundary conditions are set to describe the exact motion
of the Mach 10 flow (see [8]).

First for the three methods, a 30 density isolines top view on the 480 � 120 uniform mesh using Lax–Friedrich’s flux are
plotted in Fig. 13. These results have to be compared to results of Fig. 12 in [9] and Fig. 13 in [13]. Then zoomed top views of
50 isolines — between minimal and maximal values, qm and qM, respectively, taken over the results of the three methods on
a same mesh — of the results obtained with the HLL flux are plotted in Fig. 14 for the 960 � 240 uniform mesh on left and for
the 1920 � 480 one on right.

The first Mach stem M1 is connected to the main triple junction point with the incident shock wave and the reflected
wave. A slip line is generated from the triple junction point behind the incident shock. A secondary Mach stem M2 also ap-
pear and interact with the slip line. As expected, the MOOD-P2 manages to better capture the Mach stem M1 (and M2 when

Fig. 13. Double Mach problem on 480 � 120 — Top: MLP method qm = 1.40, qM = 22.21 — Middle: MOOD-P1 method qm = 1.40, qM = 20.05 — Bottom:
MOOD-P2 method qm = 1.40, qM = 20.10.
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we employ finer meshes) with respect to the two other methods. The slip line corresponds to a contact discontinuity where
the jump of tangential velocity may generate Kelvin Helmholtz instabilities. Usually, the amount of instabilities measures
the numerical diffusion influence [22]: large instabilities derive from small numerical diffusion and the number of plane vor-
texes in the slip line is a qualitative measure of the scheme diffusivity. In our test, even with the finest mesh, no instability is

Fig. 14. Double Mach problem on 960 � 240 (left) and on 1920 � 480 (right) — zoom on the wave interaction zone — Top: MLP method qm = 1.400,
qM = 22.400 on left and qm = 1.400, qM = 22.68 on right— Middle: MOOD-P1 method qm = 1.236, qM = 22.550 on left and qm = 1.216, qM = 22.0 on right —
Bottom: MOOD-P2 method qm = 1.162 qM = 22.800 on left and qm = 1.146, qM = 21.99 on right.
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reported. Indeed, the application of a strict DMP reduces the accuracy of the scheme in the vicinity of the slip line maintain-
ing a too large amount of diffusion. Nevertheless, other choices of detection variables could be investigated to reduce the
numerical diffusion of contact discontinuities.

7.4.1. Computational cost comparison between MLP, MOOD-P1 and MOOD-P2
In this last section, we give in Table 10 the ratios between MOOD methods computational times and MLP ones. For each

test case, computational times are calculated on a given mesh. Numerical experiments show that the ratios are equivalent for
finer or coarser meshes.

We recall that these ratios should only be taken as examples because computational times are strongly dependent of
implementation and compilation and all runs are carried out on a single core. Table 10 shows that the MOOD-P1 method
is slightly more expensive than MLP but gives better results on general meshes. In the scalar case, the difference between
ratios of DST and SBR problem are explained by the fact that more iterations during the MOOD procedure, due to more
DMP violations, are implied by non-smooth profiles. The MOOD-P2 computational cost is competitive (at most around
2.7 times more expensive than MLP on our numerical experiments) in regard to the observed accuracy improvement, see
for instance Figs. 7 or 9.

8. Conclusion and perspectives

This paper presents a high-order polynomial finite volume method named Multi-dimensional Optimal Order Detection
(MOOD) for conservation laws. Contrarily to classical high-order methods MOOD procedure is based on a test of the Discrete
Maximum Principle (DMP) after an evaluation of the solution with unlimited polynomials. If the DMP property is not fulfilled
then the polynomial degree is reduced and the solution is locally re-evaluated. This procedure is repeated up to satisfaction
of the DMP which is always achieved after a finite number of iterations.

There are several important features of MOOD method which have to be compared with classical high-order methods,
namely

� The MOOD method is an a posteriori limiting process, whereas classical limiting strategies perform an a priori limitation.
� The MOOD method computes one and only one high-order polynomial per cell and employs it without any limitation.
� Within the same cell the polynomial degree can be different on each edge.
� The MOOD method ensures the Discrete Maximum Principle (DMP) under the first-order CFL constraint.
� The MOOD method has no restriction to deal with higher polynomial degrees and polygonal meshes.

Two-dimensional numerical results are provided for advection and the Euler equations problems on regular and highly
non-regular quadrangular meshes. They clearly show that MOOD method presents some promising good behaviors. The sec-
ond-order MOOD method is at least equivalent to a second-order multi-dimensional MUSCL method on uniform grids but
produces better results on non-uniform ones. A third-order version of MOOD has been shown to be effective on regular
and non-regular solutions for a small extra computational effort.

This paper is the first one presenting the MOOD concept and extensions are currently under investigations, as instance the
behavior of the MOOD with polynomials of degree greater than two on polygonal meshes.
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a b s t r a c t

This paper extends the MOOD method proposed by the authors in [A high-order finite volume method for
hyperbolic systems: Multi-Dimensional Optimal Order Detection (MOOD). J Comput Phys 2011;230:
4028–50], along two complementary axes: extension to very high-order polynomial reconstruction on
non-conformal unstructured meshes and new detection criteria. The former is a natural extension of
the previous cited work which confirms the good behavior of the MOOD method. The latter is a necessary
brick to overcome limitations of the discrete maximum principle used in the previous work. Numerical
results on advection problems and hydrodynamics Euler equations are presented to show that the MOOD
method is effectively high-order (up to sixth-order), intrinsically positivity-preserving on hydrodynamics
test cases and computationally efficient.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent paper [7], an original high-order method, namely the
Multi-dimensional Optimal Order Detection (MOOD) method, has
been introduced to provide up to third-order approximations to
hyperbolic scalar or vectorial solutions for two-dimensional geom-
etry. The present article deals with new extensions of the method
to general unstructured 2D meshes and to sixth-order convergence
in space. Classical high-order reconstructions such as MUSCL or
ENO/WENO methods are based on an a priori limiting procedure
to achieve stability property. The MOOD method follows a funda-
mentally different way since the limiting procedure (polynomial
degree reduction for instance) is achieved a posteriori and provides
the optimal local polynomial reconstruction which satisfies given
stability criteria.

The quest [41] of the (very) high-order schemes starts in the
early 1970s with the pioneer works of Van-Leer [42] and Kolgan
[22–24]. Since this date, a large literature was dedicated to the

limited reconstruction methods for structured and unstructured
meshes. Several strategies became very popular due to their intrin-
sic simplicity such that the MUSCL method [3,5,6,19,25,31] or their
efficiency to achieve very high-order accuracy such that the ENO/
WENO method [1,20,28,29,35,36,45,17,18,34,48,40], the discontin-
uous Galerkin method [8–11], the ADER method [13,38,39,14,15],
the residual distribution scheme [2,12,32] and the spectral method
[16,43,44].

While second-order methods do not require particular cautions,
dealing with higher-order methods leads to at least three specific
difficulties which, up to our knowledge, are not always clearly
identified. First point one should not consider the mean value of
a function equivalent to the cell centroid value as it is often done
in the MUSCL community. The point is straightforward to over-
come but important to notice for newcomers in the field of high-
er-order numerical schemes. Second point, for vectorial problems
the reconstruction process must be done on mean values of the
conservative variables and not on non-linear combinations of
them. This point is often implied in the classical ENO/WENO papers
but is rarely clearly stated and this may mislead newcomers in the
high-order community because the order of accuracy discrepancy
can be missed depending on the numerical tests used. Contrarily

0045-7930/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2012.05.004

⇑ Corresponding author.
E-mail addresses: steven.diot@math.univ-toulouse.fr (S. Diot), clain@math.

uminho.pt (S. Clain), raphael.loubere@math.univ-toulouse.fr (R. Loubère).

Computers & Fluids 64 (2012) 43–63

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid

one proposes the isentropic vortex in motion test case to numeri-
cally prove that if the primitive variables are used for the recon-
struction process then very high-order of accuracy cannot be
reached. Third point the Discrete Maximum Principle property on
mean values should not be used anymore as a guide line for limi-
tation. We propose in this paper to overcome this difficulty by a
new limiting criteria (or Detection Criteria in the MOOD jargon)
adapted to provide a full high-order method still maintaining ro-
bust stability. Simple examples are introduced within the text
when some difficulties related to these points are to be expected.

The basic idea of the MOOD method consists of determining the
higher polynomial degree of each local cell still satisfying some
stability restrictions. To this end, an iterative process is developed.
We perform a local polynomial reconstruction of degree di for each
cell Ki at the current time tn and compute a candidate solution at
time tn+1 without any limiting features. Then a detecting procedure
is carried out to check the cells which do not respect the stability
criteria and we reduce the local polynomial degree to obtain a bet-
ter stability. We state that the method is a posteriori since the lim-
iting procedure (namely the polynomial degree reduction) is
performed after the candidate solution computation. Such a situa-
tion is very useful to test the admissibility of the solution. Further-
more, one has to carry out the limiting algorithm if, and only if, it is
necessary while the traditional a priori method performs unneces-
sary limitation.

In this paper we propose extensions of the MOOD method
which take into account the three difficulties mentioned above.
More precisely different detection processes both for the advection
and hydrodynamics equations are developed. We numerically
prove that these detection processes provide the effective higher-
order of accuracy on smooth profiles (up to sixth-order). Moreover
we show that for the hydrodynamics equations the method is pos-
itivity-preserving by construction and we numerically observe this
behavior. The test case have been carried out on non-regular,
polygonal and non-conformal meshes and the last test case of
the paper show the ability of the MOOD method to simulate com-
plex physics from an experimental set-up of the impact of a shock
wave on a cylindrical cavity.

The paper is organized as follows. Section 2 is dedicated to the
generic framework used to describe the MOOD method where the
high-order finite volume scheme is presented. Several obstacles to
achieve high-order reconstruction are pointed out and the polyno-
mial reconstruction based on the mean value approximation is
detailed. In Section 3, we introduce new criteria to obtain very
high-order accurate schemes still preserving local stability. To
show the MOOD method efficiency, numerical tests both for the
scalar and the vectorial case are carried out in Section 4. We mainly
focus on the method accuracy and its robustness. We draw some
remarks and future developments in the last section.

2. The MOOD method

2.1. General concept

The MOOD method is a generic procedure that solves multi-
dimensional hyperbolic system of equations on an unstructured
grid in the Eulerian framework. Given different numerical finite
volume schemes the MOOD method provides an optimal choice
for each computational cell by mitigating accuracy vs robustness.
From an abstract point of view the MOOD algorithm involves
two main ingredients: An ordered list of numerical schemes and
a set of constraints with detection criteria which defines the desir-
able properties the numerical solution should have.

The over-topping numerical scheme represents the best scheme
one would like to employ. Usually this scheme is the most accurate

but less robust one. At the very end of the list lays the least accu-
rate but more robust scheme which is assumed to be satisfactory in
all possible situations due to the stabilization effect generated by
its intrinsic numerical dissipation. In this paper the list is com-
posed of a robust first-order scheme (an upwind or a Rusanov,
HLL, HLLC scheme as instance) while several second or higher-
order schemes using polynomial reconstructions compose an or-
dered list of desirable schemes (see Fig. 1 for instance). The second
ingredient is the detecting procedure of a set of constraints which
determine the local eligibility of the solution for each cell.

We recall that discontinuous solutions may not be handled with
high-order reconstructions since local spurious and unphysical
oscillations may take place. The low-order numerical scheme
should be used to prevent the numerical approximations from
oscillating and force to respect some constraints or mathematical
properties that depend on equations under consideration. The
numerical solution is considered as eligible if it fulfills given prop-
erties. As instance the positivity of certain variables such as density
or pressure in hydrodynamics equations or the Discrete Maximum
Principle for advection equation shall be considered.

In this paper the kth numerical scheme of the list is a finite vol-
ume scheme using unlimited piecewise polynomial reconstruction
of degree k. Ultimately this scheme has a k + 1th-order of accuracy
for smooth solutions. Consequently the LO scheme is the generic
firs-order finite volume scheme and the HO-1 scheme corresponds
to an unlimited MUSCL method.

The core of the MOOD method is a loop over the cells to deter-
mine the optimal polynomial degree one can safely use to produce
an eligible numerical solution. It amounts to select a numerical
method in the ordered list of Fig. 1.

To this end, given a generic cell Ki and its neighbor cells Kj hav-
ing edge eij in common, we first recall two definitions introduced in
[7] and then give a new one to extend the MOOD concept:

� di is the Cell Polynomial Degree (CellPD) which represents the
degree of the polynomial reconstruction on Ki.
� dij = dji = min(di, dj) are the Edge Polynomial Degrees (EdgePD)

corresponding to the degrees of the polynomial reconstructions
used to compute approximations of the solution on edge eij.

Fig. 1. Schematic representation of an ordered list of numerical schemes used in
the MOOD method. The bottom scheme is the most robust but least accurate one
denoted ‘‘Low-Order’’. All over-topping schemes are successively more accurate but
less robust. The MOOD method is designed to choose the more adapted scheme for
each cell of the computational domain.

44 S. Diot et al. / Computers & Fluids 64 (2012) 43–63

� A is a set of prescribed physical and/or stability constraints. If
for each cell Ki the mean values of the numerical solution fulfill
the constraints then the numerical solution is said to be A-
eligible.

The last item concerns the detecting procedure to distinguish if
a candidate solution is eligible according to a set of constraints. In
practice we decrement the di for any cell Ki which does not respect
all the constraints. Such a cell is called problematic. Moreover since
neighbor cells fluxes may be affected by this process, the decre-
menting is spread over the direct neighborhood. Such a polynomial
degree decrementing for a problematic cell is repeated up to a
di > 0 for which the set of constraints is fulfilled or to di = 0. At that
ultimate step the robust and diffusive LO scheme is employed and
its first-order solution is always taken as valid. In other words un-
like traditional high-order schemes (using a priori limiting proce-
dure), we introduce an a posteriori detecting procedure where the
decision to alter the polynomial degree is carried out after comput-
ing the candidate solution.

We finally highlight that such a procedure may be interpreted
as a try and fail algorithm. Such a generic strategy might be adapted
to other classes of method such as the Discontinuous Galerkin
method and detect the best polynomial degree in each cell or Finite
Element method and detect the most appropriate finite element
one can employ in a cell.

2.2. Framework

Let us consider a generic autonomous hyperbolic equation de-
fined on a domain X � R2; t > 0 which casts in the conservative
form

@tU þr � FðUÞ ¼ 0; ð1aÞ
Uð�;0Þ ¼ U0; ð1bÞ

where U = U(x, t) is the vector of unknown functions, x = (x,y) de-
notes a point of X, t is the time, F is the physical flux function
and U0 is the initial condition. Boundary conditions shall be pre-
scribed in the following.

We assume that the computational domain X is a polygonal
bounded set of R2 divided into convex polygonal cells
Ki; i 2 Eel; ci being the cell centroid and Eel the cell index set. For
each boundary edge, Ki \ oX, we introduce a virtual cell Kj with
j R Eel which represents the exterior side of X and denote by Ebd

the index set of all virtual cells. fEel ¼ Eel [ Ebd is the index set of
all cells. This notation avoids a special treatment for boundary
edges in the scheme, and provides a natural notation for ghost cells
should they exist or not.

For each cell Ki, one denotes by eij the common edge between Ki

and Kj, with j 2 mðiÞ � fEel ; mðiÞ being the index set of all the ele-
ments which share an edge with Ki. The extended neighborhood
is represented by the index set �mðiÞ � fEel of all Kj such that Ki \ Kj –
; (see Fig. 2).

Moreover jKij and jeijjmeasure the surface of Ki and the length of
eij respectively while nij is the unit outward normal vector to eij

pointing from Ki to Kj. At last, qr
ij; r ¼ 1; . . . ;R represent the Gaussian

quadrature points employed for numerical integration on edge eij.
The generic first-order explicit finite volume scheme is given by

Unþ1
i ¼ Un

i � Dt
X
j2mðiÞ

jeijj
jKij

F Un
i ;U

n
j ;nij

� �
; ð2Þ

where F Un
i ;U

n
j ;nij

� �
is a numerical flux which satisfies the classical

properties of consistency and monotonicity. To provide higher-or-
der accuracy, we substitute in Eq. (2) the first-order approximation

Un
i and Un

j with better approximations of U at the quadrature points
of edge eij leading to the generic spatial high-order finite volume
scheme

Unþ1
i ¼ Un

i � Dt
X
j2mðiÞ

jeijj
jKij

XR

r¼1

nrF Un
ij;r ;U

n
ji;r;nij

� �
; ð3Þ

where Un
ij;r and Un

ji;r; r ¼ 1; . . . ;R are high-order approximations of U
at quadrature points qr

ij 2 eij; r ¼ 1; . . . ;R on both sides of edge eij

and nr denote the quadrature weights.
For the sake of simplicity, let us write the scheme under the

compact form

Unþ1
h ¼ Un

h þ DtHR Un
h

� �
; ð4Þ

with Un
h ¼

P
i2Eel

Un
i IKi

the constant piecewise approximation of
function U and operator HR being defined as

HR Un
h

� �
:¼ �

X
i2Eel

X
j2mðiÞ

jeijj
jKij

XR

r¼1

nrF Un
ij;r ;U

n
ji;r;nij

� �0@ 1AIKi
: ð5Þ

Finally to provide a high-order method in time, we use the third-or-
der TVD Runge–Kutta method (RK3, see [36]) which corresponds to
a convex combination of three explicit steps

Unþ1
h ¼ Un

h þ 2Uð3Þh

3
with

Uð1Þh ¼ Un
h þ DtHR Un

h

� �
Uð2Þh ¼ Uð1Þh þ DtHR Uð1Þh

� �
Uð3Þh ¼ bU ð2Þh þ DtHR bU ð2Þh

� �
8>>><>>>: ð6Þ

where bU ð2Þh is the convex combination 3Un
h þ Uð2Þh

� �
=4.

2.3. Arbitrary degree polynomial reconstruction

In the introduction we have reminded one classical obstacle to
reach higher-order of accuracy when polynomial reconstruction is
to be used. It is well-known that the mean value Ui of a regular
function U on Ki is approximated by the value of the solution at
the cell centroid, U(ci), with an error of O(h2) where h represents
the characteristic length of the cell. It results that any reconstruc-
tion based on geometrical arguments using U(ci) in place of Ui can
only provide second-order approximation.

Therefore as classical higher-order finite volume methods the
MOOD method is based on polynomial reconstructions from mean
values on cells. Let us consider a generic reconstructed polynomial
of degree d, given mean values U on a generic cell K, under the form

Fig. 2. Mesh notation. Index set m(i) corresponds to blue cells with dots, �mðiÞ
corresponds to non-white cells. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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eUðx; dÞ ¼ U þ
X

16jaj6d

Ra ðx� cÞa � 1
jKj

Z
K
ðx� cÞadx

� �
; ð7Þ

where c is the centroid of K, x a generic point in K and Ra are the
unknowns polynomial coefficients where a ¼ ðax;ayÞ 2 N2 is a mul-
ti-index with jaj = ax + ay. Note that by construction, the mean value
on K of the polynomial function is equal to U since the integral over
K of the term between parenthesis in (7) vanishes. It thus fulfills the
conservation property on K.

There exist several techniques [1,28] to determine the coeffi-
cientsRa. Here, we consider a least square approximation of neigh-
bor mean values Uj where Kj belongs to a compact stencil SðKÞ. It
amounts to minimizing the functional

EðeUÞ ¼ X
j2SðKÞ

xk
1
jKjj

Z
Kj

eU dx� Uj

" #2

; ð8Þ

where xk are positive weights used to provide a better condition
number. In particular, the condition number of the associated linear
system dependents on the spatial characteristic length thus we use
the solution proposed in [28] to overcome this problem.

In practice, we do not directly solve the symmetric linear sys-
tem associated with the minimization problem. Instead we use
the technique from [4,29] where an over-determined linear system
is solved in a least-squares sense with a QR decomposition using
Householder transformations.

The reconstructed polynomial eU is thus exact for any polyno-
mial function of degree lower than d which provides the consis-
tency of the reconstruction method and further the status of a
(d + 1)th-order numerical method.

Remark 1. In 2D, at least NðdÞ ¼ ðdþ 1Þðdþ 2Þ=2� 1 neighbors
are needed to provide the minimal number of equations. However
for the sake of robustness more cells are involved. In details, we
use at least 5 cells for d = 1, 8 cells for d = 2, 16 cells for d = 3, 20
cells for d = 4 and 26 cells for d = 5.

Remark 2. In the introduction we have stated that in the general
case one should not identify the mean value of a non-linear com-
bination with the non-linear combination of mean values. Let q
and / be two regular functions on cell Ki and qi, /i, (q/)i, denote
their respective exact mean values. A Taylor expansion with
respect to the centroid of the cell gives (q/)i = qi/i + O(h2). For
instance let us consider the one-dimensional variables q,/ and
(q/) and their mean values on cell K1 = [0,h]

qðxÞ ¼ 1þ x; /ðxÞ ¼ 1� x; ðq/ÞðxÞ ¼ 1� x2;

q1 ¼ 1þ h
2
; /1 ¼ 1� h

2
; ðq/Þ1 ¼ 1� h2

3
:

We then deduce that j(q/)1 � q1/1j = h2/12 leading to a second-or-
der error. As instance it is well known that for Euler system of equa-
tions the non-linear transformation of the conservative mean values
into primitive ones introduces a second-order error in the general
case.

2.4. Algorithm

Let us assume that we have access to a given sequence
Un

h ¼ Un
i

� �
i2Eel

of mean value approximations at time tn, the goal is

to build an eligible sequence Unþ1
h ¼ Unþ1

i

� �
i2Eel

at time tn+1 = tn +

Dtn in the sense that each approximation Unþ1
i respects a set of

constraints A. We only consider here a forward Euler time step
without loss of generality. The MOOD method algorithm is the
following:

1. Initialization at tn. The MOOD procedure starts by initializing the
CellPD to di = dmax and by computing the coefficients of the poly-
nomial reconstruction eUiðx; diÞ on each cell.

2. Evaluation of EdgePD and values at Gauss points. We compute the
EdgePD dij on each edge and use polynomial function eUiðx; dijÞ
and eUjðx; dijÞ to compute approximations of U at Gaussian
points on eij.

3. Computation of candidate solution UI

h . Numerical fluxes are com-
puted using the reconstructed solution at Gauss points and one
time step is carried out to provide a candidate UI

h at time
tn+1 = tn + Dtn.

4. Check UI

i for A-eligibility. If di – 0 we check the A-eligibility of
each mean value UI

i with respect to the constraints set A. In
the case UI

i is not A-eligible then CellPD di is decremented. If
all cells are A-eligible then the candidate solution is valid and
we set Unþ1

h ¼ UI

h else the solution is recomputed following
steps 2–4.

Remark 3. Only cells Ki where CellPD has been decremented and
their neighbors in the compact stencil m(i) have to be re-updated.
Consequently only these cells will have to be checked for the next
iterations of the MOOD procedure within the current time step.
This dramatically reduces computational cost.

Remark 4. Since polynomial reconstruction is costly in CPU time
and memory, we proposed in [7] to truncate eUið�; dmaxÞ to obtain
lower-order polynomials. However we found that for dmax > 2 this
technique implies nondesirable behavior on discontinuous profiles
as the reconstruction stencil remains large.

Moreover numerical experiments show that a one-by-one
degree decrementing leads to avoidable computational effort since
the decrementing procedure is usually performed around discon-
tinuities. We thus slightly modify the decrementing algorithm by
jumping from d = dmax to d = 2 and then from d = 2 to d = 0 if
needed. This also reduces the computational effort while providing
equivalent results on a wide range of test cases compared to a one-
by-one decrementing.

Remark 5. Polynomial reconstruction on boundary cells are trea-
ted using ghost cells in order to be consistent with the prescribed
boundary conditions.

The major difficulty remains to determine a list of constraints
which both provides a very high accurate solution while avoids
numerical artifacts such as spurious oscillations in the vicinity of
discontinuity. This is the purpose of the next section.

3. Detection process

The list of constraints A corresponds to eligible criteria that the
numerical approximation has to fulfill. To this end, detection pro-
cess is necessary to list where the candidate numerical solution
fails to respect the constraints. Such process must be very carefully
designed to preserve high accuracy for regular solutions whereas
discontinuities should be treated with the lower order scheme to
avoid non-physical oscillations. The first subsection deals with
the advection problem and a new detection process called u2
and based on a smoothness detector. In the second subsection
the Euler system is considered: Two detection processes are pro-
posed and we show the positivity-preserving property of the
MOOD method.

3.1. Advection problem: the u2 detection process

Solutions of autonomous scalar hyperbolic problems satisfy the
Maximum Principle property. Such a property is also valid for
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advection problem with divergence free velocity. Therefore the
Discrete Maximum Principle (DMP) seems to be a good candidate
to detect problematic cells. Unfortunately, as mentioned in the
introduction, the strict DMP applied to mean values reduces the or-
der of accuracy to two (see the appendix for an example), and thus
cannot be used alone. Classical studies show that the accuracy dis-
crepancy only occurs at extrema [33,30,21]. We will then mainly
focus on extrema since the DMP detection process is still relevant
where the solution is locally monotone. We propose the relaxation
of the strict DMP at smooth extrema in order to avoid accuracy dis-
crepancy. This leads to the introduction of an additional procedure
to detect smooth extrema. Notice that in (W)ENO type of methods
the DMP is not strictly enforced which implies that extrema are
well approximated and consequently arbitrary high-order of accu-
racy is achieved. The first detection criteria is the DMP: No polyno-
mial degree decrementing is performed for cells where the DMP is
satisfied. Let us now consider a cell Ki where UI

i does not fulfill the
DMP. Two situations may arise whether we deal with a discontinu-
ity or a smooth extrema. The major difficulty is to give a concrete
definition of the concept of a smooth extrema from a numerical
point of view. Actually a function may be considered irregular for
a coarse mesh but regular with a finer one. We try to overcome this
difficulty by introducing the following definition.

Definition 6. Let Ki be a cell and eUi ¼ eUið:; 2Þ a polynomial
reconstruction of degree 2 for an underlying function U. We define
the second derivatives in x and y directions by X i ¼ @xx

eUi 2 R and
Yi ¼ @yy

eUi 2 R. We will refer to these second derivatives as
‘‘curvatures’’.

For all cell Kj, j 2 m(i), we define the maximal and minimal
curvatures as

Xmin
i ¼min

j2mðiÞ
ðX i;X jÞ and Xmax

i ¼ max
j2mðiÞ
ðX i;X jÞ;

Ymin
i ¼min

j2mðiÞ
ðYi;YjÞ and Ymax

i ¼max
j2mðiÞ
ðY i;YjÞ:

We now introduce the new detection criterion to select smooth
extrema.

Definition 7. A numerical solution UI

i in cell Ki which violates the
DMP is nonetheless eligible if

Xmax
i Xmin

i > 0 and Ymax
i Ymin

i > 0; ð9Þ
jXmin

i j
jXmax

i j
P 1� ei and

jYmin
i j

jYmax
i j

P 1� ei; ð10Þ

where ei is a cell dependent parameter defined by

ei ¼ ðDxiÞ
1

2m; with Dxi ¼ jKij
1
m;

m being the spatial dimension (m = 2 here).

Such a detection criterion is motivated by the following consid-
erations. For a given mesh, the solution is locally considered as
non-oscillating if condition (9) is fulfilled meaning that, at the
numerical level, the ‘‘curvatures’’ of the P2 approximation have
the same sign.

Moreover for a given mesh, the solution is considered locally C2

from a numerical point of view if condition (10) is fulfilled. The
parameter e is a mesh dependent coefficient which prescribes the
tolerance. Such criteria verifies if the ‘‘curvatures’’ are almost iden-
tical in the vicinity of cell Ki with respect to the local characteristic
space length Dxi.

The choice of e derives from numerous tests. In fact our numer-
ical experiments have shown that e scales like a cell dependent
characteristics length to a power depending on the dimension of
space (tests have been carried out in 1D and 2D). It seems to the

authors to be the best compromise to gain a very high-order of
convergence while maintaining reasonable monotonicity. Finally
we remark that at the limit e = 0 we recover the DMP.

The set of constraints A for advection equation is thus consti-
tuted by the DMP relaxed by the smooth extrema detector de-
scribed above. The detection process is called u2 detection in
reference to the second-order derivatives and is summarized in
the sequel.

Being given a sequence UI

h ¼ UI

i

� �
i2Eel

, the u2 detection proce-
dure in the case of the advection problem is given by the following
algorithm.

1. The DMP criterion is first checked on each cell Ki

min
j2�mðiÞ

Un
i ;U

n
j

� �
6 UI

i 6 max
j2�mðiÞ

Un
i ;U

n
j

� �
: ð11Þ

2. If UI

i does not satisfy (11) then.
a. Compute X k;Yk for k 2 m(i)

S
{i} and coefficient ei,

b. Check criteria (9) and (10). If cell i is not a smooth
extrema then di is decremented, else UI

i is eligible.

3.2. Euler system: two detection processes and positivity-preserving

The compressible hydrodynamics Euler system of equations is
the following hyperbolic unsteady non-linear system involving
conservation of mass, momentum and total energy

@t

q
qu

qv
E

0BBB@
1CCCAþ @x

qu
qu2 þ p

quv
uðEþ pÞ

0BBB@
1CCCAþ @y

qv
quv

qv2 þ p

vðEþ pÞ

0BBB@
1CCCA ¼ 0: ð12Þ

The primitive variables are the density q, the velocity U = (u,v) and
the pressure p. The pressure is linked to two thermodynamical vari-
ables such as density and specific internal energy e through an
Equation Of State (EOS) p = p(q,e). As instance the classical ideal
gas law states that p = (c � 1)qe where c is the ratio of specifics
heats. Moreover the total energy E is such that E = q(e + 1/2kUk2).

Even if the DMP property is used in most of limiting procedures
(MUSCL technique as instance), the DMP property does not make
sense in the case of the Euler system, for the density or the total en-
ergy for instance, since the velocity is not divergence free. Conse-
quently we cannot rely only on DMP. We propose here two
detecting procedures which we have been widely experimented
and present in the next sections the pros and cons of such
procedures.

3.2.1. Physical Admissible Detection (PAD)
The first and minimal detection criteria consists of ensuring the

physical meaningfulness of the primitive variables, namely positiv-
ity of density and pressure.

Then the set of constraints A are used to test if the candidate
solution satisfies qI

i > 0 and pI

i > 0. Note that pI

i is not a conser-
vative variable and derives from nonlinear combinations of conser-
vative ones. The PAD algorithm is the following.

1. The Physical Admissibility criterion is first checked on each
cell Ki

qI

i > 0; pI

i > 0: ð13Þ

2. If the PAD criterion is not satisfied then di is decremented, else
U�i is eligible.

The PAD procedure only consists of maintaining the physical
meaningfulness of the numerical approximation. In other words,
the high-order MOOD method coupled with the PAD Detection
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Fig. 3. Example of Delaunay (left) and Voronoi (right) meshes for the DST problem.

Fig. 4. Error curves for the DST problem for series of Delaunay meshes (empty symbols) and of Voronoi meshes (filled symbols) for the DMP detection process (top) and the
u2 one (bottom).
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Process is positivity-preserving for density and pressure. This point
is further discussed in Section 3.2.3.

3.2.2. Extension of the u2 detection process
Physical admissibility of the solution is not enough to prevent

oscillations in the vicinity of discontinuities. It is a precondition
but we require an supplementary detection criterion to decide
whether the numerical solution is locally smooth or not. To this

end, we adapt the u2 criterion to the density variable using local
P2 polynomial reconstruction ~qi ¼ ~qið:; 2Þ to evaluate X i ¼ @xx ~qi

and Yi ¼ @yy ~qi. The u2 detection algorithm for the Euler system is
thus the following.

1. The PAD criterion is first checked on each cell Ki. If it is not sat-
isfied then di is decremented and Steps 2 and 3 are skipped.

2. The DMP criterion of the density function is checked on each
cell Ki

min
j2�mðiÞ

qn
i ;q

n
j

� �
6 qI

i 6max
j2�mðiÞ

qn
i ;q

n
j

� �
: ð14Þ

3. If qI

i does not satisfy (14) then
a. Compute X k;Yk for k 2 m(i)

S
{i} and coefficient ei,

b. Check criteria (9) and (10). If cell i is not a smooth
extrema then di is decremented for any conservative var-
iable, else U�i is eligible.

The set of constraints A consists of the PAD, and the u2 detec-
tion process on the density. Note that the density is thus the vari-
able onto which the detection is performed. However there is a
large number of possible choices of detection variables and decre-
menting procedures.

3.2.3. Positivity-preserving property
One important property a scheme must fulfill is to be positivity-

preserving, that is given a set of physically admissible mean values
the scheme provides another set of physically admissible ones. It is
absolutely mandatory for the simulation to continue. In the case of
the Euler equations density and pressure must be positive but this
is not straightforwardly ensured by most of classical MUSCL or
ENO/WENO schemes and most of simulation codes need a special
treatment when the positivity is violated. Indeed designing a pos-
itivity-preserving scheme may be a difficult task and often leads to
a more complex scheme because of the classical a priori limitation

Table 1
L1 and L1 errors and convergence rate for the DST problem for the MOOD method with DMP and u2 detection process.

Deg./type Cell Nb DMP detec. process u2 detec. process

L1 Error L1 Error L1 Error L1 Error

P2/Delaunay 456 1.775E�01 – 2.629E�01 – 1.656E�01 – 1.549E�01 –
1824 2.303E�02 2.95 8.016E�02 1.71 2.351E�02 2.82 2.283E�02 2.76
7296 3.142E�03 2.87 2.522E�02 1.67 3.049E�03 2.95 2.995E�03 2.93
29184 4.391E�04 2.84 8.082E�03 1.64 3.870E�04 2.98 3.784E�04 2.98

P2/Voronoi 300 4.804E�01 – 5.278E�01 – 4.423E�01 – 4.339E�01 –
1200 7.483E�02 2.68 1.359E�01 1.96 7.482E�02 2.56 7.070E�02 2.62
4800 9.779E�03 2.94 3.432E�02 1.99 9.788E�03 2.93 9.348E�03 2.92
19200 1.244E�03 2.97 1.039E�02 1.72 1.233E�03 2.99 1.176E�03 2.99

Expected order 3 3 3 3

P3/Delaunay 456 6.383E�02 – 1.801E�01 – 9.474E�03 – 1.007E�02 –
1824 8.369E�03 2.93 5.920E�02 1.61 5.751E�04 4.04 7.916E�04 3.67
7296 9.916E�04 3.08 2.057E�02 1.53 3.611E�05 3.99 4.664E�05 4.09
29184 1.185E�04 3.06 7.146E�03 1.53 2.140E�06 4.08 2.774E�06 4.07

P3/Voronoi 300 1.158E�01 – 2.826E�01 – 6.431E�02 – 5.961E�02 –
1200 2.263E�02 2.36 9.234E�02 1.61 4.017E�03 4.00 3.632E�03 4.04
4800 2.157E�03 3.39 2.787E�02 1.73 2.583E�04 3.96 2.539E�04 3.84
19200 2.393E�04 3.17 9.295E�03 1.58 1.649E�05 3.97 1.718E�05 3.89

Expected order 4 4 4 4

P5/Delaunay 456 6.098E�02 – 1.691E�01 – 3.034E�04 – 3.715E�04 –
1824 9.660E�03 2.66 6.383E�02 1.41 6.796E�06 5.48 9.939E�06 5.22
7296 1.359E�03 2.83 2.399E�02 1.41 1.207E�07 5.82 1.831E�07 5.76
29184 1.704E�04 3.00 8.574E�03 1.48 1.767E�09 6.09 2.836E�09 6.01

P5/Voronoi 300 1.352E�01 – 2.610E�01 – 4.584E�03 – 4.955E�03 –
1200 2.213E�02 2.61 9.116E�02 1.52 7.327E�05 5.97 8.740E�05 5.83
4800 2.119E�03 3.38 2.914E�02 1.65 1.341E�06 5.77 1.573E�06 5.80
19200 2.449E�04 3.11 1.005E�02 1.54 3.017E�08 5.47 3.703E�08 5.41

Expected order 6 6 6 6

Fig. 5. Initial mesh and initial data for the SBR problem. The mesh is composed of
5190 triangles refined around the slotted disk. The resulting mesh is genuinely non-
uniform.
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philosophy. This classical difficulty is stated by the authors in [49]
page 2754 as ‘‘ It is very difficult to design a conservative high-or-
der accurate scheme preserving the positivity’’. However the a pos-
teriori treatment implies that the MOOD method is intrinsically
positivity-preserving assuming the three following points:

1. The lowest order scheme is positivity-preserving, in our case it
is the first-order finite volume one.

2. The positivity of density and pressure are parts of the set of con-
straints A.

3. The EdgePD strategy is upper-limiting see [7] definition 9 page
4033. This implies that if the CellPD of a given cell is 0 then this
cell is fully updated with the first-order scheme.

The proof that the MOOD method is positivity-preserving is
analogous to the one in theorem 10 page 4033 of [7]. In short, given
a candidate solution one checks the positivity of density and pres-
sure. If a cell is problematic that is to say density or pressure is neg-
ative then the CellPD is decremented. The next candidate solution
is computed and checked again: Either this next candidate is posi-
tive or the decrementing process carries on until the CellPD is zero.
In this latter case points 1 and 3 necessarily imply the positivity of
the candidate solution. As this process is the same for any cell it
leads to a positivity-preserving solution in a finite number of
MOOD iterations.

In the numerical section we propose the Noh test case for which
our implementation of the classical MUSCL scheme generates a

Fig. 6. Profiles of the SBR solution for the initial/final exact solution, MOOD-P5 with DMP detection process, MOOD-P5 with u2 detection process, MOOD-P5 without any
limitation.
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Fig. 7. Profiles of the SBR solution for the initial/final exact solution (top), for a limited MUSCL method (MLP) and MOOD-P1, MOOD-P3, MOOD-P5 with u2 detection process.
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negative pressure and fails to complete the simulation whereas the
MOOD method always gives a physical meaningful solution.

4. Numerical tests

MOOD has been implemented into a 2D unstructured (polygo-
nal) code which can deal with advection equation and hydrody-
namics equations. The polynomial reconstruction ranges from
piecewise constant up to piecewise polynomial of fifth degree. Fol-
lowing Remark 4 one uses two decrementing sequences:
P5 � P2 � P0 and P3 � P2 � P0. It implies that only two precom-
puted matrices for the reconstruction step per cell are only stored
in memory for d = dmax and d = 2. The flux computation involves
integrals which are approximated using Gaussian numerical inte-
gration. We use two Gaussian points on edges for P2 and P3 recon-
structions and three for P5 to reach the expected order of accuracy
for numerical integrations. Time integration is performed with the
RK3-TVD method given by system (6). We apply the MOOD proce-
dure detailed in Section 2 to each sub-step of the RK3-TVD. The
CellPD are thus reinitialized to dmax at the beginning of each time
sub-step. By default we use classical time step control with
CFL = 0.6. In the case of convergence study we use a fixed time step
Dt = Dxr/3 to reach rth-order of accuracy. Given a variable u the rel-
ative L1 and L1 errors are measured by:

err1 ¼
P

i2Eel
uN

i �u0
i

�� ��jKijP
i2Eel

u0
i

�� ��jKij
and err1 ¼

maxi2Eel
uN

i �u0
i

�� ��
maxi2Eel

u0
i

�� �� ;

where u0
i

� �
i and uN

i

� �
i are respectively the cell mean values at ini-

tial time t = 0 and final time t = tfinal = NDt.
The unstructured meshes used in this paper are of different

kinds, logically rectangular, Delaunay triangulation, Voronoi tes-
sellation and non-conformal polygonal mesh. Contrarily to what
was done in [7] the whole detection is made a posteriori, namely
we do not check if the reconstructed values at Gauss points are
physically admissible or not. If they are not, the flux and the cell
mean values are usually undefined therefore the cell is flagged as
problematic.

4.1. Advection equation

Let us consider the scalar linear advection of a quantity u with
velocity V(x)

@tuþr � ðVuÞ ¼ 0;
uð�; t ¼ 0Þ ¼ u0;

	
ð15Þ

where V(x) is a continuous function on X 2 R2 and u0 is the initial
condition. Boundary conditions are prescribed as periodic ones on
oX.

The Double Sine Translation (DST) is first tested on Delaunay
triangulations and Voronoi tessellations in order to prove that on
smooth solution MOOD can actually maintain very high-order of
accuracy with the u2 detection criteria. Only second-order of accu-
racy is reached when DMP detection criterion is used. The second
test is the Solid Body Rotation (SBR) that is used to prove that
MOOD-u2 can preserve smooth extrema but can still limit discon-
tinuous profiles. This problem is further used to show the improve-
ment obtained when polynomial reconstruction degree is
increased, in other word when high-order (P1) and very high-order
ðP3; P5Þ numerical schemes are used.

4.1.1. Double Sine Translation (DST)
Let X be the unit square. We consider a constant velocity

V = (2,1) and the C1 initial condition

u0ðx; yÞ ¼ sinð2pxÞ sinð2pyÞ:

The final time is tfinal = 2.0. Periodic boundary conditions imply that
the exact final solution coincides with the initial one. The solution is
therefore always smooth during the computation.

The computations are carried out on series of successively
refined Delaunay triangulations (from 456 up to 29,184 cells, see
an example in Fig. 3 left panel) and polygonal Voronoi tessellations
(from 300 up to 19,200 cells, see Fig. 3 right panel). Note that the
meshes are far from being regular, see right panel of Fig. 3 fro in-
stance. We plot in Fig. 4 the convergence curves obtained on the
series of Delaunay triangulations and Voronoi tessellations. The
MOOD method with the DMP detection process is displayed on
top panels whereas the u2 detection process is on bottom panels.
It clearly shows the strong limitation implied by the DMP since
only 3rd-order and 2nd-order are reached in L1 and L1 norms
respectively independently of the polynomial degree. On the
contrary the proposed u2 Detection Process reaches the expected
order of convergence. This is actually explained by the fact that
only polynomials of maximal degree are used during the whole
computation, i.e. no CellPD decrementing is ever recorded.

L1 and L1 errors and rates are given in Table 1 for the DMP and
the u2 detection criteria. One observes that the optimal order of
convergence is reached for the u2 detection criterion whereas only
second-order accurate results are obtained when the DMP is used.

This accuracy test on smooth functions is passed by the MOOD
method with u2 Detection Process, the next section is thus dedi-
cated to the study of its behavior on non-smooth profiles.

4.1.2. Solid Body Rotation (SBR)
First introduced by Leveque in [25], the Solid Body Rotation test

on the unit domain consists of one rotation of three shapes: a
hump, a cone and a slotted cylinder. Each shape is located within
a circle of radius r0 = 0.15

Hump centered at (x0,y0) = (0.25,0.5)

u0ðx; yÞ ¼ 1
4
ð1þ cosðpminðrðx; yÞ;1ÞÞÞ:

Cone centered at (x0,y0) = (0.5,0.25)

u0ðx; yÞ ¼ 1� rðx; yÞ:

Table 2
L1 error for the SBR problem for different detection processes and polynomial degrees.

L1 Error DMP u2 UNLIMITED

P3 3.219E�1 3.171E�1 3.734E�1
P5 2.690E�1 2.621E�1 3.223E�1

Table 3
Minimal and maximal mean values for the SBR problem for different detection processes and polynomial degrees.

Method MUSCL MOOD-P1 MOOD-P3 MOOD-P5

Detec. DMP u2 DMP u2 DMP u2

Min 5.58E�10 0.00E+00 �2.45E�03 3.27E�08 �1.31E�03 1.10E�08 �5.60E�05
Max 7.48E�01 8.53E�01 8.51E�01 9.49E�01 9.54E�01 9.61E�01 9.60E�01
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Table 4
L1 and L1 errors and convergence rates for the isentropic vortex problem with MOOD and the physical admissible detection process. Comparison between conservative and
primitive variables polynomial reconstructions for different polynomial degrees.

Conservative variables Primitive variables

Deg. Cell Nb L1 Error L1 Error L1 Error L1 Error

P2 200 1.850E�02 – 2.680E�01 – 2.002E�02 – 2.884E�01 –
800 6.519E�03 1.50 1.255E�01 1.09 7.621E�03 1.39 1.771E�01 0.70
3200 1.444E�03 2.17 2.208E�02 2.51 1.536E�03 2.31 4.054E�02 2.13
12800 2.504E�04 2.53 3.631E�03 2.60 2.554E�04 2.59 6.060E�03 2.74
51200 3.347E�05 2.90 4.923E�04 2.88 4.540E�05 2.49 8.756E�04 2.79

Expected order 3 3 3 3

P3 200 1.137E�02 – 1.880E�01 – 1.424E�02 – 2.384E�01 –
800 2.504E�03 2.18 4.686E�02 2.00 3.530E�03 2.01 8.358E�02 1.51
3200 3.524E�04 2.83 5.977E�03 2.97 5.666E�04 2.64 8.835E�03 3.24
12800 1.947E�05 4.18 3.725E�04 4.00 1.377E�04 2.04 1.649E�03 2.42
51200 1.069E�06 4.19 1.996E�05 4.22 3.460E�05 1.99 4.091E�04 2.01

Expected order 4 4 4 4

P5 200 8.193E�03 – 1.200E�01 – 1.161E�02 – 1.915E�01 –
800 1.762E�03 2.22 3.433E�02 1.81 2.492E�03 2.22 3.740E�02 2.36
3200 6.767E�05 4.70 1.133E�03 4.92 5.482E�04 2.18 6.112E�03 2.61
12800 1.011E�06 6.06 2.237E�05 5.66 1.382E�04 1.99 1.598E�03 1.94
51200 2.583E�08 5.29 4.809E�07 5.54 3.462E�05 2.00 4.039E�04 1.98

Expected order 6 6 6 6

Fig. 8. Convergence curves for the isentropic vortex. Top figures correspond to the reconstruction with primitive variables while bottom figures use reconstruction with
conservative variables. The left column represents the L1-norm error and the right column the L1-norm error. The PAD detection process has been used.
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Slotted cylinder centered at (x0,y0) = (0.5,0.75)

u0ðx; yÞ ¼
1 if jx� 0:5j < 0:25; or y > 0:85;
0 elsewhere;

	

where rðx; yÞ ¼ 1
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
. To perform the rotation,

we use the velocity V(x) = (�y + 0.5, x � 0.5) and the final time
tfinal = 2p corresponds to one full rotation.

For this test case we use a genuinely unstructured and non-uni-
form mesh made of 5190 triangles see Fig. 5 where we also display
the initial data in isolines view, see also Fig. 6 top-left panel where
a side view of the initial data is provided. This mesh is refined
around the slotted disk, the ratio between the largest and smallest
edge length is approximately seven. The three shapes while rotat-
ing move across the refined and coarse zones. The purpose is to
emphasize the effects on the numerical results of using a truly
non-regular mesh.

We plot in Fig. 6 profile views of the solution obtained from three
methods but all with a P5 polynomial reconstruction. First the
MOOD method with the DMP Detection Process, then the MOOD
method with the u2 Detection Process, and finally the unlimited
version of the FV scheme. These results show on one hand that
the solution with u2 Detection Process on the non-smooth slotted

cylinder is almost the same as for the DMP. On the other hand it
shows that the u2 solution on the two smooth profiles are exactly
the ones obtained by the unlimited scheme. In other words, the
u2 Detection Process maintains the same accuracy as an unlimited
scheme on smooth profiles and almost the monotonicity of a limited
scheme on non-smooth ones. The same conclusion applies for any
other polynomial degrees tested hence we have skipped these fig-
ures. In Fig. 7 are displayed a zoom on the slotted disk at the final
time for the initial/final, the limited MUSCL scheme (MLP [31]),
MOOD-P1, MOOD-P3 and MOOD-P5 with u2 detection process.

In Table 2 are gathered the errors for P3 and P5 in order to show
that the u2 Detection Process provides a slightly better accuracy
than the DMP detection process. Finally we display in Table 3 the
min/max values of the final numerical solution for the limited
MUSCL method (MLP), MOOD-P1, MOOD-P3 and MOOD-P5 all
with DMP detection or u2 Detection Process. This table shows that
the u2 detection process permits slight undershoots which is one
of the reasons MOOD can reach high-order accuracy.

4.2. Euler system

In this section we test the MOOD method on unstructured
meshes for hydrodynamics problems governed by the Euler sys-

Fig. 9. Comparison between WENO and MOOD methods on 100 � 10 quadrangles split into triangles—Top: results of the 4th-order WENO method using Lax-Friedrichs flux
from [18] on conservative variables (left) and on characteristic variables (right)—Bottom: results of the 4th-order MOOD-P3 method with u2 + PAD detection process using
Lax-Friedrichs (left) and HLLC (right) fluxes.
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tem. First we need to assess the effective numerical accuracy of the
method on a smooth problem for which an exact solution exists.
We choose an isentropic vortex which presents a smooth profile
during the entire simulation and, as such, permits the estimation
of errors and convergence orders. In a second test we run the Lax
shock tube to assess the essentially non-oscillatory behavior of
MOOD compared to classical WENO results. Then we run the Dou-
ble Mach reflection problem to highlight the good capacity of the
MOOD method to capture strong shocks and contact discontinu-
ities. Moreover we provide CPU cost and memory storage tables.
Next the Noh problem is used to assess the positivity-preserving
property of the MOOD method. Last we propose a genuine physical
problem extracted from [37] for which experimental results are
available.

4.2.1. Isentropic vortex
The isentropic vortex problem is detailed in [35,47], therefore

we only mention the basic data for the sake of consistency. The
simulation domain X is the square [�5,5] � [�5,5] and we con-
sider an initial gas flow given by the following condition (ambient
gas) q1 = 1.0, u1 = 1.0, v1 = 1.0, p1 = 1.0, with a normalized ambi-
ent temperature T�1 ¼ 1:0 computed with the perfect gas equation
of state and c = 1.4.

A vortex centered at xvortex = (xvortex, yvortex) = (0,0) is added to
the ambient gas at the initial time t = 0 with the following condi-
tions u = u1 + du, v = v1 + dv, and T� ¼ T�1 þ dT�

du ¼ �y0
b

2p
exp

1� r2

2

� �
; dv ¼ x0

b
2p

exp
1� r2

2

� �
;

dT� ¼ � ðc� 1Þb
8cp2 expð1� r2Þ:

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
; ðx0 ¼ x� xvortex; y0 ¼ y� yvortexÞ and vortex

strength is given by b = 5.0. Consequently, the initial density is
given by

q ¼ q1
T�

T�1

� � 1
c�1

¼ 1� ðc� 1Þb
8cp2 expð1� r2Þ

� � 1
c�1

ð16Þ

We assume periodic condition on the boundary and the exact solu-
tion at any time t is the same vortex but translated.

The goal of the present test is to highlight the stagnation of the
rate of accuracy when primitive variables are used for the polyno-
mial reconstructions instead of conservative ones. As pointed out
in the previous section, nonlinear operations on means values re-
duces the method order up to at most a second-order one. We have
performed the numerical simulations of the isentropic vortex
problem with the same mesh using the less restrictive Physical
Admissible Detection (PAD) procedure to provide effective very
high-order. A series of refined meshes (from 200 up to 51200 cells)
are successively used to compute the numerical solution.

In Table 4 are gathered the L1 and L1 errors and rates of
convergence for MOOD-P2, MOOD-P3, MOOD-P5 using the
Physical Admissible Detection Clearly, conservative variable

Fig. 10. Comparison between the P2 (top), P3 (middle) and P5 (bottom) polynomial reconstructions with the conservative variables using the same mesh. Physical
Admissible Detection (PAD) and u2 Detector have been both used to prevent numerical oscillations.
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reconstructions provide the optimal convergence rate whereas the
reconstruction with primitive variables is systematically reduced

to a second-order one. We also display in Fig. 8 the convergence
curves corresponding to the errors of Table 4. Finally we also

Fig. 11. Results of the MOOD method with P5. In the top figure, simulation has been carried out with the Physical Admissible Detection (PAD) Detection Process while we
have both employed the PAD and u2 Detection in the middle figure. The left bottom and right bottom figure give a zoom of the solution with the PAD and u2 + PAD Detection
Process respectively.

Table 5
Memory storage and total number of iterations for the double mach problem according to the different configurations with the MOOD method.

Mesh P2-3rd-order P3-4th-order P5-6th-order Detection

Memory Iterations Memory Iterations Memory Iterations

57,600 qua. 240 Mo 1012 385 Mo 998 840 Mo 1004 u2 + PAD
180 Mo 1016 270Mo 1010 572 Mo 1031 PAD

17,624 tri. 60 Mo 1264 105 Mo 1265 250 Mo 1265 u2 + PAD
50 Mo 1268 67Mo 1272 165 Mo 1275 PAD
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Table 6
Total time and cost for one complete time step of a single cell for the double mach problem.

Machine Mesh P2-3rd-order P3-4th-order P5-6th-order Detection

Total (s) Per iter. (ls) Total (s) Per iter. (ls) Total (s) Per iter. (ls)

M1 57,600 qua. 2157 37 3162 55 8964 155 u2 + PAD
1346 23 2327 40 8314 140 PAD

17,624 tri. 601 27 1003 45 1650 74 u2 + PAD
492 22 762 34 1573 70 PAD

M2 57,600 qua. 2228 38 4785 83 12,371 214 u2 + PAD
1629 28 3830 66 11,629 196 PAD

17,624 tri. 615 27 922 41 1292 58 u2 + PAD
521 23 707 32 1079 48 PAD

M3 57,600 qua. 683 12 1089 19 3696 66 u2 + PAD
490 8 859 15 3604 61 PAD

17,624 tri. 265 12 397 18 594 27 u2 + PAD
230 10 308 14 492 22 PAD

Fig. 12. Noh problem at tfinal = 2.0 on a polygonal grid—Left: Density map and mesh— Right: Cell density as a function of cell radius vs exact solution—Top panels correspond
to the PAD detection process—Bottom panels correspond to the u2 + PAD detection process.
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mention that when the vortex is not in motion, i.e. (u1, v1) = (0,0),
then the reconstruction using primitive variables does produce the
correct order of convergence.

4.2.2. Lax shock tube
The 1D Lax shock tube consists of two states (qL,uL,

pL) = (0.445,0.698,3.528) and (qR, uR, pR) = (0.5,0,0.571) separated
by the interface x = 0. In order to compare with the finite volume
multi-dimensional WENO results of [18], we run the problem on
the domain X = [�1;1] � [0,0.2] until final time t = 0.26 using a
mesh made of 100 � 10 quadrangles split into two triangles
through the same diagonal for all cells (see Fig. 5.5 of [18]).

The goal of this test is to compare the essentially non-oscilla-
tory behavior of the MOOD method using the u2 detection process
with the classical genuinely multi-dimensional finite volume
WENO results based on conservative or characteristic variables.

On the top panels of Fig. 9 we reproduce the density profiles from
[18] obtained with the 4th-order WENO method based on conserva-
tive (left) and characteristic (right) variables. We recall that this
method uses combinations of P2 (3rd-order) polynomials to reach
4th-order. The bottom panel presents the MOOD-P3 density profiles
on conservative variables with the u2 + PAD detection process
where only one line of triangles is displayed to comply with
Fig. 5.6 of [18]. On the left we plot the result obtained with the
Lax-Friedrichs numerical flux (which is used for the WENO results)
and on the right the result using the HLLC flux. We observe that the
non-oscillatory behavior of the MOOD method with u2 + PAD detec-
tion process is equivalent to the WENO on characteristic variables
while it is clearly better than the WENO on conservative variables.
Moreover we see that the use of HLLC gives better a result for a neg-
ligible additional cost, with only three points in the contact discon-
tinuity instead of five and remains essentially non-oscillatory.

4.2.3. Double Mach reflection of a strong shock
The double mach reflection of a strong shock was first proposed

in [46]. This test problem involves a Mach 10 shock in a perfect gas
with c = 1.4, which is initially positioned at x = 1/6, y = 0 and makes
a 60� angle with the x-axis. The gas ahead of the shock is at rest and
has uniform initial density q0 = 1.4 and pressure p0 = 1. The reflect-
ing wall lies along the bottom of the domain, beginning at x = 1/6.
The region from x = 0 to x = 1/6 along the bottom boundary at y = 0

is always assigned values for the initial post-shock flow. Inflow
boundary condition on the left side and outflow condition on the
right side are also set. At the top, the boundary conditions are set
to describe the exact motion of the Mach 10 flow (see [11]).

The goal of the test is, on one hand, to quantitatively show the
effect of the polynomial degree reconstruction when dealing with
strong shock and, on the other hand, to observe the capacity of
the method to reproduce the complex structure due to the contact
discontinuities in the right part of the shock.

The mesh has been obtained using the free mesher Gmsh by a
refinement of a coarser Delaunay ones, it is constituted of
102,720 triangles (see Fig. 10 top). Moreover for all Figs. 30 isolines
between 1.39 and 23 have been drawn.

We depict in Fig. 10 the impact of the polynomial degree of the
reconstruction on the numerical solution using the same mesh. The
u2 + PAD Detection Processes has been employed to control the
oscillations in the vicinity of the shock. Clearly the degree of the
reconstruction has a strong impact on the solution accuracy and
improve the shock capture. Most relevant parts are the contact dis-
continuities in the right zone x 2 [2.3,2.7] which show the capacity
of the scheme to reduce numerical viscosity when employing high-
er-order reconstructions.

Fig. 11 is a comparison between the Physical Admissible Detec-
tion (PAD) and the coupling u2 + PAD. The u2 Detection Process re-
duces the oscillations but increases the numerical viscosity close to
contact discontinuities. It is worth noting that even with a weak
Detection Process, namely the PAD procedure, the MOOD method
is still very robust and provides a solution resembling the classical
ones from the literature [46]. The choice of the detecting procedure
depends of the simulation goal: Less oscillations with the u2 + PAD
or less diffusive with the PAD alone.

To conclude with this test case, we provide in Tables 5 and 6 the
cost of the MOOD method running on a single core of the three fol-
lowing machines (using-O3 flag for gfortran compiler).

M1: A laptop with Intel Core2Duo P7550 (2 cores) @ 2.26 GHz,
3 MB of L2 Cache, 8 GB of RAM.

M2: A server with two Intel Xeon E5335 (4 cores) @ 2.00Ghz,
8 MB of L2 Cache, 16 GB of RAM.

M3: A desktop with Intel Core i5 2500 (4 cores) @ 3.30 GHz, 6 MB
of L2 Cache, 8 GB of RAM.

Fig. 13. Domain characteristics for the shock impacting a cylindrical cavity. Red arrows represent inflow and outflow boundary conditions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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This comparison is done on two different meshes, one made of
57,600 uniform quadrilaterals and one Delaunay triangulation
with 17,624 cells. We compare MOOD-P2, MOOD-P3 and
MOOD-P5 for both the PAD and u2 + PAD detection processes.
We give in Table 5 the memory cost (in left column) and the total
number of iterations (in right column) for all simulations, while we
provide in Table 6 the total CPU time (in left column) and the time
in micro-seconds needed for one complete time step of a single cell
(in right column) including reconstruction, flux computation and
time integration (RK3) of all variables.

It is fairly difficult to compare the cost of two methods running
on different machines, for instance the method is faster on triangles

with M2 compared to M1 but it is the opposite for quadrilaterals.
However according to reference [15] the MOOD method is compet-
itive when compared to truly unstructured methods of the same
order.

4.2.4. Noh problem as a positivity-preserving test case
The goal of the Noh problem in Cartesian geometry is to numer-

ically prove that the MOOD method is positivity-preserving, see
Section 3.2.3 for a discussion on this point. It is a difficult problem
well-known in the Lagrangian community, see as instance [27,26].
It is noticeable that our implementation of the classical MUSCL

Fig. 14. On top, we display the global view of the mesh where the different mesh zones are clearly visible. On bottom, zooms on the non-convex part of the mesh (on left) and
on the junction between the polar part of the mesh and the quasi-uniform one (right). Non-conformity are clearly visible.
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scheme is not able to simulate this problem without creating neg-
ative pressures.

The problem is run in the disk of radius 1.2 centered at (0,0).
We initialize a perfect gas with c = 5/3, density q0 = 1, pressure

p0 = 10�10 and velocity U0ðx; yÞ ¼ ð�x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;�y=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ such

that kU0(x,y)k = 1. A cylindrical shock wave generated at the origin
further diverges until final time tfinal = 2.0. The exact solution at
tfinal is thus given by

Fig. 15. Gradient density magnitude is shown at different times. Time 0 corresponds to the initial shock at position x = 0.
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fq; p;urg ¼
16; 16

3 ;0
� �

if r < rs;

ð1þ 2
rÞ;10�10;�1

n o
if r > rs;

8<: ð17Þ

where r is the radius, ur the radial velocity and rs = 2/3 the shock
wave position. This problem is simulated on a polygonal mesh
made of 19,756 cells with about 100 cells in the radial direction. No-
tice that the mesh is made of seven layers of quadrangles separated
with degenerated polygons, see Fig. 12. We display the MOOD-P3
results for the density maps (left panels) and the density as a func-
tion of cell radius (right panels) in Fig. 12. The top panels corre-
spond to the PAD detection process whereas the bottom ones
correspond to the u2 + PAD process. One observes that the symme-
try is almost perfectly reproduces. Notice that the PAD detection
process is only intended to ensure the physical meaningfulness of

the solution but does not prevent oscillations to occur. Indepen-
dently of the order of the scheme the PAD always provides a mean-
ingful solution. As a consequence the u2 + PAD not only provides a
valid solution without negative pressure but also removes the oscil-
lation after the shock wave.

4.2.5. Impact of a shock on a cylindrical cavity
We finally test the ability of MOOD method to capture physics

in realistic conditions by simulating the experiment proposed in
[37] where a planar shock impacts a cylindrical cavity. We consider
the case of a nominal incident shock Mach number of 1.33 in ambi-
ent air (with c = 1.4) at 0.95 bar pressure. Moreover we use the do-
main configuration A (following notation of [37]) we detail in
Fig. 13.

Fig. 16. Zooms on different parts of the solution. On top, gradient density magnitude is shown at a late time when instabilities are well developed. On bottom, vortices at the
entry of the cavity (left) and the instabilities (right) along the wall are displayed with density gradient magnitude in color and velocity vectors. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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The variables initialization is split in two parts, the pre-shock
values

ðq;u; v; pÞ ¼ ð1:1175;0:0; 0:0;95000:0Þ;

and the post-shock ones

ðq;u; v; pÞ ¼ ð1:7522;166:3435;0:0;180219:75Þ;

leading to conditions of [37] at temperature T = 296.15 K.
The simulation is only preformed in the lower half part of the

domain for symmetry argument, namely from y = 0 mm to
y = 75 mm. The 193,615 cells mesh is composed of triangles, quad-
rangles but also more general polygons with non-conformal ele-
ments (see Fig. 14) to better suit with the complex geometry of
the set-up. Notice that non-conformity is simply handled using
polygons, i.e. no special treatment is used. We also deliberately
use a heterogeneous mesh to highlight that the MOOD method is
not much affected by the quality of the mesh.

The simulation are carried out with the MOOD-P3 method
(fourth-order) using the PAD and the u2 Detection Process. Pictures
are rendered as a full mesh by symmetry even if the computation
was done on a half-domain to easier compare with physical results
of [37]. Fig. 15 represents the density gradient magnitude at six
different times to embrace the global behavior of the solution. In
details, top right is chosen to be compared to Fig. 7(a) of [37],
bottom center to Fig. 8(d) and bottom right to Fig. 9(c) of same
paper. Our results are clearly in agreement with physical results.
In Fig. 16 different zooms on solution at several times are plotted.
On the top part, density gradient magnitude at a late time is given
and is to be compared to Fig. 14(b) in [37] while we superpose, in
the bottom figure, the velocity vectors on the density magnitude
gradient to show the created vortices at the entrance of the cavity
(left) and highlight the instabilities lying along the wall.

5. Conclusion and perspectives

The paper presents important new extensions of the MOOD
method for unsteady advection and hydrodynamics equations, that
ensure high-order approximations (up to the sixth-order) on
unstructured meshes.

We introduced new efficient detection processes and proved
that the MOOD method is intrinsically positivity-preserving for
the hydrodynamics system of equations assuming that the first-or-
der scheme is. This has been numerically assessed on the Noh
problem for which our implementation of the MUSCL scheme fails
due to negative pressures.

Then both for the advection equation and the hydrodynamics
Euler system, we proposed numerical tests to confirm that the
MOOD method provides very high-order of accuracy on unstruc-
tured meshes for smooth solutions (e.g. isentropic vortex in
motion) and non-oscillatory behavior on discontinuous ones (e.g.
Lax shock tube). Moreover the memory storage and CPU time have
also been reported for the double Mach problem, proving that the
MOOD method is competitive. The last numerical test showed that
the MOOD method, on a relatively coarse and non-conformal polyg-
onal mesh, is able to simulate complex physics from an experimen-
tal set-up of the impact of a shock wave on a cylindrical cavity.

Finally we plan to improve the detection procedure, especially
for vectorial problems to achieve a very low diffusion but still pre-
venting the oscillations from appearing. Application to full three-
dimensional problem is also an attractive task since performing
an efficient computational solution is always a challenging prob-
lem. The extension of the MOOD method to deal with steady-state
solution needs also more investigations. Overall an important per-
spective is the polynomial reconstruction itself. We have observed
that the main computational cost comes from the reconstruction

stage and that the reconstruction quality strongly depends on the
stencil employed. Such a point is of crucial importance from a com-
putational point of view to obtain tractable complex numerical
simulations.

Appendix A. The discrete maximum principle on mean values
provides at most a second-order scheme

We recall that a time explicit scheme preserves the Discrete
Maximum Principle (DMP) if for all cell Ki

min
j2�mðiÞ

Un
i ;U

n
j

� �
6 Unþ1

i 6max
j2�mðiÞ

Un
i ;U

n
j

� �
: ð18Þ

It has been shown in [34,31,22] that any scheme based on the DMP
property reduces the accuracy to second-order for regular functions
due to inaccurate approximation at extrema. Indeed following [50],
let us consider the advection problem in R to avoid boundary con-
dition issues

@tU þ @xU ¼ 0;
Uðx; t ¼ 0Þ ¼ cosðxÞ:

	
ð19Þ

We consider a uniform discretization xi ¼ ih; i 2 Z and h > 0 being
the cell size and initialize the mean value on cell K0 = [0,h] as

Ut¼0
0 ¼ 1

h

Z h

0
cosðxÞdx ¼ sinðhÞ

h
: ð20Þ

Now, let us perform one time step with Dt = h/2 of a finite volume
scheme which respects the DMP property. The exact solution at
time t = h/2 is Uex(x,h/2) = cos(x � h/2) and accordingly the exact
mean value on K0 is

Uex;t
0 ¼ 1

h

Z h

0
cosðx� h=2Þdx ¼ 2 sinðh=2Þ

h
: ð21Þ

However a Taylor expansion provides

Uex;t
0 ¼ 2 sinðh=2Þ

h
¼ 1� h2

24
þ Oðh4Þ:

But the initial mean values are bounded by

Ut¼0
0 ¼ sinðhÞ

h
¼ 1� h2

6
þ Oðh4Þ:

Clearly, the exact mean value Uex;t
0 on cell K0 is greater than the max-

imum mean values over all cells at time t = 0 with an error of h2/8 as

Uex;t
0 � Ut¼0

0

��� ��� 6 h2

24
� h2

6
þ Oðh4Þ

�����
����� ¼ h2

8
þ Oðh4Þ:

Therefore a scheme which fulfills the DMP property necessarily pro-
vides a solution lower than sin (h)/h, hence after the first cycle the
numerical solution verifies Ut

0 6 Ut¼0
0 ¼ 1� h2

6 þ Oðh4Þ. It follows
that the approximation of the mean value has an error of order
O(h2) compared to the exact mean value on cell K0. Consequently
the scheme is at most second-order accurate and DMP-type of cri-
teria cannot be used strictly for higher than second-order schemes
and has to be relaxed.

References

[1] Abgrall R. On essentially non-oscillatory schemes on unstructured meshes:
analysis and implementation. J Comput Phys 1994;114:45–58.

[2] Abgrall R. Essentially non-oscillatory residual distribution schemes for
hyperbolic problems. J Comput Phys 2006;214:773–808.

[3] Barth TJ. Numerical methods for conservation laws on structured and
unstructured meshes. VKI March 2003 lectures series.

[4] Barth TJ, Fredrickson PO. Higher-order solution of the euler equations on
unstructured grids using quadratic reconstruction. In: AIAA conference paper
90-0013; 1990.

62 S. Diot et al. / Computers & Fluids 64 (2012) 43–63

201



[5] Buffard T, Clain S. Monoslope and multislope MUSCL methods for unstructured
meshes. J Comput Phys 2010;229:3745–76.

[6] Clain S, Clauzon V. L1 stability of the MUSCL methods. Numer Math
2010;116:31–64.

[7] Clain S, Diot S, Loubère R. A high-order finite volume method for hyperbolic
systems: Multi-dimensional Optimal Order Detection (MOOD). J Comput Phys
2011;230(10):4028–50.

[8] Cockburn B, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for scalar conservation laws II: general framework.
Math Comput 1989;52:411–35.

[9] Cockburn B, Lin SY, Shu CW. TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: one dimensional
systems. J Comput Phys 1989;84:90–113.

[10] Cockburn B, Hou S, Shu CW. TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws IV: the
multidimensional case. Math Comput 1990;54:545–81.

[11] Cockburn B, Shu C-W. The Runge-Kutta discontinuous Galerkin method for
conservation laws V: multidimensional systems. J Comput Phys
1998;141:199–224.

[12] Csı́k A, Ricchiuto M, Deconinck H. A conservative formulation of the
multidimensional upwind residual distribution schemes for general
nonlinear conservation laws. J Comput Phys 2002;179:286–312.

[13] Dumbser M, Castro M, Parés C, Toro EF. ADER schemes on unstructured
meshes for nonconservative hyperbolic systems: applications to geophysical
flows. Comput Fluids 2009;38:1731–48.

[14] Dumbser M, Kser M. Arbitrary high order non-oscillatory finite volume
schemes on unstructured meshes for linear hyperbolic systems. J Comput Phys
2007;221:693–723.

[15] Dumbser M, Kser M, Titarev VA, Toro EF. Quadrature-free non-oscillatory finite
volume schemes on unstructured meshes for nonlinear hyperbolic systems. J
Comput Phys 2007;226:204–43.

[16] Harris R, Wang ZJ, Liu Y. Efficient quadrature-free high-order spectral volume
method on unstructured grids: theory and 2D implementation. J Comput Phys
2008;227:1620–42.

[17] Harten A, Engquist B, Osher S, Chakravarthy S. Uniformly highorder accurate
nonoscillatory schemes III. J Comput Phys 1987;71:279–309.

[18] Hu C, Shu CW. Weighted essentially non-oscillatory schemes on triangular
meshes. J Comput Phys 1999;150:97–127.

[19] Hubbard ME. Multidimensional slope limiters for MUSCL-type finite volume
schemes on unstructured grids. J Comput Phys 1999;155(1):54–74.

[20] Jiang G-S, Shu C-W. Efficient implementation of weighted ENO schemes. J
Comput Phys 1996;126:202–28.

[21] Jiang G-S, Tadmor E. Non-oscillatory central schemes for multidimensional
hyperbolic conservative laws. SIAM J Sci Comput 1998;19:1892–917.

[22] Kolgan VP. Application of the minimum-derivative principle in the
construction of finite-difference schemes for numerical analysis of
discontinuous solutions in gas dynamics. Trans Central Aerohydrodynam
Inst 1972;3:68–77 [in Russian].

[23] Kolgan VP. Finite-difference schemes for computation of three dimensional
solutions of gas dynamics and calculation of a flow over a body under an angle
of attack. Trans Central Aerohydrodynam Inst 1975;6:1–6 [in Russian].

[24] Kolgan VP. Application of the principle of minimizing the derivative to the
construction of finite-difference schemes for computing discontinuous
solutions of gas dynamics. J Comput Phys 2010;230:2384–90.

[25] Leveque Randall J. High-resolution conservative algorithms for advection in
incompressible flow. SIAM J Numer Anal 1996;33:627–65.

[26] Loubère R, Maire P-H, Vachal P. Staggered Lagrangian discretization based on
cell-centered Riemann solver and associated hydrodynamics scheme.
Commun Comput Phys 2011;10(4):940–78.

[27] Maire Pierre-Henri. A high-order cell-centered Lagrangian scheme for two-
dimensional compressible fluid flows on unstructured meshes. J Comput Phys
2009;228:2391–425.

[28] Friedrich O. Weighted essentially non-oscillatory schemes for the
interpolation of mean values on unstructured grids. J Comput Phys
1998;144:194–212.

[29] Ollivier-Gooch CF. Quasi-ENO schemes for unstructured meshes based on
unlimited data-dependent least-squares reconstruction. J Comput Phys
1997;133:6–17.

[30] Osher S, Chakravarthy S. High resolution schemes and the entropy condition.
SIAM J Numer Anal 1984;21:955–84.

[31] Park JS, Yoon S-H, Kim C. Multi-dimensional limiting process for hyperbolic
conservation laws on unstructured grids. J Comput Phys 2010;229:788–812.

[32] Ricchiuto M, Bollermann A. Stabilized residual distribution for shallow water
simulations. J Comput Phys 2009;228:1071–115.

[33] Sander R. A third-order accurate variation non-expansive difference scheme
for single nonlinear conservation law. Math Comput 1988;51:535–58.

[34] Shi J, Hu C, Shu CW. A technique of treating negative weights in WENO
schemes. J Comput Phys 2002;175:108–27.

[35] Shu C-W. Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. In: Cockburn B, Johnson C, Shu C-W,
Tadmor E, Quarteroni A, editors. Advanced numerical approximation of
nonlinear hyperbolic equations. Lecture notes in mathematics, vol.
1697. Springer; 1998. p. 325–432.

[36] Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory
shock-capturing scheme. J Comput Phys 1988;77:439–71.

[37] Skews BW, Kleine H. Flow features resulting from shock wave impact on a
cylindrical cavity. J Fluid Mech 2007;580:481–93.

[38] Titarev VA, Toro EF. ADER schemes for three-dimensional non-linear
hyperbolic systems. J Comput Phys 2005;204:715–36.

[39] Toro EF, Hidalgo A. ADER finite volume schemes for nonlinear reaction–
diffusion equations. Appl Numer Math 2009;59:73–100.

[40] Tsoutsanis P, Titarev VA, Drikakis D. WENO schemes on arbitrary mixed-
element unstructured meshes in three space dimensions. J Comput Phys
2011;230:1585–601.

[41] Van Leer B. Towards the ultimate conservative difference scheme I. The quest
of monotonicity. In: Proceedings of the third international conference on
numerical methods in fluid mechanics, Lecture notes in physics, vol. 18; 1973.
p. 163–8.

[42] Van Leer B. Towards the ultimate conservative difference scheme II.
Monotonicity and conservation combined in a second-order scheme. J
Comput Phys 1974;14:361–70.

[43] Wang ZJ. Spectral (finite) volume method for conservation laws on
unstructured grids: basic formulation. J Comput Phys 2002;178:210–51.

[44] Wang ZJ, Liu Y. Spectral (finite) volume method for conservation laws on
unstructured grids: extention to two dimensional scalar equation. J Comput
Phys 2002;179:665–97.

[45] Wolf WR, Azevedo JLF. High-order ENO and WENO schemes for unstructured
grids. Int J Numer Methods Fluids 2007;55:917–43.

[46] Woodward P, Colella P. The numerical simulation of two-dimensional fluid
flow with strong shocks. J Comput Phys 1984;54:115–73.

[47] Yee HC, Vinokur M, Djomehri MJ. Entropy splitting and numerical dissipation. J
Comput Phys 2000;162:33–81.

[48] Zhang Y-T, Shu C-W. Third-order WENO scheme on three dimensional
tetrahedral meshes. Commun Comput Phys 2009;5:836–48.

[49] Zhang X, Shu C-W. Maximum-principle-satisfying and positivity-preserving
high-order schemes for conservation laws: survey and new developments.
Proc Roy Soc A 2011;467:2752–76.

S. Diot et al. / Computers & Fluids 64 (2012) 43–63 63

202



INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2012; 00:1–34
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld

The MOOD method in the three-dimensional case:
Very-High-Order Finite Volume Method for Hyperbolic Systems.

S. Diot∗,1, R. Loubère1, S. Clain1,2
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SUMMARY

The Multi-dimensional Optimal Order Detection (MOOD) method for two-dimensional geometries has
been introduced in “A high-order finite volume method for hyperbolic systems: Multi-dimensional Optimal
Order Detection (MOOD)”, J. Comput. Phys. 230 (2011), and enhanced in “Improved Detection Criteria
for the Multi-dimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order
polynomials”, Comput. & Fluids 64 (2012). We present in this paper the extension to 3D mixed meshes
composed of tetrahedra, hexahedra, pyramids and prisms. In addition, we simplify the u2 detection process
previously developed and show on a relevant set of numerical tests for both the convection equation and
the Euler system that the optimal high-order of accuracy is reached on smooth solutions while spurious
oscillations near singularities are prevented. At last, the intrinsic positivity-preserving property of the
MOOD method is confirmed in 3D and we provide simple optimizations to reduce the computational cost
such that the MOOD method is very competitive compared to existing high-order Finite Volume methods.
Copyright c© 2012 John Wiley & Sons, Ltd.
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2 S. DIOT

1. INTRODUCTION

First introduced in [5], the Multi-dimensional Optimal Order Detection (MOOD) method proposes
a new strategy to provide third-order approximations to hyperbolic scalar or vectorial problems for
two-dimensional geometry with structured meshes. The author then gave an extension in [11] to
general unstructured 2D meshes where they achieved a sixth-order convergence in space introducing
new detection-limitation procedure. The issue we address in the present paper is to extend the
MOOD method to three-dimensional geometries with general polyhedral unstructured meshes for
the scalar advection equation and the hydrodynamics Euler system. The method casts in the generic
framework of the finite volume method but fundamentally differs from the traditional techniques
by the specific detection-limitation procedure implemented by the authors. Indeed, classical
high-order polynomial reconstruction-based schemes such as MUSCL [21, 35, 36, 22, 18, 3, 23] or
ENO/WENO methods [15, 16, 29, 39, 27] rely on an a priori limiting procedure to achieve some
stability properties. For instance, in MUSCL-like methods unlimited slopes are reduced through
the use of limiters to respect some Discrete Maximum Principle or Total Variation Diminishing
properties. In the same way, ENO/WENO-like methods employ an essentially non-oscillatory
polynomial which provides an accurate solution while preventing undesirable oscillations from
appearing.

We state that such limitation strategies are a priori in the sense that only the data at time
tn are used to first perform the limitation procedure and then compute an approximation at
time tn+1. Generally, the “worst case scenario” (speculative approach) has to be considered as
plausible and, consequently a “precautionary principle” is applied. It results that most of the time
the limitation mechanism unnecessarily operates and may reduce the scheme accuracy due to
restrictive assessments. The MOOD principle lies in a different approach since we first compute
a candidate solution for time tn+1 and use this a posteriori information to check if the proposed
approximation is valid. Roughly speaking, we compute a candidate solution without any limitation
using local polynomial reconstructions to provide accurate approximation of the flux (the degree
is set to a prescribed maximal value). We then detect if this solution locally fails to fulfill some
stability criteria (detection of problematic cells) and further decrement polynomial degree only on
problematic regions (limitation step) before recomputing a new candidate solution. An iterative
procedure (the MOOD algorithm) is carried out by successively decrementing the degree to provide
the optimal local polynomial reconstruction for each cell to satisfy the given stability criteria.
At the end of the MOOD algorithm, the candidate solution is eligible and turns out to be the
approximation at time tn+1. The a posteriori strategy brings new benefits. We dramatically reduce
the number of polynomial reconstructions regarded to the ENO/WENO method since our technique
only requires one polynomial function for each cell. Most of the time, the polynomial with maximal
degree is employed since the limitation mechanism is only activated for problematic cells (objective
approach). From a physical point of view, the positivity preserving property (for the Euler equations
as instance) is simply guaranteed by the a posteriori strategy applying a simple detection procedure
which checks the physical admissibility of the solution.

The paper is organized as follows. In section 2, we detail the concept of the MOOD method,
while the detection criteria are developed in section 3 both for the advection equation and the
hydrodynamics Euler system of equations. Numerical tests are proposed in section 4 to prove
the efficiency of the method: we first consider the scalar advection equation and show effective
high-order of accuracy for regular solutions with the fourth- and sixth-order schemes considering
meshes made of hexahedra and pyramids. We then propose an H-shaped discontinuous profile in
rotation to verify the non-oscillatory property of the MOOD method. Finally, numerical simulations
are carried out for the Euler system to test the method with a nonlinear vectorial problem. As
preliminary experiments, the classical 1D test cases, namely the Sod and Lax shock tubes and
the Shu-Osher and Woodward-Collela problems, are run on 3D tetrahedral and pyramidal meshes.
Then the numerical order of accuracy is checked on the 2D isentropic vortex in motion extended by
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invariance for a 3D mesh and a realistic 2D test case (introduced in [11]), namely the impact of a
shock wave on a cylindrical cavity, is carried out on a mesh made of triangular and quadrangular
prisms. At last, we present results for the 3D explosion problem on a pyramidal mesh and the
interaction of a shock wave with a quarter of cone on a mesh of 1.1 millions of tetrahedra. We
moreover provide computational cost (CPU and memory storage) for the 3D explosion problem
for the MOOD method for different polynomial degrees. We conclude with section 5 and delineate
some future perspectives.

2. THE MOOD CONCEPT

We consider the generic hyperbolic equation defined on a domain Ω ⊂ R3, t > 0 cast in the
conservative form

∂tU +∇ · F (U) = 0, (1a)
U(·, 0) = U0, (1b)

where U = U(x, t) is the vector of unknown functions depending on x = (x, y, z) ∈ Ω and on
the time t. We denote by F the so-called physical flux where we shall consider the autonomous
case F = F (U) (Euler system as instance) and the non-autonomous situation F = F (x, U) such
as ∇x.F (x, .) = 0 (scalar convection case). Function u0 stands for the initial condition while the
boundary conditions will be prescribed in section devoted to the numerical simulations.

2.1. Framework

In order to design the numerical scheme, we introduce the following notation illustrated in Figure
1. The computational domain Ω is assumed to be a polyhedron bounded set of R3 divided into
polyhedral cells Ki, i ∈ Eel where Eel is the cell index set. For each cell Ki, we denote by ci
the cell centroid, and define the set ν(i) of all the indexes j ∈ Eel such that elements Kj share a
common face fij with Ki and the set ν(i) of all the indexes j ∈ Eel such that Ki ∩Kj 6= ∅ (see
illustrations in Figure 2). Moreover for each face fij = Ki ∩Kj , nij stands for the unit normal
vector going from Ki to Kj and we denote by

(
ξij,r, qij,r

)
, r = 1, ..., Rij the quadrature rule for

the numerical integration on fij where ξij,r is the weight associated to the rth quadrature point qij,r
with

∑R
r=1 ξij,r = 1, ∀i ∈ Eel and ∀j ∈ ν(i) (see Figure 1).

Figure 1. Notation for a three-dimensional mesh: exploded view of the face fij between two cells Ki and
Kj . Centroids are respectively denoted by ci and cj . Three quadrature points qij,r, r = 1, 2, 3, on fij are

drawn for illustration. The unit normal vector pointing from Ki to Kj is denoted nij .
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To avoid a specific treatment of the boundary faces we introduce the notion of virtual cell. To
this end, assuming that cell Ki has a face fie = Ki ∩ ∂Ω on ∂Ω, we introduce the virtual cell Kj

where j /∈ Eel obtained by symmetrical transformation of the original cell Ki which represents the
exterior side of Ω. We shall denote by Ebd the index set of all virtual cells such that Ẽel = Eel ∪ Ebd
is the index set of all cells (including the virtual ones).

Figure 2. Illustrations for index sets ν(i) (left) and ν(i) (right) in 3D.

The generic first-order Finite Volume scheme associated to equation (1) writes

Un+1
i = Uni −∆t

∑

j∈ν(i)

|fij |
|Ki|

F(Uni , U
n
j ,nij), (2)

where Uni is an approximation of the mean value of U at time tn on Ki, F(Uni , U
n
j ,nij) is a

numerical flux which satisfies the properties of consistency and monotonicity for the scalar case,
∆t stands for the time step while |fij | and |Ki| are the area of face fij and the volume of cell Ki

respectively.
To provide high-order finite volume schemes, we use convex combinations of the initial building-

block (2) with better approximations at the quadrature points to compute the numerical flux (see
[5, 11] for instance). The high-order schemes are thus obtained from an original first-order Finite
Volume and that is of crucial importance from a computational and implementation point of view
(re-use of the original first-order code to achieve high-order approximations). We substitute the
first-order approximations of the flux integral by higher-order versions, the scheme then writes

Un+1
i = Uni −∆t

∑

j∈ν(i)

|fij |
|Ki|

Rij∑

r=1

ξij,rF(Unij,r, U
n
ji,r,nij), (3)

where Unij,r, U
n
ji,r are high-order approximations of U at quadrature points qij,r on both side of fij .

For meshes constituted of tetrahedral cells, all faces are triangles. Consequently Rij and ξij,r are
independent of i and j and the previous scheme rewrites as a convex combination of the first-order
scheme (2)

Un+1
i =

R∑

r=1

ξr


Uni −∆t

∑

j∈ν(i)

|fij |
|Ki|

F(Unij,r, U
n
ji,r,nij)


 . (4)
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Remark 2.1. When dealing with general polyhedral cells, the quadrature rules may be different
from a face to another and such a convex combination is not valid anymore. However, since
each polygonal face can be split into triangles, one can recover equation (4) by considering each
polyhedron as a polyhedron only constituted by triangular faces (and consequently with more faces
than the original one).

Let denote by Unh =
∑

i∈Eel U
n
i 1IKi the constant piecewise representation of approximation

(Uni )i∈Eel , we introduce operator HR(Unh ) such that relation (3) rewrites as

Un+1
h = Unh + ∆tHR(Unh ). (5)

From the original forward Euler discretization in time (5) we derive a high-order approximation in
time using a Runge–Kutta 3 TVD method:

Un+1
h =

Unh + 2U (3)

h

3
with





U (1)

h = Unh +∆t HR(Unh )

U (2)

h = U (1)

h +∆t HR(U (1)

h )

U (3)

h = Û (2)

h +∆t HR(Û (2)

h )

(6)

where Û (2)

h is the convex combination (3Unh + U (2)

h )/4.

The time discretization introduces a 3rd-order error which makes the whole scheme to be
formally 3rd-order accurate. However setting ∆t = ∆xr/3 where r is the spatial order of accuracy
and ∆x is a characteristic length provide same order for spatial and time errors.

2.2. Reconstruction

We have formally defined an arbitrary high-order accurate Finite Volume scheme, providing that
Uij,r is a high-order accurate point-wise approximation of U(qij,r) computed from cell Ki. In
this subsection, we briefly describe the technique to produce such approximations and we refer
to [5, 11] and references herein for details. Let us consider a scalar variable u and denote by
ũi(·, d) a local polynomial approximation of degree d reconstructed on cell Ki from the mean
values of function u on a set of neighboring cells Sdi called stencil. For the sake of conservation, i.e.
1
|Ki|

∫
Ki
ũi(x; d) dx = ui, we assume that the polynomial has the following structure

ũi(x; d) = ui +
∑

1≤|α|≤d
Rα
i

(
(x− c)α − 1

|K|

∫

K

(x− c)α dx

)
, (7)

where the polynomial coefficients Rα
i are fixed by solving a least-squares problem equivalent to

minimizing the functional

E =
∑

j∈Sd
i

(
1

|Kj |

∫

Kj

ũi(x; d) dx− uj
)2

.

In practice, the polynomial coefficients are obtained by multiplying the pseudoinverse of the
least-square problem matrix (that we store in memory) with the vector of mean values on the
stencil, see [11] for details. We moreover recall that for the vectorial case, the reconstructions are
performed for all the conservative components independently.

Finally, considering that polynomial reconstructions ũi(x; d) are provided for all cellsKi, i ∈ Eel,
we compute the approximation at each quadrature point of each face fij by uij,r = ũi(qij,r; d). The
so-called (d-)unlimited scheme (3) is thus defined by employing the reconstructed values in the
numerical flux without any restriction (i.e. no limitation).
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Remark 2.2. We recall that the reconstruction process is very time and memory consuming and
would like to emphasize that contrarily to WENO methods we consider only one reconstruction
stencil per cell and per degree, so that a lot of computational resources are saved.

2.3. The MOOD concept

It is well-known that the first-order scheme (2) is robust but tremendously diffusive, while unlimited
schemes of higher-order produce spurious oscillations in the vicinity of steep gradients. Limitation
mechanisms have been developed to prevent the oscillations from appearing, such as the slope or
flux limitation in MUSCL methods [21, 35, 36, 22, 18, 3, 23] or the computation of an Essentially
Non-Oscillatory polynomial reconstruction in WENO methods [15, 16, 29, 39, 27]. As we mention
in the introduction, all the classical techniques act a priori in the sense that we determine the
limitation process in function of the current data (i.e. the solution at time tn). As a consequence, the
a priori strategy imposes very drastic accuracy reduction due to strong and unnecessary limitations
(the worst case scenario has to be considered). Moreover, computational resources are allocated to
perform the limitation process where most of the time it is useless. In the ENO/WENO case for
instance, several polynomial reconstructions are required even if the solution is locally regular and
can be approximated with only one polynomial function.

In two recent papers [5, 11], we have introduced a new approach based on an a posteriori
evaluation of the solution to determine if the limitation procedure has to be applied and where.
The technique is a posteriori in the sense that we compute a candidate solution (a potential
approximation at time tn+1) and we use the data of the candidate solution to determine if the
solution is valid. More precisely, the detection-limitation mechanism operates in several steps. A
candidate solution is first computed with the highest-order unlimited scheme (the polynomials
with maximal degree). Then a detection procedure is performed to determine the problematic
cells, i.e. all cells where the approximation does not respect some given criteria (see next section).
For problematic cells, the solution is recomputed with a lower-order unlimited scheme (using
polynomials with lower degree) and we repeat the procedure detection-degree decrementing (the
MOOD algorithm) till the cell satisfy the detection criteria or the polynomial degree is zero. In the
last case, a robust first-order scheme (2) is triggered and a meaningful solution is thus provided.
Note that we need to guarantee that the MOOD algorithm stops after a finite number of iterations.

We now set some fundamental notions to define the MOOD method. We name Cell Polynomial
Degree, shortened as CellPD and denoted by di, the degree of the polynomial reconstruction on
cell Ki. We name Face Polynomial Degrees, shortened as FacePD and denoted by dij and dji, the
degrees of the polynomial reconstructions actually used to compute approximations, Uij,r and Uji,r,
of the solution on face fij at quadrature points qij,r respectively from Ki and Kj . The computation
of dij and dji, named FacePD strategy, consists in evaluating the FacePD dij , dji that we employ
on both sides of the interface fij with respect to the CellPD of the neighboring cells. In previous
studies (see [5] for details), we have proposed and experimented several strategies and introduced
the upper-limiting property for a FacePD strategy which states that for any degree d̄, the following
property holds

di = d̄ =⇒ dij ≤ d̄ and dji ≤ d̄, ∀j ∈ ν(i).

This guarantees (see [5]) that the MOOD algorithm stops after a finite number of iterations. In
practice, we use the simple rule dij=dji=min(di, dj).

As mentioned above, the detection mechanism is performed on the candidate solution U?h and
criteria have to be set to specify what is a good solution. To this end, we denote by A the set
of detection criteria (e.g. positivity of a variable or a maximum principle) that the numerical
approximation has to respect on each cell and we say that a candidate solution is A-eligible if it
fulfills all the criteria of A. If the candidate solution is not A-eligible on cell Ki, then we decrement
the polynomial degree. However the solution may not be A-eligible regardless of the set A even if
the polynomial degree is zero for the cell. Consequently, we shall consider the solution acceptable
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Figure 3. Flowchart of the MOOD algorithm: Recon. stands for polynomial reconstruction, Eval. for high-
order evaluations at quadrature points, H-O Update for high-order update of the solution and Det. Proc. for

detection process.

on the cell if either it is A-eligible, or is a first-order solution (i.e. CellPD has been decremented
to zero). To sum up, the MOOD algorithm for the explicit discretization in time consists in the
following stages depicted in Figure 3:

0. Initialize di = dmax, ∀i ∈ Eel.
1. Compute polynomial reconstruction of degree di, ∀i ∈ Eel.
2. Compute FacePD dij and dji and evaluate high-order approximations at quadrature points

on face fij , ∀j ∈ ν(i), ∀i ∈ Eel.
3. Compute candidate solution mean values through unlimited scheme (3), ∀i ∈ Eel.
4. Detection process: decrement CellPD of cells where solution is not acceptable.
5. Stop if the solution is acceptable else go to stage 1.

Following [5, 11] we extend the MOOD algorithm initially designed for a one-time step scheme
to the RK3-TVD scheme by applying it to each sub-step of the RK3-TVD (6) procedure. The
MOOD method is now completely defined except from the detection criteria that have to be suited
to the problem we intend to solve. Such a difficult task requires the complete next section.

3. DETECTION CRITERIA

The crucial point of the MOOD method is the elaboration of the detection criteria set A which
characterizes the properties we want the numerical solution to fulfill. A fundamental purpose of
the detection criteria is to obtain higher-order of accuracy for regular solutions while preventing
numerical oscillations in the vicinity of discontinuous profiles. This would consequently provide
an efficient and robust method. We face several difficulties to design such a set since accuracy
and robustness are antagonist objectives. Moreover, in the Euler problem, a physically admissible
solution is mandatory since the positivity of the density and the pressure is required to compute the
numerical flux. It results that the detection criteria would cover a wide spectrum of properties and
restrictions. A key point we shall detail in the following is the notion of “numerical regularity” in
the sense that we have to determine if, for a local stencil and a set of data (for instance the mean
values), we can associate a regular or a irregular function. This point is really important since the
choice of the reconstruction (namely the polynomial degree) depends on it.

The present section intends to extend and improve detection criteria initially introduced in [11]
to evaluate the local ”numerical regularity” of the approximation. We first begin the study for the
advection equation in section 3.1 and address the hydrodynamics Euler system in section 3.2.

3.1. Advection equation

The scalar advection problem is characterized by the physical flux F (U) = V U where V ∈ R3

stands for the velocity that we assume to be a regular function on Ω and satisfies∇xV (x) = 0 while
U = U(t,x) ∈ R is the passive scalar quantity transported by the fluid.

When dealing with a constant velocity, the exact solution is simply given by U(x, t) = U0(x−
V t) and clearly fulfills a maximum principle, e.g. the minimum of the solution can not be lower
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than the initial condition minimum (and a similar property for the maximum). Consequently, it
seems natural to impose such a condition at the numerical level and, as proposed in [5], we integrate
in the set A the Discrete Maximum Principle (DMP) on mean values for the candidate solution U?h
formulated like this:

min
j∈ν(i)

(Uni , U
n
j ) ≤ U?i ≤ max

j∈ν(i)
(Uni , U

n
j ). (8)

A solution is A-eligible if condition (8) is satisfied for all the cells and we have proved in [5] that
the scheme equipped with such setA provides a numerical solution which, under first-order scheme
CFL condition, satisfies the DMP. However a strict application of relation (8) at smooth extrema
unavoidably reduces the scheme accuracy to two. It suggests that relation (8) is too restrictive and
should be relaxed.

In [11] we have relaxed the condition on cells which violate the DMP. More specifically, the
relation (8) has been supplemented with a new criteria, the so-called u2 detection criteria which
provides an effective arbitrary high-order of accuracy. As mention in the beginning of the section, the
key point is to determine if the numerical solution is regular enough to be approximated by a high-
order polynomial reconstruction and avoid the Gibbs phenomena. To this end, let assume that the
candidate solution does not satisfy the DMP criteria on cellKi. A first step consists in reconstructing
quadratic polynomials on Ki denoted by Ũi and on its neighbors Kj for j ∈ ν(i) denoted by Ũj . In
a second step, we define approximations to the local minimal and maximal curvatures, namely

Xmini = min
j∈ν(i)

(
∂xxŨi, ∂xxŨj

)
and Xmaxi = max

j∈ν(i)

(
∂xxŨi, ∂xxŨj

)
, (9)

Ymini = min
j∈ν(i)

(
∂yyŨi, ∂yyŨj

)
and Ymaxi = max

j∈ν(i)

(
∂yyŨi, ∂yyŨj

)
, (10)

Zmini = min
j∈ν(i)

(
∂zzŨj , ∂zzŨj

)
and Zmaxi = max

j∈ν(i)

(
∂zzŨi, ∂zzŨj

)
, (11)

where we emphasize that the second derivatives are constant and naturally referred to as curvatures.
The u2 detection criterion holds in the following definition.

Definition 3.1 (u2 detection criterion). A candidate solution U?i in cell Ki which violates the DMP
is nonetheless eligible if the following holds

Xmaxi Xmini > 0 and
∣∣∣∣
Xmini

Xmaxi

∣∣∣∣ ≥ 1− ε,

and Ymaxi Ymini > 0 and
∣∣∣∣
Ymini

Ymaxi

∣∣∣∣ ≥ 1− ε,

and Zmaxi Zmini > 0 and
∣∣∣∣
Zmini

Zmaxi

∣∣∣∣ ≥ 1− ε,

where ε is a smoothness parameter.

The definition derives from the idea that the comparison of local second derivatives of the
quadratic reconstructions on a neighborhood provides a relevant information on the numerical
smoothness of the underlying solution. More precisely, we consider that the underlying solution
(characterized by the piecewise constant mean value) is (ε-)smooth if for each direction the
curvatures have the same sign (no oscillation or inflection point) and are (ε-)close enough to each-
other. Such a definition lies in a fitting of the parameter ε the value of which defines the threshold
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between what is considered as smooth extrema or as discontinuity. Therefore the determination of
ε is of crucial importance since it rules the decrementing process activation.

From a practical point of view, the u2 detection criteria operates in two stages. First the test on
the sign of curvatures (left inequalities) is performed. If oscillations are detected, i.e. the product
is negative, the cell is considered as problematic and the decrementing procedure must be applied.
The second stage is performed only if the product is positive. It consists in computing the ratios
between minimal and maximal curvatures and comparing it to 1− ε (right inequalities). If the
curvatures ratio does not respect the inequality, the cell is considered as problematic and the
decrementing process must be applied.

In [11], we propose a parameter ε depending on a local characteristic length and on the spatial
dimension of the domain. This was a first attempt to the determination of ε and deeper investigations
have shown that a simpler definition provides same quality results. To set the ε value, we extend the

parameter as a new function εx = εx

(Xmini

Xmaxi

)
(for the x-direction) with respect to the curvatures

which have to satisfy the restriction
Xmini

Xmaxi

≥ 1− εx. (12)

The goal is to determine a relevant function εx which enables high-order approximation and
robustness. We first note that the curvatures ratio ranges between zero and one so that εx must range
in [0, 1] to make sense. Moreover, the ratio is expected to be close to zero on discontinuities and close
to one on smooth functions which are the two extreme cases. For a non-smooth function, we expect
that the limiting procedure operates and since the closer to zero ε is, the less smooth the underlying
function is considered, εx is expected to be close to zero on discontinuities, i.e. lim

r→0+
εx(r) = 0+.

On the other hand, a ratio close to one indicates smooth functions, so we expect lim
r→1−

εx(r) = 1−

to relax the restriction. We thus propose to define εx as a continuous increasing function of the
curvatures ratio such that εx(0) = 0 and εx(1) = 1. After several attempts, it appears that the simple
function εx(r) = r is an excellent choice. When substituting expression of εx = Xmini /Xmaxi in
relation (12), the x-direction curvatures criterion becomes

Xmini

Xmaxi

≥ 1− X
min
i

Xmaxi

,

and yields
Xmini

Xmaxi

≥ 1/2.

Finally we apply the same reasoning for y- and z-directions and obtain

Ymini

Ymaxi

≥ 1/2 and
Zmini

Zmaxi

≥ 1/2.

The linearity of function εx simplifies the final inequalities and leads to the constant value ε = 1/2
in definition 3.1.

Remark 3.2. The definition of ε is really simpler than the one proposed in [11]. However numerous
numerical test cases have been carried out and no change in the quality of results have been
reported.

Remark 3.3. Numerical experiments show that the choice of the neighborhood where the curvatures
are computed should define a convex hull which contains the reference cell Ki. To constitute such a
stencil, we used the index set of cells ν(i) in 2D (see [11]) but this choice is not relevant for three-
dimensional meshes and we use the index set ν(i) in equations (9)-(11) to provide the expected
results even for large form factor meshes.
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To conclude the section we propose in Figure 4 an algorithmic view of the complete detection
process [DMP→u2] for the advection equation constituted of the DMP of equation (8) relaxed by
the u2 detection criteria of definition 3.1. We emphasize that the algorithm is given in the case of a
cell Ki with U?i its associated candidate solution mean value.

Figure 4. Algorithmic view of the [DMP→u2] detection process for the advection equation.

3.2. Hydrodynamics Euler system

The Euler system for three-dimensional geometries writes

∂t




ρ
ρu
ρv
ρw
E


+ ∂x




ρu
ρu2 + p
ρuv
ρuw

u(E + p)


+ ∂y




ρv
ρuv

ρv2 + p
ρvw

v(E + p)


+ ∂z




ρv
ρuw
ρvw

ρw2 + p
w(E + p)


 = 0, (13)

where ρ stands for the density, u, v and w for the velocity components in the x, y and z directions
respectively, p for the pressure and E for the total energy. This system is closed by the Equation
Of State (EOS) of a perfect gas p = (γ − 1)ρε, where ε is the specific internal energy, γ the ratio of
specific heats and the total energy is constituted of the internal and kinetic energy

E = ρ
(
(u2 + v2 + w2)/2 + ε

)
.
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At last, vector U = (ρ, ρu, ρv, ρw,E) represents the conservative variables of the system while
W = (ρ, u, v, w, p) are the primitive ones. Note that contrarily to WENO methods we do not use
the characteristic variables.

To provide accurate and oscillation-free solutions we use on the one hand polynomial
reconstruction and apply, on the other hand the MOOD algorithm. We mention that all the
polynomial reconstructions are performed on conservative variables and only one CellPD is used for
all variables (see [11] for the motivations and justifications). We now turn to the detection-limitation
procedure and we have to design specific detection criteria for the Euler problem.

Following [11], a first and also mandatory detection criteria corresponds to ensuring the physical
meaningfulness of the primitive variables. We then introduce the Physical Admissibility Detection
(PAD in short) which considers that the candidate solution on a cell Ki is not valid if we have ρ?i
or p?i are negative (after having computed pressure p?i ). We underline the important property that
a high-order scheme (whichever the degree of the polynomial reconstruction) equipped with the
PAD and a first-order scheme which preserves the positivity (of density and pressure) under a CFL
condition is automatically positivity preserving. This property straightforwardly derives from the a
posteriori nature of the MOOD method and has been proved in [11].

However the PAD detection process does not prevent spurious oscillations from appearing and
we turn to the adaptation of the [DMP→u2] detection process proposed in [11]. Initially defined
for scalar quantity, we apply the [DMP→u2] on the density ρ (detection) and recall that the
decrementing is performed for all variables (limitation). Note that the smoothness parameter ε is
still set as 1/2 in the u2 definition as in previous section.

The set of constraints A for Euler system is thus constituted by the PAD followed by the
[DMP→u2] detection process applied to the density variable since we first check the PAD and if
the cell is valid we continue with the [DMP→u2]detection. In Figure 5 we give an algorithmic
view of the complete detection process [PAD→DMP→u2] for the hydrodynamics Euler system
constituted of the PAD detection criteria, the DMP of equation (8) on the density relaxed by the u2
detection criteria of definition 3.1. We emphasize that the algorithm is given in the case of a cell Ki

with U?i =
(
ρ?i , (ρu)?i , (ρv)?i , (ρw)?i , E

?
i

)
its associated candidate solution mean value and that the

candidate pressure p?i has to be computed.

We now highlight some implementation aspects about the detection process which enable to
improve the solution accuracy. Actually in the above algorithm, the [PAD→DMP→u2] performs
well but does not, in some cases, fully reach the optimal order of accuracy for smooth solutions.
Deeper investigations on the isentropic vortex in motion problem have shown that the detection
process inappropriately decrements some cells of the flat region while it operates well in the
area where curvatures are not negligible. The undesirable limitation derives from the extra-small
curvatures treatment by the u2 detection where some spurious micro-oscillations take place on
the flat area and wrongly activate the curvature sign detection. It results that the sign criterion is
not relevant when all the curvatures sizes are too small with respect to a mesh parameter δ. To
overcome the over-detection phenomena, we introduce a relaxation parameter in the u2 criterion to
fix the problem.

Definition 3.4 (u2 detection criterion). A candidate solution U?i in cell Ki for which the density ρ?i
violates the DMP is nonetheless eligible if

Xmaxi Xmini > −δ and
(

max
(
|Xmaxi |, |Xmini |

)
< δ or

∣∣∣∣
Xmini

Xmaxi

∣∣∣∣ ≥ 1/2

)
,

and Ymaxi Ymini > −δ and
(

max
(
|Ymaxi |, |Ymini |

)
< δ or

∣∣∣∣
Ymini

Ymaxi

∣∣∣∣ ≥ 1/2

)
,
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and Zmaxi Zmini > −δ and
(

max
(
|Zmaxi |, |Zmini |

)
< δ or

∣∣∣∣
Zmini

Zmaxi

∣∣∣∣ ≥ 1/2

)
,

where δ is the greatest length of geometrical entity of dimension one defined by the length of the
cells in R, the maximal length of the cell interfaces in R2 and the maximal length of edges of the
cell interface for three-dimensional meshes.

The correction only damps extra-small oscillations such that minimal and maximal curvatures
product satisfies the left condition. When maximal curvatures are larger than δ, the condition on the
ratios of curvatures implies that the underlying function will be considered as non-smooth.

Remark 3.5. The value of δ has been determined after numerous simulation experiments. It enables
to fully reach the optimal order for the Euler system but does not affect the method in wisely
capturing discontinuous profiles. The correction has even been tested for the convection equation
and accuracy losses have not been reported.

In the same way, we slightly relax the DMP criteria to reduce the computational effort to avoid
the waste of resources when performing the u2 detection criterion on plateaus. We consider that a
DMP violation is not relevant if

max
j∈ν(i)

(ρRKi , URKj )− min
j∈ν(i)

(ρRKi , URKj ) < δ3

where index RK corresponds to one of the Runge-Kutta sub-steps.
The MOOD method for the Euler hydrodynamics system is now completely defined and

numerical simulations are carried out for three-dimensional geometries presented in section 4.

Figure 5. Algorithmic view of the [PAD→DMP→u2] detection process for the Euler system.
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3.3. Implementation and optimizations

To conclude the section we detail two important and simple optimizations that we apply to
drastically improve the efficiency of the MOOD method.

Local re-updating. The MOOD method may seem computationally expensive since the MOOD
algorithm we run for each time step, recompute the candidate solution several times whereas
polynomial degrees have been only modified for a small number cells. At the first stage, an initial
candidate solution is computed on all cells. Then the MOOD algorithm successively detects
and limits the problematic cells. The evaluation of a new candidate solution during the MOOD
algorithm by means of scheme (4) only involves the fluxes at the interfaces of corrected cells.
Consequently only problematic cells and their neighbors by face must be recomputed. It drastically
reduces the computational effort since in most cases the solution is acceptable on more than
80–90% of cells, even when shocks are present.

Reduced polynomial degree decrementing. The original decrementing procedure consists in
dropping one-by-one polynomial degrees until zero is reached. Such an approach may be both
costly in CPU and memory resources since reconstruction matrices must be stored for all degrees.
It would nonetheless still be less memory consuming than for the WENO method due to the
large number of polynomial functions involved in the WENO technique. Moreover numerical
experiments suggest the following alternative: whether the solution is very smooth, whether the
solution presents some discontinuities. To take advantage of it, we change the decrementing strategy
by starting from the highest degree, reducing to degree 2 if any and setting degree equal to 0 if the
candidate solution is still not A-eligible. We then manage to reduce the number of decrementing
stages and save computational resources. We point out that the size of the reconstruction stencil
is also an important parameter since a large stencil (required for the maximal degree) will be
influenced by a discontinuity located in the second or third layer of cells around the reference
one while a more compact one (for a P2 reconstruction) still preserves the local regularity of the
underlying function. Another reason to use the P2 reconstruction is that it is also used for the u2
detection process and always has to be stored.
Therefore in practice, we only store two reconstruction matrices per cell, one for the maximal
degree and one for the degree two. It is thus important to remark that the storage cost of the
matrix for degree two is always much lower than the one for the maximal degree. Indeed for
two-dimensional situations, the memory cost of the pseudoinverse matrix associated to polynomial
of degree 2 represents about 10 times 5 elements, about 16 times 9 for P3 reconstruction and around
28 times 20 for P5. Analogically for three-dimensional situations, the P2 reconstruction matrix
represents about 16 times 9 elements while it is about 38 times 19 for P3 and 110 times 55 for P5.

To conclude this section, we would like to draw some remarks about the potentiality of the
MOOD method to be parallelized. Within the MOOD algorithm, only classical unlimited schemes
are used without modification so that the parallelization of this part of the method can be done
as efficiently as the state-of-the-art methods (WENO method for instance). The only novelty
brought by the MOOD method is the iterative process constituting the MOOD algorithm. A
potential difficulty comes from the fact that the number of cells on which the numerical scheme
acts changes from an iteration of the MOOD algorithm to another, since the procedure is only
applied to problematic cells. However it may not dramatically affect the parallelization efficiency:
firstly, because an efficient treatment of the list of problematic cells can be achieved and secondly,
because the time spent to recompute new candidate solutions is negligible compared to the time to
compute the initial one since the number of problematic cells is (in general) very low compared to
the total number of cells. The parallelization capacity of the MOOD method is thus as good as the
state-of-the-art higher-order finite volume methods.
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4. NUMERICAL RESULTS

The MOOD method has been implemented into a 3D unstructured code dealing with polyhedra
having coplanar faces: tetrahedron, hexahedron, pyramid and prism. The polynomial reconstruction
procedure is implemented independently of the degree dmax and we provide in the present
paper numerical results up to dmax = 5. Following [11] and remarks in section 3.3, we use the
decrementing sequence Pdmax − P2 − P0. The reconstruction matrices are computed and stored
in a preprocessing step since they only depend on geometry. Moreover fluxes across faces are
approximated by the mean of Gaussian quadrature formulae on a triangular decomposition of
the faces (see Figure 1). At last concerning the time discretization, the first-order time step ∆t
is controlled by a CFL coefficient equal to 0.5. For the convergence studies on smooth solutions we
use the time step ∆t = ∆xr/3 to achieve a global rth-order of accuracy and compute the relative L1

and L∞ errors for a a bounded, L1 function ϕ by

L1 error:

∑
i∈Eel |ϕ

N
i − ϕexi ||Ki|∑

i∈Eel |ϕexi ||Ki|
and L∞ error:

maxi∈Eel |ϕNi − ϕexi |
maxi∈Eel |ϕexi |

,

where (ϕexi )i∈Eel and (ϕNi )i∈Eel are respectively the exact and the approximated cell mean values
at final time t = tfinal.

4.1. Advection equation

For the scalar advection equation, the MOOD method is employed with the [DMP→u2] detection
process and two test cases are carried out: the Triple Sine Translation (TST) to assess the effective
very high-order of accuracy and the rotation of a discontinuous H-like shape to test its ability to
damp the spurious oscillations.

4.1.1. Triple Sine Translation Let Ω be the unit cube. We consider a constant translation velocity
V = (1, 1, 1) and the C∞ initial condition

U0(x, y, z) = sin(2πx) sin(2πy) sin(2πz).

The final time is tfinal = 2.0 and periodic boundary conditions imply that the exact final solution
coincides with the initial one. The computations are first carried out on a series of successively
refined regular hexahedral meshes from 83 to 643 cells. To underline the capability of the MOOD
method to handle mixed element meshes, we also consider a series of meshes built from a series
of regular hexahedral meshes from 43 to 483 cells into which we regularly split half of cells into 6
pyramids (see top line of Figure 6).

In Figure 6, we display the convergence curves for the L1 and L∞ errors of the MOOD-P2,
MOOD-P3 and MOOD-P5 methods and give in Table I, the corresponding errors and rates of
convergence. As expected, the optimal rate of convergence is achieved. Notice that on the coarsest
meshes the initial mean values are not representative of the underlying smooth function and are
coherently handled by the method as discontinuous profiles. As such the sine function is under-
resolved; for instance in 1D, averaging the function sin(2πx) or an Heaviside-like function on [0; 1]
using four cells provides to same mean values.
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Figure 6. Triple sine translation: convergence curves for L1 (middle) and L∞ (bottom) errors for series of
hexahedral (left) and hexahedral/pyramidal (right) meshes. Examples of such meshes are given on top line.
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MOOD on hexahedra

Deg. h L1 error L2 error L∞ error

P2 0.125 9.9682484294e-1 — 9.9680699621e-1 — 1.0038484635 —

0.0625 5.0100730661e-1 0.99 5.0179199583e-1 0.99 5.1327069642e-1 0.97

0.03125 8.6946371321e-2 2.53 8.6934402652e-2 2.53 8.7634409525e-2 2.55

0.015625 1.1429255953e-2 2.93 1.1424251727e-2 2.93 1.1459635442e-2 2.93

Expected order 3 3 3

P3 0.125 9.8673015719e-1 — 9.8688657294e-1 — 1.0110942145 —

0.0625 6.8019691177e-2 3.86 6.9068026293e-2 3.84 7.4325569597e-2 3.77

0.03125 2.8693653411e-3 4.57 2.7741019990e-3 4.64 3.0819084097e-3 4.59

0.015625 1.7856449887e-4 4.01 1.5709922281e-4 4.14 1.8874795858e-4 4.03

Expected order 4 4 4

P5 0.125 9.7842521971e-1 — 9.7924733246e-1 — 1.0169454936 —

0.0625 6.9230110414e-3 7.14 6.9967747247e-3 7.13 7.9478234947e-3 7.00

0.03125 1.2666634416e-4 5.77 1.1021776542e-4 5.99 1.0247433118e-4 6.28

0.015625 2.4614368833e-6 5.69 2.0386571852e-6 5.76 1.6605387870e-6 5.95

Expected order 6 6 6

MOOD on mixed hexahedra/pyramids

Deg. h L1 error L2 error L∞ error

P2 0.25 1.0000027468 — 1.0000052406 — 1.0143912168 —

0.125 8.3799247906e-1 0.25 8.3412664416e-1 0.26 8.6799172420e-1 0.20

0.0625 1.8662020042e-1 2.17 1.8646014762e-1 2.16 2.5210598518e-1 1.78

0.03125 2.5647018453e-2 2.86 2.4729005004e-2 2.91 2.4798614346e-2 3.35

0.020833 7.6897099615e-3 2.97 7.4071918780e-3 2.97 7.3982102275e-3 2.98

Expected order 3 3 3

P3 0.25 9.9952627605e-1 — 1.0018017690 — 1.1083447073 —

0.125 3.9219135702e-1 1.35 4.1718119801e-1 1.26 5.3531820180e-1 1.05

0.0625 2.6501056786e-2 3.89 2.2797888150e-2 4.19 1.9364138004e-2 4.79

0.03125 1.7829686262e-3 3.90 1.5178093945e-3 3.91 1.2521397100e-3 3.95

0.020833 3.5401059785e-4 3.99 3.0038884987e-4 4.00 2.5551614705e-4 3.92

Expected order 4 4 4

P5 0.25 1.0009285907 — 1.0025919881 — 1.0496962436 —

0.125 3.1141644019e-1 1.68 4.0086400280e-1 1.32 5.4249781220e-1 0.95

0.0625 1.3246287256e-3 7.88 1.1541322861e-3 8.44 2.1098853389e-3 8.00

0.03125 2.3443624169e-5 5.82 2.0015998229e-5 5.85 1.6596915121e-5 6.99

0.020833 2.0207215760e-6 6.05 1.7188485947e-6 6.05 1.5127171717e-6 5.91

Expected order 6 6 6

Table I. L1, L2 and L∞ errors and convergence rates for the TST problem with the MOOD-P2, MOOD-P3
and MOOD-P5 methods. Top lines: hexahedral meshes. Bottom lines: mixed hexahedral/pyramidal meshes.
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4.1.2. H-like shape rotation We now turn to the rotation of an H-like shape in the unit cube Ω. The
initial shape is given by

U0(x, y, z) =

{
1 if (|x− 0.5| > 0.1) or (|y − 0.5| < 0.1),
0 elsewhere,

in the cube [0.2; 0.8]3 and 0 elsewhere. The rotation axis is the diagonal line joining the origin
(0, 0, 0) and the point (1, 1, 1). We stop the simulation after one full rotation when the shape is back
to its original position. Note that the velocity depends on the spatial position but is divergence-free
so that the maximum principle also applies in that case. Numerical simulations are carried out on a
86215 tetrahedra mesh generated by the free mesher Gmsh. Results are displayed with an extruded
view on the cut plane z = 1/2. Initialization details are illustrated in Figure 7.

Figure 7. Initialization of the H-like shape rotation problem. Top left: interior view of the tetrahedral mesh.
Top right: initialization of the H-like shape (isosurface 1/2, rotation axis is the red line). Bottom left: cut

plane z = 1/2. Bottom right: extruded initial values from the cut plane.
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We plot in Figure 8 the solution on the cut plane z = 1/2 for the unlimited P3 and P5 schemes
and the MOOD-P3, MOOD-P5 methods. We notice that the unlimited schemes produce oscillations,
depicted in green in the figure, whereas the MOOD method provides an oscillation-free solution
even for polynomials of degree 5. It highlights the capacity of the [DMP→u2] detection process to
correctly treat discontinuous shapes on genuinely unstructured 3D meshes.

Figure 8. Results of the H-like shape rotation problem on the cut plane z = 1/2 for the unlimited P3 and
P5 schemes (top line) and for the MOOD P3 and P5 methods (bottom line). The highlighted green cells

correspond to values below 0 or above 1.
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4.2. Euler system

We now consider the three-dimensional hydrodynamics Euler system on unstructured meshes. The
first test cases proposed in section 4.2.1 deal with the Sod and Lax shock tubes following the Ox
axis (invariant with respect to the other directions). The simulations are carried out on a tetrahedral
mesh to study the MOOD method capacity to handle simple waves. Section 4.2.2 is dedicated
to the Shu-Osher and Blastwave problems approximated on pyramidal cells which respectively
involve a complex oscillatory solution and strong interactions between simple waves along the
Ox direction. We address in section 4.2.3 the effective numerical accuracy of the method with
the isentropic vortex problem for which an exact smooth solution exists. Then in section 4.2.4,
we assess the ability of the MOOD method to simulate complex realistic physics on a mesh of
triangular and quadrangular prisms by carrying out the impact of a shock wave on a cylindrical
cavity proposed in [11]. At last, we provide the MOOD method results for two genuinely three-
dimensional test cases. First we compare the behavior and computational cost (CPU and memory
storage) of the MOOD method with different degrees and detection processes by simulating the
so-called explosion problem [33] using unstructured pyramidal meshes in section 4.2.5; Then in
section 4.2.6, we consider the interaction of a shock wave with a quarter of cone on a mesh of 1.1
millions of tetrahedra with the 4th-order MOOD method.

4.2.1. Sod and Lax shock tubes The original Sod [31] and Lax [24] problems concern one-
dimensional Riemann shock tubes whose solutions consist of a left-moving rarefaction fan, a
right-moving contact discontinuity and a right-moving shock wave. In the three-dimensional
context, we reproduce the expansion following the Ox axis setting initial condition invariant in
y, z and we prescribe reflecting boundary conditions on the cylinder sides. The domain is filled
with an ideal gas with γ = 1.4 and the discontinuity is located in x = 0.5 at t = 0. The initial
density/velocity/pressure values and final time tfinal are given by

• Sod: (ρ, u, p)L = (1.0, 0.0, 1.0) and (ρ, u, p)R = (0.125, 0.0, 0.1), tfinal = 0.2,
• Lax: (ρ, u, p)L = (0.445, 0.698, 3.528) and (ρ, u, p)R = (0.5, 0.0, 0.571), tfinal = 0.13.

The computational domain we consider is a cylinder of unit length and radius R = 0.025 with 0x
line as symmetry axis which is paved with 7517 unstructured tetrahedra as shown in figure 9.

Figure 9. Mesh constituted of 7517 tetrahedra used for the Sod and Lax problems. Some cells are drawn
non-opaque to see some interior tetrahedra.

We display in Figure 10 the numerical approximations of the density computed with the MOOD-
P3 method using the [PAD→DMP→u2] detection process and the exact solution (red line). In
order to provide a clear and relevant representation of the solution along the Ox axis, we slice the
whole cylinder in 100 uniform cylinders (since the average characteristic length is 10−2) and plot
the average of the solution on each of them. As expected the MOOD-P3 method provides a very
good approximation of the solution and maintains sharp discontinuities. In particular, we underline
the very few numbers of points in the contact discontinuity.

4.2.2. Shu-Osher and Blastwave problems The Shu-Osher problem has been introduced in [29] to
test the ability of a scheme to capture both small-scale smooth flow along with shock wave. The
one-dimensional computational domain is Ω = [−5; 5] and the final time is tfinal = 1.8. An initial
x-directional shock wave located at x = −0.4 separates the domain into a left post-shock state
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Figure 10. The MOOD-P3 density results are displayed for the Sod (left) and Lax (right) problems on
tetrahedral mesh vs the exact solution (red line).

(ρ, u, p)L = (3.857143, 2.629369, 10.333333) and a right state (ρ, u, p)R = (1 + 0.2 sin(5x), 0, 1.0).
We consider a perfect gas with γ = 1.4. Reflecting boundary conditions are used to preserve the
invariance following axis Oy, Oz except from the left boundary condition which is an inflow one.

The Blastwave problem has been introduced by Collela and Woodward in [10] to test the
performance of numerical schemes on problems involving strong and thin shock structures. The
initial conditions consist of two parallel planar flow discontinuities on domain Ω = [0, 1] separated
by the planes x1 = 0.1 and x2 = 0.9. The density is unity on the whole domain and the gas is
assumed initially at rest. The pressure is given by pL = 1000 on the left, pC = 0.01 in the center
and pR = 100 on the right. Reflecting boundary conditions are prescribed and the final time is
tfinal = 0.038.

We consider a 21600 regular pyramids mesh (see Figure 12-top right for a pattern example)
obtained from a 400× 3× 3 regular hexahedral mesh for which each cell is split into six pyramids.
The original hexahedral mesh is built by setting ∆x = ∆y = ∆z with ∆x = 0.075 for Shu-Osher
problem and ∆x = 0.0075 for the Blastwave problem. Since there is no exact solution for both
tests we have computed reference solutions using a first-order finite volume scheme with very
fine meshes. As in the previous simulations, the solutions are plotted following the Ox direction
considering an underlying 400 points uniform one-dimensional mesh and circles in Figure 11
represent the mean density on three-dimensional slices of thickness ∆x.

Density approximations obtained with the MOOD-P3 are presented in Figure 11 and compared
to the reference solution (red line). For the Shu-Osher problem (left) we report that the [PAD→
DMP→u2] detection criteria does not over-smooth the oscillatory solution and accurately capture
the high-frequencies waves. On the other hand, for the Blastwave problem (right) we observe sharp
contact discontinuities and shock waves are well-preserved. No spurious oscillations are generated
and the central structure of the solution is very well approximated.

4.2.3. Isentropic vortex The isentropic vortex problem was initially introduced for the two-
dimensional space [28, 38] to test the accuracy of numerical methods since the exact solution is
smooth and has an analytical expression. We simply extend the original problem for the three-
dimensional situation taking the two-dimensional solution invariant following Oz. Let us consider
the computational domain Ω = [−5, 5]× [−5, 5]× [0, zmax] and an ambient flow characterized with
ρ∞ = 1.0, u∞ = 1.0, v∞ = 1.0, w∞ = 1.0, p∞ = 1.0, with a normalized ambient temperature
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Figure 11. Results for the Shu-Osher (left) and Blastwave (right) problems on pyramids. MOOD-P3 density
results are displayed on the left and right columns respectively vs the reference solution (red line).

T ∗∞ = 1.0 computed with the perfect gas equation of state and γ = 1.4.
A z-invariant vortex is centered on the axis line xvortex = (xvortex, yvortex, z) = (0, 0, z) z ∈ R and
supplemented to the ambient gas at the initial time t = 0 with the following conditions u =
u∞ + δu, v = v∞ + δv, T ∗ = T ∗∞ + δT ∗ where

δu = −y′ β
2π

exp

(
1− r2

2

)
, δv = x′

β

2π
exp

(
1− r2

2

)
, δT ∗ = − (γ − 1)β

8γπ2
exp

(
1− r2

)
,

with r =
√
x′2 + y′2 and x′ = x− xvortex, y

′ = y − yvortex. The vortex strength is given by β = 5.0
and the initial density follows relation

ρ = ρ∞

(
T ∗

T ∗∞

) 1
γ−1

=

(
1− (γ − 1)β

8γπ2
exp

(
1− r2

)) 1
γ−1

. (14)

The domain is paved either with N ×N × 4 hexahedra , N = 20, 40, 60, 80, 120 or with
N ×N × 24 pyramids (each hexahedron from the previous mesh is split into 6 pyramids,
see Figure 12). To reduce the computational effort, only four cells are considered in the z-
direction and zmax is taken such that ∆x = ∆y = ∆z, that is to say zmax = 4∆x = 40/N . The
minimal/maximal number of cells is 1600/57600 hexahedra and 9600/153600 pyramids. We
prescribe periodic boundary conditions everywhere.

In Figure 12 we display the convergence curves for the L1 and L∞ errors on the density
approximations for MOOD-P2, MOOD-P3, MOOD-P5 methods, while we provide in Table II
the corresponding errors and convergence rates. We report effective orders corresponding to the
expected optimal rates of convergence for both types of meshes and underline the MOOD method
capacity to provide effective high-order of accuracy on a smooth but non-trivial solution for the
three-dimensional Euler system.
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Figure 12. Isentropic vortex in motion: convergence curves for L1 (middle) and L∞ (bottom) errors for
series of hexahedral (left) and pyramidal (right) meshes. Examples of such meshes are given on top line.
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MOOD on hexahedra

Deg. Cell nb L1 error L2 error L∞ error

P2 20× 20× 4 1.2149125472e-2 — 3.1900165943e-2 — 2.4441600308e-1 —

40× 40× 4 3.2245099895e-3 1.91 8.0410260168e-3 1.98 5.8071095773e-2 2.07

60× 60× 4 1.2274201731e-3 2.38 3.0952199533e-3 2.35 2.2241472168e-2 2.37

80× 80× 4 5.8449248920e-4 2.57 1.4891720330e-3 2.54 1.0333244490e-2 2.66

120× 120× 4 1.8870676632e-4 2.78 4.8726522430e-4 2.75 3.2966795901e-3 2.82

Expected order 3 3 3

P3 20× 20× 4 3.8426301161e-3 — 9.2866634542e-3 — 6.3860302401e-2 —

40× 40× 4 7.2909293814e-4 2.39 1.6463735019e-3 2.49 1.3928173243e-2 2.19

60× 60× 4 1.4537313954e-4 3.97 3.4725838178e-4 3.84 2.5316808689e-3 4.20

80× 80× 4 4.3014601762e-5 4.23 1.1403422006e-4 3.87 8.9234157884e-4 3.62

120× 120× 4 7.7653485653e-6 4.22 2.0827671718e-5 4.19 1.7793186459e-4 3.98

Expected order 4 4 4

P5 20× 20× 4 2.8991068920e-3 — 4.8543664172e-3 — 3.2038381504e-2 —

40× 50× 4 2.2151699683e-4 3.71 5.5851141683e-4 3.12 6.2194475329e-3 2.36

60× 60× 4 2.8610132561e-5 5.04 7.5286576723e-5 4.94 4.9068468256e-4 6.26

80× 80× 4 5.4168534310e-6 5.78 1.5519206048e-5 5.49 1.5955744462e-4 3.90

120× 120× 4 4.0840597698e-7 6.38 1.1795674119e-6 6.36 1.0709587465e-5 6.66

Expected order 6 6 6

MOOD on pyramids

Deg. Cell nb L1 error L2 error L∞ error

P2 20× 20× 24 3.3660908651e-3 — 8.2020368268e-3 — 5.8966752971e-2 —

40× 40× 24 6.0800306087e-4 2.47 1.4780372369e-3 2.47 1.2917288297e-2 2.19

60× 60× 24 1.9831385885e-4 2.76 5.0256415975e-4 2.66 3.4489695638e-3 3.25

80× 80× 24 7.9096059248e-5 3.19 2.0028509695e-4 3.19 1.3642153624e-3 3.22

Expected order 3 3 3

P3 20× 20× 24 8.8005733635e-4 — 2.0405839361e-3 — 2.2060839273e-2 —

40× 40× 24 6.4460987694e-5 3.77 1.4763173293e-4 3.78 1.3204082077e-3 4.06

60× 60× 24 1.2809782719e-5 3.98 2.9223354775e-5 3.99 2.8960192576e-4 3.74

80× 80× 24 4.0713141263e-6 3.98 9.3121356054e-6 3.97 8.6899534957e-5 4.18

Expected order 4 4 4

P5 20× 20× 24 3.7944742185e-4 — 9.8016940506e-4 — 2.0273963181e-2 —

40× 40× 24 9.7451977113e-6 5.28 2.4664732108e-5 5.31 2.4540502338e-4 6.36

60× 60× 24 8.0304771455e-7 6.15 2.0569058735e-6 6.12 2.0022941712e-5 6.18

80× 80× 24 1.2520658320e-7 6.46 3.1436119294e-7 6.53 3.2667224251e-6 6.30

Expected order 6 6 6

Table II. L1, L2 and L∞ errors and convergence rates for the isentropic vortex problem with the MOOD-P2,
MOOD-P3 and MOOD-P5 methods. Top lines: hexahedral meshes. Bottom lines: pyramidal meshes.
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4.2.4. Impact of a shock wave on a cylindrical cavity Based on the experiment proposed in [30],
we have introduced this test case in [11] for the two-dimensional case. We here extend it to 3D
by invariance along the z-direction. It consists in a planar shock wave which impacts a cylindrical
cavity creating complex structures and instabilities. The original purpose of this stringent numerical
test is to prove the ability of the MOOD method to capture physics in realistic conditions. In this
paper it moreover assesses the capacity of the MOOD method to deal with mixed triangular and
quadrangular prisms since the mesh is obtained by extrusion (only two layers) along the Oz axis
of a 2D mesh containing 101127 cells (triangles and quadrangles). We moreover point out that
important differences between cell sizes are present in the domain, since the largest characteristic
length is 0.008 and the smallest one is 0.00015. At last, we run the simulation on the lower half part
of the domain but plot a full domain using a symmetry argument. Details of the mesh are provided
in Figure 13.

Figure 13. Impact of a shock on a cylindrical cavity: details of the mesh containing 202254 triangular and
quadrangular prisms.

The detailed configuration and boundary conditions are provided in [11], and we recall that
we consider the case of a nominal incident shock Mach number of 1.33 in ambient air (with
γ = 1.4) at 0.95 bar pressure and that the variables initialization consists in the pre-shock
values (ρ, u, v, w, p) = (1.1175, 0.0, 0.0, 0.0, 95000.0) and the post-shock ones (ρ, u, v, w, p) =
(1.7522, 166.3435, 0.0, 0.0, 180219.75) leading to conditions of [30] at temperature T = 296.15K.
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Figure 14. Impact of a shock on a cylindrical cavity: magnitude of the density gradient at different times
from left to right and top to bottom.
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In Figure 14, we plot the magnitude of the density gradient computed with the MOOD P2 method
equipped with the [PAD→DMP→u2] detection process at different times of the simulation in
order to give an overview of the physical phenomena. We emphasize that the instabilities along
the cylindrical wall are very well captured. Finally in Figure 15, we provide a zoom of the final
solution on the created instabilities which perfectly match the experimental results of [30].

Figure 15. Impact of a shock on a cylindrical cavity: Zoom on the created instabilities at final time.

4.2.5. The explosion problem We consider the so-called explosion problem [33] given by a gas
initially at rest in the unit cube where a quarter of the ball of radius rc = 0.4 centered at the origin
has a density ρb = 1.0, a pressure pb = 1.0 whereas the exterior is characterized by ρe = 0.125,
pe = 0.1. The domain is partitioned into 203 hexahedral cells for which each hexahedron is split
into 6 pyramids leading to a mesh of 48000 pyramids. Simulations are carried out till the final time
tfinal = 0.25. A reference solution has been computed with a two-dimensional cylindrical staggered
numerical Lagrangian scheme [25].
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We report in Figure 16 the density approximations in function of the radius for a classical
MUSCL scheme [26], the MOOD-P2, MOOD-P3, MOOD-P5 methods equipped with the [PAD→
DMP→u2] detection and the reference solution. Note that we use the same type of representation
than for the previous test cases by slicing the radius in 100 uniform cells.

The solution shape is well reproduced by all methods and the higher the polynomial degree is
the sharper the contact discontinuity and the shock wave are. In a three-dimensional context with
discontinuous solutions, the MOOD-P3 method seems to be the right balance between accuracy and
cost. The slight improvement gained by the MOOD-P5 compared to MOOD-P3 may not justify the
computational over-cost (see further). We also notice that the head of the rarefaction wave is badly
resolved by the MUSCL method whereas the MOOD-P2 and especially the MOOD-P3 method give
accurate approximations.

Figure 16. Density results for the explosion problem in 3D. Comparison between a classical MUSCL
method and the MOOD-P2, MOOD-P3 and MOOD-P5 methods with [PAD→DMP→u2] detection process

on tetrahedral mesh. The straight line corresponds to the reference solution.

To compare the different detection strategies, we present in Figure 17 the final solutions obtained
by the MOOD method with the PAD alone and the [PAD→DMP→u2] detection processes using P5

polynomial reconstructions. Note that contrary to previous figures, we plot the density values for all
cells by associating them with the radius corresponding to the cell centroid. As expected, the PAD
detection process does not damp spurious oscillations close to the shock wave (see the zoom panel)
and extra oscillations are also visible on the head of the rarefaction. We recall that the numerical
approximation using the PAD detection process is the most accurate one on smooth solutions
since only the physical admissibility of the solution is required so that few numerical diffusion is
produced. On the opposite, the [PAD→DMP→u2] detection process damps the oscillations close
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to the shock and to the head of rarefaction but also maintain a very good accuracy with a slight non
monotonic behavior.

Figure 17. Density results for the explosion problem in 3D obtained with the MOOD-P5 method.
Comparison between the PAD alone and [PAD→DMP→u2] detection process. The straight line

corresponds to the reference solution and the symbols represent mean values of all cells.

Finally we provide in Tables III the computational cost of the MOOD method for this test case in
this particular configuration when running on a single core of the three following machines (using
-O3 flag for gfortran compiler):

M1: server with two Intel Xeon E5335 (4 cores) @ 2.00Ghz, 8MB of L2 Cache, 16GB of RAM
M2: laptop with Intel Core2Duo P7550 (2 cores) @ 2.26GHz, 3MB of L2 Cache, 8GB of RAM
M3: desktop with Intel Core i5 2500 (4 cores) @ 3.30GHz, 6MB of L2 Cache, 8GB of RAM

Note that the same three machines have been used in [11] to assess the computational cost of the
MOOD method for two-dimensional geometries.

Machine 1 Machine 2 Machine 3 Memory
MOOD with Intel Xeon E5335 Intel Core2Duo P7550 Intel Core i5 2500 storage

[PAD→DMP→u2] @ 2.00Ghz @ 2.26GHz @ 3.30GHz

MOOD-P2 66µs/it./cell 57µs/it./cell 30µs/it./cell 0.4 GB

MOOD-P3 163µs/it./cell 136µs/it./cell 69µs/it./cell 0.8 GB

MOOD-P5 439µs/it./cell 385µs/it./cell 185µs/it./cell 3.0 GB

Table III. CPU time in microseconds per iteration per cell and memory storage in Gigabytes for the MOOD-
Pk methods (k = 2, 3, 5) with the [PAD→DMP→u2] detection process on three different computers.
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We first observe that the memory storage doubles when the polynomial degree is increased by
one: 0.4 for P2, 0.8 for P3, 1.6 for P4 (not presented in the table) and 3.0 for P5. Notice that the
memory consumption is very low since only two reconstruction pseudoinverse matrices (for P2 and
Pdmax) per cell are effectively stored. The CPU cost increases by a factor about 2.4 from P2 to P3

and about 2.7 from P3 to P5.

By extrapolation of these results we estimate the cost of the MOOD method for larger meshes.
As instance for one million cells mesh and 1000 time steps the method cost should be:

• MOOD-P2 is 66000 seconds on M1, that is to say ∼ 18 hours (∼ 16 hours on M2 and ∼ 8.3
hours on M3) with about 8 Gb of memory storage,

• MOOD-P3 is 163000 seconds, ∼ 2 days on M1 (∼ 1.5 day and ∼ 19 hours on M2 and M3)
with about 16 Gb of memory storage,

• MOOD-P5 is 439000 seconds, ∼ 5 days on M1 (∼ 4.5 days and ∼ 2.1 days on M2 and M3)
with about 62 Gb of memory storage.

Consequently simulations with nowadays sequential computers with a one million cells mesh
(assuming one thousand time steps) can be obtained for about one day of computation with MOOD-
P3 method. The MOOD method is thus a very competitive very high-order finite volume method,
and these results shall be improved by an efficient parallelization.

4.2.6. Interaction of a shock wave with a quarter of cone To conclude the numerical tests section,
we run the test case named interaction of a shock wave with a quarter of cone with the 4th-order
MOOD-P3 method equipped with the [PAD→DMP→u2] detection process. This 3D extension of
the so-called interaction of a shock wave with a wedge has been proposed in [14] as instance.

The domain consists in a quarter on cylinder of radius R = 2.25 centered on the Ox axis which
covers the interval [−1.1; 3.0] in the x-direction. Note that three modifications have been made in
comparison to [14] in order to reduce the computational cost: the test is run on a quarter of cylinder
instead of a half one, the initial interface is placed at x = −0.2 instead of x = −1.0 and the domain
covers in the x-direction the interval [−1.1; 3.0] instead of [−1.5; 3.0]. Finally the mesh obtained by
the free mesher Gmsh contains 1161854 tetrahedra in three refinement zones and exactly matches
the initial interface, see top of Figure 19.

We recall that the circular cone under consideration is such that its length is 1, its tip and foot
radii are 0.02 and 0.5 respectively while its tip is placed at the origin. Moreover wall boundary
conditions are prescribed everywhere except from the top and bottom of the quarter of cylinder
where the exact solution according to the Rankine-Hugoniot conditions is imposed. At last the
initial pre- and post shock conditions are given by (ρ, u, v, w, p) = (2.122, 0.0, 0.0, 0.0, 1.805) and
(ρ, u, v, w, p) = (1.4, 0.0, 0.0, 0.0, 1.0) respectively with γ = 1.4 and the final time is chosen such
that it corresponds to the final time of [14].

In Figure 18, we propose numerical Schlieren-type images on the solution in the Ox−Oy and
Ox−Oz planes. We remark that the symmetry is very well conserved since both images are almost
identical and that all waves that are present in results of [14] are also resolved here although much
less cells (more than 3.5 times less) are considered. This proves that the MOOD method performs
very well on 3D unstructured meshes. Finally on bottom of Figure 19, we provide a 3D view for
which isosurfaces have been chosen to represent the principal waves in the whole domain. It is thus
clear that the method properly reproduces the cylindrical symmetry even on this fully unstructured
3D tetrahedral mesh.
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Figure 18. Interaction of a shock wave with a half cone: on top, numerical Schlieren-type image on the
Ox−Oy plane; on bottom, numerical Schlieren-type image on the Ox−Oz plane.
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Figure 19. Interaction of a shock wave with a half cone: on top, view of the interior of the tetrahedral mesh
with the different zones of refinement; on bottom, isosurfaces corresponding to the principal waves.
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5. CONCLUSION

In this paper we have proposed the three-dimensional extension of the so-called MOOD method
[5, 11]. The Multi-dimensional Optimal Order Detection expression refers to an original way
of determining the optimal local polynomial degree to be used in the reconstruction step of a
classical high-order unlimited scheme. To each cell corresponds a polynomial reconstruction for
which we a posteriori determine the degree according to given criteria (positivity as instance)
against which we test each candidate solution. The detection criteria is based on a relaxed version
of the discrete maximum principle (DMP) associated with a so-called u2 detection procedure
which analyses the numerical curvatures in the neighborhood of a DMP violating cell and
determine if the underlying function is regular or not. In the latter case the polynomial degree
in the associated cell is decremented and the solution is locally recomputed. We have detailed
the numerical method for three-dimensional unstructured meshes and improved the detection
criteria both for the advection equation and the Euler system. Moreover some optimizations for
the three dimensional case have been provided to significantly improve the efficiency of the method.

The MOOD method has been implemented on several kinds of unstructured meshes with Pk
polynomial reconstructions (k varying from 1 to 5). We have provided some sanity checks with
simple configurations and performed more advanced full three-dimensional tests to assess the
ability of the MOOD method to accurately capture waves on real unstructured meshes. For the
scalar convection equation with a regular initial shape the method gives an effective high-order
of accuracy corresponding to the optimal one and we have shown that spurious oscillations are
damped when discontinuous profiles are convected. The results for unidirectional problems for
the Euler system with three-dimensional unstructured meshes show that small scaled structures
are captured while shock waves are resolved within few cells. For the isentropic vortex test case
extended to the three-dimensional context with non-trivial exact solution, effective high-orders of
accuracy are measured and optimal orders are reported for P2,P3 and P5 polynomials. We prove
that the MOOD method is able to capture the realistic physics of the impact of a shock wave on
a cylindrical cavity on a non trivial mesh made of a mix of triangular and quadrangular prisms.
At last, the three-dimensional explosion problem has been carried out to show the improvement
gained with the use of high-order MOOD methods and the slight numerical diffusion generated by
the u2 detection process which enables to prevent spurious numerical oscillations from appearing.
We have also provided the solution computed with the PAD detection process alone to support
the intrinsic positivity-preserving property of the MOOD method and measures of the CPU cost
to underline that the MOOD method is effective on nowadays personal computers. Finally the
interaction of a shock wave on a quarter of cone with the 4th-order MOOD method proves that the
MOOD method provides a very good reproduction of the physics on a unstructured non-regular 3D
mesh of 1.1 millions of tetrahedra.

In a near future, we plan to adapt the MOOD within an ADER technique to avoid the
multiple time steps of the Runge-Kutta approach and overcome the third-order accuracy restriction.
Furthermore although the MOOD method significantly reduces the necessary computational
resources (CPU and memory storage), a parallelized version is of crucial importance to treat huge
size simulations. Finally the application of the MOOD method to more complex physics (multi-
material, multi-phase, etc.) is also an important challenge that has to be tackled.
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3.2 Ultra efficient 3D kinetic scheme

Recently with my colleague Giacomo Dimarco (IMT) we have designed an ultra efficient 3D ki-
netic scheme [39]. The main idea has been developed by Giacomo and my role has been reduced
to implement the 3D version of this idea in an efficient numerical simulation code based on the
straighforward collision operator, i.e. the BGK (Bhatnagar-Gross-Krook) relaxation operator. The
purpose of this work is to show that simulating kinetic equations in seven dimensions (R3×R3×R

respectively for 3D in space, 3D in velocity and 1D in time) is feasible with nowadays laptop with
our new approach.

3.2.1 Quick refresher on the context

The kinetic equations provide a mesoscopic description of gases and more generally of particle
systems. In many applications, the correct physical solution for a system far from thermodynamical
equilibrium, such as rarefied gases or plasmas, requires the resolution of a kinetic equation [228].
However, the numerical simulation of these equations with deterministic techniques presents sev-
eral drawbacks due to the large dimension of the problem. The distribution function depends on
seven independent variables : three coordinates in physical space, three coordinates in velocity space
and the time leading to the seven dimensions already mentioned. This “curse of dimentionality” is
often used as a blanket excuse for not dealing with high-dimensions. This has led the researchers
to find solution to avoid the use of the seven dimensions or, at least, to reduce the burden of deal-
ing with them. Probabilistic techniques such as Direct Simulation Monte Carlo (DSMC) methods
[229, 230, 231, 232] are extensively used in real situations due to their flexibility and low compu-
tational cost compared to finite volume, finite difference or spectral methods for kinetic equations
[233, 234, 235, 236, 237]. On the other hand, DSMC solutions are affected by large fluctuations.
Moreover, in non stationary situations it is impossible to use time averages to reduce these fluc-
tuations and this leads to, either poorly accurate solutions, or again to computationally expensive
simulations. For this reason, many different works have been dedicated to reduce some of the dis-
advantages of Monte Carlo methods, see as instance [230] for an overview on efficient and low
variance Monte Carlo methods.
In this work, we consider the development of a new deterministic method to solve kinetic equa-
tions. The key point is an efficient discretization of the linear transport part of these equations. The
proposed method is based on the so-called discrete velocity models (DVM) [235] and on the semi
Lagrangian approach [238, 239]. The DVM models are obtained by discretizing the velocity space
into a set of fixed discrete velocities [240, 235, 236, 241]. As a result of this discretization, the original
kinetic equation is then represented as a set of linear transport equations plus an interaction term
which couples all the equations. In order to solve the resulting set of equations, the most common
strategy consists in an operator splitting strategy [242] : the solution in one time step is obtained
by the sequence of two stages. First one integrates the space homogeneous equations and then, in
the second stage, the transport equation using the output of the previous step as initial condition.
More sophisticated splitting techniques can be employed, which permits to obtain high order in
time discretizations of the kinetic equations as for instance the Strang splitting method [243]. In any
case, the resulting method is very simple and robust but the main drawback is again the excessive
computational cost. It is a matter of fact that the numerical solution through such microscopic mod-
els and deterministic schemes remains nowadays too expensive especially in multi-dimensions even
with the use of super-computers.
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3.2.2 Ultra Fast-Kinetic-Scheme (FKS)

To overcome this problem, we propose to use a Lagrangian technique which exactly solves the
transport stage on the entire domain and then to project the solution on a grid to compute the contri-
bution of the collision operator. The resulting scheme shares many analogies with semi-Lagrangian
methods [238, 239, 234] and with Monte Carlo schemes [244], but on the contrary to them, the
method is as fast as a particle method while the numerical solution remains fully deterministic,
which means that there is no source of statistical error.
The main features of the method proposed in this work can be summarized as follows :
– The BGK equation is discretized in velocity space by using the discrete velocity models (DVM)

method. The principle of Discrete Velocity Model (DVM) [235] is to set a grid in the velocity
space and to transform the kinetic equation in as set of N linear hyperbolic evolution equations
with source terms.

– A time splitting procedure is employed between the transport and the relaxation operators for
each of the N evolution equations. First- and second-order Strang time splittings [243] are con-
sidered.

– The transport part is solved exactly, which means without using a spatial mesh. The initial data
of this step is given by the solution of the relaxation operator.

– The relaxation part is solved on the grid. The initial data for this step is given by the value of the
distribution function in the center of the cells after the transport step.

We refer the reader to [39] for the details and we only describe the key points of our fast algorithm.
The algorithm relies on a very efficient transport step performed on a logical rectangular grid. First
the 1D velocity bounded space U = [umin, umax] is represented by Nv particles uniformly distributed

up = umin + (p− 1)∆u + ∆u/2, (3.1)

with ∆u = (umax − umin)/Nv. The same process is made for v and w components of the velocity
space leading to Np × Np × Np particles which pave U × V ×W . Because a generic particle moves
with constant velocity Up = (up, vp, wp) the transport step consists of solving the N3

v equations
indexed by p with

X̃n+1
p = Xn

p + ∆t Up ∀p = 1, · · · , N3
v . (3.2)

The first key point in our approach is to work with a regular spacial mesh made of Ni × Nj × Nk
cells, all cells being the same. Each cell is indexed with three indexes i, j, k for each spacial direction.
N3

v particles are localized and further will evolve within each spacial cell. Each particle carries its
own moments, mass mp, momentum mpUp and energy 1

2 mp‖Up‖2. The mass is computed via the
distribution fonction feeded with the macroscopic state of the current cell.
The second key point is to set the initial position of all N3

v particles at the cell center of their
associated cell Xi,j,k, that is to say

X0
p = Xi,j,k, ∀p = 1, · · · , N3

v . (3.3)

After the transport step (3.2) of particle p in cell Ωi,j,k either X̃n+1
p remains in cell Ωi,j,k or it lands

in a neighbor cell Ωil ,jl ,kl where il = i + a with a = −1, 0, or +1 (idem for jl = j + b and kl = k + c).
If particle p remains within its cell then the cell moments are not modified. Contrarily if particle
p leaves its cell then the cell Ωi,j,k moments are decreased by particle p’s moments whereas the
cell Ωil ,jl ,kl moments are increased. The new moments in each cell are therefore decreased due to
the leaving particles and increased by the incoming particles, see Figure 3.3-left. By construction
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Figure 3.3 – Sketch of the 2D transport step in the fast kinetic scheme — Left : a particle p leaves the current cell
i, j with its mass mp (the cell moments are therefore decreased) and it lands in cell i, j + 1 (it contributes to the cell
moments). If p leaves the cell then a sister particle p′ enters and contributes to the moments in cell i, j — Right : the
same situation for the particle positions. The true new position Xn+1

p is computed as if periodic boundary conditions are
applied to cell i, j.

conservation of moments is ensured.
Due to the initialization of particle positions the fact that p leaves its cell implies that a “sister”
particle p′ on the other side of the cell is entering, see Figure 3.3-right. This “sister” particle has a
position X̃n+1

p′ in Ωi,j,k which is the same as X̃n+1
p′ in its new cell Ωil ,jl ,kl . It is then easy to see that

this situation is equivalent to assume periodic boundary conditions on each cell. Therefore the new
particle p position in cell Ωi,j,k is

Xn+1
p = Xn

p + ∆t Up subject to periodic BCs on Ωi,j,k. (3.4)

Doing so only the positions of particles need to be updated for only one spacial cell. In addition
only one set of N3

v particle positions need to be stored, which drastically reduces the memory
consumption of the method. The information which must be kept in the case particle p leaves
the cell, is the integer vector (a, b, c) which determines in which cell particle p lands. Finally the
algorithm simply consists of transporting the particles and marking the particles leaving their cell,
computing the moments of the leaving particles, update the cell moments, compute the moments
of the incoming particles and re-update the cell moments.
Thanks to this approach we are able to compute the solution of the full six dimensional kinetic

equation on a laptop. This is, up to our knowledge, the first time that the full kinetic equation has
been solved with a deterministic scheme on a single processor machine for acceptable mesh sizes
and in a reasonable amount of time (around ten hours for 1003 space × 123 velocity space mesh
points).
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3.2.3 Numerical experiments in 3D/3D

Here we report some simulations of the full 3D/3D problem 3. As already mentioned the goal is
to numerically show that such a kinetic scheme can reasonably perform on six dimensions on a
mono-processor laptop. All simulations have been carried out on a HP EliteBook 8740W Intel(R)
Core(TM) i7 Q840@1.87GHz running under a Ubuntu (oneiric) version 11.10. The code has been
compiled with gfortran 4.6 compiler with -O3 optimization flags.
The 3D Sod shock tube has been run with the 3D/3D FKS method. The left state of the 1D Sod
problem is set for any cell c with cell center radius rc ≤ 1/2, conversely the right state is set for cell
radius rc > 1/2. The final time is tfinal = 0.1. The domain is the unit cube and the mesh is composed
of Nx × Nx × Nx cells with ∆x = 1/Nx and ∆x = ∆y = ∆z. The problem is run with Nx = 50
(125000 cells), Nx = 100 (1 million cells) and Nx = 200 (8 millions cells). The velocity space is either
[−10; 10] discretized with 123 points, or [−15; 15] discretized with 133 points. This leads to consider
up to 2003 × 133 ' 17.7 milliards of particles. The time step is fixed to 95% of the maximum
time step allowed, as prescribed by the CFL condition, apart from the last time step. Symmetric
boundary conditions are considered. In Figure 3.4 the density is plotted as a function of the radius
(left panel) and the colored density on a 3D view (right panel) for Nx = 50 (middle panels) and
Nx = 200 (bottom panels). The two different choices for the bounds and the mesh points in velocity
space do not significantly change the results hence only the solution with bounds [−10; 10] and
with 123 mesh points is reported. The reference solution is obtained with ALE INC(ubator) code
[5] with 1000 cells in radial and 20 cells in angular directions. Moreover in Figure 3.4 (top panel)
we present the convergence of the density as a function of cell center radius for all cells for the
50× 50× 50, 100× 100× 100 and 200× 200× 200 cells meshes. These curves are compared to the
reference solution in straight thick line and they show that the results are converging towards the
reference solution. In table 3.1 we gather the number of time steps and the total CPU time T for 503

and 1003 cell meshes for the two different configurations : one with Nv = 13 and the velocity space
[−15, 15] and the second one with Nv = 12 and the velocity space [−10, 10]. For the 503 mesh the
simulation takes 45 minutes or 1.36 hour depending on the configuration. For the finer 1003 mesh
the simulation takes either 11 hours or 24 hours The memory consumption ranges from 124Mb to
924Mb depending on the configurations and it scales with the number of cells Nc.
Then, we compute the cost per cycle Tcycle and per cycle per cell Tcell. One observe that the cost

per cycle per cell is an almost constant equal to 4× 10−4s or 5.5× 10−4s. The extrapolation of the
CPU time T for a 2003 mesh at Tcell fixed leads to one or two weeks computation for the two
configurations and a memory storage of about 900MB. In Figure 3.5 we plot the CPU time (red or
blue symbols for each configuration and mesh points of the velocity space) and the extrapolation
curves CPU(Nx, Nc, Tcell) =

Ncycle
Nx

NcTcell for the 3D Sod problem up to time tfinal = 0.1 for single
processor laptop computation on a fixed mesh in velocity space of Nv = 123 points. We deduced
that the FKS method can be used at most on a single processor machine up to a 200× 200× 200
cells for roughly one week of computation. One also notices that the CPU time linearly scales on a
log/log graph as expected (right panel of Figure 3.5)
In the future we would like to extend the method to non uniform meshes, more advanced boundary

conditions and different discretization of the velocity space. One expects with this last point to
increase the accuracy of the schemes without losing its attractive efficiency. To avoid the loss of
accuracy close to the fluid limit, we want to couple the FKS method to an high order solver for the

3. We consider the case in which the projection is made towards the equilibrium at each time step. We recall that, in
this regime, the numerical method gives the worst results in terms of precision, on the other hand, exact solution are
known and this permits to make fair comparisons.
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Figure 3.4 – Sod problem at tfinal = 0.1 for Nx × Nx × Nx cells (for Nx = 50, 100, 200) for the velocity space
[−10; 10] discretized with 123 mesh points. — Top : Convergence of density as a function of cell center radius for all
cells vs converged solution (straight thick line) for the three meshes with zooms on contact and shock waves. Left :
Density as a function of cell center radius (middle : Nx = 50, bottom : Nx = 200) Right : 3D view of density on the
unit cube Nx = 50 (middle) and Nx = 200 (bottom) (the mesh is only shown for Nx = 50).
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Cell # Nc × N3
v Cycle Time Time/cycle Time/cell Mem

N3
v Bnds Nx × Ny × Nz × N3

v Ncycle T (s) Tcycle (s) Tcell (s) (MB)

133 ±15

253 × 133 32 346s 10.81 6.92× 10−4 2.4
= 3.4328125× 106 (5.76mn)

503 × 133 81 4900s 60.50 4.84× 10−4 15.5
= 274.625000× 106 (1.36h)

100× 133 160 85720s 535.75 5.36× 10−4 115.5
= 2.1970× 109 (23.8h)

extrapol. 200× 133 320 ∼ 1.4× 106s ∼ 4400 5.5× 10−4 ∼ 900
= 1.7576× 1010 (16d)

123 ±10

253 × 123 27 218s 8.07 5.17× 10−4 2.3
= 27× 106 (3.63mn)
503 × 123 54 2702s 50.03 4.00× 10−4 15.4

= 125× 103 (45mn)
1003 × 123 107 38069s 355.79 3.56× 10−4 115.4

= 1.728× 109 (10.57h)
extrapol. 2003 × 123 214 ∼ 633440s ∼ 2960 3.7× 10−4 ∼ 900

= 1.3284× 1010 (7d)

Table 3.1 – 3D Sod shock tube. The time per cycle is obtained by Tcycle = T/Ncycle and the time per cycle per cell by
Tcell = T/Ncycle/Nc. The lines marked with extrapol. have been extrapolated by fixing Nc, Ncycle and Tcell.
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Figure 3.5 – Left : Log of the CPU time consumption for the 3D Sod problem at tfinal = 0.1 as a function of N (for
N × N × N cell meshes) on a single processor laptop The red/blue squares are taken from Table 3.1, the thick red/blue
curves are the extrapolation curve from Tcell. The horizontal lines corresponding to one hour, one day, week, month and
year are also plotted. N = 100 corresponds to the ’one million cells’ in space — Right : Log/Log scale.
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system of equations which describes the fluid limit. Finally, we want to extend the method to other
kinetic equations as the Boltzmann or the Vlasov equation and uses GPU infrastructure to speed-up
such computation even more.
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Abstract

In this paper we present a new ultra efficient numerical method for solving ki-
netic equations. In this preliminary work, we present the scheme in the case of the
BGK relaxation operator. The scheme, being based on a splitting technique between
transport and collision, can be easily extended to other collisional operators as the
Boltzmann collision integral or to other kinetic equations such as the Vlasov equation.
The key idea, on which the method relies, is to solve the collision part on a grid and
then to solve exactly the transport linear part by following the characteristics back-
ward in time. The main difference between the method proposed and semi-Lagrangian
methods is that here we do not need to reconstruct the distribution function at each
time step. This allows to tremendously reduce the computational cost of the method
and it permits for the first time, to the author’s knowledge, to compute solutions of
full six dimensional kinetic equations on a single processor laptop machine. Numeri-
cal examples, up to the full three dimensional case, are presented which validate the
method and assess its efficiency in 1D, 2D and 3D.

Keywords: Kinetic equations, discrete velocity models, semi Lagrangian schemes,
Boltzmann-BGK equation, 3D simulation.

1 Introduction

The kinetic equations provide a mesoscopic description of gases and more generally of
particle systems. In many applications, the correct physical solution for a system far from
thermodynamical equilibrium, such as rarefied gases or plasmas, requires the resolution of
a kinetic equation [7]. However, the numerical simulation of these equations with deter-
ministic techniques presents several drawbacks due to the large dimension of the problem.
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The distribution function depends on seven independent variables: three coordinates in
physical space, three coordinates in velocity space and the time. As a consequence, prob-
abilistic techniques such as Direct Simulation Monte Carlo (DSMC) methods [1, 5, 6, 29]
are extensively used in real situations due to their large flexibility and low computational
cost compared to finite volume, finite difference or spectral methods for kinetic equations
[17, 18, 28, 31, 35]. On the other hand, DSMC solutions are affected by large fluctuations.
Moreover, in non stationary situations it is impossible to use time averages to reduce these
fluctuations and this leads to, either poorly accurate solutions, or again to computationally
expensive simulations.

For this reason, many different works have been dedicated to reduce some of the
disadvantages of Monte Carlo methods. We quote [5] for an overview on efficient and
low variance Monte Carlo methods. For applications of variance reduction techniques to
kinetic equation let us remind to the works of Homolle and Hadjiconstantinou [21] and
[22]. We mention also the work of Boyd and Burt [4] and of Pullin [36] who developed a
low diffusion particle method for simulating compressible inviscid flows. We finally quote
the works of Dimarco and Pareschi [14, 15] and of Degond, Dimarco and Pareschi [12] who
constructed efficient and low variance methods for kinetic equations in transitional and
general regimes.

In this work, we consider the development of a new deterministic method to solve
kinetic equations. In particular, we focus on the development of efficient techniques for
the discretization of the linear transport part of these equations. The proposed method
is based on the so-called discrete velocity models (DVM) [28] and on the semi Lagrangian
approach [8, 9]. The DVM models are obtained by discretizing the velocity space into a
set of fixed discrete velocities [3, 28, 31, 32]. As a result of this discretization, the orig-
inal kinetic equation is then represented as a set of linear transport equations plus an
interaction term which couples all the equations. In order to solve the resulting set of
equations, the most common strategy consists in an operator splitting strategy [10]: The
solution in one time step is obtained by the sequence of two stages. First one integrates
the space homogeneous equations and then, in the second stage, the transport equation
using the output of the previous step as initial condition. More sophisticated splitting
techniques can be employed, which permits to obtain high order in time discretizations
of the kinetic equations as for instance the Strang splitting method [37]. In any case, the
resulting method is very simple and robust but the main drawback is again the excessive
computational cost. It is a matter of fact that the numerical solution through such mi-
croscopic models and deterministic schemes remains nowadays too expensive especially in
multi-dimensions even with the use of super-computers.

To overcome this problem, we propose to use a Lagrangian technique which exactly
solves the transport stage on the entire domain and then to project the solution on a grid
to compute the contribution of the collision operator. The resulting scheme shares many
analogies with semi-Lagrangian methods [8, 9, 18] and with Monte Carlo schemes [24], as
we will explain, but on the contrary to them, the method is as fast as a particle method
while the numerical solution remains fully deterministic, which means that there is no
source of statistical error. Thanks to this approach we are able to compute the solution
of the full six dimensional kinetic equation on a laptop. This is, up to our knowledge, the
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first time that the full kinetic equation has been solved with a deterministic scheme on
a single processor machine for acceptable mesh sizes and in a reasonable amount of time
(around ten hours for 1003 space × 123 velocity space mesh points).

In this first work, we consider a simple collision operator, i.e. the BGK (Bhatnagar-
Gross-Krook) relaxation operator [20]. The extension of the method to other operators
like the Boltzmann one [1, 7] or to other kinetic equations like the Vlasov equation [2, 18]
will be considered in future works. At the present moment, the method is designed to
work on uniform grids, although extensions to other meshes are possible and will be also
considered in the next future.

The article is organized as follows. In section 2, we introduce the Boltzmann-BGK
equations and their properties. In section 3, we present the discrete velocity model (DVM).
Then in section 4 we present the numerical scheme. Section 5 is devoted to the illustration
of the analogies between such fast kinetic scheme (FKS) and particle methods. Several
test problems up to three dimensional test cases which demonstrate the capabilities and
the strong efficiency of the method are presented and discussed in section 6. Some final
considerations and future developments are finally drawn in the last section.

2 Boltzmann-BGK Equation

We consider the following kinetic equation as a prototype model for developing our method:

∂tf + v · ∇xf =
1

τ
(Mf − f), (1)

with the initial condition
f(x, v, t = 0) = f0(x, v). (2)

This is the Boltzmann-BGK equation where f = f(x, v, t) is a non negative function
describing the time evolution of the distribution of particles which move with velocity v ∈
Rd in the position x ∈ Ω ⊂ Rd at time t > 0. For simplicity we consider the same dimension
in space and in velocity space d, however it is possible to consider different dimensions
in order to obtain different simplified models. In the BGK equation the collisions are
modeled by a relaxation towards the local thermodynamical equilibrium defined by the
Maxwellian distribution function Mf . The local Maxwellian function is defined by

Mf = Mf [ρ, u, T ](v) =
ρ

(2πθ)d/2
exp

(−|u − v|2
2θ

)
, (3)

where ρ ∈ R∗ and u ∈ Rd are the density and mean velocity while θ = RT with T the
temperature of the gas and R the gas constant. The macroscopic values ρ,u and T are
related to f by:

ρ =

∫

Rd

fdv, u =

∫

Rd

vfdv, θ =
1

ρd

∫

Rd

|v − u|2fdv. (4)

The energy E is defined by

E =
1

2

∫

Rd

|v|2fdv =
1

2
ρ|u|2 +

d

2
ρθ, (5)
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while the kinetic entropy of f by

H(f) =

∫

Rd

f log fdv. (6)

The parameter τ > 0 in (1) is the relaxation time. In this paper, τ is fixed at the beginning
of each numerical test. Considering relaxation frequencies as functions of the macroscopic
quantities does not change the numerical scheme we will propose and its behaviors. We
refer to section 6 for the numerical values chosen.

If we consider the BGK equation (1) multiplied by 1, v, 1
2 |v2| (the so-called collision

invariants), and then integrated with respect to v, we obtain the following balance laws:

∂ρ

∂t
+ ∇x · (ρu) = 0,

∂ρu

∂t
+ ∇x · (ρu ⊗ u + P ) = 0,

∂E

∂t
+ ∇x · (Eu + Pu + q) = 0,

(7)

which express the conservation of mass, momentum and total energy, in which P =
∫
Rd(v−

u) ⊗ (v − u)f dv is the pressure tensor while q =
∫
Rd

1
2(v − u)|v − u|2 dv is the heat flux.

Furthermore the following inequality expresses the dissipation of entropy:

∂t

(∫

Rd

f log f dv

)
+ ∇x ·

(∫

Rd

vf log f dv

)
≤ 0. (8)

System (7) is not closed, since it involves other moments of the distribution function than
just ρ, ρu and E. Let us describe one way to close the system.

The Maxwellian Mf can be characterized as the unique solution of the following entropy
minimization problem

H(Mf ) = min

{
H(f), f ≥ 0 s.t.

∫

Rd

mf dv = U

}
(9)

where m and U are the vectors of the collision invariants and of the first three moments
of f respectively:

m(v) =

(
1, v,

1

2
|v|2

)
, U = (ρ, ρu,E). (10)

This is the well-known local Gibbs principle, and it expresses that the local thermodynam-
ical equilibrium state minimizes the entropy, in the mathematical sense, of all the possible
states subject to the constraint that moments U are prescribed.

Formally, when the number of collision goes to infinity, which means τ → 0, the
function f converges towards the Maxwellian distribution. In this limit, it is possible to
compute the moments P and q of f in terms of ρ, ρu and E. In this way, one can close
the system of balance laws (7) and get the so-called Euler system of compressible gas
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dynamics equations
∂ρ

∂t
+ ∇x · (ρu) = 0,

∂ρu

∂t
+ ∇x · (ρu ⊗ u + pI) = 0,

∂E

∂t
+ ∇x · ((E + p)u) = 0,

p = ρθ, E =
d

2
ρθ +

1

2
ρ|u|2.

(11)

3 The Discrete Velocity Model (DVM)

The principle of Discrete Velocity Model (DVM) is to set a grid in the velocity space and
to transform the kinetic equation in a set of linear hyperbolic equations with source terms.
We refer to the work of Mieussens [28] for the description of this model and we remind to
it for the details.

Let K be a set of N multi-indices of Nd, defined by K =
{
k = (k(i))di=1, k(i) ≤ K(i)

}
,

where {K(i)} are some given bounds. We introduce a Cartesian grid V of Rd by

V = {vk = k∆v + a, k ∈ K} , (12)

where a is an arbitrary vector of Rd and ∆v is a scalar which represents the grid step in
the velocity space. We denote the discrete collision invariants on V by mk = (1, vk,

1
2 |vk|2).

Now, in this setting, the continuous distribution function f is replaced by a N−vector
fK(x, t), where each component is assumed to be an approximation of the distribution
function f at location vk:

fK(x, t) = (fk(x, t))k, fk(x, t) ≈ f(x, vk, t). (13)

The fluid quantities are then obtained from fk thanks to discrete summations on V:

U(x, t) =
∑

k

mkfk(x, t) ∆v. (14)

The discrete velocity BGK model consists of a set of N evolution equations for fk of the
form

∂tfk + vk · ∇xfk =
1

τ
(Ek[U ] − fk), (15)

where Ek[U ] is a suitable approximation of Mf defined next. Two strongly connected and
important questions arise when dealing with discrete velocity models. The first one is
about the truncation and boundedness of the velocity space. The second one concerns the
conservation of macroscopic quantities.

5

Truncation and boundedness of the velocity space. In DVM methods one needs to
truncate the velocity space and to fix some bounds. This gives the number N of evolution
equations (15). Of course, the number N is chosen as a compromise between the desired
precision in the discretization of the velocity space and the computational cost, while the
bounds are chosen to give a correct representation of the flow. Observe in fact that, the
macroscopic velocity and temperature are bounded above by velocity bounds. This implies
that the discrete velocity set must be large enough to take into account large variations
of the macroscopic quantities which may appear as a result of the time evolution of the
equations. Moreover, as a consequence of the velocity discretization, we have that the
temperature is bounded from below. We summarize the above remarks by the following
statement. Let f be a non negative distribution function, then the macroscopic velocity
and temperature associated to f in V by

u =
1

ρ
〈vf〉K, T =

1

dRρ
〈|v − u|2f〉K, (16)

where 〈.〉K denotes the summation over the set of multi-indices K, satisfy the bounds [28]

min
K

v
(i)
k ≤ u(i) ≤ max

K
v

(i)
k , ∀i = 1, . . . , d (17)

1

dR
min
K

|v − u|2 ≤ T ≤ 1

dR
max
K

|v − u|2. (18)

Conservation of macroscopic quantities. Exact conservation of macroscopic quan-
tities is impossible, because in general the support of the distribution function is non
compact. Thus, in order to conserve macroscopic variables, different strategies can be
adopted, two possibilities are described in [19, 28]. Moreover, the approximation of the
equilibrium distribution Mf with Ek[U ] must be carefully chosen in order to satisfy the
conservation of mass, momentum and energy. In the following section we will discuss our
choices in details. Such choices prevent the lack of conservation of physical quantities.

Remark 1 Once DVM model is defined as above, the common choice which permits to
solve the kinetic equation is to discretize the N evolution equations with the preferred finite
volume or finite difference method [28, 31, 32, 35]. Alternatively, one can reconstruct the
distribution function in space and then follows the characteristics backward in time to
obtain the solution of the linear transport equation [8, 9, 17, 18]. Our choice, described
in the next section, which enables to drastically decrease the computational cost, consists
of an exact solution of the linear transport equation avoiding the reconstruction of the
distribution function.

4 Fast kinetic schemes (FKS)

The main features of the method proposed in this work can be summarized as follows:

• The BGK equation is discretized in velocity space by using the DVM method.

6

• A time splitting procedure is employed between the transport and the relaxation
operators for each of the resulting N evolution equations (15). First- and second-
order Strang time splitting [37] are considered.

• The transport part is exactly solved, which means without using a spatial mesh.
The initial data of this step is given by the solution of the relaxation operator.

• The relaxation part is solved on the grid. The initial data for this step is given by
the value of the distribution function in the center of the cells after the transport
step.

Before describing the scheme, we explain how we overcome the drawback of the lack of
conservation of macroscopic quantities in DVM methods.

4.1 Conservative methods

We introduce the conservative method for the initial data and then we extend it to the
scheme. The initialisation is done in two steps. First we fix

f̃k(x, t = 0) = f(x, vk, t = 0), k = 1, . . . , N. (19)

Observe that, in order to do this operation we do not need to discretize the physical
space, in others words, if the initial data is known continuously, this information can be
kept. However, for simplicity, we already at this stage introduce a Cartesian uniform grid
in the physical space. This is defined by the set J of M multi-indices of Nd, which is
J = {j = (j(i))di=1, j(i) ≤ J (i)}, where {J (i)} are some given bounds which represent the
boundary points in the physical space. Next, the grid X of Rd is given by

X = {xj = j∆x + b, j ∈ J }, (20)

where d represents at the same time the dimension of the physical space and the dimension
of the velocity space which are taken equal for simplicity, even if this is not necessary for
the setting of the numerical method. Finally, b is a vector of Rd which determines the
form of the domain and ∆x is a scalar which represents the grid step in the physical space.
We consider a third discretization which is the time discretization tn = n∆t. We will later
in the paper introduce the time step limitations.

We denote with fn
j,k the approximation fn

j,k ≃ f(xj , vk, tn) and with f̃n
j,k the pointwise

distribution value f̃n
j,k = f(xj , vk, tn) which are different, for conservation reasons, as

explained next. In this notation, the discrete moments of the distribution f are

Un
j = 〈mkf

n
j,k ∆v〉K. (21)

The corresponding discrete equilibrium is denoted Ek[Un
j ], or equivalently by En

j,k[U ], which
is an approximation of Mf [U

n
j ] and it will be also defined later. When the distribution

function is truncated in velocity space, conservation of the macroscopic quantities is no
longer possible. Thus, in order to restore the correct conserved variables we make use

7

of a simple constrained Lagrange multiplier method [19], where the constraints are mass,
momentum and energy of the solution. Let us recall the technique from [19]: Let N be the
total number of discretization points of the velocity space of the distribution function. We
consider one space cell, the same renormalization of f should be considered for all spatial
cells. Let

f̃ =
(
f̃1, f̃2, . . . , f̃N

)T
(22)

be the pointwise distribution vector at t = 0 and

f = (f1, f2, . . . , fN )T (23)

be the unknown corrected distribution vector which fulfills the conservation of moments.
Let

C(d+2)×N =




(∆v)d

vk(∆v)d

|vk|2(∆v)d


 (24)

and U(d+2)×1 = (ρ ρu E)T be the vector of conserved quantities. Conservation can be
imposed using a constrained optimization formulation:

Given f̃ ∈ RN , C ∈ R(d+2)×N , and U ∈ R(d+2)×1,

find f ∈ RN such that (25)

‖f̃ − f‖2
2 is minimized subject to the constrain Cf = U.

To solve this constrain minimization problem, one possibility is to employ the La-
grange multiplier method. Let λ ∈ Rd+2 be the Lagrange multiplier vector. Then the
corresponding scalar objective function to be optimized is given by

L(f, λ) =
N∑

k=1

|f̃k − fk|2 + λT (Cf − U). (26)

The above equation can be solved explicitly. In fact, taking the derivative of L(f, λ) with
respect to fk, for all k = 1, ..., N and λi, for all i = 1, ..., d + 2, that is to say the gradient
of L, we obtain

∂L

∂fk
= 0, k = 1, ..., N =⇒ f = f̃ +

1

2
CTλ, (27)

and
∂L

∂λi
= 0, i = 1, ..., d + 2 =⇒ Cf = U. (28)

Now, solving for λ we get
CCTλ = 2(U − Cf̃), (29)

and observing that the matrix CCT is symmetric and positive definite, since C is the
integration matrix, one deduces that the inverse of CCT exists. In particular the value of
λ is uniquely determined by

λ = 2(CCT )−1(U − Cf̃). (30)
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Back substituting λ into (27) provides

f = f̃ + CT (CCT )−1(U − Cf̃). (31)

Observe that, following the same principle, we can impose the conservation of other macro-
scopic quantities, in addition to mass, momentum and energy. A key point is that,
in practice, we need to solve the above minimization problem only for the initial data
f(xj , vk, t = 0) because once the conservation is guaranteed for t = 0, this is also guaran-
teed for the entire computation because the exact solution is used for solving the transport
step. The only possible source of loss of conservation for the entire scheme is the relax-
ation step. This means that, for this step, we will need to impose conservation of the
macroscopic quantities but only for the equilibrium distribution.

The discretization of the Maxwellian distribution Mf (x, v, t), should satisfy the same
properties of conservation of the distribution f , i.e. Un

j = 〈mkf
n
j,k ∆v〉K = 〈mkEk[Un

j ] ∆v〉K.
To this aim, observe that the natural approximation

Ek[Un
j ] = Mf (xj , vk, tn), k ∈ K, n ≥ 0, j ∈ J (32)

cannot satisfy these requirements, due to the truncation of the velocity space and to
the piecewise constant approximation of the distribution function. Thus, the calculation
carried out above for the definition of the initial distribution f , can be also performed for
the equilibrium distribution Mf . This should be done each time we invoke the equilibrium
distribution during the computation. The function E [U ] is therefore given by the solution
of the same minimization problem defined in (25), and its explicit value is given mimicking
(31) by

E [U ] = Mf [U ] + CT (CCT )−1(U − CMf [U ]), (33)

where Mf [U ] represents the pointwise values of the Maxwellian distribution Mf [U ] =
Mf (xj , vk, tn). Notice that the computation of the new distributions f and E only involves
a matrix-vector multiplication. In fact, matrix C only depends on the parameter of the
discretization and thus it is constant in time. In other words matrices C and CT (CCT )−1

can be precomputed and stored in memory during the initialisation step. They are used
during the simulation when the solution of system (25) is invoked.

Another possibility to approximate the Maxwellian distribution Mf is proposed in [28].
In that work, the authors define Ek[U ] as the solution of a discrete entropy minimization
problem

HK(E [U ]) = min
{
HK(g), g ≥ 0 ∈ RN such that 〈mg〉K = U

}
. (34)

This discretization (existence, uniqueness, convergence) has been mathematically studied
in [28]. However, one drawback of this method, is the need for solving a non linear system
of equations in each spatial cell for each time step. As we seek for efficiency, we only
consider the first minimization strategy (25) to approximate the equilibrium distribution
Mf .
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4.2 Conservative and fast kinetic schemes FKS

We can now present the full scheme. Let us start with the first-order splitting scheme and
then, define the second-order in time method based on the Strang splitting strategy [37].

Let f0
j,k be the initial data defined as a piecewise constant function in space and in

velocity space, solution of equation (31) with f̃0
j,k = f(xj , vk, t = 0). We recall that the

choice of a piecewise constant function in space is not mandatory for the method. Let
also E0

j,k[U ] be the initial equilibrium distribution solution of equation (33) with M0
j,k =

Mf (xj , vk, t = 0). We start describing the first time step of the method [t0; t1] starting at
t0 = 0, we further generalize the method to the generic time step [tn; tn+1] starting from
tn.

First time step [t0; t1]. Let us describe the transport and relaxation stages.
Transport stage. We need to solve N linear transport equations of the form:

∂tfk + vk · ∇xfk = 0, k = 1, . . . , N, (35)

where the initial data for each of the N equations is a piecewise constant function in the
three dimensional space defined as

fk(x, t
0 = 0) = f0

j,k ∀x ∈ [xj−1/2, xj+1/2], k = 1, . . . , N. (36)

The exact solution of the N equations at time t1 = t0 + ∆t = ∆t is given by

fk(x, t
1) = f

∗
k(x) = f(x − vk∆t), k = 1, . . . , N. (37)

Observe that, here, we do not need to reconstruct our function as for instance in the semi-
Lagrangian schemes [17, 18], the shape of the function in space is in fact known and fixed
at the beginning of the computation. Once the solution of the transport step is known, to
complete one step in time, we need to compute the solution of the relaxation step. As in
finite volume or finite difference methods, we solve the relaxation step only on the grid,
thus only the value of the distribution function f in the centers of the cells are computed.
From the exact solution of the function fk we can immediately recover these values at the
cost of one simple vector multiplication. On the other hand, one notices that for classical
finite difference or finite volume methods nested loops for each dimension in space and in
velocity space are mandatory to compute the solution of the transport part. This makes
the computational cost of these methods extremely demanding in the multidimensional
cases. On the contrary, the computational cost of the method we propose is only of
the order of the number of points in which the velocity space is discretized (O(N)). In
particular, for uniform meshes, we only need to compute the new value of fk in the center
of one single cell, to know the solution in the center of all others cells.

Relaxation stage. For this step we need to locally solve on the grid, i.e. in the center
of each spatial cell, an ordinary differential equation. Thus, we have to solve:

∂tfj,k =
1

τ
(Ej,k[U ] − fj,k), k = 1, . . . , N, j = 1, . . . ,M, (38)
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where the initial data is the result of the transport step

fk(xj , t
1) ≡ f∗

k (xj), k = 1, . . . , N, j = 1, . . . ,M. (39)

Any discretization method in time for this term can be chosen, as for instance the preferred
Runge Kutta method. However, being the above equation a first order linear ordinary dif-
ferential equation, we choose to compute the exact solution. The last ingredient needed
to perform the computation, is the value of the equilibrium distribution E at the center of
the cell after the transport stage. To this aim, observe that, the Maxwellian distribution
does not change during the relaxation step, which means that during this step the macro-
scopic quantities remain constants. This implies that only the transport stage possibly
modifies the equilibrium distribution. In order to compute the Maxwellian, the macro-
scopic quantities in the center of the cells, i.e. the density, the mean velocity and the
temperature, are given by summing the local value of the discrete distribution f over the
velocity set 〈mkf

∗
j,k∆v〉K = U1

j , j = 1, . . . ,M , where f∗
j,k = f∗

k (xj). Finally, the discrete

equilibrium distribution at time t1 = t0+∆t is the solution of equation (33) with moments
U1
j , j = 1, . . . ,M . We can now compute the solution of the relaxation stage by

f1
j,k = exp(−∆t/ε)f

∗
j,k + (1 − exp(−∆t/ε))E1

j,k[U ]. (40)

Observe that the above equation furnishes only the new value of the distribution at time
t1 = t0 +∆t = ∆t in the center of each spatial cell for each velocity vk. However, what we
need, in order to continue the computation, is the value of the distribution f in all points of
the space. To overcome this problem, in classical discrete velocity methods several authors
[28, 31] consider the distribution function constant in the cell as well as the Maxwellian
distribution. The result is that they need to solve only an ordinary differential equation in
the center of the cell taking the average value of the macroscopic quantities inside one cell.
Here, we make a different approximation. We consider that the equilibrium distribution
Mf has the same form as the distribution f in space. In other words Ek is a piecewise
constant function in space for each velocity vk. The values of this piecewise constant
function are the values computed in the center of the spatial cells, i.e. one defines

Ek(x, t
1) = E1

j,k, ∀x s.t. fk(x, t
1) = fk(xj , t

1), j = 1, . . . ,M. (41)

This further implies that the relaxation term writes in term of spacial continuous function
fk(x, t

1) as

fk(x,∆t) = exp(−∆t/ε)fk(x, t
1) + (1 − exp(−∆t/ε))Ek(x, t

1)[U ]. (42)

For each velocity vk this choice permits to keep the form of the distribution fk constant
in space throughout the computation, and, as a consequence it drastically reduces the
computational cost. This ends the first time step.

We focus now on the time marching procedure for the first- and second-order splitting
schemes which will allow to solve the Bolzmann-BGK equation.
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Generic time step [tn; tn+1]. We present a first-order and second-order Strang splitting
technique [37].

First-order splitting: Given the value of the distribution function f
n
k(x), for all k =

1, . . . , N , and all x ∈ Rd at time tn, the value of the distribution at time tn+1, f
n+1
k (x), is

given by
f
∗
k(x) = fn

k (x − vk∆t), k = 1, . . . , N (43)

f
n+1
k (x) = exp(−∆t/ε)f

∗
k(x) + (1 − exp(−∆t/ε))En+1

k (x)[U ], k = 1, . . . , N, (44)

where En+1
k (x)[U ] is a piecewise constant function, computed considering the solution of

the minimization problem (33) relative to the moments value in the center of each spatial
cell after the transport stage: Un+1

j , j = 1, . . . ,M . These moments are given by computing
〈mkf

∗
j,k∆v〉K where f∗

j,k is the value that the distribution function takes after the transport
stage in the center of each spatial cell.

Second-order splitting: Given the value of the distribution function f
n
k(x), k = 1, . . . , N,

x ∈ Rd at time tn, the scheme reads

f
∗
k(x) = fn

k (x − vk∆t/2), k = 1, . . . , N (45)

f
∗∗
k (x) = exp(−∆t/ε)f

∗
k(x) + (1 − exp(−∆t/ε))E∗

k(x)[U ], k = 1, . . . , N, (46)

where E∗
k(x)[U ] is a piecewise constant function, computed considering the solution of the

minimization problem (33) relative to the moments values in the center of each spatial cell
after the transport stage of size ∆t/2. We call these moments U∗

j , j = 1, . . . ,M . They are
given by the discrete summation 〈mkf

∗
j,k∆v〉K where f∗

j,k is the value that the distribution
function takes after the transport stage in the center of each spatial cell. The last step
consists of a second transport stage of half time step

f
n+1
k (x) = f∗∗

k (x − vk∆t/2), k = 1, . . . , N, (47)

which ends the second-order splitting scheme.

Remark 2

• As already mentioned the choices of uniform meshes and piecewise constant func-
tions in space are not necessary for the construction of the method. These choices
have been made because we wanted to analyze the method in its simplest form. We
postpone to future works the study of non-uniform meshes and different shapes of the
distribution function f in space. However, a key point is that, even if the method in
its general form is already much more faster than finite volume, finite difference or
semi Lagrangian methods for kinetic equations, it can be made extremely fast in the
case of uniform meshes as we will explain in the next paragraph.

• For finite volume or finite difference methods applied to discrete velocity models
of kinetic equations, the second-order time splitting implies the computation of the
transport stage in two steps, from tn to tn+1/2 and from tn+1/2 to tn+1. Conversely
the same operation can be done with the relaxation step to get second order accuracy.
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• In our method, extending the scheme from first- to second-order time splitting is
almost as expensive as the first-order. In fact, except for the first time step in which
we need to compute two times the transport operator with ∆t/2, starting from the
second time step we have to solve a sequence of two ∆t/2 transport stages. However,
being the transport computed exactly, solving the linear transport equations two times
with ∆t/2 or only one time with the entire ∆t provides the same solution. This
means that, in order to obtain second-order accuracy it is sufficient to solve the first
time step with ∆t/2 and then proceed as for the first-order method to obtain global
second-order accuracy in time.

• However, any time splitting method does degenerate to first-order accuracy in the
fluid limit, that is to say, when τ → 0.

• Due to the fact that the relaxation stage preserves the macroscopic quantities, the
scheme is globally conservative. In fact, at each time step, the change of density,
momentum and energy is only due to the transport step. This latter, being exact,
does preserve the macroscopic quantities as well as the distribution function.

• For the same reason, the scheme is also unconditionally positive. In others words,
we observe that fn

k (x) ≥ 0, for all n > 0, and k = 1, . . . ,M if the initial datum is
positive f0

k (x) ≥ 0 for all k = 1, . . . ,M . In fact, the transport maintains the shape
of f unchanged in space while the relaxation towards the Maxwellian distribution is
a convex combination of Mf and f(x − vk∆t) both being positive.

• We expect the scheme to perform very well in collisionless or almost collisionless
regimes. In these cases in fact the relaxation stage is neglectible and only the exact
transport does play a role. When moving from rarefied to dense regimes the projection
over the equilibrium distribution becomes more important. Thus, the accuracy of the
scheme is expected to diminish in fluid regimes, because the projection method is only
first-order accurate. One possibility, for such regimes is to increase the order of the
projection method towards the equilibrium. This possibility will also be analyzed in
future works.

• The time step ∆t is chosen as the classical CFL condition

∆tmax
k

( |vk|
∆x

)
< 1. (48)

Observe that this choice is not mandatory, in fact the scheme is always stable for
every choice of the time step, but being based on a time splitting technique the error
is of the order of ∆t or (∆t)2. This suggests to take the usual CFL condition in
order to maintain the error small enough.

5 Analogies with particles methods

In this section we first introduce a Monte Carlo particle method which permits to solve
the Boltzmann-BGK equation. Next, we introduce its deterministic counterpart, i.e a
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deterministic particle method. Finally, we show that a slightly modified version of this
latter method, in which the positions of the particles, instead of being randomly chosen, are
taken initially at the same position in space for all the cells, is equivalent to a FKS method
where some specific choices of the discretization parameters are done. This analogy permits
to derive a very convenient form of the algorithm which for this choice of the discretization
parameters.

The starting point of Monte Carlo methods is again given by a time splitting between
free transport

∂tf + v · ∇xf = 0, (49)

and collision, which in the case of the BGK operator is substituted by a relaxation towards
the equilibrium

∂tf =
1

τ
(f − Mf [U ]). (50)

In Monte Carlo simulations the distribution function f is discretized by a finite set of
particles

f =
N∑

i=1

mi δ(x − xi(t))δ(v − vi(t)), (51)

where xi(t) represents the particle position, vi(t) the particle velocity and mi the particle
mass which is usually taken constant. During the transport stage the particles move to
their next positions according to

xi(t + ∆t) = xi(t) + vi(t)∆t, (52)

where ∆t is such that an appropriate CFL condition holds. This condition normally
implies that one particle does not cross more than one cell in one time step.

The collision step acts only locally, changes the velocity distribution but preserves the
macroscopic quantities. In this case, as already explained, the space homogeneous problem
admits the following exact solution at time t + ∆t

f(t + ∆t) = e−∆t/τf(t) + (1 − e−∆t/τ )Mf [U ](t). (53)

Thus, in a Monte Carlo method, the relaxation step consists in replacing randomly selected
particles with Maxwellian particles with probability (1 − e−∆t/τ ). This means

vi(t + ∆t) =

{
vi(t), with probability e−∆t/τ

Mf [U ](v), with probability 1 − e−∆t/τ , (54)

where Mf [U ](v) in the above expression represents a particle sampled from the Maxwellian
distribution with moments U . Observe that, second-order splitting can be used as well
in the Monte Carlo methods. As in the case of the FKS, because the transport step is
resolved exactly, the change with respect to the first-order method is only the first time
step which has to be computed with a time step of ∆t/2. This will assure second-order
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accuracy in time except in the limit τ → 0 in which the method degenerates again to
first-order accuracy.

We introduce now a modified particle method which shares many analogies with our
method. Instead of the continuous kinetic equation, this modified particle approach solves
the discrete velocity approximation of the kinetic equation. In this method, the distribu-
tion function is again represented by a piecewise constant function, defined on a compact
support in the velocity space. The distribution function is approximated by a finite set of
particles in each spatial cell as in the previous Monte Carlo method. The main difference
with respect to the other particle method is that now the particles can attain only a dis-
crete set of velocities and that the mass of each particle is no more a constant, instead it
changes in time during the time evolution of the kinetic equation. These types of methods
are known in literature as weighted particles methods [11, 26, 27]. Therefore we consider

f =
N∑

i=1

mi(t) δ(x − xi(t)), δ(v − vi(t)), vi(t) = vk, k ∈ K, (55)

where K is the same set of multi-indices than the DVM discretization (this means that the
number of particle is fixed equal to the number of points N in which the velocity space is
discretized). The BGK equation is again split into two stages: a transport and a relaxation
stage. The transport part, as before, corresponds to the motion of the particles in space
caused by their velocities (52). The main difference is in the solution of the relaxation
part (50). In order to solve this equation from a particle point of view, we change the
mass of each particle using the exact solution of the relaxation equation, i.e.

f(t + ∆t) = e−∆t/τf(t) + (1 − e−∆t/τ )Mf [U ](t). (56)

this corresponds to

mi(t + ∆t) = e−∆t/τf(vi) + (1 − e−∆t/τ )E(vi)[U ], i = 1, . . . , N. (57)

Again in practice to avoid the loss of conservation of macroscopic quantities, once the
conserved quantities are computed in one cell, we solve the minimization problem (33)
to get the function E [U ]. Thus, the above procedure requires the knowledge of Uj , j =
1, . . . ,M , which can only be estimated from the sample positions. The simplest method,
which produces a piecewise constant reconstruction, is based on evaluating the histogram
of the samples on the grid, considering all the samples inside one cell be of the same
importance irrespectively of their positions. In practice, the density ρj , j = 1, . . . ,M is
given by the number of samples NIj belonging to the cell Ij

ρj =
1

∆x

∑

xi∈Ij
mi, (58)

while the mean velocity in each spatial direction and the energy are given by

uj =
1

ρj

∑

xi∈Ij
mivi, Ej =

1

2∆x

∑

xi∈Ij
mi|vi|2. (59)

15

The method described above deserves some remarks. First, note that as τ → 0 the method
becomes a particle scheme for the limiting fluid dynamic equations. This limit method is
the analogous of a kinetic particle method for the compressible Euler equations. Second,
the simple splitting method described is first-order in time. Second order Strang splitting
can be implemented similarly to the case of the FKS scheme described in the previous
section.

Now, we dispose of all the elements which permit to highlight the similarities with
the FKS scheme. Observe that the relaxation step (57) is no more solved statistically
as for the original Monte Carlo method (54). Thus, the scheme described is in fact a
deterministic particle scheme, in which, however, the particle positions are still randomly
initialized. Now, if we consider the piecewise reconstruction of the macroscopic quantities
introduced before (58-59), we take one single particle for each velocity vk, k ∈ K and we
fix all particles positions at the beginning of the computation at the center of each cell we
obtain the FKS described in the previous section. In fact, first the number of particles
in each spatial cell remains constant in time and equal to the number of mesh point in
velocity space N . This is because for each particle that goes out of one cell, there exists
another particle with the same velocity which enters in the cell from another location.
This is due to the fact that particles have initially the same position, they never change
velocity and the mesh is uniform. Thus, during the time evolution the only quantity that
is modified is the mass of the particle. This mass changes according to the solution of the
relaxation equation (57). This is exactly what happens in the FKS method in equation
(44). Finally, the transport is solved exactly for the particle scheme as well as for the
FKS method. However, the weighted particle scheme, can be viewed as a particular case
of the FKS method. In fact, to regain the weighted particle method, we have to fix the
position of the particles, take only a single particle for a given velocity vk, the mesh must
be uniform and the shape of the distribution function in space must be piecewise constant
for the FKS method. This analogy between the two schemes permits, from one side, to
derive a very efficient algorithm for the FKS method. From the other side, it opens the
way to in deep discussions from the theoretical point of view on the relation between the
two methods , like the different convergence properties of the two approaches. We remind
to a future work for an analysis of the convergence of the FKS method.

6 Numerical tests

6.1 General setting

In this section, we present several numerical tests to illustrate the main features of the
method. First the performance of the scheme is tested in the one dimensional case for
solving the Sod problem. In this case, we do comparisons of our method with different
finite difference methods which can solve the same problem. In the one dimensional case,
the computational speedup is not very relevant being all classical methods sufficiently fast.
However, the FKS method is still faster than the other methods. In a second series of
tests we solve a two dimensional- two dimensional kinetic equation. Finally we solve a full
three-three dimensional problem. In this situation, it is a matter of fact that computing
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Figure 1: Sod test: solution at tfinal = 0.05 for the density, with τ = 10−1 (top left),
τ = 10−2 (top right), τ = 10−3 (bottom left) and τ = 10−4 (bottom right).

the solution of a kinetic equation with finite difference, finite volume or semi-Lagrangian
methods is unreasonable. We will show results from our method running on a mono-
processor laptop machine.

6.2 1D Sod shock tube problem

We consider the 1D/1D Sod test with 300 mesh points in physical and 100 points in
velocity spaces. The boundaries in velocity space are set to −15 and 15. The left and
right states are given by a density ρL = 1, mean velocity uL = 0 and temperature TL = 5
if 0 ≤ x ≤ 0.5, while ρR = 0.125, uR = 0, TR = 4 if 0.5 ≤ x ≤ 1. The gas is in
thermodynamical equilibrium. We repeat the same test with 4 different values of the
Knudsen number, ranging from τ = 10−1 to τ = 10−4. We plot the results for the
final time tfinal = 0.05 for the density (Figure 1), the mean velocity (Figure 2) and the
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Figure 2: 1D Sod test: solution at tfinal = 0.05 for the mean velocity, with τ = 10−1 (top
left), τ = 10−2 (top right), τ = 10−3 (bottom left) and τ = 10−4 (bottom right).

temperature (figure 3). In each figure we compare the FKS method with a third order
WENO method, a second-order MUSCL method and a first-order upwind method [23].
These numerical methods used as reference, employ the same discretization parameters,
except for the time step which for stability reason is chosen equal to ∆t/2 for the WENO
and second-order MUSCL schemes, where ∆t is the time step of the fast DVM method
given by (48).

From Figures (1) to (3) we can observe that our method gives very similar results to
the two high order schemes for τ = 10−1, τ = 10−2 and τ = 10−3 while for τ = 10−4,
the scheme is more diffusive than the second and third order scheme but it still performs
better than the first order method. The behaviors of the method for different regimes are
due to the fact that for collisionless regimes the FKS gives almost the exact solution, this
means that it is more precise than the third and second-order methods. When the gas
becomes denser the projection towards the equilibrium, which is only first-order (second
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Figure 3: 1D Sod test: solution at tfinal = 0.05 for the temperature, with τ = 10−1 (top
left), τ = 10−2 (top right), τ = 10−3 (bottom left) and τ = 10−4 (bottom right).

step of the method (44)), does reduce the accuracy of the method. Notice that high
order reconstruction of the equilibrium distribution could also be considered to increase
the global accuracy in such case. However, a key point of the FKS is its low CPU time
consumption in comparison to other existing methods. In the case τ = 10−4 for which the
scheme exhibits diffusive behaviors, a comparison between the third order WENO method
and our FKS method is carried out for a fixed CPU time. In other words, we consider
for a given total computational time, which method gives better results. Thus, we solve
the problem with 200 points in space and 100 in velocity space for the WENO method
and we consider an FKS solver which employs 100 points in velocity space. In order to
have the same computational time for the two methods, we can afford 1000 points for
the FKS. The two results are compared in Figure 4. We observe that, in this situation,
the FKS method gives more accurate solutions, in particular for the shock wave (see the
zooms in the figures). Finally, observe that the gain in term of computational time is not
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so relevant for the one dimensional case, while it becomes very important for the two and
the three dimensional case. In the later case, the difference is about being able to do or
not to do the computation in a reasonable amount of time on a single processor machine.

Figure 4: 1D Sod test: solution at tfinal = 0.05 for the density, the mean velocity and the
temperature with τ = 10−4. Comparison of solutions for the same computational time and
different meshes. WENO 200 points (dashed line) and Fast DVM 1000 points (straight
line).

6.3 2D Sod shock tube problem

We consider now the 2D/2D Sod test on a square [0, 2] × [0, 1]. The velocity space is also
a square with bounds −15 and 15, i.e. [−15, 15]2, discretized with Nv = 20 points in each
direction which gives 202 points. We repeat the same test using different Nx ×Ny meshes
ranging from Nx = Ny = 25 to Nx = Ny = 200. The domain is divided into two parts, a
disk centered at point (1, 1) of radius Rd = 0.2 is filled with a gas with density ρL = 1,
mean velocity uL = 0 and temperature TL = 5, whereas the gas in the rest of the domain
is initiated with ρR = 0.125, uR = 0, TR = 4. The final time is tfinal = 0.07. The gas is in
thermodynamical equilibrium during all the computation which means that we fix τ = 0.
In practice, we are using the kinetic scheme to compute the solution of the compressible
Euler equation. We recall that, as seen in the previous section, this is the case in which
the FKS scheme gives the worse results, this is due to the first order accurate projection
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Figure 5: 2D Sod test: solution at tfinal = 0.07 for the density (top left), the velocity in the
x-direction (top right), the velocity in the y-direction (bottom left) and the temperature
(bottom right).

towards the local Maxwellian distribution. However, this choice permits to compare our
results with a numerical method for the compressible Euler equations, being as already
stated, computationally very demanding to perform simulations of kinetic equations in the
two dimensional case and considerably more demanding in the three dimensional case.

In Figure 5 we show the results for respectively the density, the mean velocity in the
x-direction and in the y-direction and the temperature using a 200×200 mesh. In Figure 6
we report the profile for x = 1 of the same macroscopic quantities comparing the results
to a first order and to a second order MUSCL scheme for the compressible Euler equations
[23]. We clearly see that, as in the 1D case, the accuracy of the FKS method lies between
the first and the second order accuracy in the limit τ → 0. We expect the accuracy to be
highly improved when the gas is far from the thermodynamical equilibrium as in the one
dimensional case.

In table 1 we report the CPU time T of these simulations, the CPU time per time cycle
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Figure 6: 2D Sod test: solution (continuous line) at tfinal = 0.07 and x = 1 for the density
(top left), the velocity in the x-direction (top right), the velocity in the y-direction (bottom
left) and the temperature (bottom right). Comparisons with first order and second order
MUSCL methods (dotted lines)

Tcycle, the CPU time per cycle per cell Tcell and the number of cycles needed to perform
the computation for different meshes in space and a fixed mesh in velocity. As expected
the number of time step linearly scales with the size of the spatial mesh at fixed velocity
mesh (factor 2 when the cell number is multiplies by 4). The CPU time is very small
compared to classical kinetic schemes, in less than 10 minutes the simulation of the Sod
shock tube on a 200 mesh is computed. Finally we observe that the CPU time per cycle
per cell is almost constant which allows to predict the end of the simulation and its cost
beforehand.

6.4 Numerical validation of the 3D/3D fast FKS method

Here we report some simulations of the full 3D/3D problem. We consider only the case in
which τ ≡ 0, which means, we project towards equilibrium at each time step, this is the
fluid limit. We recall that, in this regime, the numerical method gives the worst results in
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Cell v # Cell x # Nc Cell x × v # Ntot Cycle Time Time/cycle Time/cell
N2

v Bounds Nx × Ny Nx × Ny × K2 Ncycle T (s) Tcycle (s) Tcell (s)

25 × 25 25 × 25 × 202 13 2s 0.1538 2.46 × 10−4

= 625 = 250000

202

[−
15
,1

5] 50 × 50 50 × 50 × 202 25 8s 0.32 1.28 × 10−4

= 2500 = 106

100 × 100 100 × 100 × 202 50 60s 1.2 1.20 × 10−4

= 10000 = 4 106 1mn
200 × 200 200 × 200 × 202 100 490s 535.75 1.22 × 10−4

= 40000 = 16 106 ∼ 8mn

Table 1: 2D Sod shock tube. The time per cycle is obtained by Tcycle = T/Ncycle and the
time per cycle per cell by Tcell = T/Ncycle/Nc.

terms of precision, on the other hand, exact solution are known and this permits to make
fair comparisons. For all the other regimes, the performances of the method are better as
shown in the previous section.

The FKS method has been implemented in fortran on a sequential machine. The goal is
to numerically show that such a kinetic scheme can reasonably perform on six dimensions
on a mono-processor laptop. All simulations have been carried out on a HP EliteBook
8740W Intel(R) Core(TM) i7 Q840@1.87GHz running under a Ubuntu (oneiric) version
11.10. The code has been compiled with gfortran 4.6 compiler with -O3 optimization flags.

Otherwise noticed the velocity space is [−15, 15]3 or [−10, 10]3 and is discretized with
Nv = 13 or Nv = 12 grid points in each velocity direction, leading to N3

v = 2197 or
1728 mesh points. The time step is fixed to 95% of the maximum time step allowed, as
prescribed by the CFL condition (48), apart from the last time step which is chosen to
exactly match the user-given final time. Symmetric boundary conditions are considered.

The Sod shock tube in 1D is run as a sanity checks in order to validate the imple-
mentation of the method and show its ability to reproduce 1D results with a 3D run.
Then the Sod problem in 3D is simulated to show the performances of the FKS algorithm
and further compared to a reference solution. For each simulation we report the memory
consumption, the full CPU time and the CPU time cost per cell per time step. Some
extrapolation of these results are also made to measure the efficiency of this method.

6.4.1 1D Sod shock tube problem: A sanity check

The first sanity check consists of running the 1D Sod shock tube in x direction on Nx×2×2
cubes. The initial data are the same as for the 1D problem previously run. The final time
is tfinal = 0.1. In our numerical experiments the computational domain is of size 1 in x
direction leading to ∆x = 1/Nx. We set ∆y = ∆z = ∆x. Four successively refined meshes
in x direction are utilized, Nx = 50, 100, 200, and 400, in order to observe the convergence
of the numerical method towards the exact solution.

In Figure 7 we display the density, the velocity and the temperature vs the exact
solution with solid line (respectively panels (a), (c) and (d)) and a 3D view on the mesh
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Figure 7: 3D-1D Sod problem at tfinal = 0.1 for 50, 100, 200, and 400 cells in x direction
and 2 in y and z directions — Panels (a), (c), (d): Density, velocity and temperature as
a function of x vs exact solution (straight line) — Panel (b): 3D view of colored density
for a 200 × 3 × 3 mesh.

cells colored by density (panel (b) where a 200 × 3 × 3 mesh is used for figure scaling
reasons). The first observation is the perfect symmetry in the ignorable directions y and z
as all cells are plotted (notice that the results for a Nx×5×5 cells mesh exactly match the
Nx × 2 × 2 results). The second obvious observation is the convergence of the numerical
solution towards the exact solution when the mesh is refined. These results assess the
ability of the method and the code to reproduce 1D results without alteration.

In table 2 we gather the number of cycles Ncycle, the CPU time T of these simulations
and display the CPU time per time cycle Tcycle and the CPU time per cycle per cell
Tcell. As expected, the cycle number and the CPU time per time cycle scales with the cell
number and, consequently, the CPU time per cycle per cell is almost constant. This allows
to almost exactly predict the duration of a simulation knowing the cell number. Moreover
we have provided the relative percentage of the cost of the transport and collision stages.

As expected the transport stage does not cost anything, in absolute value, especially
when the number of cells increases. In fact, for computing the solution of this stage in
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Cell # Cycle Time Time/cycle Time/cycle/cell Memory
Nx × Ny × Nz × N3

v Ncycle T (s) Tcycle(s) Tcell(s) Mem(MB)
= Nc × N3

v Transp. Coll.

50 × 2 × 2 81 18 0.22 1.11 × 10−3 0.660
= 200 × 133 = 439400 0.07% 99.93%

100 × 2 × 2 160 68 0.43 1.07 × 10−3 0.704
= 400 × 133 = 878800 0.05% 99.95%

200 × 2 × 2 318 276 0.87 1.08 × 10−3 0.812
= 800 × 133 = 1757600 0.03% 99.97%

400 × 2 × 2 634 1071 1.69 1.06 × 10−3 1.000
= 1600 × 133 = 3515200 0.02% 99.98%

Table 2: 1D Sod shock tube run with the 3D/3D FKS method. The time per cycle is
obtained by Tcycle = T/Ncycle and the time per cycle per cell by Tcell = T/Ncycle/Nc. The
relative percentage of the cost of the transport and relaxation stages are provided. For
our FKS method the transport stage costs almost nothing.

all domain, we consider the evolution of the distribution function f in one single cell, the
same happens in the other cells. This means that the cost of this stage is proportional to
the N3

v mesh points in the velocity space. On the other hand, in finite volume methods
as well as Monte Carlo method the cost to solve this stage is proportional to N3

vNc with
Nc = NxNyNz and, obviously this scales with Nc. Another satisfactory result is the
memory storage Mem in MB (or Mo) of the method which is very low because we never
have to store the distribution function values for more than N3

v points, leading to store
133 × 7 reals, say ∼ 0.123MB independently of Nc. Conversely the storage of the Monte
Carlo method scales with the cell number Nc. Finally as expected the time T scales with
a factor 4 for twice the number of cells.

6.4.2 3D Sod shock tube problem

The 3D Sod shock tube has been run with the 3D/3D FKS method. The left state of
the 1D Sod problem is set for any cell c with cell center radius rc ≤ 1/2, conversely the
right state is set for cell radius rc > 1/2. The final time is tfinal = 0.1. The domain is
the unit cube and the mesh is composed of Nx × Nx × Nx cells with ∆x = 1/Nx and
∆x = ∆y = ∆z. The problem is run with Nx = 50 (125000 cells), Nx = 100 (1 million
cells) and Nx = 200 (8 millions cells). The velocity space is either [−10; 10] discretized
with 123 points, or [−15; 15] discretized with 133 points. This leads to consider up to
2003 × 133 ≃ 17.7 milliards cells. In Figure 8 the density is plotted as a function of
the radius (left panel) and the colored density on a 3D view (right panel) for Nx = 50
(middle panels) and Nx = 200 (bottom panels). The two different choices for the bounds
and the mesh points in velocity space do not significantly change the results hence only
the solution with bounds [−10; 10] and with 123 mesh points is reported. The reference
solution is obtained with a 2D axisymmetric compatible staggered Arbitrary-Lagrangian-
Eulerian code [25] with 1000 cells in radial and 20 cells in angular directions. Moreover in
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Figure 8: Sod problem at tfinal = 0.1 for Nx ×Nx ×Nx cells (for Nx = 50, 100, 200) for the
velocity space [−10; 10] discretized with 123 mesh points. — Top: Convergence of density
as a function of cell center radius for all cells vs converged solution (straight thick line)
for the three meshes with zooms on contact and shock waves. Left: Density as a function
of cell center radius (middle: Nx = 50, bottom: Nx = 200) Right: 3D view of density
on the unit cube Nx = 50 (middle) and Nx = 200 (bottom) (the mesh is only shown for
Nx = 50).
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Cell # Nc × N3
v Cycle Time Time/cycle Time/cell Mem

N3
v Bounds Nx × Ny × Nz × N3

v Ncycle T (s) Tcycle (s) Tcell (s) (MB)

133

[−
15
,1

5] 253 × 133 32 346s 10.81 6.92 × 10−4 2.4
= 3.4328125 × 106 (5.76mn)

503 × 133 81 4900s 60.50 4.84 × 10−4 15.5
= 274.625000 × 106 (1.36h)

100 × 133 160 85720s 535.75 5.36 × 10−4 115.5
= 2.1970 × 109 (23.8h)

extrapol. 200 × 133 320 ∼ 1.4 × 106s ∼ 4400 5.5 × 10−4 ∼ 900
= 1.7576 × 1010 (16d)

123

[−
10
,1

0] 253 × 123 27 218s 8.07 5.17 × 10−4 2.3
= 27 × 106 (3.63mn)
503 × 123 54 2702s 50.03 4.00 × 10−4 15.4

= 125 × 103 (45mn)
1003 × 123 107 38069s 355.79 3.56 × 10−4 115.4

= 1.728 × 109 (10.57h)
extrapol. 2003 × 123 214 ∼ 633440s ∼ 2960 3.7 × 10−4 ∼ 900

= 1.3284 × 1010 (7d)

Table 3: 3D Sod shock tube. The time per cycle is obtained by Tcycle = T/Ncycle and the
time per cycle per cell by Tcell = T/Ncycle/Nc. The lines marked with extrapol. have been
extrapolated by fixing Nc, Ncycle and Tcell.

Figure 8 (top panel) we present the convergence of the density as a function of cell center
radius for all cells for the 50 × 50 × 50, 100 × 100 × 100 and 200 × 200 × 200 cells meshes.
These curves are compared to the reference solution in straight thick line and they show
that the results are converging towards the reference solution. In table 3 we gather the
number of time steps and the total CPU time T for 503 and 1003 cell meshes for the
two different configurations: one with Nv = 13 and the velocity space [−15, 15] and the
second one with Nv = 12 and the velocity space [−10, 10]. For the 503 mesh the simulation
takes 45 minutes or 1.36 hour depending on the configuration. For the finer 1003 mesh
the simulation takes either 11 hours or 24 hours The memory consumption ranges from
124Mb to 924Mb depending on the configurations and it scales with the number of cells
Nc.

Then, we compute the cost per cycle Tcycle and per cycle per cell Tcell. One observe
that the cost per cycle per cell is an almost constant equal to 4 × 10−4s or 5.5 × 10−4s.
The extrapolation of the CPU time T for a 2003 mesh at Tcell fixed leads to one or two
weeks computation for the two configurations and a memory storage of about 900MB. In
Figure 9 we plot the CPU time (red or blue symbols for each configuration and mesh points

of the velocity space) and the extrapolation curves CPU(Nx, Nc, Tcell) =
Ncycle

Nx
NcTcell for

the 3D Sod problem up to time tfinal = 0.1 for single processor laptop computation on a
fixed mesh in velocity space of Nv = 123 points. We deduced that the FKS method can
be used at most on a single processor machine up to a 200 × 200 × 200 cells for roughly
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Figure 9: Left: Log of the CPU time consumption for the 3D Sod problem at tfinal = 0.1
as a function of N (for N ×N ×N cell meshes) on a single processor laptop The red/blue
squares are taken from Table 3, the thick red/blue curves are the extrapolation curve from
Tcell. The horizontal lines corresponding to one hour, one day, week, month and year are
also plotted. N = 100 corresponds to the ’one million cells’ in space — Right: Log/Log
scale.

one week of computation. One also notices that the CPU time linearly scales on a log/log
graph as expected (right panel of Figure 9)

7 Conclusions

In this work we have presented a new super efficient numerical method for solving kinetic
equations. The method is based on a splitting between the collision and the transport
terms. The collision part is solved on a grid while the transport linear part is solved exactly
by following the characteristics backward in time. The key point is that, conversely to
semi-Lagrangian methods, we do not need to reconstruct the distribution function at each
time step. In this first paper, we have presented the basic formulation of this new method
for the BGK equation: Uniform meshes, piecewise constant discretization of the velocity
space and a simple projection towards the equilibrium distribution have been considered.

The numerical results show that the method is incredibly fast. We are now able to
perform numerical simulations of the full six dimensional kinetic equation on a single pro-
cessor machine in several hours. This important result opens the gate to extensive realistic
numerical simulations of far from equilibrium physical models. Concerning the precision
of the method, we observed, as expected, that the fast kinetic scheme (FKS) is more dis-
sipative close to the fluid regime and very precise for gases far from the thermodynamical
equilibrium.

In the future we would like to extend the method to non uniform meshes, more ad-
vanced boundary conditions and different discretization of the velocity space. One expects
with this last point to increase the accuracy of the schemes without losing its attractive
efficiency. To avoid the loss of accuracy close to the fluid limit, we want to couple the
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FKS method to an high order solver for the system of equations which describes the fluid
limit. Finally, we want to extend the method to other kinetic equations as the Boltzmann
or the Vlasov equation.
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3.3. Interfaces in a finite volume scheme : Enhanced Natural Interface Positioning (ENIP) 227

3.3 Interfaces in a finite volume scheme : Enhanced Natural Interface

Positioning (ENIP)

Note that our goal in this section is not the description of the Finite Volume with Characteristic
Flux scheme and its ultimate details and we refer the reader to the bibliography [210, 211, 212] for
this matter. Instead we focus on the interface reconstruction technique that is a part of this scheme
and for which we have proposed several improvements described in one article for the two-material
case [18] A totally Eulerian Finite Volume solver for multi-material fluid flows : Enhanced Natural Interface
Positioning (ENIP), and one preprint for multi-material case [41] Dealing with more than two materials
in FVCF-ENIP method.

The so-called ENIP technique is nowaday part of the FVCF scheme (Finite Volume with Char-
acteristic Flux) introduced in [210] for simulating single phase compressible flows or multi-phase
models without sharp interface capturing. This scheme has been supplemented with the so called
NIP method (Natural Interface Positioning), see [212], to deal with multi-material fluid flows with
sharp interface capturing. It is a cell centered totally Eulerian scheme, in which material interfaces
are represented by a discontinuous piecewise linear curve. A treatment for interface evolution is
proposed on Cartesian structured meshes which is locally conservative in mass, momentum and to-
tal energy and allow the materials to slide on each others. Discrete conservation laws are written on
partial volumes as well as on pure cells, considering the interface in the cell as a moving boundary
without any diffusion between materials. A specific data structure called condensate is introduced
in order to write a finite volume scheme even when the considered volume is made of moving
boundaries, i.e. interfaces. This treatment includes an explicit computation of pressure and velocity
at interfaces. In [212], 2D results are shown illustrating the capability of the method to deal with per-
fect sliding, high pressure ratios and high density ratios. This former method however produces non
satisfactory results in the context of advection of geometrical shapes especially when dealing with
low Mach numbers. Generally speaking most of the advection and reconstruction methods have a
tendency to destroy the shape of advected objects due to numerical approximations. This former
method behaves similarly, but gives very poor results when advecting geometrical shapes especially
when dealing with low Mach number flows. In this work, we have proposed a new method called
ENIP (Enhanced NIP) that is an improvement of the NIP method by a more accurate treatment of
condensates. In fact both NIP and ENIP are depicted in parallel in Fig.3.6. These pictures present
the ideal example of a left-to-right advection of a cubic block of gray material. The condensate in
x-direction made of the top part of the block is considered. On the left part of the figure is schemat-
ically presented the original method from J.-P. Braeunig et al [212] to deal with a condensate. On the
right part of the figure we present our improvement of the method. The first four steps are identical
to both approach.

(A) : the situation at tn presents a block of material (gray) which uniquely defines the volume
fractions of material in each cell. From the volume fractions an interface is reconstructed using
Youngs’ method [189], this is the blue segment associated with a unique blue normal.

(B) : a SLIC representation is built. In other words the material is represented by a vertical interface
and located on either side of the cell according to the angle of the normal against a vertical
line. There is an ambiguity when the interface is aligned with the condensate direction (cell 3

and 4 in Fig. 3.6). In such a case the location of the material on either side is based on roundoff.

(C) : the pieces of material in contact are glued together, as instance on both sides of cell interface
j. The condensate is therefore a succession of material layers and interfaces labled with roman
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Figure 3.6 – NIP vs ENIP method — (A) Situation at tn with real materials geometry, interfaces and normals to them.
(B) Representation of partial volumes at tn. (C) Construction of a condensate at tn by merging layers of contiguous
partial volumes of the same material. (D) Evolution of condensate in a Lagrangian fashion during ∆t. (E) Condensate
reconstruction at tn+1. (F) Condensate projection/remapping from Lagrangian mesh onto original mesh.

numbers. Next the numerical scheme computes the material interface normal velocity (black
arrows).

(D) : the interfaces/layers move with the previously computed normal velocities during the time
step to reach tn+1. For this step ENIP method also displaces the cell interface assuming a piece-
wise linear velocity field along the condensate. Consequently the cells are pseudo-Lagrangian
ones ; they may compress or expand.

(E) : this reconstruction step serves as retrieving a fair representation of the underlying material
locations in the pseudo Lagrangian cells. This step did not exist in NIP. For ENIP we assume
the normals to be unmodified during the time step, hence the tn normals are considered.

(F) : materials are finally remapped back onto the Eulerian cells. While this step is obvious for NIP
it is more demanding for ENIP because several polygonal shapes must be computed, see the
same colored polygons which intersect to the same Eulerian cell.

Using a very simple example, the advection of a square, an inconsistency in the NIP interface
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Figure 3.7 – Inconsistency of NIP method and improvement gained by ENIP method — Advection of a square (zoom
around the exact position of the initial and final square) — From left to right : exact solution, classical NIP with a
60× 60 mesh, classical NIP with a 120× 120 mesh and ENIP with a 60× 60 mesh.

Figure 3.8 – Convergence of ENIP vs NIP for a pure advection problem. The log of the L2 error is displayed as a
function of the log of ∆x.

reconstruction method is exhibited in Fig.3.7. An initial square [0.1; 0.1] × [0.2; 0.2] is located into
the domain Ω = [0 : 0.4]× [0; 0.6]. The density into the square is set to ρ0(x) = 1 whereas it is set
to ρ0(x) = 0 outside. In the pure advection context with a constant velocity (u, v) this square shape
should be perfectly conserved . The exact solution at any point x and any time t is ρex(x, y, t) =
ρ0(x− u t, y− v t). The test consists in advecting the square with the constant velocity field u = 1,
v = 3 up to the time t = 0.1 then reversing the advection field by setting u = −1, v = −3 up to
final time t = 0.2 so that the final configuration exactly fits the initial one. In Figure 3.7 are shown
the exact solution (top-left) and the results obtained with a 60× 60 mesh for NIP (top-right) and
ENIP (bottom-right). ENIP is visibly able to preserve the shape of the square whereas NIP is not. A
mesh refinement of NIP computation (120× 120 mesh for the bottom-left panel) does not improve
the situation. If the numerical method provides an approximated solution called ρn

i in cell i at time
tn then the error in Lα norm is evaluated by (α = 1, 2)

εα =
∑i |ρn

i − ρex(xi, tn)|α
∑i |ρex(xi, tn)|α . (3.5)

The errors for the L2 norm for successively refined meshes have been computed for both methods
and, systematically ENIP over-tops NIP. Moreover in Figure 3.8 we display the log-log scale results
for the error showing the improvement gained by ENIP ; indeed the slope which represents a mea-
sure of the numerical order of convergence is improved by a factor 2.5 (0.6 for NIP and 1.5 for ENIP).
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(a) (b)

(c) (d)

Figure 3.9 – Disk embedded into a vortex problem — Results of ENIP method for the volume fractions (blue : material
1, red : material 2, any other color refers to a mixed cell). (a) : 32× 32 mesh, (b) : 64× 64 mesh, (c) : 128× 128 mesh,
(d) : 256× 256 mesh. For comparison purposes for each mesh resolution we plot the initial t = 0 and final t = 4 times
on the top of each other and on their left the time of maximal stretch t = 2.

A standard volume tracking test case is the disk embedded into a vortex. It consists of a circle of
radius 0.15 centered at (0.5, 0.75). The computational domain is Ω = [0, 1] × [0, 1]. The mesh is a
regular structured grid made of squares of size ∆x× ∆y with ∆x = ∆y = 1/N with N the number
of cells both in x and y directions. The incompressible velocity field is given by the streamfunction

Ψ = cos
(π

4
t
) 1

π
sin2(πx) sin2(πy) (3.6)

with the velocity field defined to be U = (u, v) = (− ∂Ψ
∂y , ∂Ψ

∂x ). Due to the periodicity of Ψ, at time
t = 4, the material configuration should be identical to the condition at time t = 0. The simulations
were run to a final time of t = 4.0 with intermediate results at t = 2.0. Several succesively refined
meshes are used : N = 32, 64, 128 and 256 and the results are plotted in Fig.3.9 for the initial t = 0,
maximal stretch t = 2 and final t = 4 times. A two material disk is considered, one material is
indexed by 2 in the disk (red color) and the second one is indexed by 1 in the surrounding (blue
color). The results of colored volume fractions are shown, any color different from red and blue
indicates a mixed cell. Numerical investigations on this test case have shown that the method is
only first order accurate. However its extension to deal with more than two materials is almost
trivial. In a forthcoming preprint [41] we have tested this approach with the simple onion-skin
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(a) (b)

(c) (d)

Figure 3.10 – Four material disk embedded into a vortex problem — Results of ENIP method for the volume fractions.
(a) : 32× 32 mesh, (b) : 64× 64 mesh, (c) : 128× 128 mesh, (d) : 256× 256 mesh. For comparison purposes for each
mesh resolution we plot the initial t = 0 and final t = 4 times on the top of each other and on their left the time of
maximal stretch t = 2.

interface reconstruction method however more accurate method (MOF [195], Power diagram [17])
can also be considered within this framework. As an illustration we present the volume fractions in
Fig. 3.10 for the vortex test case but with a four material disk (see the initial disk for each resolution).
The disk material indexes are 2 (light blue), 3 (green), 4 (yellow) and 5 (red) and the surrounding
material is labeled by 1 (navy blue). Each cell with a mixed color is indeed a mixed cell. The general
shape of the materials is rather well preserved.
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a b s t r a c t

This work concerns the simulation of compressible multi-material fluid flows and follows the method
FVCF-NIP described in the former paper (Braeunig et al., 2009 [7]). This cell-centered finite volumemethod
is totally Eulerian since the mesh is not moving and a sharp interface, separating two materials, evolves
through the grid. A sliding boundary condition is enforced at the interface, and mass, momentum and
total energy are conserved. Although this former method performs well on 1D test cases, the interface
reconstruction suffers of poor accuracy in conserving shapes for instance in linear advection. This situation
leads to spurious instabilities of the interface. The Enhanced-NIP method presented in the present paper
provides a solution to an inconsistency in the former NIP method. This solution strikingly improves the
numerical results. It takes advantage of a more consistent description of the interface in the numerical
scheme. Results for linear advection and compressible Euler equations for inviscid fluids are presented to
assess the benefits of this new method.

© 2011 Published by Elsevier Masson SAS.

1. Introduction

The two-material compressible hydrodynamics equations (Eu-
ler equations) are considered in this work. The flow regime is such
that molecular viscosity within materials is neglected: materials
are supposed to be immiscible and separated by sharp interfaces,
with perfect sliding betweenmaterials. Eachmaterial is character-
ized by its own equation of state (EOS).

The formalism of finite volume methods is close to the
mechanical viewpoint, and generic for different types of physical
models. Thus, it is easier to add other physical phenomena
like surface tension or turbulent diffusion for instance. The
discretization order is limited, but this method is accurate to
simulate hydrodynamic shock waves, because of the consistency
between numerical treatment and mechanics.

The extension of Eulerian schemes tomulti-material fluid flows
can be obtained by various techniques. One is to introduce the
cell mass fraction cα of material α and let it evolve according to
material velocity. The cell is called pure if a material α satisfies
cα = 1 and is called mixed if cα ∈]0, 1[. Pure cells filled by

∗ Corresponding author.
E-mail addresses: raphael.loubere@math.univ-toulouse.fr (R. Loubère),

braeunig@math.u-strasbg.fr (J.-P. Braeunig), jmg@cmla.ens-cachan.fr,
ejmb@ghidaglia.net (J.-M. Ghidaglia).

material α are calculated in the same manner as for the single
material method. Mixed cell evolution is computed using a mixing
equation of state that takes into account material mass fractions;
see e.g. [1]. One drawback of this approach is the numerical
diffusion of the interface. It turns out that for some applications,
this drawback is not acceptable since the diffusion of one material
into another one will correspond to a different physics. For
example, the two materials could react when a molecular mixture
is formed. Moreover, the mixing equation of state itself may lead
to difficulties concerning physics and robustness.

In the case of sharp interface capturing methods, the interface
is approximated in a mixed cell by a segment by most authors.
However, more complex curves than straight line ormore complex
theory (see [2] for instance) might be used. A famous method
using sharp interface reconstruction is the Eulerian as Lagrange
plus Remap finite volume scheme, initiated in [3] and further
improved in [4]. It belongs to the family of the so called Volume of
Fluid (VOF) methods. The first step of this method is a Lagrangian
scheme, resulting in a mesh displacement with material velocity.
The second step is a multi-material remapping of Lagrangianmesh
onto the original Eulerian mesh, by exchanging volume fluxes
between cells related to the Lagrangian motion of cell edges. The
new interface position in mixed cells is determined using the
partial volumes of the materials and the interface normal vector.
The latter is calculated using volume fractions from neighboring
cells. Thus the ratio of each material in volume fluxes is deduced
from the multi-material remapping. Some methods with the same

0997-7546/$ – see front matter© 2011 Published by Elsevier Masson SAS.
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kind of operator splitting are used for incompressible multi-
material fluid flows as in [5]. These methods provide sharp
interface betweenmaterials and discontinuous quantities inmixed
cells, allowing large deformations and transient flows. In this
context, the drawback of these Lagrange plus Remap methods is
the limited accuracy of the underlying single phase scheme due to
diffusion induced by the remapping step.Moreover, more complex
physics atmaterial interfaces such as sliding effects, is not possible.

The FVCF scheme (Finite Volume with Characteristic Flux) has
been introduced in [6] for simulating single phase compressible
flows or multi-phase models without sharp interface capturing.
The method described in [7], the so called NIP method (Natural
Interface Positioning), is combined to the FVCF method in order
to deal with multi-material fluid flows with sharp interface
capturing. It is a cell centered totally Eulerian scheme, in which
material interfaces are represented by a discontinuous piecewise
linear curve. A treatment for interface evolution is proposed
on Cartesian structured meshes which is locally conservative
in mass, momentum and total energy and allow the materials
to slide on each others. Discrete conservation laws are written
on partial volumes as well as on pure cells, considering the
interface in the cell as a moving boundary without any diffusion
between materials. A specific data structure called condensate is
introduced in order towrite a finite volume scheme evenwhen the
considered volume is made of moving boundaries, i.e. interfaces.
This treatment includes an explicit computation of pressure and
velocity at interfaces.

In [7], 2D results are shown illustrating the capability of the
method to deal with perfect sliding, high pressure ratios and
high density ratios. This former method however produces non
satisfactory results in the context of advection of geometrical
shapes especiallywhen dealingwith lowMach numbers. Generally
speakingmost of the advection and reconstructionmethods have a
tendency to destroy the shape of advected objects due to numerical
approximations. This former method behaves similarly, but gives
very poor results when advecting geometrical shapes especially
when dealing with low Mach number flows. In this work, we
propose a new method called ENIP (Enhanced NIP) that is an
improvement of the NIP method by a more accurate treatment
of condensates. Using a very simple example, the advection of
a square, an inconsistency in the NIP interface reconstruction
method will be exhibited. We will then introduce ENIP that cures
this situation. Numerical examples are presented in Section 4 to
assess the validity and efficiency of this new approach.

2. FVCF-ENIP: Finite Volume Characteristics Flux with En-
hanced Natural Interface Positioning technique

2.1. Governing equations

The model addressed in this work is the compressible Euler
equations in space dimension d that can be written in a
conservative form as follows:

∂

∂t
(ρ) + div(ρu) = 0, (1)

∂

∂t
(ρu) + div(ρu ⊗ u + pI) = 0, (2)

∂

∂t
(ρE) + div((ρE + p)u) = 0, (3)

where ρ denotes the density, u ∈ Rd the velocity field, p the
pressure, E = e+|u|2/2 the specific total energy and e the specific
internal energy. An equation of state of the form EOS(ρ, e, p) = 0
or p = p(ρ, e) is provided in order to close the system.

Let us consider a generic conservative form with V =

(ρ, ρu, ρE)t the unknown vector of conservative variables and flux
F is a matrix valued function defined as

F : Rd+2
−→ Rd+2

× Rd

V −→ F(V ),
(4)

for all direction n ∈ Rd, F(V ) · n is given in terms of V by

F(V ) · n = (ρ (u · n) , ρu (u · n) + pn, (ρE + p) (u · n)) . (5)

The compressible Euler Eqs. (1)–(3) can then be rewritten as

∂tV + divF(V ) = 0. (6)

2.2. FVCF: single material scheme

The FVCF method uses a directional splitting on Cartesian
structured meshes. The method is detailed for only one generic
direction denoted by x. In d dimensions of space, the algorithm
described for direction x has to be replicated d times, one for each
direction. However, this directional splitting does not modify the
underlying single material scheme FVCF for pure cells. In 2D:
- variables at tn,x are calculated from those at tn by the x direction
step,

- variables at tn+1 are calculated from those at tn,x by the y
direction step.

Voli
V n,x
i − V n

i

∆t
+ Ax


φn

ℓ + φn
r


= 0, (7)

Voli
V n+1
i − V n,x

i

∆t
+ Ay


φn
d + φn

u


= 0, (8)

where the cell volume is Voli, the cell face areas are Ax and Ay
normal to x and y directions, respectively, up, down, right and left
direction fluxes φn

u , φ
n
d , φ

n
r , φ

n
ℓ are calculated with respect to the

outgoing normal direction nd of cell face Γd in direction d using
variables at time tn, i.e.

φn
d =

1
Ad

∫
Γd

F(V n) · nddS. (9)

This flux is further approximated using the finite volume scheme
FVCF described in [6].

2.3. FVCF-NIP: multi-material scheme

One considers multi-material flows. The subcell model ad-
dressed here for themulti-material representation is a cell C of vol-
ume VolC containing nm different materials, each of them filling a
partial volume VolkC such that
nm−
k=1

VolkC = VolC . (10)

Cell C is referred as pure if nm = 1, and as mixed if nm > 1. The
interfaces inmixed cells are approximated by segments separating
materials into two partial volumes which are pure on both sides of
the interface.

A partial volume cell-centered variable vector Vk = (ρk, ρkuk,
ρkEk)t and an equation of state EOSk(ρk, ek, pk) = 0 are also
associated with each material labeled by k ≤ nm in the mixed cell.

The FVCF-NIPmethoduses a directional splitting scheme for the
interface evolution without loosing the accuracy of the Eulerian
scheme in the bulk of materials. Consequently, this scheme is
restricted to the structured Cartesian mesh.

The multi-material extension proposed in [7] considers the
finite volume scheme (7)–(8) on each partial volume in a mixed
cell. The obtained scheme is conservative by construction and the
time step iscomputed considering only the CFL stability condition
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Fig. 1. Sketch of a condensate. Evolution of an interface through a cell edge during one time step.Mixed and pure neighbor cells aremerged to obtain the so called condensate
at fictitious time tn∗ . Interface evolution is performed within this condensate from tn∗ to tn+1∗ . This condensate is then split back into Eulerian cells.

of the scheme in single material cells.1 Stability of the mixed
cell scheme is the purpose of the reference [8]. The NIP method
consists in removing cell edgeswhen this cell contains an interface.
Therefore, each partial volume is merged with the neighbor pure
cells filled with the same material; see Fig. 1. Variables in these
enlarged partial volumes are obtained by writing the conservation
laws on the merged volumes:

Vol1 = Vol1 + Volpure 1, (11)

Vol2 = Vol2 + Volpure 2, (12)

where Vol1 and Vol2 are the partial volumes of materials 1 and 2 in
themixed cell and Volpure 1 and Volpure 2 are the volume of neighbor
pure cells of materials 1 and 2. Each volume or partial volume
is associated with its state vector V of conserved variables. With
this notations, we proceed the following conservative average of
variables in merged volumes:

V 1 =
Vol1 V1 + Volpure 1 Vpure 1

Vol1
(13)

V 2 =
Vol2 V2 + Volpure 2 Vpure 2

Vol2
. (14)

This set of cells is associated with its left and right single material
fluxes φℓ and φr . Internal cell edges are forgotten, considering only
enlarged volumes Vol1 and Vol2 and averaged variables V 1 and V 2,
separated by an interface; this system is called a condensate.

This numerical strategy consists in condensing neighboring
mixed cells in one direction of the Cartesian mesh, in which
interfaces are considered as mono dimensional objects, namely,
they are considered vertical during x direction step and horizontal
during y direction step. A condensate then contains layers of
successive different materials that are separated by straight
interfaces. The thickness of these layers is calculated through
volume conservation. The ordering of layers is given by the 2D
description from the previous time step. It is determined thanks
to the volume fractions of neighboring cells. The layer evolution
is calculated in a Lagrangian fashion which implies that layers
can be as thin as partial volumes are small. Once quantities and
interface positions inside the condensate are known at time tn+1,
they are remapped back onto the original Eulerian mesh. Finally,
a 2D normal in each mixed cell is computed as described in [4]:
the method is based on an approximation of the gradient of the
volume fraction function in mixed cells. It provides the normal
to material’s interface in each cell that is further used to locate

1 Without such a special treatment the time step would be constrained by the
smallest partial volume, which could be arbitrarily small.

materials within mixed cells. The numerical scheme used in a
condensate and especially the sliding condition at the interface
is presented in detail in [7], so consequently its description is
omitted in this work. The emphasis is rather put on the interface
reconstruction method.

As shown in [7] this numerical method has several attractive
properties such as conservation and perfect sliding of materials
for instance. Moreover, ∆t is not restricted by small partial
volume thanks to a tight control of density and pressure [8],
the numerical experiments carried out in [6,7,9] have confirmed
the efficiency of such a method for compressible multi-material
computation. Indeed, the robustness, the accuracy and the perfect
sliding property of the scheme have been verified by comparing
solutionswith academic test results as well as by testing on violent
flows with stiff equations of state, high density ratios, high or low
Machnumbers. The accuracy of the scheme to capture shockwaves
and contact discontinuities with the interface capturing method is
very good. Although very promising, the method suffers from the
way interfaces are dealt with.

The NIP method consists of the following steps assuming the
condensate is in the x direction:

• Situation Fig. 2(A). It corresponds to the true situation at tn with
real material geometry, interfaces and normals to them.

• Representation Fig. 2(B). The representation step can be seen
as the way of determining on which side (left or right) of the
mixed cell the material is to be put. This is done by comparing
the direction of the interface normal at time tn with the vertical
direction.

• Condensate construction Fig. 2(C). The construction of the
condensate consists in discarding any cell edges in the
mixed cells considered. Then the partial volumes of the same
contiguous materials are glued together into the so called
condensate layers. For instance, the darkmaterials of cells 2 and
3 are merged into one stand-alone layer.

• Condensate evolution Fig. 2(D). The condensate layer evolution
is computed from tn to tn+1 thanks to the numerical scheme de-
veloped in [7]. At each interface a velocity is assigned and, con-
sequently, a new position of each layer within the condensate
is determined in a Lagrangian manner. Any conserved variable
is computed accordingly.

• Reconstruction Fig. 2(E). This phase consists in ‘‘guessing’’ the
shape of each layer in the condensate before remapping.

• Projection Fig. 2(F). The projection step consists in remapping
the shapes obtained from the reconstruction phase onto the
Eulerian grid. This step produces updated partial volumes in
mixed cells. Volume fractions are deduced.

The sliding at the interface is enforced by solving a Riemann
problem, still in 1D accordingly with Godunov like methods, but
in the direction of the normal to the interface, in such a way the
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Fig. 2. NIP method — (A) Situation at tn with real material geometry, interfaces and normals to them. (B) Representation of partial volumes at tn . (C) Construction of a
condensate at tn by merging layers of contiguous partial volumes of the same material. (D) Evolution of condensate in a Lagrangian fashion during ∆t . (E) Condensate
reconstruction at tn+1 . (F) Condensate projection/remapping from the Lagrangian mesh onto original mesh.

tangential velocity and the tangential pressure stress are free at
the interface. This 1D solution in the interface normal direction
is then projected in 2D on the axis corresponding to the current
directional splitting phase, i.e. formulas that give the 1D interface
pressure and velocity in function of the 2D interface normal vector,
the 2D velocities and the pressure. All details can be found in the
former paper [7].

When all mixed cells in the domain are treated for direction
x, the interface normals are computed using the updated volume
fractions. This concludes the system evolution in direction x, as we
are back to a similar situation as the one described in Fig. 2(A).
In the case where the normal is almost vertical, positioning the
material on either side of the cell might be incorrect. Furthermore,
the reconstruction phase is here clearly inconsistent: the interfaces
are initially horizontal in cell 3 and 4 (Fig. 2(A)), while in the
Reconstruction Fig. 2(E) and in the Projection Fig. 2(F) phase
interfaces are set vertical for any initial geometry. This situation of

a horizontal interface is the worst case, but it illustrates the lack of
geometrical consistency of NIP. This inaccurate reconstruction step
leads to a lack of accuracy of the volume fractions obtained after
the remapping step. Ultimately, it impacts the whole numerical
method in any advection process, as it can be seen in Fig. 5 with
the diagonal advection of a square test.

2.4. FVCF-ENIP

Themain idea of the new interface reconstructionmethod ENIP
emanates from the following remarks:

1. At time tn any interface normal in mixed cell i denoted by n⃗i
is known. It is used to locate the partial volumes within cell i
when the condensate is constructed (phase (B) and (C) of Fig. 2).
However, n⃗i is never taken into account in the reconstruction
and projection phases (E) and (F) from the same figure.

232
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Fig. 3. The ENIPmethod — (A) Situation at tn . (B) Representation at tn . (C) Construction of a condensate at tn bymerging of mixed cells leading to layers of contiguous pieces
of the same material. (D) Evolution of condensate in a Lagrangian fashion during ∆t . Determine layer compression rates θ±

c through the evolution of Lagrangian cells. (E)
Condensate reconstruction at tn+1 using interface normals defined at tn . (F) Condensate projection/remapping from the Lagrangian mesh onto the Eulerian mesh.

2. Any layer of the condensate evolves as a Lagrangian object in the
original method. Consequently, the cell faces could evolve in an
almost Lagrangian manner within this condensate. This makes
it possible to conserve the initial geometry of partial volumes
during this Lagrangian motion.

Therefore, ENIP modifies several steps of NIP as described in
Fig. 3. Once a patch of neighboring mixed cells in x direction2 is
agglomerated. Then the same five steps as for the NIP method are
performed. The first two steps are kept unmodified. The last three
are modified as described in the following.

2.4.1. Lagrangian condensate evolution step
Cell interface Lagrangian velocity. After the condensate at tn is

constructed, each layer labeled c is located thanks to the left and

2 The y direction is treated likewise.

right interface position, respectively, called x−
c , x+

c . The numerical
scheme provides the layer evolution, and as a by-product, the
velocities of these interface positions, u−

c , u+
c are given by

x−,n+1
c = x−

c + ∆t u−

c , x+,n+1
c = x+

c + ∆t u+

c . (15)
Wemake the following fundamental linear displacement assump-
tion: The velocity linearly varies within any layer; see Fig. 4 for a
sketch. This assumption implies that any point xi ∈


x−
c ; x+

c


char-

acterized by its 1D barycentric coordinates

λ−

i =
x+
c − xi

x+
c − x−

c
, λ+

i =
xi − x−

c

x+
c − x−

c
, (16)

moves to location

xn+1
i = λ−

i x
−,n+1
c + λ+

i x
+,n+1
c = xi + ∆t


λ−

i u
−

c + λ+

i u
+

c


. (17)

Then the point velocity is naturally set to ui = λ−

i u
−
c +λ+

i u
+
c . Using

this previous formula, one can associate a ‘‘Lagrangian’’ velocity to
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Fig. 4. Sketch of linear displacement assumption — displacement velocity varies linearly between the layer interface velocities (× in color) computed by the numerical
scheme. The cell interface velocity (•) is interpolated. The two top rows represent the evolution of a condensate in the x direction from tn to tn+1 .
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Fig. 5. Advection of a square (zoom around the exact position of the initial and final squares) — (a) exact solution — (b) classical NIP with a 60× 60 mesh — (c) classical NIP
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Fig. 6. Convergence of ENIP vs NIP for a pure advection problem. The log of the L2
error is displayed as a function of the log of ∆x.

any cell interface. For instance, in Fig. 3-(C) cell interface located
at xni moves to the position xn+1

i = xni + ∆t ui with ui being
the linear combination between u−

c and u+
c via the barycentric

coordinates of point xi in [x−
c ; x+

c ]. With the same formula one gets
xn+1
i+1 = xni+1 + ∆t u−

c+1 in the next layer as xni+1 ≡ x−

c+1.

2.4.1.1. Compression/expansion rates. The global rate of compres-
sion/expansion in layer c during ∆t is given by

θc =
x+,n+1
c − x−,n+1

c

x+
c − x−

c
= 1 + ∆t

u+
c − u−

c

x+
c − x−

c
. (18)

The linearity assumption provides a simple way to determine
the rates of compression/expansion at left/right of a point xi ∈
x−
c ; x+

c


θ−

c =
xn+1
i − x−,n+1

c

x+
c − x−

c
, θ+

c =
x+,n+1
c − xn+1

i

x+
c − x−

c
, (19)

that fulfill θ−
c + θ+

c = θc . Moreover, the substitution of xn+1
i in the

previous equations yields

θ−

c =
xi − x−

c

x+
c − xc−

+ ∆t
ui − u−

c

x+
c − x−

c
= λ+

i + ∆t
ui − u−

c

x+
c − x−

c
, (20)

where ui − u−
c = (λ−

i u
−
c + λ+

i u
+
c ) − u−

c = λ+

i (u+
c − u−

c ), therefore
the compression rates simply write

θ−

c = λ+

i


1 + ∆t

u+
c − u−

c

x+
c − x−

c


= λ+

i θc, (21)

θ+

c = λ−

i


1 + ∆t

u+
c − u−

c

x+
c − x−

c


= λ−

i θc . (22)

Each θ+
c or θ−

c is associated to a unique Eulerian cell; as instance in
Fig. 3, θ−

c is associated to cell 2, θ+
c to cell 3, θ+

c+1 to cell 4 and so on.
Therefore, θ±

c provides de facto the compression/expansion of the
partial volume originating from its associated Eulerian cell motion.
Furthermore, as any Eulerian mixed cell i possesses a unique
normal denoted by n⃗i, this last is associated to the corresponding
partial volume θ±

c ; this normal is consequently labeled n⃗±
c . These

rates are then used to reconstruct the material topology into the
Lagrangian cell.

2.4.2. Reconstruction step
The Lagrangian cell i at tn+1 the interfaces of which moved as

xn+1
i = xi + ∆t ui, xn+1

i+1 = xi+1 + ∆t ui+1, (23)

changed its volume as

θi =
Voln+1

i

Voli
=

xn+1
i+1 − xn+1

i

xi+1 − xi
= 1 + ∆t

ui+1 − ui

xi+1 − xi
. (24)
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Fig. 8. The pictures represent the pressure profile of the air and of the water
droplet, where the water/air interface is the black curve. Times of the computation
from top to bottom are t = 0, t = 3 µs and final time t = 14.8 µs.

The velocity ui depends on u−

c−1, u
+

c−1 and ui+1 depends on u−
c , u+

c .
Moreover u+

c−1 ≡ u−
c by definition.

The second fundamental assumption states that the interface
normals n⃗±

c do not change their direction during their Lagrangian
evolution. The goal is to locate the partial volume into the
Lagrangian cell at tn+1 and construct the linear interface, knowing
its normal n⃗±

c . Necessarily this partial volume is either in contact
with cell interface xi (superscript + ) or xi+1 (superscript − ). Its
volume at tn+1 is given by

Vol±,n+1
c = Vol±c θ∓

c = Vol±c + ∆t λ∓

i (u+

c − u−

c ). (25)

If Vol±,n+1
c ≤ Voln+1

i then there exists a unique line oriented
by the normal n⃗±

c and separating the cell volume into two sub-
volumes Vol±,n+1

c and (Voln+1
i − Vol±,n+1

c ), respectively, by the
PLIC (‘‘Piecewise Linear Interface Construction’’ [4]) method. As the
displacement velocity u(x) is supposed to be piecewise linear (by
the first assumption, see Fig. 4), then, if xi < x−

c < xi+1 one
deduces xn+1

i < x−,n+1
c < xn+1

i+1 . Therefore, the sub-volume at
tn+1 is strictly included into the Lagrangian cell volumeVoln+1

i . This
phase is depicted in Fig. 3(E).

2.4.3. Projection step
The projection step performs the exact intersection between

the Lagrangian condensate obtained after the reconstruction step
in Fig. 3(E) and the Eulerian mesh (bold line squares in Fig. 3-(A)).
This step is depicted in Fig. 3-(F). The exact intersection consists

in projecting each partial volume that is accurately located in
the condensate, onto some Eulerian fixed cell(s). For instance in
Fig. 3-(F), the first partial volume is projected onto Eulerian cells
2 (green cell) and 3 (red cell). Contrarily, the last partial volume is
totally projected into Eulerian cell 5 (brown cell). This projection
provides the quantity of material per Eulerian cell, or, equivalently
its volume fraction. Once the volume fractions in the mixed cells
are updated through the evolution of the condensates, interface
normals are computed using the same technique as in the original
NIP method.

3. Numerical results

In this section, we present a set of test cases to assess the
efficiency of the approach described in the previous sections. First,
one validates the technique on pure advection test cases that often
present excessive smearing of interfaces due to the numerical
inaccuracy embedded into the scheme. A square shaped object is
advected with constant velocity in a diagonal direction in a first
test, then into a rotating flow. Finally a hydrodynamics test case is
presented.

3.1. Advection context

An initial square [0.1; 0.1] × [0.2; 0.2] is located in the domain
Ω = [0: 0.4]×[0; 0.6]. The density in the square is set toρ0(x) = 1
whereas it is set to ρ0(x) = 0 outside. In the pure advection
context, this square shape should be perfectly conserved through
the equation
∂

∂t
ρ + u

∂

∂x
ρ + v

∂

∂x
ρ = 0, (26)

where (u, v) is a constant velocity field. The exact solution at any
point x and any time t is ρex(x, y, t) = ρ0(x − u t, y − v t). If the
numerical method provides an approximated solution called ρn

i in
cell i at time tn then the error in Lα norm is evaluated by (α = 1, 2)

εα =

∑
i

|ρn
i − ρex(xi, tn)|α∑

i
|ρex(xi, tn)|α

. (27)

The first test consists in advecting the square with the constant
velocity field u = 1, v = 3 up to the time t = 0.1 then reversing
the advection field by setting u = −1, v = −3 up to final time
t = 0.2 so that the final configuration exactly fits the initial one.
Any method (NIP and ENIP included) introduces some error that
we intend to measure with this test. In Fig. 5, the exact solution
(panel (a)), and the results obtained with a 60 × 60 mesh for NIP
(panel (b)) and ENIP (panel (d)) are shown. ENIP is visibly able
to preserve the shape of the square whereas NIP is not. A mesh
refinement of NIP computation (120 × 120 mesh on the panel (c))
does not improve the situation. In Table 1, we gather the errors for
the L1, L2 norms for successively refinedmeshes for the NIP and the
proposed ENIP method on this advection problem. Systematically
ENIP over-topsNIP. The convergence of the ENIPmethod as the grid
refined is shown in Fig. 6; the log–log scale results for the error in L2
norm for both methods show the improvement obtained by ENIP;
indeed the slope represents a measure of the numerical order of
convergence. ENIP has improved it by a factor 2.5 (0.6 for NIP and
1.5 for ENIP).

The next test consists in the rigid rotation of a square
[0.06; 0.46] × [0.3; 0.7] (density 1) into the unit square domain;
see the top-left panel of Fig. 7. A 100 × 100 uniform mesh is
considered and the rotation is given by the velocity field
u = −100(y − 0.5), v = 100(x − 0.5).
In Fig. 7, we display the density after 5/8 of the full rotation, after
one and three rotations. The square shape is almost preserved.
Contrarily, the classical NIP method would totally lose the shape
after one rotation.
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Fig. 9. The pictures above represent the velocity fieldwith the same scale for the arrows length for water (blue) and air (red). The interface is reconstructedwith the position
of the materials in the mixed cells as it is computed by the method. Two zooms are presented where two velocity vectors are drawn in a cell (only one in single material
cells), centered on partial volumes of materials, to show the sliding at the interface at time 3 µs.

Table 1
Error in L1, L2 norms for the advection problem — NIP versus ENIP methods.

∆x = ∆y L1 NIP L1 ENIP L2NIP L2ENIP

0.02 3.652 0.196 2.575 0.079
0.0133 0.389 0.165 0.318 0.081
0.01 0.339 0.111 0.284 0.053
0.005 0.221 0.042 0.195 0.017
0.0033 0.155 0.025 0.138 0.010

3.2. Sliding context

3.2.1. Shock-droplet interaction
In this test is considered a 2D water droplet surrounded by air

at atmospheric conditions. A very fast shock wave is traveling in
the air (Mach ≈ 77) from the left to the right hand side and will
interact with the droplet. The shock wave goes even faster in the
air than in the water at initial state. The initial planar shock wave
then curves around the water droplet. In this flow will appear a
very strong shear between the air and the water droplet, since the
density ratio between the gas and the liquid is here 1.29/1000. This
test is presented to emphasize the need of the sliding condition at
an interface between fluids of such different densities to properly
model the problem in the context of compressible Euler equations,
meaning in the context of inviscid flows. The domain is [0; 0] ×

[0.1; 0.05]m2 is corresponding to half the geometry of the domain
and of the water droplet of radius 0.02 m. The mesh is 200 × 100
cells. The initial conditions are given in Table 2, the initial geometry
is given in Fig. 8 and results in Fig. 9.

This test shows the robustness of the method with a stiff
equation of state for the water and a high density ratio between
the materials. The shear at the interface is pictured in Fig. 9.

Table 2
Initial state for the shock-droplet interaction with equations of state of the form
p = (γ − 1)ρe − Π , with e the internal energy.

Quantity Post-shock air Air at rest Water droplet at rest

Density ρ (kg/m3) 7.73549 1.29 1000
Pressure p (Pa) 109 105 105

Velocity x (m/s) 25415.657 0 0
Velocity y (m/s) 0 0 0
γ 1.4 1.4 7
Π (Pa) 0 0 2.1 × 109

3.2.2. Free fall of a block of water
We run an idealized 2D test case that corresponds to the free

drop of a liquid rectangle within a 2D rectangular tank filled with
gas [9]. This context is inspired by the problem of sloshing that
may appear in the tanks of Liquid-Natural-Gas (LNG) carriers.
The study focuses on the ability for the numerical simulations
to take a proper account of physics that is of major importance
during the liquid impact such as the escape of the gas underneath
and its compression. A strong sliding process occurs between the
compressed gas and the falling liquid. The ability of the method to
properly deal with sliding conditions at the interface has a major
effect on the final numerical compression and the shape of the
trapped air. This has ultimately a strong influence on the impact
pressure.
The test case consists in a domain Ω = [0.0; 0.0] × [10 m; 15 m]

filled with air. The liquid is initially at rest in the rectangle [0; 2]×
[5; 10] and is falling under the gravity that is pointing downward
with magnitude g = 9.81 m s−2. A free fall of the liquid into
vacuum would impact at timpact = 0.64 s; however due to the
presence of the gas this theoretical value is not correct for our
simulation however some critical phenomena still occur in the
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Fig. 10. Free drop of a liquid rectangle within a 2D rectangular tank filled with gas. Zoom on the velocity field (vectors). The color is scaled according to themagnitude of the
velocity field. Original NIP results at t = 0.66 s in (a) and the ENIP method at the same time (b) are relatively close although differences can be seen at the corner interface.
Contrarily, at t = 0.69 s in (c) the original NIP method traps some air underneath the block of falling water. At this time the air is still escaping under the falling block as
seen for the ENIP results in (d).

vicinity of this time. As found at around timpact, a pocket of gas is
trapped under the falling liquid and this strongly influences the
numerical impact pressure by decelerating and damping the free
fall of the liquid. Therefore, a sliding condition at the interface
should qualitatively improve the numerical results. One considers
ameshmade of 100×150 uniform cells on the domain. One shows
the results for NIP and ENIP at time t = 0.66 s Fig. 10(a)–(b) and
t = 0.69 s in Fig. 10(c)–(d). The classical NIP method was already
able to deal with such sliding effects. However, the interface
reconstruction method employed is not sufficiently stable to be
free of oscillation that one suspects to be only a numerical artifact
(see panels (a–c)). Contrarily, the new reconstruction method
ENIP on this very same test case is able to produce a smooth
interface that permits to obtain amore realistic simulation. Indeed,
this simulation prominently displays the fact that the ‘‘bubbling’’
effects of NIP is of pure numerical origin and that ENIP cures this
drawback. The velocity field is shown in Fig. 10 for the original
method at times t = 0.66 s and t = 0.69 s, respectively, in
Fig. 10(a) and (c). The proposed method results are displayed in
Fig. 10(b) and (d). Original NIP method results at t = 0.66 s in (a)
and the ENIPmethod in (b) are relatively close although differences
can be seen at the corner interface. NIP results are less smooth.
Moreover, below the corner the vector field of air with natural

tendency to escape the falling water block is not as continuous
as for the ENIP results. This leads for the NIP method to an earlier
trapping of the gas pocket under the falling block of water, because
of the NIP numerical interface instabilities that are erased with the
ENIP method. This effect is emphasized at t = 0.69 s in (c). At
this time the original NIP method traps some air almost at rest
underneath the block of falling water. ENIP results in (d) show that
the air should continue to escape.

4. Conclusion and perspectives

This paper deals with the improvement of the so-called NIP
(Natural Interface Positioning)method. The NIPmethod, described
in [7] is an add-on to the FVCF method in order to treat multi-
material fluid flows, uses the concept of condensate. A condensate
is the association of contiguous mixed cells in either x or y
direction. They are further treated as an entity to make possible
the treatment of each mixed cell taken individually. NIP is the
method based on the following steps: Representation, Condensate
construction, Condensate evolution, Reconstruction, and Projection.
The present paper points the weakness of the NIP method in
pure advection context and, consequently, in a full multi-material
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hydrodynamics one. An Enhanced NIP method is proposed (ENIP).
It modifies several of the previous listed steps. More precisely
the condensate is assumed to evolve in an almost-Lagrangian
fashion. The reconstruction step assumes that the condensate
keeps the same form modulo some expansion/compression that
the numerical scheme already provides. So the displacement of the
condensate is performed either with the true computed velocity
or with an interpolation of it. In fine, the condensate preserves
its topology contrarily to the original NIP method for which the
condensate has no recollection of its shape from the beginning of
the time step.
The capability of the full numerical method is now dramatically
improved as seen in advection test cases (advection and rigid
rotation of a square). Moreover, we ran ENIP on difficult multi-
material hydrodynamics tests. First, we have illustrated the sliding
at the interface capability of the ENIPmethod and its robustness on
a shock-droplet interaction test, with a high Mach number, a high
density ratio and with very different equations of state between
water and air. Second, by simulating the free drop of a liquid
rectanglewithin a 2D rectangular tank filledwith gas in the context
of sloshing that may appear in the tanks of Liquid-Natural-Gas
carrier (see [9]). The accuracy, stability and robustness of the ENIP
method is clearly seen especially at the time some air is trapped
under the water. In the near future we plan to investigate the
evolution of this method to the case of mixed cells with more than
twomaterials. In this case, the only difficulty lies in the positioning
of the different materials in the cell, but their evolution within
the condensate follows exactly the same algorithm ENIP with no
modification of the numerical scheme. The MPI parallelization

of the code is already achieved; see [10]. The method has been
extended in 3D by Chauveheid [11].
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Abstract

This work concerns the simulation of compressible multimaterial fluid flows
and follows up the method Finite Volume with Characteristics Flux for two
materials described in paper “A totally Eulerian finite volume solver for
multi-material fluid flows : Enhanced Natural Interface Positioning (ENIP)”,
European Journal of Mechanics B/Fluids, vol.31 , No4, pp. 1-11 (2012). The
interface reconstruction method was designed to deal with only two materi-
als. In this paper we present the generalisation of the method to more than
two materials. The design principles remain the same as for the two material
method. Nevertheless some specifics treatments have been added, like an au-
tomatic order of treatment of materials using material centers of mass in the
so-called condensate. Interestingly the method can accept any interface re-
construction method. For simplicity purposes, the crude onion skin approach
with unique material normal has been chosen. The entire scheme has been
tested on the four material disk embedded into a reversible incompressible
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velocity field test case for which numerical error can be computed. Then sev-
eral more demanding hydrodynamics impacts of droplet on thin film have
been simulated to show the ability of the method to qualitatively capture
three material complex behaviours (sliding, impact).

Keywords: Multimaterial fluid flow, Finite Volume, Natural Interface
Positioning
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1. Introduction

Dealing with multiple materials in computational fluid dynamics (CFD) is
nowadays a pressing necessity. As a matter of fact, the increase of complexity
in physics modeling associated to even bigger computer ressources have led to
a tremendous need for multimaterial friendly numerical methods. Almost any
modern Initial Fusion Confinement (ICF) computation, astrophysical simu-
lation, biology or material models involve two or more interacting materials,
with possibly different physics modeling or mechanical behavior. However
the extension of a single material numerical method into a multimaterial one

2

is usually not a trivial task, but, unavoidably, each will have to endure this
evolution to deal with realistic simulations in these fields.
In [7] the authors have developed a Finite Volume with Characteristics Flux
(FVCF) scheme for single material flows simulation. A two material exten-
sion has been proposed and validated in [4, 9, 2]. Since 2008 two materials
flows simulations have been run, but for physics related applications this re-
striction on the number of materials had to be removed.
Consequently we develop in this paper an extension of FVCF that deals ef-
ficiently with an arbitrary number of materials to simulate genuine physical
situations.
In section 2 we briefly present the former FVCF numerical scheme in its two
material version. Then in section 3 we revamp the scheme to deal with more
than two materials. The original scheme treats mixed cells (where two ma-
terials coexist) using the so-called “condensate” data structure. This notion
is therefore extended to accept the occurence of an arbitrary number of ma-
terials. The original interface reconstruction method was based on Youngs’
algorithm [12, 13] which has not been initially designed for more than two
materials. Consequently we adopt the simplest multimaterial interface recon-
struction method, called by Youngs the “onion skin” approach [12], which is
a good compromise between ease of implementation and quality of results.
More sophisticated interface reconstruction methods would produce even bet-
ter results at the price of increasing the overall complexity of the method.
This new algorithm is implemented into FluxIC, the FVCF simulation code.
Several test cases are simulated and presented in section 4. For verification
and convergence testing purposes we have run a multimaterial academical
hydrodynamics test cases : a five material vortex stretching. Then genuine
demanding physical three materials tests are presented, namely droplet im-
pacts at high velocity on a thin liquid film in vacuum. These tests are intended
to measure the behaviours of our approach both from an academical and en-
gineering points of view.
Conclusions and perspectives are finally drawn.

2. FVCF-ENIP : Finite Volume Characteristics Flux with Enhanced
Natural Interface Positioning technique

2.1. Governing equations

The model addressed in this work is the compressible Euler equations in
d dimensions of space which can be written in a conservative form using the
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specific total energy as follows :

∂

∂t
(ρ) + div (ρu) = 0, (1)

∂

∂t
(ρu) + div (ρu⊗ u+ pI) = 0, (2)

∂

∂t
(ρE) + div ((ρE + p)u) = 0, (3)

where ρ denotes the density, u ∈ Rd the velocity field, p the pressure, E =
e + |u|2/2 the specific total energy and e the specific internal energy. An
equation of state (EOS) of the form EOS(ρ, e, p) = 0 or p = p(ρ, e) is
provided in order to close the system.
Let us consider the generic conservative system with V = (ρ, ρu, ρE)t the
unknown vector of conservative variables and the flux F being a matrix
valued function defined as :

F : Rd+2 −→ Rd+2 × Rd

V 7−→ F (V ).
(4)

For any direction ν ∈ Rd, F (V ) · ν is given in terms of V by :

F (V ) · ν = (ρ (u · ν) , ρu (u · ν) + pν, (ρE + p) (u · ν)) . (5)

The compressible Euler equations (1-3) can then be rewritten in a compact
form as :

∂tV + divF (V ) = 0, (6)

supplemented by an EOS.

2.2. FVCF : Single material scheme

The Finite Volume Characteristics Flux for a single material has been
developed and described in [7]. The FVCF scheme is written here using a
directional splitting on a Cartesian structured meshes. In d dimensions of
space, the algorithm described for a generic direction x has to be replicated
d times, one time for each direction. However, this directional splitting does
not modify the underlying single-material scheme FVCF for cells, that are
both pure and not adjacent to mixed cells. Indeed, in 2D :

- variables at tn,x are calculated from those at tn by the x direction step,
- variables at tn+1 are calculated from those at tn,x by the y direction

step.
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Voli
V n,x

i − V n
i

∆t
+ Ax (φn

` + φn
r ) = 0, (7)

Voli
V n+1

i − V n,x
i

∆t
+ Ay (φn

d + φn
u) = 0, (8)

where the cell volume is Voli, the cell face area are Ax and Ay respectively
normal to x and y directions. ∆t is the time step between tn and tn+1. Up,
down, right and left direction fluxes φn

u, φn
d , φn

r , φn
` are calculated with

respect to the outgoing normal direction νd of cell face Γd in direction d all
using variables V n at time tn, i.e.

φn
d =

1

Ad

∫

Γd

F (V n) · νddS. (9)

This flux is further approximated using the finite volume scheme FVCF de-
scribed in [7]. Of course, results obtained for V n+1 by using two steps (7)
and by adding fluxes in all directions in one step are thus strictly identical.

2.3. FVCF-ENIP : Two material scheme

ENIP stands for Enhanced Natural Interface Positioning technique. This
extension of FVCF scheme to deal with two material fluid flows has been
proposed in [4, 9] and improved in [2]. For the sake of clarity we only recall
the main steps of this method.
The subcell model addressed here for the multimaterial representation is a
cell C of volume VolC containing nm different materials, each of them filling
a partial volume VolkC such that

nm∑

k=1

VolkC = VolC . (10)

Cell C is referred as to pure if nm = 1, and as mixed if nm > 1. The
interfaces in mixed cells are represented by segments separating materials
into two partial volumes which are pure on both sides of the interface.
A partial volume cell-centred variable vector Vk = (ρk, ρkuk, ρkEk)t and an
equation of state EOSk(ρk, ek, pk) = 0 are also associated with each material
labelled by 1 ≤ k ≤ nm in the mixed cell.
FVCF-ENIP method uses a directional splitting scheme for the interface
evolution, but without modifying the single-phase Eulerian scheme by using
the time integration scheme (7) in the bulk of materials. Consequently this
scheme is restricted to structured Cartesian meshes.
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The two material extension proposed in [9, 2] relies on conservation laws
written for each partial volumes in a mixed cell, taking into account the
interface as a moving boundary. The obtained finite volume scheme is con-
servative by construction. The time step is constrained by the same CFL
condition on partial volumes as the single material scheme. This is one key
point because the time step would be constrained by the smallest partial
volume in the domain, which can be arbitrarily small. This restriction has
been removed by developping a fine density and pressure control algorithm
whose guidelines can be found in [10].

The ENIP numerical strategy consists in condensating neighbouring mixed
cells in one cell line of the cartesian mesh, in which interfaces are consid-
ered as mono dimensional objects, but taking into account the local multi-
dimensional geometry by the interface normal vector. This object is referred
to as a condensate, which then contains layers of successive different materi-
als that are separated by moving interfaces. The ordering of layers is given
by the 2D interface reconstruction from the previous time step which uses
the volume fractions of neighbouring cells. The layer evolution is calculated
in a Lagrangian fashion. Once the quantities and the new position of inter-
faces are calculated after a directional step, they are remapped back onto the
original Eulerian mesh. When all condensates are remapped, a 2D normal
is computed in each mixed cell for each interface as described in [8] : the
method is based on an approximation of the volume fraction gradient. It is
further used to locate materials within mixed cells during the remapping and
to compute the fluxes through the interfaces with a sliding condition. The
numerical scheme used in a condensate is presented in great details in [9]
[2]. We omit its complete description in this work to focus on the interface
reconstruction method, but we will give an outline now.
At time tn, volume fractions and interfaces normal vectors νi in each mixed
cell i are known, then the method performs the following steps (assuming
the condensate is in the x direction) :

– Representation. The representation step is the way of determining at
which side (left or right) of an interface the material is to be put. This
is done by comparing the direction of the interface normal at time tn

with the vertical direction.
– Condensate construction. The construction of the condensate consists

of discarding any cell edges in the mixed cells considered. Then the
partial volumes of the same contiguous materials are merged together
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into so called condensate layers. Layers centred quantites are obtained
by a conservative volume average of partial volumes quantities.

– Condensate evolution. The condensate layer evolution is computed from
tn to tn+1 thanks to the numerical scheme developed in [9].

– Reconstruction. We assume that the interface normals νi do not change
their direction during the interfaces Lagrangian evolution. The goal is
to locate the materials in the Lagrangian mixed cell at tn+1 and to
construct the piecewise linear interfaces, knowing their normal vector
and the partial volume of each material.

– Remapping/Projection. The projection step consists of remapping the
shapes obtained from the reconstruction phase onto the Eulerian grid.
An exact intersection between the Lagrangian condensate obtained af-
ter the reconstruction step and the Eulerian mesh is employed.

When all mixed cells in the domain are treated for direction x, the 2D in-
terface normals are computed using the updated volume fractions. This con-
cludes the system evolution in direction x, the y direction can be performed.

3. Extension of FVCF-ENIP to multimaterial fluid flows

The purpose of this work is to further extend the scheme to treat more
than two components in multimaterial flows. First one reviews some of the
multimaterial interface reconstruction methods. Then the extension of ENIP
is proposed.

3.1. Quick review of multimaterial interface reconstruction methods

Although VOF-PLIC techniques have been successfully used to accurately
simulate two-material flows and free-surface flows in two and three dimen-
sions, their application to flows involving three or more materials has been
mostly ad hoc. The most common extensions of PLIC to cells with more than
two materials is to process materials one-by-one leading to a reconstruction
that is dependent on the order in which the materials are processed. In the
so-called onion skin approach, each material interface is assumed to separate
two materials and consists of a single line segment with both endpoints on
the computational cell boundary. This form of reconstruction works only for
layer structures [12, 1] and even there it may create overlapping layers if
different normals are used during the reconstruction process, see Fig. 1. A
more general approach is the so-called nested dissection method [5, 6], where
each material is separated from the others in a (usually user-)specified order.
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A pure polygon representing the first material is marked out from the cell,
leaving a mixed polygon for the remaining materials. Then, a polygon rep-
resenting the second material is marked out from the mixed polygon from
previous step. The process continues until the last material is processed, see
Fig. 1 middle panel for an illustration.
The interface reconstructed by one of the above methods is close to the cor-
rect configuration if the correct material ordering is provided. An incorrect
ordering sometimes results in dramatic degradation of the interface. Worse,
there may not be an ordering which will give the correct configuration by
nested dissection like for a quadruple point as instance. Also the correct or-
dering in one part of the domain may be inappropriate in a different part.
Finally two-material cells next to multimaterial cells may be affected by the
order in which materials are processed as discussed in [16]. Finally, the pres-
ence of multiple materials in simulations creates special considerations for
second-order accurate methods like LVIRA [14], see [17] for a discussion on
this point. Such incorrect reconstructions adversely impact the material ad-
vection in flow simulations. In most cases, wrong material ordering results in
materials being advected prematurely or belatedly into neighbouring cells.
This can also lead to fragments of the material separated and drifting away.
To address this problem, there has been some work on deriving the mate-
rial order automatically by Mosso and Clancy [18] and by Benson [19]. Both
were designed assuming a layer shape of materials. This a priori assumption
is sometimes inappropriate for multimaterial junctions like quadruple points.
Some other techniques, restricted to three materials, have somehow addressed
the material ordering problem as Choi and Bussman [15] and Caboussat et
al. [20]. Bonnell et al. [21] have also described an interface reconstruction
method for multiple interfaces but the method is not guaranteed to match
volume fractions exactly.
Recently some authors have proposed a solution to the problems of order-
dependency and a a priori choice of interface shapes like Schofield et al. [16]
using a weighted Voronoi diagram (or power diagram). This method is capa-
ble of generating a material-order independent partitioning of multimaterial
cells and has been shown to be second-order accurate in [17], see Fig. 1 right
panel for an illustration. Yet another promising method is the Moment-Of-
Fluid (MOF) method [5, 6] which demands the knowledge of first moments
of materials (also called reference material centroids) in order to select the
most accurate interface reconstruction method that is to say, the method
minimising the difference between the reference material centroids and the
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Figure 1: Illustration of multimaterial interface reconstruction techniques. Left panels :
onion skin approach with unique normal and with multiple normals (may lead to inter-
section and wrong reconstruction) — Middle panel : Nested dissection, the blue polygon
is reconstructed with its normal and further removed from the mixed remaining cell, then
the white polygon is constructed with its normal in the mixed cell. The white polygon is
then removed and the red material is constructed with its normal. The remaining of the
cell corresponds to the green material — Right panel : order independent power diagram
reconstruction method. The material order is blue, white, red and green for the first three
panels.

generated centroids from the partitioning of the cell.
In this work we adopt the simplest interface reconstruction method namely
the onion skin approach with unique normal per mixed cell, see Fig. 1. The
normal is chosen to be the one from a user-given priority material. The order
in which the materials are treated is chosen automaticaly by ordering them
along the direction of the condensate by means of their approximate material
centroids, see Fig. 3.
In fact the extension of our scheme to nm materials using the simplest inter-
face reconstruction method is a first required step to demonstrate the feasi-
bility of the approach. Later we may consider the improvement brought by
more advanced interface reconstruction techniques such the ones presented
in this brief review.

3.2. FVCF-ENIP : multiple (nm > 2) materials case

In Fig. 2 is sketched the condensate evolution when multiple materials
are present in mixed cells. In this example the order in which the materials
are treated is : first the brown material, second the white, then the green and
the red, hence the colours of the normal in the initial representation of the
condensate Fig. 2-(A). Let us call V olk,nC the volume occupied by material
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Figure 2: ENIP method to treat nm > 2 materials — Material order : brown, white,
green, red. (A) Situation at tn with materials positions, interfaces and their normals to
them. (B) Representation of materials at tn. (C) Construction of a condensate at tn by
merging of mixed cells leading to layers of contiguous pieces of the same material. (D)
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mesh (dashed lines) onto Eulerian mesh (straight black lines).
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k in cell indexed C, C ranges from 1 to 6 in the figure. The following steps,
namely (B), (C), (D) steps do not change. The result of these steps is
the compression rates δV olkC for each piece of fluid, in other word material

k occupies volume V̂ ol
k,n+1

C = V olk,nC + δV olkC in the Lagrangian cell C.
The reconstruction step (E), even if it has not changed compared to the
two-material case, requires some particular care when the compression and
expansion rates are transferred to the materials. This is especially true if
a more complex interface reconstruction techniques than the onion skin is
to be used in (A). In our case one reconstructs the interfaces using the

initial normals in the new Lagrangian cell the volume of which is V̂ ol
n+1

C .

Volume V̂ ol
n+1

C is split into polygons of pure materials, say P̂ k,n+1
C , such

that V̂ ol
n+1

C =
⋃

k P̂
k,n+1
C . Finally step (F) demands the exact intersection of

possible non-convex polygons of material P̂ k,n+1
C with the Eulerian cell V olC

(see for instance the red material in the third Eulerian cell, or green material
in the fourth). In other words, for all material k, one computes

V olk,n+1
C =

⋃

C′

V olC ∩ P̂ k,n+1
C′ . (11)

The volume fraction of material k in Eulerian cell C is given by : fk
C =

V olk,n+1
C /V olC because V oln+1

C ≡ V olC , c being an Eulerian cell. Once all
condensates in x-direction are treated, all volume fractions in the domain
are updated. These volume fractions in the entire neighbourhood are finally
provided to the interface reconstruction method which provides the new inter-
faces after the x step. Then the condensate treatment in the second direction,
say y, is performed using the very same technique. Consequently we omit this
description. The time step is completed once the pure cells are updated and
the condensates in x and y directions have been treated.

Notice that this multiple material treatment of condensates can deal with
an arbitrary number of materials within the mixed cells, is independent of the
initial materials arrangement and of the interface reconstruction technique.
As already mentioned we will only test the simple onion skin approach. The
unique normal in mixed cell is computed with respect to the same material
whose index is provided by the user. Originally the onion skin approach
requires an ordered list of materials in each mixed cell. In our approach we
refined this point : when the condensate in x direction is computed one orders
the materials thanks to the x component of their centroids at time tn, see
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Figure 3: Automatic ordered list of material for the onion skin method. The materials
are ordered according to their centroids relative location in the condensate direction.

Fig. 3. This order is further redefined for the y direction of the condensate.
More advanced interface reconstruction techniques such as MOF [5, 6] may

lead to pure polygons P̂ k,n+1
C with simpler or more complex forms. However

the exact intersection algorithm is equally able to deal with such situations.

4. Numerical results

In this section, we present some dynamic multimaterial interface recon-
struction examples using the technique described in previous sections imple-
mented into a 2D compressible Eulerian code. Many advection simulations
have been run such as advection of rigid multimaterial shapes (square, disc)
aligned or not-aligned with the mesh, and severe or light deformations of
materials. In this paper we only present a severe distorted multimaterial test
case : a four material disk is distorted due to a vortex-like motion (incom-
pressible velocity field) and must, at final time, retrieve its original position
and shape. Accordingly, a lot of hydrodynamical multimaterial verification
test cases have been simulated, however we limit ourselves to the genuine
demanding three material tests from the field of droplet impact on a thin
liquid film, because these show the good behaviour of the numerical scheme
coupled with a multimaterial interface reconstruction technique.

4.1. Four material disk test cases

A standard volume tracking test case is the disk embedded into a vortex
[11]. The computational domain is Ω = [0, 1] × [0, 1]. The mesh is a regular
structured grid made of squares of size ∆x×∆y with ∆x = ∆y = 1/N with
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N the number of cells both in x and y directions. A four material disk of
radius Rd = 0.15 is placed such that the center is positioned at (0.5, 0.75) in
Ω filled with a fifth material indexed by 0. The normal vector of material 0
is always chosen for the “onion skin” mixed cell reconstruction.

The incompressible velocity field is given by the stream-function

Ψ = cos
(π

4
t
) 1

π
sin2(πx) sin2(πy) (12)

with the velocity field defined to be U = (u, v) = (−∂Ψ
∂y
, ∂Ψ
∂x

). due to the
periodicity in time of Ψ, at time t = 4, the material configuration should
be identical to the condition at time t = 0. Here the time step used was
∆t = 0.2 ∆x where ∆x is the mesh spacing and the simulations were run to
a final time of t = 4.0 with intermediate results at t = 2.0. Several succes-
sively refined meshes are used : N = 32, 64, 128 and 256.

First, a two material disk is considered, one material is indexed by 1 in
the disk and the second one is indexed by 0 in the surrounding. Then a four
material disk is considered. The disk is split by one horizontal and one ver-
tical line passing through its centre. Each obtained quadrant is assigned a
different material index. The results are shown for the initial t = 0, maximal
stretch t = 2 and final t = 4 times. The two material results are displayed in
Fig. 4 top panel and the five material ones in Fig. 4 bottom panel. We first
remark that the shape of the disk is almost the same for the two- or five-
material situations, which proves that the multimaterial treatment does not
degrade the numerical scheme. Moreover we observe that the cross shape of
the centre of the disk is relatively well reproduced even if the onion skin inter-
face reconstruction method cannot take into account cross-shaped interface.
The most interesting feature is the good location of each fluid. The materials
are numbered as 1 (white), 2 (beige), 3 (orange), 4 (red), 5 (dark red) and
we plot on the figure the average value in mixed cell between these numbers,
the purpose of this figure is to show that the multimaterial treatment does
not spoil a two material results and, moreover that the bulk of materials
are well located. In Fig. 5 we propose a finer view for the 64 × 64 mesh.
All mixed cells are plotted for the initial (left panel) and final (right panel)
times. In each mixed cell we draw a square for each material present omitting
the white surrounding material. The coloured squares can have three sizes
depending if the volume fraction is less than 10−4 for very-small quantity, less
than 10−2 for small quantity, or greater than 10−2. Using this convention we
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Figure 4: Material configuration for the two (top) and five (bottom) material vortex test
at initial time t = 0, maximum stretch time t = 2.0 and at complete reversal time t = 4.0
run on a 256× 256 grid.
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Figure 5: Five material vortex test at initial time (left) and at complete reversal time
t = 4.0 (right). Run on a 64 × 64 grid. The squares are the mixed cell and the volume
fractions are represented by coloured squares. Three sizes are shown, “macroscopic” volume
fractions (greater than 10−2), “microscopic” volume fractions (greater than 10−4) and
“mesoscopic” ones in between.

can genuinely observe how the materials have spread during the simulation.
One observes that the orange and red materials have somewhat spread into
the beige and orange materials although, in reality, they should not have.
We can also observe that the materials form a connex structure and that no
non-contiguous mixed cells are created.

For a given mesh N ×N , the total error in L1 norm for material volumes
is defined by

eNvol =

∑

i∈Cells

nm=4∑

k=0

‖Volfinali,k − Vol0i,k‖

∑

i∈Cells

nm=4∑

k=0

Vol0i,k

(13)

where Volfinali,k is the volume of material k in cell i at final time, and Vol0i,k
is its initial volume. For each mesh we compute the error and the rate of
convergence produced by the method which are displayed in Table 1 for the
two materials and five materials test cases. The five materials errors are
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2 materials 5 materials
N Error Rate Error Rate

32 2.69× 10−2 — 7.69× 10−2 —
64 1.24× 10−2 1.11 3.31× 10−2 1.01
128 5.93× 10−3 1.07 1.36× 10−2 1.19
256 2.82× 10−3 1.07 5.97× 10−3 1.08

Table 1: Errors for the disk in the vortex test case. The rate of convergence are computed

as log(eNvol/e
N/2
vol )/log(2).

approximately two times bigger than the two materials errors. The rate of
convergence is one for the original method (two materials) and the present
method (five materials). This shows that dealing with more than two ma-
terials does not destroy or reduce the accuracy of the method even if the
interface reconstruction technique, namely the onion skin model, is rather
crude.

4.2. Hydrodynamic test cases

In this section we present multimaterial hydrodynamical test cases. The
test case lies in the context of a gas droplet impacting onto a thin liquid film
inside vacuum, see Fig. 6. We derive three test cases with the same initial ge-
ometry by varying the density ratio between the droplet and the liquid film.
During the impact, a jet will form between the droplet and the film dragging
a proportion of both materials. This phenomenum is highly dependent on the
fluids inertia, because each material posseses its own velocity and a sliding
condition is set at the interfaces, then each fluid can evolve independently
from another, our method seems appropriate to deal with such tests. These
conditions are dictated by Euler equations, where no dissipative processes
exist (except in shock waves). These tests have been chosen to qualitatively
illustrate the FVCF-NIP method capability.
Nevertheless, authors are aware that physical processes such as friction,
molecular or turbulent diffusion between two liquids render the slip condition
at the interface a bad choice in term of modelling. However, the FVCF-NIP
method could take these physical mechanisms into account if they were ap-
propriately implemented in the model. The vacuum is naturally taken into
account by the FVCF-NIP method. Indeed, it is considered as the limit of
a perfect gas equation of state, the interface capturing scheme in conden-
sates naturally degenerates to the following vacuum model : null density,
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Figure 6: Initial condition for the droplet impact (materials are shown).

null pressure and no acoustic waves are coming from or entering the vacuum.
Inside the vacuum “material”, no single-phase FVCF fluxes and no evolution
equations are computed since all quantities remain null.

Depending on the relative densities of the droplet and of the liquid film,
one observes different behaviours in physical experiments [22]. The compu-
tational domain is Ω = [0; 0.1] × [−0.05; 0.05] (only half of the domain is
computed but for the figures the computational domain is mirrored). Wall
boundary conditions are considered. The initial droplet is centred at (0.05, 0)
at radius R = 0.02 with stiffened gas equation of state p = (γ − 1) ρe − Π,
with parameters given in table 2. The droplet is in motion with horizontal
velocity component u = −103 and at rest in y direction v = 0. The thin
film is modelled with the same γ parameter as the droplet, it is located at
x ≤ 0.028. The surrounding gas is considered as a perfect gas so light com-
pared to the fluid density, that we model it as vacuum (ρ = 0, p = 0). Three
test cases, which depend on the realtive densities between the thin film and
the droplet, are simulated (see Table 2 for the initial states) The mesh is
made of 300× 150 cells.

Test #1. In this test case we consider the thin film density to be two times
bigger that of the droplet. In Fig. 7 are displayed the material interface and
material locations at time t = 17.63.
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Tests Thin film Droplet
ρ p γ Π(×109) ρ p γ Π(×109)

#1 2 103 105 7 10 103 105 7 2.1
#2 103 105 7 2.1 103 105 7 2.1
#3 103 105 7 2.1 2 103 105 7 10

Table 2: Droplet impact initial conditions for the three test cases.

Figure 7: Droplet impact test cases. Left : Test #1 low density droplet at t = 17.63,
Middle : Test #2 equal density droplet-film at t = 25.15, Right : Test #3 high density
droplet at t = 24.57. Top line : materials geometry. Bottom line : Density. The black lines
represent the iso-contour of each material.
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Test #2. In this test case we consider the same density for the droplet and
the thin film. In Fig. 7 are displayed the material interface and material
locations at time t = 25.15.

Test #3. In this test case we consider the droplet density two times heavier
than the thin film. In Fig. 7 are displayed the material interface and material
locations at time t = 24.57.

The fact that the numerical method considers one velocity per material
is illustrated on these tests by observing the jet of lighter material, should
it be the droplet (Test #1) or the thin fluid (Test #3). Indeed it is expelled
faster from the impact zone due to the fact that its inertia is lower. With a
numerical scheme which can not differentiate the velocity of each fluid this
’sliding behaviour’ would not be possible. Consequently the material with
lighter inertia will drag the bigger one. This is also seen on the middle pan-
els of Fig. 7 for which the droplet and thin film materials have the same
inertia, in this case the expelled filaments are of the same size and move
with each other. Qualitatively the results obtained by the method are close
to experimental results which can be found in [22]. Note that these droplet
impact test cases are intended to validate the interface reconstruction tech-
nique in our multimaterial hydrodynamics code. More advanced physical test
cases will be simulated and quantitative results will be extracted for future
communications.

5. Conclusion and perspectives

The purpose of this paper was to construct a multimaterial extension
of the Finite Volume Characteristics Flux with Enhanced Natural Interface
Positioning technique. A two material scheme was already available and this
paper shows the modification needed to build an efficient method to deal
with an arbitrary number of materials. More precisely, minor modifications
have been made when a condensate is treated. We have carefully designed the
method in such a way that virtually any interface reconstruction method can
be used. The crude but robust onion skin interface reconstruction method
has been considered in this work.
Test cases on advection or hydrodynamics have shown the efficiency of this
extension. We have presented in this paper the “four material disk in a vor-
tex” test case and three “impacts of droplet onto a thin film”. These are

19

representatives of classical academical interface reconstruction test cases and
genuine demanding hydrodynamics test cases for which multimaterial treat-
ment is mandatory. The results obtained by the new method are very ac-
ceptable and the onion skin interface reconstruction method is mostly to be
blamed for the observed weaknesses ; a unique normal per mixed cell is often
a poor approximation of reality and an improper material ordering may re-
sult in materials being advected prematurely or belatedly into neighbouring
cells. The reasoning behind this choice of onion skin method is the fact that
the scheme has been tested with the poorest method and the results are al-
ready satisfying. Moreover more advanced interface reconstruction methods
can be later coupled to the code without requiring additional modifications
to the scheme.
In the near future we plan to implement more advanced order independent
interface reconstruction techniques. From the physical point of view we plan
to test furthermore the code on demanding physical simulation and esti-
mate quantitatively and qualitatively our results against experimental and/or
other simulations. Finally the extension to 3D and axisymetric geometry are
two future points that we have to develop and validate.
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Conclusions and perspectives

This thesis has presented some of the works my collaborators and I were able to pursue. Most
of these investigations revolve around a joined effort to improve ALE simulation codes ;

Lagrangian scheme analysis and test, rezone and reconnect strategies, remapping algorithms,
multi-material treatment and interface reconstruction techniques. My goal in this thesis was not
only to provide some details of these works but also to provide ’the big picture behind the scene’
and to try when possible to give some historical context. Moreover I have introduced several other
topics which are not genuinely related to ALE such as the so-called very high-order MOOD method,
some ultra fast kinetic scheme and multi-material finite volume VFFC scheme.

This is some of the current research pursued and all of these subjects are still under investigation.
This helps a lot when perspectives are to be drawn ! Everything in what has been presented in this
thesis is far from begin satisfactory, and improvements will be searched in the near future.
One of my goals is to construct a 3D version of a reconnection ALE code that could run on a single
workstation with “light” parallelization technique. By using the most appropriate and efficient
numerical methods we should be able to build such a tool for the community. As a consequence
the Lagrangian schemes, the rezoner and the remapper must be somewhat revamped to adapt to
the inherent difficulties of a 3D simulation code. In short, more efficient remappers (less memory-
consuming), more stable Lagrangian schemes and trully poyhedral rezoner must be designed.

I pay a lot of attention to the work on bridging cell-centered and staggered Lagrangian schemes, in
fact I do believe that this is a good way to improve the schemes by feeding them with success from
the others. After all these formulations are probably not so far away from each others. Moreover
comparing numerical methods is a thankless activity but absolutely needed to deeply understand
their intrinsic behaviors which, at the end of the day, only reveal when difficult tests cases are
simulated.

Unavoidable the ALE formulation is fruitful and applying this machinery to other physical con-
texts is kicking : elasto-plasticity, interaction of fluid/structure as instance. Before being able to
properly treat these subjects we surely will have to define a good remapper for tensors. Being able
to reconstruct a high-order accurate representation of a tensor, being able to limit this and begin
able to remap onto a new grid are some tools that we need to construct. All of these require some
careful design and study which are on my “to do” list.

Concerning the context of very high-order finite volume schemes, we are currently extruding the
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essence of the original MOOD method ; it seems to be a more general design principle to build
numerical schemes than a numerical method devoted to hydrodynamics. The MOOD paradigm can
virtually be extended to treat steady-state solutions, parabolic/elliptic system of equations, source
terms. Moreover developing a MOOD-like method mixing different schemes such as unlimited
Discontinuous Galerkin schemes may be interesting. We plan to pair up our MOOD scheme with
ADER like techniques. An implicit version of the MOOD scheme is also currently being worked out.
Finally the validation of the MOOD concept on genuine physical contexts is under investigations.
Concentrating our experiences on MOOD into a dedicated library for the community is also a
wishful thinking of mine. Undoubtedly this topic will occupy some of my research time.

Because for the next years I do not plan to change my natural tendency to take advantages of good
research topics, it is irrefutable that my work will also cover some other eclectic subjects.



Appendix

Abbreviations and acronyms

The abbreviations and acronyms used in this document are listed in the follwoing table.
AWE : Atomic Weapon Establisment, Aldermaston, U.K
CEA : “Commisariat à l’énergie atomique” in France

CEA-DIF : CEA center of Bruyères-le-Châtel, France
CEA-CESTA : CEA center of Le Barp, France

CELIA : “Centre d’Etude Laser et Interaction et Applications”,
University of Bordeaux, France

CMLA : “Centre de Mathématiques et de Leurs Applications”,
ENS-Cachan, Paris, France

CNRS : “Centre National de Recherche Scientifique” in France
CVUT : Czech Technical University in Prague, Czech Republic

DGA : “Direction Générale de L’Armement” in France
IMB : “Institut de Mathématiques de Bordeaux” in France
IMT : “Institut de Mathématiques de Toulouse” in France

INRIA : “Institut National de Recherche en Informatique et Automatique”
in France

LANL : Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A
LLNL : Lawrence Livermore National Laboratory, Livermore, California, U.S.A

LMJ : Mega-joule laser located at the CEA-CESTA in France
MIP : “Mathématiques pour l’Industrie et la Physique” group within IMT
NIF : National Ignition Facility laser located at the LLNL
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Titre Contribution au domaine des méthodes numériques Lagrangiennes et Arbitrary-Lagrangian-
Eulerian

Résumé Ce mémoire présente des travaux portant (i) sur les méthodes numériques lagrangiennes
et (ii) sur le développement des méthodes dites arbitrairement lagrangienne-eulérienne (ALE). Ces
deux thématiques ont en commun de tenter de résoudre les équations de la mécanique des fluides
compressibles en multi-dimensions sur des maillages mobiles se déplaçant soit à la vitesse du fluide
(lagrangienne), soit à une vitesse arbitraire (ALE). En particulier nous abordons les problèmes de
viscosité artificielle, de consistance et précision, de stabilité, de consistance en volume, le traitement
des points exceptionnels ou encore les lignes de glissement. Dans le chapitre ALE nous proposons
des études sur les phase de projection conservative, correction a posteriori, reconnexion topologique
de maillage ou de reconstruction d’interface dans des mailles mixtes. (iii) Une troisième partie
propose un ensemble de sujets plus hétéroclites : reconstruction d’interface dans des schémas multi-
matériaux sur maillage fixe, schémas cinétiques ultra rapides, et des schémas de type volumes finis
d’ordre très élevé.

Mots-clés Schéma lagrangien, ALE, projection, remaillage, reconnection de maillages, tesselation
de Voronoi, méthode MOOD, schéma cinétique, 3D, reconstruction d’interfaces

Title Contribution to Lagrangian and Arbitrary-Lagrangian-Eulerian numerical schemes

Abstract This thesis presents our work related to (i) Lagrangian schemes and (ii) Arbitrary-
Lagrangian-Eulerian numerical methods (ALE). Both types of methods have in commun to solve
the multidimension compressible Euler equations on a moving grid. The grid moves with either
the fluid velocity (Lagrangian) or an arbitrary velocity (ALE). More specifically we deal with some
problems related to artifical viscosity, internal consistency, stability, accuracy, exceptional points
and slide line treatments. In the ALE chapter we study the remap and rezone phases but also the
mesh reconnection to build a ReconnectionALE scheme and further some interface reconstruction
techniques. In a third chapter (iii) other resarch topics are presented like interface reconstruction
techniques on a fixed grid finite volume scheme, ultra fast kinetic scheme, and very high-order
finite volume schemes.

Keywords Lagrangian scheme, Arbitrary-Lagrangian-Eulerian scheme, remap, rezone, reconnect,
repair, Voronoi tesselation, MOOD method, kinetic scheme, 3D, interface reconstruction.
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